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Abstract

The core-center is an allocation rule introduced in González-Dı́az and Sánchez-

Rodŕıguez (2007) for the class of games with a nonempty core. In this paper we

present a weighted additivity axiom, which we call trade-off property, and use it to

obtain two characterizations of the core-center.
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1 Introduction

In González-Dı́az and Sánchez-Rodŕıguez (2007), the core-center, a new allocation rule for

the class of games with nonempty core is introduced and a detailed analysis of its properties

is carried out. In this paper we present two axiomatic characterizations of the core-center.
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The key property for both characterizations is a weighted additivity that is based on a

principle of fairness with respect to the core, which we call trade-off property.

In the first characterization we show that the trade-off property along with a natu-

ral symmetry property suffices to characterize the core-center for the class of three-player

convex games. In the second result we characterize the core-center for the general class

of n-player games with nonempty core. This second characterization of the core-center

consists of four properties. Three of them are quite standard: efficiency, continuity and a

weak symmetry property. The fourth property is strong trade-off, an strengthening of the

trade-off property. The proof of this second result has a certain parallelism with the char-

acterization of the Shapley value based on the additivity property (Shapley, 1953). First,

we prove the result for games with a simplicial core, which play the role of the unanimity

games in Shapley’s characterization. Second, we prove the result for arbitrary games by

means of simplicial dissections of their cores.

The structure of this paper is as follows. In Section 2 we introduce the preliminary game

theoretical concepts along with the definition of the core-center. In Section 3 we define and

discuss both the trade-off property and the strong trade-off property. In Section 4 we

present the characterization of the core-center for three-player convex games. In Section 5

we present the characterization for general n-player games with nonempty core.

2 Game Theory Background

A transferable utility or TU game is a pair (N, v), where N := {1, . . . , n} is a set of players

and v : 2N → R is a function assigning, to each coalition S ⊆ N , its worth v(S). By

convention, v(∅) = 0. Let Gn denote the set of n-player TU games. Since each game

assigns a real value to each nonempty subset of N , it corresponds with a vector in R2n−1.

Let |S| be the number of elements of coalition S. Saving notation, since the set N is

fixed throughout the paper, we denote a game by v; also, when no ambiguity arises, we

use i to denote {i}. A game v is additive if, for each S, T ⊆ N such that T ∩ S = ∅,

v(S ∪ T ) = v(S) + v(T ).

Let v be a TU game and let x ∈ Rn be an allocation. Then, x is efficient if
∑n

i=1 xi =

v(N); x is individually rational if, for each i ∈ N , xi ≥ v(i). The imputation set is defined

by I(v) := {x ∈ Rn :
∑

i∈N xi = v(N) and, for each i ∈ N , xi ≥ v(i)}, i.e., the set of all

efficient and individually rational allocations.

Let v ∈ Gn and let i, j ∈ N . Then, i and j are symmetric if, for each S ⊆ N\{i, j},

v(S ∪ i) − v(S) = v(S ∪ j) − v(S); i and j are quasi-symmetric if, for each S ⊆ N\{i, j},

v(S ∪ i) − (v(S) + v(i)) = v(S ∪ j) − (v(S) + v(j)). Now, v is symmetric if, for each

pair i, j ∈ N , i and j are symmetric; v is quasi-symmetric if, for each pair i, j ∈ N , i

and j are quasi-symmetric or, equivalently, a game is quasi-symmetric if the corresponding
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0-normalized game is symmetric. Note that, for a symmetric game, v(S) only depends on

the cardinality of S.

An allocation rule is a function which, given a game v, selects an allocation in Rn, i.e.,

ϕ : Ω ⊆ Gn −→ Rn

v 7−→ ϕ(v).

Next, we define some properties for allocation rules. Let v ∈ Gn and let ϕ be an

allocation rule: ϕ is continuous if the function ϕ : Ω ⊆ R2n−1 → Rn is continuous; ϕ

is efficient if it always select efficient allocations; ϕ is translation invariant if, for each

two games v and w and each α = (α1, . . . , αn) ∈ Rn such that, for each S ⊆ N , w(S) =

v(S) +
∑

i∈S αi, then ϕ(w) = ϕ(v) + α. We say that ϕ satisfies weak symmetry if, for each

symmetric game v and each pair i, j ∈ N , ϕi(v) = ϕj(v); ϕ satisfies extended weak symmetry

if, for each quasi-symmetric game v and each pair i, j ∈ N , ϕi(v) − v(i) = ϕj(v) − v(j).

Under extended weak symmetry, if, for each pair i, j ∈ N , their contribution to any coalition

differs only in v(i) − v(j), then the difference in the payoffs is also v(i) − v(j). This

property, besides being a symmetry property (it implies weak symmetry) has some flavor

to translation invariance; roughly speaking, it says that the allocation rule satisfies weak

symmetry and, moreover, translation invariance within the class of quasi-symmetric games.

The next lemma illustrates this point.

Lemma 1. Translation invariance + weak symmetry ⇒ extended weak symmetry.

