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Abstract

This paper provides a significant numerical evidence for out-of-sample fore-

casting ability of linear Gaussian interest rate models with unobservable un-

derlying factors. We calibrate one, two and three factor linear Gaussian mod-

els using the Kalman filter on two different bond yield data sets and compare

their out-of-sample forecasting performance. One step ahead as well as four

step ahead out-of-sample forecasts are analyzed based on the weekly data.

When evaluating the one step ahead forecasts, it is shown that a one factor

model may be adequate when only the short-dated or only the long-dated

yields are considered, but two and three factor models performs significantly

better when the entire yield spectrum is considered. Furthermore, the re-

sults demonstrate that the predictive ability of multi-factor models remains

intact far ahead out-of-sample, with accurate predictions available up to one

year after the last calibration for one data set and up to three months after

the last calibration for the second, more volatile data set. The experimental

1corresponding author. Email: paresh.date@brunel.ac.uk. Phone: +44 1895 265613,
Fax: +44 1895 269732
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data denotes two different periods with different yield volatilities, and the

stability of model parameters after calibration in both the cases is deemed

to be both significant and practically useful. When it comes to four step

ahead predictions, the quality of forecasts deteriorates for all models, as can

be expected, but the advantage of using a multi-factor model as compared

to a one factor model is still significant.

In addition to the empirical study above, we also suggest a nonlinear fil-

ter based on linear programming for improving the term structure matching

at a given point in time. This method, when used in place of a Kalman

filter update, improves the term structure fit significantly with a minimal

added computational overhead. The improvement achieved with the pro-

posed method is illustrated for out-of-sample data for both the data sets.

This method can be used to model a parameterized yield curve consistently

with the underlying short rate dynamics.

Keywords Finance, forecasting, time series, filtering

1 Introduction

Exponential affine term structure models is one of the oldest and the most

widely studied class of dynamic interest rate models. The main advantage of

these models is the fact that the yields can be expressed as affine functions

of the short rate. The exponential affine term structure models are often

classified into three categories:

• Gaussian affine models. The single factor linear model proposed in Va-

sicek (1977) is a Gaussian affine model and was the first model for

which closed-form formulae for bond prices were obtained. All the

state variables in these types of models have constant volatilities. A

multi-factor Gaussian affine model is discussed in Babbs and Nowman

(1999). Extensions of the Gaussian affine models to match the current

term structure are discussed in Hull and White (1990), Hull and White

(1993) and Hull and White (1994). The Gaussian models have a high

degree of tractability and a variety of products can be priced in closed-
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form with these types of models. Recently, closed-form formulae for

swaption pricing under a multi-factor Gaussian affine model have been

reported in Schrager and Pelsser (2006).

• CIR affine models. Models of this type were first proposed in Cox

et al. (1985) and were extended to multi-factor case in Beaglehole and

Tenny (1991). All the state variables in these models have CIR-type

square root volatilities. Unlike the Gaussian models, the interest rate

is guaranteed to remain non-negative provided it starts from a non-

negative value.

• A three-factor affine family. This family represents the models that mix

Gaussian and CIR type state variables; see Balduzzi et al. (1996), Rhee

(1999) and Longstaff and Schwartz (1992) for examples.

A general framework for multi-factor affine term structure models was pro-

posed in Duffie and Kan (1996). An empirical comparison of several different

short rate models appears in Chan et al. (1992).

In this paper, we model the behavior of government bond yields by using

linear Gaussian term structure models. Cross-sectional as well as time-series

data of gilt yields is used for calibration, i.e. each discrete measurement in

time series consists of a cross-section of gilt yields. The short rate is assumed

to be an affine function of unobservable state variables. Each yield is assumed

to be the sum of the theoretical yield for the corresponding time to maturity

and a zero mean stochastic disturbance. Since the theoretical yield is affine

in the short rate, this set-up gives a linear state space system. The Kalman

filter can then be used to calibrate the model using noisy yield measurements.

There are many accounts of Kalman filtering-based calibration and fore-

casting of a time series, including detailed treatments in Harvey (1989) and

in Durbin and Koopman (2002). A brief overview of Kalman filtering-

based calibration for interest rate models appears in (James and Webber

(2000), chapter 18). In empirical research reports concerning this issue in

detail, Babbs and Nowman (1999) and Lund (1997) estimate the general-

ized Vasicek models using Kalman filtering. Other filtering applications in
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the area of interest rate modelling are reported in Rossi (2004), Jegadeesh

and Pennacchi (1996), Ball and Torous (1996), Duan and Simonato (1995)

and Gravelle and Morley (2005). The work presented here follows Babbs and

Nowman (1999) in that we use linear Gaussian transition equations with con-

stant prices of risk.

In contrast with the previously cited research, the emphasis of this paper

is short and medium term out-of-sample forecasting of future yields. While

a lot of empirical research has been carried out to predict the term structure

and to test the expectations hypothesis (see, e.g. Lanne (2000) and references

therein), relatively little empirical work has been done in testing the out-of-

sample, short term forecasting ability of an affine term structure model with

unobservable factors. We provide a significant numerical evidence of pre-

dictive ability of a simple linear Gaussian model with unobservable state

variables. A forecasting model may be useful in a variety of situations, e.g.

in predicting downside risk of future performance of a gilt portfolio or in

generating scenarios for a stochastic programming based optimization. It

is shown in Reisman and Zohar (2004) that using re-balancing based on a

short term prediction of the term structure can significantly improve the re-

turns from a bond portfolio. For multi-factor models, we demonstrate that

the predictive ability remains unimpaired for a long period after calibration.

Besides this empirical work based on the application of existing theoretical

results, a new linear programming-based heuristic is suggested for estimating

the unobservable states. This heuristic filter is aimed at improving the yield

curve matching without increasing the calibration effort or the model com-

plexity. This provides a very useful alternative to Nelson-Siegel type static

yield curve models since it is consistent, by definition, to the assumed interest

rate dynamics2.

The rest of the paper is organized as follows. Section 2 provides a brief

overview of linear Gaussian affine term structure model used in this work.

Section 3 presents a similarly brief overview of Kalman filtering-based cali-

bration. Section 4 offers a detailed empirical analysis for calibration of a one,

2The consistency of a parameterized yield curve is defined in section 5.
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two and three factor linear Gaussian models and yield prediction using all

these models. Section 5 suggests a new linear programming heuristic for state

estimation in a linear Gaussian model to improve the matching of the initial

term structure. This heuristic is shown to out-perform the Kalman state up-

date in term structure matching at a fairly small added computational cost.

Finally, section 6 summarizes the contributions of this work.

2 Linear Gaussian Affine Term Structure Mod-

els

In the linear Gaussian model discussed in Babbs and Nowman (1999), the

short rate at time t is described by

rt = µ− Σn
i=1xt,i, (1)

where the states evolve as linear Gaussian processes with constant volatilities:

dxt,i = −αixt,idt + Σn
j=1σi,jdzt,j. (2)

with zt,j being independent Wiener processes. Suppose that each state pro-

cess xt,i has a constant price of risk, λi. Then the term structures at time t

are of the form

rt(τ) = a0(τ) + Σn
i=1ai(τ)xt,i (3)

with ai(τ) = −H(αiτ), a0(τ) = r∞ − w(τ), r∞ and w(τ) are functions of

constant parameters µ, λi, σi,j, αj and H(x) = (1− e−x)/x. The formulae of

r∞ and w(τ) can be expressed as

r∞ = µ + Σn
i=1λiΣ

n
j=1

σj,i

αj

− 1

2
Σn

i=1(Σ
n
j=1

σj,i

αj

)2, (4)

w(τ) = Σn
i=1H(αiτ)

(
Σn

j=1λj
σi,j

αj

− Σn
j=1Σ

n
k=1

σk,jσi,j

αkαi

)

+
1

2
Σn

i=1Σ
n
j=1H((αi + αj)τ)Σn

k=1

σi,kσj,k

αiαj

. (5)

Note that rt in (1) is recovered from rt(τ) as τ → 0. This model will be used

later for numerical experiments with n = 1, n = 2 and n = 3 in section 4.
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In addition, we use xt,i as unobservable variables and estimate them from

yield measurements using the Kalman filter. The basic set up of calibration

of a linear time series model using the Kalman filter is briefly outlined in the

next section.

3 Kalman filtering-based calibration

Consider a discrete time, linear state space system

xk = Fxk−1 + εk,

bk = Axk + B + ek, (6)

where εk, ek are zero mean, Gaussian and uncorrelated, the unknown xk is

the state vector at time k, bk is measurement made at time k and A,B, F ,

E(εkε
T
k ) = Σε, E(eke

T
k ) = Σe are constants or are known functions of time.

Considering a three state model with M yield measurements for simplicity,

a first order Euler discretisation of (1)-(2) will lead to

F =




1− α1 0 0

0 1− α2 0

0 0 1− α3


 , B =




a0(τ1)

a0(τ2)
...

a0(τM)




, (7)

A =




a1(τ1) a2(τ1) a3(τ1)

a1(τ2) a2(τ2) a3(τ2)
...