Proof. Let ϕ be an allocation rule satisfying translation invariance and weak symmetry. Let

v be a quasi-symmetric game and α := (−v(1), . . . ,−v(n)). Let w ∈ Gn be the symmetric

game defined, for each S ⊆ N , by w(S) := v(S) +
∑

i∈S αi. Hence, by weak symmetry, for

each pair i, j ∈ N , ϕi(w) = ϕj(w). Now, by translation invariance, we have ϕi(v) + αi =

ϕj(v) + αj . Since αi = −v(i) and αj = −v(j), the result is proved.

2.1 The core and its relatives

We introduce now the notions of core (Gillies, 1953) and strong ε-core (Maschler et al.,

1979). An allocation x ∈ Rn is coalitionally rational if there is no coalition S ⊆ N such

that
∑

i∈S xi < v(S); analogously, for each ε ∈ R, x is ε-coalitionally rational if there is no

coalition S ⊆ N such that
∑

i∈S xi < v(S) − ε.

The core of a game v, C(v), is the set of all efficient and coalitionally rational allocations,

i.e., C(v) := {x ∈ Rn :
∑

i∈N xi = v(N) and, for each S ( N,
∑

i∈S xi ≥ v(S)}. Let

BGn ( Gn be the class of TU games with nonempty core. Let ε ∈ R. The strong ε-core

of a game v, Cε(v) is the set of all efficient and ε-coalitionally rational allocations, i.e.,

Cε(v) := {x ∈ Rn :
∑

i∈N xi = v(N) and, for each S ( N,
∑

i∈S xi ≥ v(S) − ε }. By

definition, if ε = 0, C0(v) ≡ C(v). The least core of v, LC(v), is the intersection of all
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nonempty strong ε-cores. Equivalently, if ε0(v) is the smallest ε such that Cε(v) 6= ∅, then

LC(v) = Cε0(v)(v).
1

Let v ∈ Gn and ε ∈ R. In Maschler et al. (1979), the shifted game vε is defined by:

vε(S) :=

{

v(S) − ε ∅ 6= S ( N

v(S) S = ∅ or S = N.

We present now the core-center, introduced in González-Dı́az and Sánchez-Rodŕıguez

(2007). Let U(A) denote the uniform distribution defined over the set A and E(P) the

expectation of the probability distribution P. Let v ∈ BGn. The core-center of v, µ(v), is

defined by µ(v) := E
(

U(C(v)
)

.

2.2 Some geometric considerations

We need to introduce some notation and make some considerations regarding the underlying

geometry of a TU game. Let HN := {x ∈ Rn :
∑

i∈N xi = v(N)}. All the sets we consider

in this paper are contained in HN and hence, we develop all our framework in an (n− 1)-

dimensional space.

A (convex) polytope P is the convex hull of a finite set of points V = {x1, . . . , xk} in

Rn or, equivalently, it is a bounded subset of Rn that can be expressed as the intersection

of a finite number of halfspaces. The core of a game, when nonempty, is a polytope (it is

the intersection of halfspaces in HN ). A polytope P is an m-polytope if its dimension is m,

i.e., m is the smallest integer such that P is contained in an m-dimensional space. Let P

be an m-polytope and let m′ ≥ m, then, Volm′(P ) denotes the m′-dimensional volume of

P . Let P be an m-polytope. Then, a set of polytopes {P1, . . . , Pk} defines a dissection of

P if (i) P =
⋃k

l=1 Pl and (ii) for each pair l, l′ ∈ {1, . . . , k}, with l 6= l′, Volm(Pl ∩ Pl′) = 0.

We present now a result taken from Maschler et al. (1979).

Lemma 2. Except for the least core, all nonempty strong ε-cores are (n−1)-polytopes. The

least core is always an m-polytope with m < n− 1.

If the core of a game inGn is an (n−1)-polytope, we say it is full dimensional. Otherwise,

it is degenerate. By definition, all the restrictions in the core of a game are as follows: let

S ( N , RS := {x ∈ Rn :
∑

i∈S xi ≥ v(S)}. We say that the halfspace RS is a |S|-restriction.

The 1-restrictions play a special role in this paper; we call them elemental restrictions. A

restriction is redundant in the core if removing it does not change the core. Conversely, the

restrictions that are not redundant are active.

1In Maschler et al. (1979) it is shown that ε0(v) exists and is unique.
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3 The trade-off property

Since the core-center is the expectation of a distribution of probability, it seems unlikely that

it can be characterized without using an axiom with some sort of measurement requirement

embedded into it.2

Given A ⊂ Rk, the relative interior of A, Ari, is the euclidean interior of A when

considered as a subset of its affine hull.3

Definition 1. Let ϕ be an allocation rule defined on BGn. Let v, w1 and w2 be three

games in BGn such that C(v) = C(w1)∪C(w2) and C(w1)
ri∩C(w2)

ri = ∅. Then, ϕ satisfies

trade-off in BGn if there is α ∈ [0, 1] such that

ϕ(v) = αϕ(w1) + (1 − α)ϕ(w2).