...
...

a1(τM) a2(τM) a3(τM)




(8)

with ai(τj) defined as in the last section. The time interval between two

successive samples is assumed to be unity without loss of generality. Only

bk,i = rtk(τi) + ek,i, i = 1, 2, · · · ,M is measured at discrete times tk, where

rtk(τi) = (Axk + B)i is the theoretical yield for time to maturity τi and (z)i

is ith entry in vector z. We wish to predict xk based on measurement up to

time tk−1. When this prediction is carried out using the Kalman filter, the
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joint density function of yield forecasting errors is available in closed-form

and can be maximized to find the parameters A, B, F , Σε and Σe.

The standard set of recursive equations for Kalman filtering is outlined

below for reference.

The prediction of the state vector:

x̂k|k−1 = F x̂k−1|k−1. (9)

The prediction of the covariance matrix:

Pk|k−1 = FPk−1|k−1F
T + Σε. (10)

The Kalman gain matrix:

Kk = Pk|k−1A
T (APk|k−1A

T + Σe)
−1. (11)

The filtered state vector:

x̂k|k = x̂k|k−1 + Kkvk (12)

The filtered covariance matrix:

Pk|k = (I −KkA)Pk|k−1. (13)

The yield forecasting error:

vk = bk − (B + Ax̂k|k−1). (14)

The variance of forecasting error:

Σk = APk|k−1A
T + Σe. (15)

The initial state x0 and the initial covariance matrix P0 are parameter-

ized in terms of A,B, F and Σε. Let θ be the vector of unknown parameters

from matrices A, B, F , Σe and Σε. As mentioned earlier, the joint proba-

bility density function (also called the likelihood function) of observations is

maximized over the parameter vector θ to get the estimate of θ. Since the

forecast errors are Gaussian, the log likelihood function is expressed by:

L(θ) =
T∑

k=1

log p(bk|Fk−1, θ), (16)
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where T is number of samples. Since the forecast error is Gaussian, this

reduces to minimizing

−L(bk, θ) =
MT

2
log 2π +

1

2

T∑

k=1

(
log det(Σk) + vT

k Σ−1
k vk

)
. (17)

This smooth nonlinear cost function can be minimized over the set of param-

eters using any standard nonlinear solver. We use MATLAB’s “off-the-shelf”

optimizer fminsearch which seemed to perform satisfactorily. Numerical diffi-

culties may arise when the parameterized Σε and Σe are not positive definite.

We will avoid this issue by restricting the matrix Σe to be diagonal with pos-

itive entries:

Σe =




h2
1 0 . . . 0

0 h2
2 . . . 0

...
...

...
...

0 0 0 h2
M




for vector-valued measurements bk at each time tk, and parameterizing Σε

for the 2-state case as

Σε =

[
σ2

1 σ1σ2 cos φ

σ1σ2 cos φ σ2
2

]

which requires no further constraint on φ for ensuring positive semi-definiteness.

Irrespective of correlation between state noise variables, note that the yields

themselves are necessarily correlated through the three state variables.

In the next section, we apply Kalman filtering-based calibration to linear

Gaussian term structure models outlined in section 2.

4 Empirical Results

The aim of the empirical study presented here is to calibrate linear Gaussian

term structure models using the Kalman filter for two different data sets ( UK

gilt yields and US treasury yields) and to examine their short and medium

term out-of-sample forecasting performance. Our experiments use one, two

and three factor linear Gaussian short rate models as defined in section 2.
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4.1 UK gilt yield data

Gilt yields for 3 months, 6 months, 1 year, 2 years, 4 years, 8 years and

10 years from Datastream were used in the numerical experiments. Weekly

data from January 2001 to June 2005 was considered. The data set contains

232 weekly observations with each observation consisting of 7 gilt yields of

different maturities.

A principal component analysis of the bond yields shows that the nonzero

eigenvalues of the correlation matrix of changes in yields are

[
1 0.1071 0.0180 0.0038 0.0022

]
,

where all the eigenvalues are normalized with respect to the largest eigen-

value. We see that the first three eigenvalues account for 99.47% of total vari-

ation. This corroborates similar conclusions in Babbs and Nowman (1999).

Figure 1 shows the first three principal components. The first component de-

noted by solid line clearly accounts for a parallel shift of the yield curve, the

second component denoted by dashed line seems to account for twisting of

the yield curve while the third component denoted by ‘−·’ seems to account

for the slope of yield curve.

As mentioned previously, fminsearch in Matlab was used for non-convex

optimization in calibration (see MATLAB (1995)). The parameters of one,

two and three factor linear Gaussian models described earlier were estimated.

In all the three cases, 1-180 data points were used to calibrate the model and

the predictive ability of the model over the remaining period was tested,

i.e. 181-232 data points were used for validation. The parameter estimation

results are listed in tables 1-3 in the Appendix.

Let Li(bk, θi) be the optimal value of negative log likelihood functions

for a model with i factors, i = 1, 2, 3. Then a likelihood ratio test for the

hypothesis that j + 1 factor model offers a better description of data than

a j factor model is given by LRj = 2(Lj+1(bk, θj+1)− Lj(bk, θj)) ∼ χ2
1−α(d)

where d is the number of parameter restrictions imposed to obtain a j factor

model from a j+1 factor model and χ2
1−α(d) denotes the (1−α) percentile of

a χ2 distribution with d degrees of freedom. In the present case, LR1 = 3807
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which rejects a one factor model in favor of a two factor model with more than

99% confidence. This is only to be expected, since a one factor model assumes

that all the yields are perfectly correlated which is contrary to observations.

Similarly, LR2 = 543 which means a two factor model is rejected in favor of

a three factor model more than 99% confidence.

It is customary in practice to use a short dated yield as a proxy for the

short rate. In figure 2, we have plotted r̂k = µ−∑3
i=1 x̂k|k−1,i over time (solid

line) and compared it with the observed three month yield (dotted line). It

is seen that the two curves don’t always have the same local slope or the even

the same local level. This only serves to underline the importance of using

unobservable factors instead of using proxy rates.

The experiments in one-step ahead prediction of the gilt yields using the

models were performed. Instead of using standard deviation, mean relative

absolute errors (MRAE) and maximum relative absolute errors (maximum

RAE) are used as the error criterion for comparison of the models. MRAE

corresponds to the percentage forecasting error and is hence seen as a sensible

criterion for comparing the size of error from the point of view of forecasting

a term structure accurately. MRAE (respectively, maximum RAE) is com-

puted as the sample mean (respectively, maximum) of the relative absolute

error: |observed yield-predicted yield|
observed yield

over the relevant set of observations (either the in-sample data or the out-of

sample data).

Tables 4-6 show the mean relative absolute errors for the three models

when the entire yield spectrum is considered. The in-sample errors and the

out-of-sample errors are computed separately. For a one factor model, the

worst out-of-sample MRAE is seen to be 12.78%, which is reduced to 2.47%

using a two factor model and further to 1.71% using a three factor model. To

express this error in more traditional terms of basis points, the corresponding

worst case error is 9 basis points in the relevant yield for a three factor model

and is 72 basis points for a one factor model.

As the dimensions of observations was reduced, for example when only
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the gilt yields with maturities 3 months, 6 months and 1 year were used

instead of the yields with all the seven maturities, the forecasting ability of

a one factor model shows a major improvement. A restricted yield spectrum

may be useful when only the short dated or only the long dated yields are to

be forecasted. The relative absolute errors in one-step ahead prediction when

the yield spectrum is restricted to three short dated yields (with maturities

3 months, 6 months and 1 year) and when it is restricted to four long dated

yields (with maturities 2 years, 4 years, 8 years and 10 years) are shown in

tables 7 and 8 respectively. In both the cases, it is seen that restricting the

yield spectrum makes the use of a single factor in short term prediction much

more justifiable.

Tables 9 and 10 show the mean relative absolute 4-step ahead prediction

errors for one and three factor models (a similar table for a two factor model

is omitted for brevity). The n-step ahead prediction using Kalman filter is

carried out using the formulae:

x̂k+n|k = F nx̂k|k, (18)

b̂k+n|k = Ax̂k+n|k + B. (19)

For a one factor model, the worst out-of sample error is seen to be 16.67%

(which corresponds to an error of 87 basis points) while it is 6.46% using

a two factor model and 4.33% (which corresponds to an error of 22 basis

points) using a three factor model. Interestingly, the error for a one factor

model doesn’t show a significant increase as we move from one step ahead

prediction to multi-step ahead prediction, while it increases significantly for

a multi-factor model.

4.2 US treasury data

US treasury yields for 1 years, 2 years, 3 year, 5 years, 7 years, 10 years and

30 years from Datastream were used in the numerical experiments. Weekly

data from December 1997 to August 2001 was considered. The data set con-

tains 193 weekly observations with each observation consisting of 7 treasury

yields of different maturities. While UK gilt data set represents a benign
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economic environment, the US treasury data set is from a different and more

volatile period. The purpose of using two different data sets during different

periods and different countries is to assess whether the models under study

and the yield curve matching heuristic proposed in the next section perform

satisfactorily in different economic environments.