1

2

3

C(v)

ϕ(v)

1

2

3

1

2

3

ϕ(v)

C(w2)ϕ(w2)

C(w1)

ϕ(w1)

Figure 1: Illustration of the trade-off property

Figure 1 illustrates the above definition: the allocation for v is a trade-off between

the allocations for w1 and w2. The coefficient α measures the importance of games w1

and w2 with respect to v. Whenever there are games v, w1 and w2 such that C(v) =

C(w1) ∪ C(w2) and C(w1)
ri ∩ C(w2)

ri = ∅, there has to be a coalition T ( N such that,

for each x ∈ C(w1) and each y ∈ C(w2),
∑

i∈T xi ≥
∑

i∈T yi; moreover, under efficiency,
∑

i∈N\T yi ≥
∑

i∈N\T xi. That is, C(w1) contains the good allocations for T and C(w2)

the good ones for N\T . Therefore, if we think of w1 as a good game for T and of w2 as a

good game for N\T , then we may see the trade-off property as the result of a give and take

between coalitions T and N\T .

The last observation above becomes even clearer after the following interpretation of

the trade-off property. Let v ∈ Gn and suppose there are ∅ 6= T ( N and k ∈ R such that

2There is already some literature in which measure theoretical ideas are used in cooperative game theory.

For instance, within two person bargaining problems, there is the equal area solution. Anbarci and Bigelow

(1994) interpreted equal area as equal concessions. Later, Calvo and Peters (2000) looked at the underlying

dynamic process.
3The affine hull of a set is the smallest affine space that contains it.
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v(T ) ≤ k ≤ v(N) − v(N\T ). We use k to define two games: v+, a good game for coalition

T , and v− a good game for coalition N\T . Suppose that, because of some change in the

situation underlying our TU game, coalition T alone can obtain k instead of v(T ). The game

v+ is obtained when introducing this change in v, i.e., for each S ⊂ N , v+(S) := k if S = T

and v+(S) := v(S) otherwise. Similarly, we define a game v− in which coalition T is worst-

off. We do it by letting coalition N\T improve, i.e., for each S ⊂ N , v−(S) := v(N) − k

if S = N\T and v−(S) := v(S) otherwise.4 An extension of the trade-off property outside

the class of games with nonempty core would say that a solution ϕ should satisfy that there

is α ∈ [0, 1] such that ϕ(v) = αϕ(v+) + (1 − α)ϕ(v−). In particular, when the cores of

v, v+ and v− are nonempty, they would correspond with those of games v, w1 and w2 in

Figure 1; besides, C(v+) and C(v−) are the two parts of C(v) in which the hyperplane

given by v(T ) = k cuts C(v).

The trade-off property is already quite demanding and not many classic allocation rules

satisfy it. As an example, the equal division solution satisfies the trade-off property. In-

deed, any solution ψ such that ψ(v) = ψ(w) whenever v(N) = w(N) satisfies the trade-off

property; this would include all the solutions that share v(N) among the players according

some fixed proportions, with equal division and “dictatorial” solutions as special cases.

Since the trade-off property imposes no structure on the coefficients associated to differ-

ent dissections, it is hard to analyze its implications.5 Below we introduce a strengthening

of the trade-off property. The idea is to make it more functional by imposing some structure

on the coefficients.

Given a game v ∈ BGn, we say that the set of games {w1, . . . , wk} is a dissection

of v if {C(w1), . . . , C(wk)} is a dissection of C(v). Now, the trade-off property can be

alternatively defined as follows. Let ϕ be an allocation rule in BGn. Let {w1, w2} be a

dissection of v. Then, ϕ satisfies trade-off if there is α ∈ [0, 1] such that ϕ(v) = αϕ(w1) +

(1 − α)ϕ(w2). Moreover, suppose now that {w3, w4} is a dissection of w2. Then, by the

trade-off property, there is β ∈ [0, 1] such that ϕ(w2) = βϕ(w3) + (1 − β)ϕ(w4). Hence,

{w1, w3, w4} is a dissection of v, ϕ(v) = αϕ(w1) + (1 − α)βϕ(w3) + (1 − α)(1 − β)ϕ(w4)

and α+ (1 − α)β + (1 − α)(1 − β) = 1. Thus, the trade-off property immediately extends

to dissections that can be obtained by continuing with the process we have just described.

The next property pushes the above idea a little bit further and also imposes a natural

restriction on the coefficients associated with a dissection.

Definition 2. Let ϕ be an allocation rule defined on BGn. Let v ∈ BGn and let

4Depending on the class of games at hand (such as superadditive or convex), the definitions of v+ and v−

might have to be adjusted if we want to ensure that we remain inside the class at hand. In González-Dı́az

(2005), these ideas are developed for the class of superadditive games.
5In this paper we have defined the trade-off property for the class BGn. In an earlier version of this

paper, contained in González-Dı́az (2005, Chapter 6), a more general approach is taken and a version of

the trade-off property that also applies to games with empty core is discussed.
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{w1, . . . , wk} and {w̄1, . . . , w̄l} be two dissections of v. Then, ϕ satisfies strong trade-off in

BGn if

i) there are α1, . . . , αk and β1, . . . , βl such that ϕ(v) =
∑k

i=1 αiϕ(wi) =
∑l

i=1 βiϕ(w̄i),

ii) if there are p, q such that C(wp) is a translation of C(w̄q), then αp = βq.