A principal component analysis of the bond yields shows that the eigen-

values of the correlation matrix of changes in yields are
[
1 0.1443 0.025 0.0066 0.0026 0.0012 0.0006

]
,

where all the eigenvalues are normalized by the maximum eigenvalue. Similar

to the previous case, we see that the first three eigenvalues account for more

than 99% of total variation.

The parameters of one, two and three factor linear Gaussian models de-

scribed earlier were estimated. In all the three cases, 1-180 data points were

used to calibrate the model and the predictive ability of the model over the

remaining period was tested, i.e. 181-193 data points were used for valida-

tion. The values of parameters obtained parameter estimation results are

listed in tables 13-15. The results of one-step ahead prediction, in terms of

mean relative absolute errors, are reported in tables 16-18. Again, it is seen

that the the parameters of the models are quite stable and the out-of-sample

prediction ability of the three factor model remains unaffected for a reason-

ably long period (up to three months) after calibration. Interestingly, the

worst out-of-sample MRAE for a three factor model in this case is worse

than the worst out-of-sample MRAE for a two factor model, as seen from ta-

bles 17 and 18, even though the likelihood ratio test seems to favor the three

factor model. In a more volatile environment such as the one represented

here, it appears that choosing a more parsimonious model may give better

short term yield prediction. This, of course, is a single volatile data set and

the conclusion has to be treated with caution.

The results of 4-step ahead prediction using one factor and multi-factor

models and one step ahead prediction using a restricted spectrum one factor

model are similar to the results with the UK gilt data in the previous section

and are omitted for brevity.
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5 A new method to improve the matching of

initial term structure

While the main focus of the work presented so far has been short and medium

term yield forecasting, it is worth considering what can be done to improve

the term structure fit on a given day after observing the yields on that day.

While standard methods (such as the Nelson-Siegel curves discussed in Nel-

son and Siegel (1985) and its variants, e.g. as discussed in chapter 15 of James

and Webber (2000)) to interpolate a yield curve exist, it is known that most

of these are not compatible with a Gaussian model, as shown in Björk and

Christensen (1999). Compatibility issues are discussed later in section 5.1.

Instead of looking for a parameterized yield curve consistent with a Gaussian

model and then carrying out the necessary non-convex optimization, we take

a simpler approach of using a nonlinear state correction filter based on linear

programming. We consider the same state space system as in (6):

xk = Fxk−1 + εk,

bk = Axk + B + ek, (20)

where A, B and F are as defined in section 3. It is assumed that the system is

already calibrated, e.g. using the Kalman filter as in the previous section. For

a pre-calibrated model, we introduce a new assumption on the measurement

noise in the out-of-sample data that the percentage error in the Kalman

estimate is bounded:

|bk,i − (Ax̂k|k + B)i| ≤ δk bk,i, i = 1, 2, . . . ,M,

where (z)i represents the ith entry in vector z and δk is an unknown positive

constant. This is a reasonable assumption from a practical point of view,

provided the Kalman filter parameters are reasonably accurate. No further

assumption is made about the statistical nature of the observation noise.

Note that this does not change yield formulae (or A,B and F ) since the

mean and the variance of yield observations is relevant only to filtering and

not to the actual yield relationships or to the assumptions on the underlying
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linear Gaussian process. As such, using the properties of the observation

noise as tuning parameters in a filtering procedure is certainly justified. The

numerical value of δk need not be known. The purpose of this assumption is

to establish a sensible feasible solution to our optimization problem described

next. Assumptions on noise of this type are quite common in system identi-

fication and control literature; e.g. see Kacewicz (1999), Bravo et al. (2006)

and references therein. With this assumption, an estimate of the unobserved

state xk may be obtained as the one which minimizes the realized observation

noise, i.e. which solves the following linear programming problem at each

time tk:

min
xk,1,xk,2,xk,3,γ

γ subject to

bk,i − a0(τi)−
3∑

j=1

aj(τi)xk,j ≤ γbk,i

a0(τi) +
3∑

j=1

aj(τi)xk,j − bk,i ≤ γbk,i, i = 1, 2, . . . , M (21)