The real strengthening with respect to the trade-off property is the one given by ii).

We can get an equivalent definition of the strong trade-off property by replacing ii) with

ii.a) (translation invariance) if there are p, q such that wp is a translation of w̄q, then αp = βq

and ii.b) (core-dependence) if there are p, q such that C(wp) = C(w̄q), then αp = βq. In

particular, ii) implies that, given a game v and a dissection {w1, . . . , wk}, each coefficient

αi only depends on v and C(wi).

Trade-off vs. strong trade-off

It is easy to see that the solutions discussed above that satisfied the trade-off property

also satisfy strong trade-off. Yet, the latter is not helpful to understand the implications

of this strengthening of the trade-off property. We briefly elaborate now on these impli-

cations. First, we present an example of an allocation rule that satisfies trade-off but not

strong trade-off. Then, we argue that the same approach allows to define a huge vari-

ety of allocation rules that satisfy trade-off but not strong trade-off. For each v ∈ Gn,

let z(v) := (v(N)/n, . . . , v(N)/n), i.e., z coincides with the allocation chosen by applying

the equal division principle to game v. Given two points x, y ∈ Rn, let dist(x, y) de-

note the euclidean distance between x and y. Given v ∈ BGn, let Vol(v) :=
∫

C(v)
1dx,

i.e., the (n − 1)-dimensional volume of C(v). Then, the core-center can be alternatively

defined, for each v ∈ BGn, by µ(v) :=
∫

C(v)
x 1

Vol(v)dx. Now, for each v ∈ BGn, let

M(v) :=
∫

C(v)
1

1+dist(x,z(v))dx. Consider now the allocation rule γ defined in BGn as fol-

lows. For each v ∈ BGn,

γ(v) :=

∫

C(v)

x

1 + dist(x, z(v))

1

M(v)
dx.

That is, γ(v) selects a point in C(v) in a similar way as the core-center does. The main

difference is that the core-center uses a uniform distribution over C(v) and γ puts more

weight on those points that are close to the equal division allocation, z(v). Hence, although

γ(v) is different from equal division, in general it selects allocations that are closer to equal

division than the ones given by the core-center. The allocation rule γ satisfies a good

number of standard properties such as efficiency, symmetry, dummy player property and

continuity.6 Clearly, since the weight of a core in a dissection of v depends on its relative

location with respect to z(v), γ does not satisfy strong trade-off.7 We show now that γ

6Continuity would be a consequence of Theorem 3 in González-Dı́az and Sánchez-Rodŕıguez (2007).
7The fact that γ does not satisfy strong trade-off can be formally shown as an easy corollary of Propo-

sition 2 below.
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satisfies trade-off. Let v, w1 and w2 be three games in BGn such that C(v) = C(w1)∪C(w2)

and C(w1)
ri∩C(w2)

ri = ∅. Note that, since v(N) = w1(N) = w2(N), z(v) = z(w1) = z(w2).

Using that C(w1)
ri ∩ C(w2)

ri = ∅ in the second equality below, we get

γ(v) =

∫

C(v)

x

1 + dist(x, z(v))

1

M(v)
dx

=

∫

C(w1)

x

1 + dist(x, z(v))

1

M(v)
dx+

∫

C(w2)

x

1 + dist(x, z(v))

1

M(v)
dx

=
1

M(v)

∫

C(w1)

x

1 + dist(x, z(w1))
dx+

1

M(v)

∫

C(w2)

x

1 + dist(x, z(w2))
dx

=
M(w1)

M(v)
γ(w1) +

M(w2)

M(v)
γ(w2).

Therefore, taking α = M(w1)
M(v) and 1−α = M(w2)

M(v) , we have that γ satisfies the trade-off prop-

erty. Note that the function g given by g(x, v(N)) := 1
1+dist(x,(v(N)/n,...,v(N)/n)) is crucial in

the definition of γ. Actually, γ(v) can be seen simply as
∫

C(v)
xg(x, v(N)) 1

∫

C(v)
g(y,v(N))dy

dx.

If we replace g by the function with constant value 1, we get the core-center. Therefore, by

taking different functions instead of g, we can use the above approach to define plenty of

allocation rules that satisfy trade-off but not strong trade-off. We could take a different ref-

erence point, a reference set, different distances, multiply by the distance instead of dividing

by it and even further, we could also use functions that have nothing to do with any kind

of distance. Essentially, the only property that any such function, namely f , has to meet is

that, given v, w1 and w2 in BGn such that C(v) = C(w1)∪C(w2) and C(w1)
ri∩C(w2)

ri = ∅,

then
∫

C(v)
f(x, v(N))dx =

∫

C(w1)
f(x, v(N))dx+

∫

C(w2)
f(x, v(N))dx.

As we have already said, the strong trade-off property has some translation invariance

flavor. For instance, for the core-center, the weight of all points is equal, regardless of their

location. On the other hand, in most of the solutions that might be defined as above, the

weight of each point depends on the coordinates of the point itself and translation invariance

is therefore lost.

We present now the two characterizations of the core-center. The first one shows that,

for three-player convex games, the trade-off property along with a symmetry property suffice

to characterize the core-center.8 The second characterization applies to the general class

BGn, but at the cost of using the strong version of the trade-off property.

4 A characterization for three-player convex games

We begin this section by introducing some extra notation and a symmetry property. A

game v ∈ Gn is convex if, for each i ∈ N and each S and T such that S ⊆ T ⊆ N\ {i},

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ). Let CGn ⊂ Gn denote the class of n-player

8We are grateful to an anonymous referee for suggesting this characterization.
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convex games. Convex games have very special properties. Just to name two of them that

bear special connexion with our analysis here, i) convex games have nonempty core, i.e.,

CGn ⊂ BGn, and ii) given a pair of convex games v and w, if C(v) = C(w), then v = w,

i.e., a convex game is unambiguously characterized by its core.

Let z ∈ Rn and let r ∈ R. Then, we define the hyperplane H(z, r) := {x ∈ Rn : zx = r}.

Let v ∈ Gn and let H(z, r) be a hyperplane in Rn. Let A ⊂ Rn. We say that H(z, r)

is a symmetry hyperplane for A if A is symmetric with respect to H(z, r), i.e., for each

x ∈ H(z, r) and each a ∈ R, x + za ∈ A if and only if x − za ∈ A. A set A is symmetric

if the intersection of the symmetry hyperplanes for A with A is a singleton, which is called

the center of symmetry of A. Note that when the center of symmetry of a set exists, it

coincides with its center of gravity (the expectation of the uniform distribution defined over

the set). A game v is core-symmetric if C(v) is a symmetric set.

Definition 3. Let ϕ be an allocation rule defined on CGn. Let v ∈ CGn be a core-

symmetric game. Then, ϕ satisfies core-symmetry in CGn if ϕ(v) is the center of symmetry

of C(v), i.e., ϕ(v) = µ(v).

The above axiom says that if the symmetries of the core of a convex game suffice to

characterize its center, then this should be the chosen allocation. Note that we do not need

to restrict to the class of convex games to define the core-symmetry property. However, we

consider that it is a property specially sensible within this class of games. That is, since

each convex game is uniquely characterized by its core, a symmetry in the core implies a

symmetry in the game, whereas this implication is more diffuse outside the class of convex

games.9 Indeed, it will be clear from the exposition below that for 3-player convex games,

this is a mild property and many well-known solution concepts such as the Shapley value

and the nucleolus satisfy it.

The characterization result we present in this section refers to three-player convex games

and hence, we restrict now to this class of games. Before presenting the result, we discuss

the implications of core-symmetry within this class and its connexions with the standard

symmetry properties. To do so, we first give a full characterization of the cores of three

player convex games.

4.1 Cores of three-player convex games and core-symmetry

We fully describe now the different possibilities for full dimensional cores of games in CG3.

First, note that if the core of a game in CG3 is not full dimensional it will be either a

singleton or a segment, both of them being symmetric sets. For notational convenience, for

9For instance, when working with convex games, the vectors of marginal contributions correspond with

the vertices of the core and hence, symmetries of the core imply symmetries in the vectors of marginal

contributions. This is not necessarily so when we work with non-convex games.
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each two player coalition {i, j}, we use v(ij) to denote v({i, j}). Let x1 := (v(N), 0, 0), x2 :=

(0, v(N), 0) and x3 = (0, 0, v(N)). Now, the vector of marginal contributions associated

with the order ijk of the players is given by mijk
i := v(i), mijk

j := v(ij) − v(i) and mijk
k :=

v(N) − v(ij). For convex games, the core is the convex hull of the vectors of marginal

contributions and all of them are extreme points of the core.

Let v be a 0-normalized game such that v(13) ≥ v(12) ≥ v(23). We characterize now the

full dimensional cores that can arise for any such game and this suffices to (geometrically)

characterize the core of any three-player convex game. 0-normalization does not entail any

loss of generality because the core of any game is geometrically analogous to the core of its

0-normalization, which is obtained by a simple translation. On the other hand, for any game

v, the appropriate relabeling of the names of the players leads to v(13) ≥ v(12) ≥ v(23) and

any such relabeling does not affect the geometry of the core of the game. First, the core

of a general three-player convex games is depicted in Figure 2. Figures 2 and 3 contain all

the possible full dimensional core configurations in CG3; different configurations arise when

some of the extreme points (marginal vectors) of the hexagon in Figure 2 collapse into each

other and into the xi points. There are only two types of degenerate cores in CG3: 1A the

core is a singleton and hence symmetric, which can only happen if the game is additive and

2A the core is a segment and hence symmetric, which can only happen if v(N) = v(13) > 0

and v(12) = v(23) = 0.

Hence, if a game in CG3 has a symmetric core we have to be in one of the following cases:

1A, 2A, 3A, 3B, 4A or 6B, i.e., all cores with 1, 2 or 3 extreme points are symmetric,

those cores with 4 extreme points that are symmetric fall in case 4A, no core with 5 extreme

points is symmetric and a core with 6 extreme points is symmetric if and only if it belongs

to case 6B. Note that case 4A is just a parallelogram, not necessarily a rhombus and that

case 6B needs not be a regular hexagon.