where a0, a1 and a2 are as defined in section 3, bk,i is the possibly noisy

yield measurement for time to maturity τi and M is the number of yield

measurements at time tk (at most 7 in our experiments). This minimization

problem can be easily shown to be equivalent to minimizing the maximum

relative absolute error

|observed yield-predicted yield|
observed yield

over yield measurements at time tk. Both the objective function and the

constraints in this optimization problem are linear in the decision variables

i.e. it is a linear programming (LP) problem. Further, the following solution

is always feasible: xk,j =
(
x̂k|k

)
j

and

γ̂k := max
i

|bk,i −
(
Ax̂k|k + B

)
i
|

bk,i

where x̂k|k is as defined in (12) and (z)i represents ith entry in a vector

z, as before. Also, γ̂k ≤ δk, according to our assumption. Thus we have a
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linear programming problem with a nonempty feasible set of solutions and its

unique, bounded optimum can be found using efficient numerical techniques

such as different variants of the simplex method; see, e.g. (Saigal (1995),

chapter 4). With only 4 decision variables and 2M constraints, this problem

can be solved extremely fast and yields an improvement in fitting the term

structure.

With some abuse of notation, let x̂k|k be the arguments which minimize

the above objective function. Then a prediction of state vector may be

obtained by

x̂k|k−1 = F x̂k−1|k−1.

However, note that x̂k|k−1 is not used to find the updated estimate of state

vector x̂k|k.

It is difficult to give a justification for this method from a statistical point

of view. The main heuristic justification is the fact that one finds the values of

the state variables which achieve the smallest percentage errors in matching

the term structure using this method. It is also worth mentioning that this

method is consistent, by definition, to the underlying yield dynamics. The

idea of consistency is elaborated upon in the next subsection.

5.1 Consistency with the underlying model

At time tk, suppose that each yield rt(τ) can be written as a specific parame-

terized function f(τ ; θ) for a given parameter vector θ. Further, suppose that

the short rate is governed by a linear Gaussian process (1)-(2). It is natural

to ask a question whether rt(τ) can still be written in the same form f(τ, θ)

(perhaps for a different parameter vector θ) at time tk+1 > tk. A parame-

terized yield curve which has this property is said to be consistent with the

dynamics (1)-(2). More details and the formal definition of consistency may

be found in Björk and Christensen (1999). Nelson-Siegel curves (Nelson and

Siegel (1985)) are not consistent with the Gaussian dynamics as above. On

the other hand, the proposed method for yield curve matching only modifies

the unobservable factors and rt(τ) is given by (3) at any time t (with xt,i

replaced by estimates (x̂t|t)i). Hence the proposed yield curve matching is
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consistent, by definition, to the underlying short rate dynamics (1)-(2). It

is also worth noting that the parameters of the Gaussian model are quite

stable and the proposed method requires only a simple linear program to be

solved at each re-calibration to the observed yield curve. This is in contrast

with the non-convex optimization needed to re-calibrate Nelson-Siegel type

curves.

5.2 Empirical performance

Table 11 compares the out-of-sample mean relative absolute errors achieved

using this linear programming step in place of Kalman update step, against a

simple Kalman prediction and update, using a three factor model calibrated

on UK gilt data in section 4.1 (with parameters listed in table 3). It is seen

that the worst case error is reduced from 0.98% to 0.66% which is a very

useful improvement at a negligible increase in computation cost. Table 12

shows out-of-sample mean relative absolute error when this modified method

is used for one step ahead prediction. Compared to table 6, it is seen that

one step ahead prediction using linear programming is better than Kalman

filtering-based prediction, with the worst case error decreasing from 1.71%

to 1.39%.

The results of yield curve matching and one step ahead prediction for

a three factor model calibrated on US treasury data in section 4.2 (with

parameters listed in table 15) are reported in tables 19 and 20 respectively. In

this case, the improved worst out-of-sample MRAE for yield curve matching

comes at the cost of deterioration of the worst out-of-sample MRAE for one-

step ahead prediction. The latter fact can be seen by comparing tables 18 and

20. The proposed method may thus be seen as a trade-off between accuracy

of one-step ahead prediction and that of yield curve matching.

6 Conclusions

An extensive empirical study were carried out for Kalman filtering-based

calibration of linear Gaussian interest rate models using UK gilt yields data
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and US treasury data. The following conclusions can be drawn from the

evidence presented:

• A multi-factor model outperforms a one factor model in short term

yield forecasting both in-sample and out-of-sample when the entire

yield curve is considered. When only closely spaced (in logarithmic

terms) yields are considered, even a one factor model is seen to be

adequate for one-step ahead prediction.

• A three factor model performs better than a two factor model for UK

gilt data and performs marginally worse for US treasury data. While

this is a very limited evidence, it appears that a more parsimonious

two factor model may actually be preferable in a volatile environment

as compared to a three factor model. The short-term predictive ability

of a linear Gaussian model is reasonably stable, with the mean relative

error remaining at or below 2.47% for UK gilt data up to one year after

calibration and at or below 3.50% for US treasury data up to three

months after calibration, in the two factor case.