We are now ready to discuss the implications of the core-symmetry property within the

class of three-player convex games. First, most allocations would select the center of the

core in cases 1A and 2A. For instance, any allocation rule satisfying translation invariance

and efficiency would select the center of the core for games in case 1A. For the case 2A it

would suffice to add the dummy player property and that symmetric players get the same

payoff. Now, for full dimensional cores, with the exception of case 4A, all symmetric cores

correspond to symmetric games and hence, any allocation rule satisfying symmetry and

efficiency would select the center of the core. Hence, if we add translation invariance, we

would get that the allocation rule would select the center of the core of any convex game

whose core is symmetric (with the exception of 4A). Therefore, case 4A requires some

special discussion. When the core of a three-player convex game is a parallelogram, it is not

symmetric according to any of the standard symmetry definitions for cooperative games.

Yet, if a three-player convex game v with N = {i, j, k} is such that v(i, j) = 0, v(i, k) > 0,

10
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Figure 2: Core of a general game in CG3. General case: 6A

3A (Symmetric)

v(13)=v(12)=v(23)=0

C(v) = I(v)

x1 =m231 =m321 x2 =m132 =m312

x3 =m123 =m213

3B (Symmetric)

v(13)=v(12)=v(23)=
v(N)

2

x1 x2

x3

m213 =m231 m123 =m132

m321 =m312

4A (Symmetric)

v(13)≥v(12)>v(23)=0

v(N)=v(13)+v(12)

x1 =m231 =m321 x2

x3

m213 m123 =m132

m312

4B

v(23)=v(12)=0

v(123)>v(13)>0

x1 =m231 =m321 x2

x3 =m123 =m213

m132

m312

4C

v(13)>v(12)=v(23)>0

v(N)=v(13) + v(23)

x1 x2

x3

m231

m213 m123 =m132

m321 =m312

5A

v(13)≥v(12)>v(23)=0

v(N)>v(13)+v(12)

x1 =m231 =m321 x2

x3

m213 m123

m132

m312

5B

v(13)≥v(12)>v(23)>0

v(N)=v(13)+v(12)

x1

m231

x2m312 m321

x3

m213 m123 =m132

6B (Symmetric)

v(13)=v(12)=v(23)

v(N)>v(13)+v(12)+v(23)

x1 x2

x3

m213

m231
m123

m132

m321 m312

Figure 3: Full dimensional cores of three-player convex games
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v(j, k) > 0, and v(N) = v(i, k)+ v(j, k), it is clear that there is a strong symmetry between

players i and j. Indeed, it is easy to check that many solutions would select the allocation

x ∈ R3 such that xi = v(i,k)
2 , xj = v(j,k)

2 and xk = v(i,k)
2 + v(j,k)

2 in such a game; among

them, the Shapley value and the nucleolus. Therefore, the above discussion shows that

core-symmetry is not a demanding axiom within CG3.

4.2 The characterization result in CG
3

The characterization below shows that core-symmetry and trade-off suffice to characterize

the core-center in CG3. The independence of the axioms is straightforward. Both Shapley

value and nucleolus satisfy core-symmetry and equal division satisfies trade-off.

Theorem 1. Let ϕ be an allocation rule defined on CG3 and satisfying core-symmetry and

trade-off. Then, for each v ∈ CG3, ϕ(v) = µ(v).

Proof. Let v ∈ CGn. We show that, regardless of the number of extreme points of C(v),

ϕ(v) = µ(v). If C(v) has less than 4 extreme points, then it is core-symmetric and, by

core-symmetry, ϕ(v) = µ(v). Suppose now that C(v) has 4 extreme points. In case 4A,

ϕ(v) = µ(v) follows again from core-symmetry. We prove now that if C(v) is such as in case

4B, then ϕ(v) = µ(v). We assume, without loss of generality, that v is a 0-normalized game;

the proof can be immediately adapted for the general case just by taking the corresponding

translations of all the games defined below. Moreover, relabeling the players if needed,

assume that v(13) ≥ v(12) ≥ v(23). Let k := v(13). Let v+ be defined by v+(3) := k,

v+(23) := k and v+(S) := v(S) otherwise. Let v− be defined by v−(12) := v(N) − k and

v−(S) := v(S) otherwise. Clearly, both v+ and v− are convex games and, moreover, they

“cut” C(v) at “height” k and C(v) = C(v+)∪C(v−) and C(v+)ri∩C(v−)ri = ∅; the central

picture in Figure 4 illustrates the construction. Now, it is easy to see that C(v+) belongs

to case 3A and C(v−) belongs to case 4A. Hence, by core-symmetry, ϕ(v+) = µ(v+)

and ϕ(v−) = µ(v−). By the trade-off property, there is α ∈ [0, 1] such that ϕ(v) =

αϕ(v+) + (1−α)ϕ(v−) = αµ(v+) + (1−α)µ(v−). That is, ϕ(v) lies in the segment joining

µ(v+) and µ(v−). Clearly, by construction, the center of µ(v) belongs to this segment.