• In multi-step ahead prediction with four time-steps, the predictive

ability of models deteriorates, as can be expected, although the per-

formance of the multi-factor models may still be satisfactory from a

portfolio management point of view. As far as one factor model is con-

cerned, the error in multi-step ahead prediction is not much worse than

the error in one-step ahead prediction.

• A valid criticism of Gaussian model is that they allow negative values of

interest rate with positive probability. In forecasting terms, this did not

pose a problem, since none of the conditional expectations computed

(around 10000 in-sample and out-of-sample yield predictions in all)

were close to zero. This may obviously be a problem in markets with

very low interest rates (e.g. in modelling Japanese bonds at the time

of writing).

• Further, a new linear programming state update heuristic was sug-

gested to improve fit to a given term structure, while still operating in
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“linear Gaussian model with unobservable states” framework. It was

demonstrated that the modified update step offers a very useful trade-

off between the accuracy in yield prediction and the accuracy in yield

curve matching.

This study clearly provides a valuable evidence of the utility of a simple,

linear Gaussian interest rate model when adequate yield measurements are

available. Applications of the methodology presented include economic fore-

casting and scenario generation for a stochastic optimization of fixed income

portfolios and downside risk prediction of gilt or treasury bond portfolios.
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Appendix: Tables and plots

UK gilt data

Figure 1: Principal components of yield correlation matrix
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Table 1 : Parameter values for one factor model (computation

time: 161 seconds)

Parameter values

α1 0.0448 σ1 0.0356

λ1 0.3405 µ −0.4146

h1 0.0044 h2 0.0034

h3 0.0022 h4 0.0013

h5 0.0012 h6 0.0009

h7 0.0013
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Figure 2: Theoretical short rate and three month yield
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Table 2 : Parameter values for two factor model (computation

time: 255 seconds)

Parameter values

α1 0.5854 α2 0.2619

σ1 0.0111 σ2 0.2339

λ1 −4.6918 λ2 0.2162

µ 0.3084 h1 0.0006

h2 0.0006 h3 0.0015

h4 0.0015 h5 0.0012

h6 0.0009 h7 0.0009

σ12 0.0356
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Table 3 : Parameter values for three factor model (computation

time: 366 seconds)

Parameter values

α1 0.1327 α2 0.2260 α3 2.0962

σ1 0.0522 σ2 0.0035 σ3 0.0004

λ1 0.0023 λ2 −8.5213 λ3 0.0010

σ12 0.0002 µ 0.0023 h1 0.0004

h2 0.0010 h3 0.0012 h4 0.0008

h5 0.0011 h6 0.0007 h7 0.0007

Table 4 : Relative absolute errors of 1-step ahead prediction for

one factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

3m 0.0716 0.1278 0.2511

6m 0.0574 0.1210 0.2145

1y 0.0395 0.0993 0.1557

2y 0.0336 0.0589 0.1058

4y 0.0255 0.0105 0.0377

8y 0.0171 0.0346 0.0640

10y 0.0242 0.0272 0.0557

Table 5 : Relative absolute errors of 1-step ahead prediction for

two factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

3m 0.0112 0.0082 0.0331

6m 0.0154 0.0077 0.0268

1y 0.0331 0.0164 0.0516

2y 0.0346 0.0152 0.0609

4y 0.0244 0.0145 0.0354

8y 0.0277 0.0247 0.0430

10y 0.0174 0.0213 0.0465
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Table 6 : Relative absolute errors of 1-step ahead prediction for

three factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

3m 0.0186 0.0109 0.0381

6m 0.0221 0.0171 0.0373

1y 0.0306 0.0167 0.0439

2y 0.0299 0.0108 0.0404

4y 0.0258 0.0122 0.0297

8y 0.0209 0.0113 0.0280

10y 0.0209 0.0090 0.0339

Table 7 : Relative absolute errors of 1-step ahead prediction for a

one factor, three yields model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

3m 0.0191 0.0095 0.0437

6m 0.0145 0.0058 0.0222

1y 0.0436 0.0209 0.0562

Table 8 : Relative absolute errors of 1-step ahead prediction for a

one factor, four yields model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

2y 0.0272 0.0420 0.0910

4y 0.0206 0.0100 0.0366

8y 0.0157 0.0312 0.0626

10y 0.0162 0.0376 0.0713
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Table 9 : Relative absolute errors of 4-step ahead prediction for

one factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

3m 0.0865 0.1667 0.2625

6m 0.0733 0.1568 0.2303

1y 0.0649 0.1311 0.2086

2y 0.0667 0.0867 0.1679

4y 0.0561 0.0313 0.1061

8y 0.0403 0.0231 0.0712

10y 0.0502 0.0202 0.0627

Table 10 : Mean relative absolute errors of 4-step ahead

prediction for three factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

3m 0.0432 0.0414 0.0683

6m 0.0434 0.0433 0.0852

1y 0.0506 0.0359 0.0989

2y 0.0505 0.0255 0.0938

4y 0.0415 0.0244 0.0785

8y 0.0313 0.0224 0.0744

10y 0.0297 0.0199 0.0768
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Table 11 : Out-of-sample mean relative absolute errors of

matching a given term structure for three factor model with and

without linear programming update

maturity Kalman state update Linear programming state update

3m 0.0015 0.0066

6m 0.0076 0.0025

1y 0.0098 0.0063

2y 0.0029 0.0022

4y 0.0080 0.0066

8y 0.0042 0.0015

10y 0.0032 0.0066

Table 12 : Out-of-sample mean relative absolute errors of one

step ahead prediction for three factor model with linear

programming update

maturity Linear programming state update

3m 0.0064

6m 0.0117

1y 0.0139

2y 0.0104

4y 0.0118

8y 0.0114

10y 0.0115
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US treasuries data

Table 13 : Parameter values for one factor model (computation

time: 231 seconds)

Parameter values

α1 0.1237 σ1 0.042

λ1 −0.1047 µ 0.0044

h1 0.0011 h2 0.0007

h3 0.0004 h4 0.0006

h5 0.0007 h6 0.0006

h7 0.0003

Table 14 : Parameter values for two factor model (computation

time: 320 seconds)

Parameter values

α1 0.5832 α2 0.1804

σ1 0.2191 σ2 0.0107

λ1 0.2394 λ2 −0.1025

µ 0.0567 h1 0.0007

h2 0.0013 h3 0.0009

h4 0.0010 h5 0.0010

h6 0.0016 h7 0.00214

σ12 0.0136
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Table 15 : Parameter values for three factor model (computation

time: 416 seconds)

Parameter values

α1 0.2756 α2 1.729 α3 0.0096

σ1 0.0027 σ2 0.0051 σ3 0.0036

λ1 −0.7098 λ2 0.7314 λ3 0.0049

σ12 0.0000 µ 0.08 h1 0.0008

h2 0.0009 h3 0.0009 h4 0.0010

h5 0.0014 h6 0.0007 h7 0.0006

Table 16 : Relative absolute errors of 1-step ahead prediction for

one factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

1y 0.0171 0.0291 0.0634

2y 0.0374 0.0373 0.1009

3y 0.0402 0.0466 0.1053

5y 0.0478 0.0762 0.1179

7y 0.0499 0.0843 0.1269

10y 0.0524 0.0655 0.0888

30y 0.0474 0.0141 0.0275

Table 17 : Relative absolute errors of 1-step ahead prediction for

two factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

1y 0.0161 0.0214 0.0461

2y 0.0235 0.0293 0.0645

3y 0.0198 0.0350 0.0647

5y 0.0202 0.0236 0.0542

7y 0.0198 0.0167 0.0423

10y 0.0178 0.0079 0.0195

30y 0.0251 0.0144 0.0291
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Table 18 : Relative absolute errors of 1-step ahead prediction for

three factor model

yields in-sample MRAE out-of-sample MRAE Maximum out-of-sample RAE

1y 0.0221 0.0226 0.0545

2y 0.0247 0.0398 0.0748

3y 0.0254 0.0410 0.0704

5y 0.0257 0.0184 0.0369

7y 0.0299 0.0182 0.0560

10y 0.0170 0.0132 0.0306

30y 0.0177 0.0147 0.0317

Table 19 : Out-of-sample mean relative absolute errors of

matching a given term structure for three factor model with and

without linear programming update

maturity Kalman state update Linear programming state update

1y 0.0129 0.0217

2y 0.0169 0.0111

3y 0.0228 0.0215

5y 0.0075 0.0056

7y 0.0244 0.0190

10y 0.0197 0.0133

30y 0.0089 0.0221

30



Table 20 : Out-of-sample mean relative absolute errors of one

step ahead prediction for three factor model with linear

programming update

maturity Linear programming state update

1y 0.0412

2y 0.0628

3y 0.0563

5y 0.0321

7y 0.0310

10y 0.0183

30y 0.0334
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