Similarly, let w+ be defined by w+(1) := k, w+(12) := k and w+(S) := v(S) otherwise. Let

w− be defined by w−(23) := v(N)−k and w−(S) := v(S) otherwise. Again, w+ and w− are

convex games and C(v) = C(w+)∪C(w−) and C(w+)ri∩C(w−)ri = ∅ (see the right picture

in Figure 4). Now, C(w+) belongs to case 3A and C(w−) belongs to case 4A. Hence, by

core-symmetry, ϕ(w+) = µ(w+) and ϕ(w−) = µ(w−). By the trade-off property, there is

β ∈ [0, 1] such that ϕ(v) = βµ(w+)+(1−β)µ(w−). That is, ϕ(v) lies in the segment joining

µ(w+) and µ(w−). Again, the construction ensures that µ(v) belongs to this segment as

well. Moreover, it is also easy to see that the way the two “cuts” have been defined ensures

that the two segments are not parallel to each other, so they intersect at most in one point.

12



Hence, since µ(v) belongs to both segments, we have that ϕ(v) = µ(v). The proof for case

4C follows from an analogous construction.

C(v)

C(v+)

C(v−)

C(w−)

C(w+)

Figure 4: The case 4B

The proof is now easily extended to cores with 5 extreme points. Clearly, for any game

whose core is such as in case 5A or 5B, there are at least two different ways in which we

can “cut” its core and divide it in two cores with, at most, 4 extreme points. Since ϕ has

already been characterized for any game whose core has at most 4 points, we can show

that ϕ(v) = µ(v) following the same argument as with case 4B above. Finally, once that

any game whose core has 5 extreme points has been characterized, if we are given a game

with 6 extreme points, there are at least two different ways in which we can “cut” its core

and divide it in two cores with, at most, 5 extreme points and the same argument applies

again.

The natural question now is how to generalize the above result beyond three-player

games (and maybe beyond convex games). There are several difficulties in this task. Essen-

tially, it would require a characterization of the symmetric cores that arise in any convex

game, which is not an easy task. Moreover, we argued above that core-symmetry is a mild

requirement in CG3, but it is not clear whether this would also be the case in general in

CGn and this issue should also be addressed. Another approach would be to replace core-

symmetry with standard axioms such as translation invariance, symmetry and efficiency

and this is what we do in the following characterization. The problem with this approach

is that there are cases of games with some structural symmetries such as the parallelogram

in case 4A above (and others when there are more than three players) in which the above

axioms do not suffice to characterize the allocation to select there. Because of this, we could

only succeed in our characterization after strengthening trade-off to strong trade-off.

5 A characterization for n-player games with nonempty

core

The strong trade-off property is the essential element of this second characterization of the

core-center.
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Theorem 2. Let ϕ be an allocation rule defined on BGn and satisfying

T1) Efficiency

T2) Continuity

T3) Extended weak symmetry

T4) Strong trade-off

Then, for each v ∈ BGn, ϕ(v) = µ(v).

The core-center is efficient because it lies in the core. The issue of continuity, despite not

being straightforward, has already been positively addressed in González-Dı́az and Sánchez-

Rodŕıguez (2007). Moreover, it is trivial that the core-center satisfies weak symmetry and

translation invariance and hence, by Lemma 1, also extended weak symmetry. The strong

trade-off property is an immediate consequence of the properties of the center of gravity, the

coefficients being proportional to the cores of the games in the dissection. Remarkably, no

axiom requires that the allocation rule selects core allocations; we discuss how this property

is implied by the others in the remark at the end of Section 5.2, which we devote to prove

Theorem 2.

The strong trade-off property is seemingly stronger than the trade-off property. Roughly

speaking, the coefficients are required to be translation invariant and equal for equally

shaped cores with the same size. Hence, one might conjecture that the core-center is the

unique allocation rule satisfying i) efficiency, ii) continuity, iii) weak symmetry, iv) trans-

lation invariance, v) core dependence10 and vi) trade-off.11 Although we acknowledge that

this alternative characterization would be more natural because the axioms of translation

invariance and core dependence are explicit (instead of embedded in the strong trade-off

property), we have not succeeded in proving it. The main problem we have faced is that,

given an allocation rule satisfying the above six axioms, we have not been able to use the

translation invariance and core dependence of the allocation rule to pin down the coeffi-

cients given by the trade-off property. Essentially, since the trade-off property imposes no

structure at all on the coefficients, we have not been able to do anything similar to what

we do in Section 5.2 to get Proposition 2; there we show that if the coefficients themselves

satisfy translation invariance and core dependence, then they have to be proportional to the

volumes. Indeed, note that the allocation rule γ defined at the end of Section 3 verifies all

the 5 properties above with the exception of translation invariance (actually, it does even

satisfy not only weak symmetry, but symmetry).

We acknowledge that a characterization that relies on the strong trade-off property

instead of doing it just on the trade-off property is less appealing. Nonetheless, we hope

10An allocation rule satisfies core dependence if, whenever C(v) = C(w), then ϕ(v) = ϕ(w).
11Or, maybe, efficiency needs to be replaced by core selection and weak symmetry by anonymity.
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that our results may shed some light for a future characterization in which no further

structure needs to be imposed on the trade-off property.

5.1 Tightness of the characterization

Next, we prove that the properties in Theorem 2 are tight. In order to do this we need the

next lemma.

Lemma 3. Let v ∈ BGn be a quasi-symmetric game. Then, C(v) either is a point or is

full dimensional.

Proof. Recall that the core of a quasi-symmetric game can be transformed into the one of

a symmetric game just using a translation. To prove this lemma it suffices to show that the

result is true for symmetric games. Hence, let v be a symmetric game, and assume that it

has a degenerate core. Hence, there is S ( N such that, for each x ∈ C(v),
∑

i∈S xi = v(S).

Let k := v(S). Now, by symmetry, for each x ∈ C(v) and each |S|-player coalition S′, we

have
∑

i∈S′ xi = k. Clearly, this only happens if, for each i ∈ N , xi = k
|S| . Now, by

efficiency, k = |S|v(N)/n. Hence C(v) = {x}, where, for each i ∈ N , xi = v(N)/n.

Proposition 1. None of the properties used in Theorem 2 to characterize the core-center

is redundant.

Proof. Next, we show that if we remove one of these properties there are allocation rules

different from the core-center satisfying the remaining ones.

Remove strong trade-off: Both Shapley value and nucleolus satisfy efficiency, extended

weak symmetry, and continuity.

Remove efficiency: Take k 6= 0. The allocation rule ϕ(v) = µ(v) + (k, . . . , k) satisfies

strong trade-off, extended weak symmetry, and continuity.

Remove extended weak symmetry: The allocation rule ϕ(v) = (v(N), 0, . . . , 0) satis-

fies strong trade-off, efficiency, and continuity.

Remove continuity: We need to distinguish different cases:

The core is a single point: ϕ selects the point (the core-center).

The core is degenerate but not a single point: In this case the allocation ϕ

selects the point (v(N), 0, . . . , 0).

The core is not degenerate: ϕ selects the core-center.

This allocation rule satisfies strong trade-off, efficiency and extended weak symmetry.

The strong trade-off property follows from assigning to each game in a dissection a

coefficient that is proportional to the volume of its core. Efficiency is straightforward.
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It also satisfies extended weak symmetry: in the non-degenerate case it coincides

with the core-center so extended weak symmetry is met; in the degenerate case, as

a consequence of Lemma 3 there are no quasi-symmetric games with degenerate core

with more than one point and in the latter cases, the point is the selected allocation

so extended weak symmetry is satisfied.

5.2 Proof of the characterization

This section is entirely devoted to prove Theorem 2. First, we present a preliminary but

crucial result whose idea is similar to that of a classical result in measure theory, namely,

“If m is the Lebesgue measure, and η is a positive translation invariant Borel measure on

Rk such that η(K) < ∞ for every compact set K, then there is a constant c such that

η(E) = cm(E) for all Borel sets E ⊂ Rk” (Rudin, 1966). Recall that, under the strong

trade-off property, given a game v and a dissection {w1, . . . , wk}, each coefficient αi only

depends on v and C(wi); hence, we denote it by αv(wi).

Proposition 2. Let ϕ be an allocation rule satisfying the strong trade-off property. Let v

and v′ be two games in BGn such that v′ belongs to some dissection of v. If C(v) is an

m-polytope, then αv(v′) = Volm(C(v′))
Volm(C(v)) .

Proof. Let v ∈ BGn and let C(v) be an m-polytope. For each v′ ∈ BGn belonging to some

dissection of v, let w(v′) := αv(v′)Volm(C(v)). We have to prove that w(·) = Volm(C(·)).

Hence, in the rest of the proof, we restrict attention to games that belong to some dissection

of v. First, we show that there is ε > 0 such that if Volm(C(v′)) < ε, then w(v′) =

Volm(C(v′)). Suppose, on the contrary, that, for each ε > 0, there is vε such that w(vε) 6=

Volm(C(vε)) < ε. We distinguish two cases:

Case 1: For each ε > 0, there is vε such that Volm(C(vε)) < ε and w(vε) > Volm(C(vε)).

Let ε > 0 and vε be as above. Let δ = w(vε) − Volm(C(vε)). Let {vεk
}k∈N be such that

{εk} → 0 and, for each k ∈ N, εk > 0 and w(vεk
) > Volm(C(vεk

)) and Volm(C(vεk
)) < εk.

Now, let G ⊂ BGn be a dissection of v such that G := vε∪G1∪G2, where G1 satisfies i) for each

v̂ ∈ G1, there is k ∈ N such that C(v̂) is a translation of C(vεk
) and ii)

∑

v̂∈G1
Volm(C(v̂)) >

Volm(C(v))−Volm(C(vε))−δ. Then, since ϕ satisfies strong trade-off, for each v̂ ∈ G1 there

is k ∈ N such that, w(v̂) = w(vεk
) > Volm(C(vεk

)) = Volm(C(v̂)). Hence,
∑

v̂∈G w(v̂) ≥

w(vε) +
∑

v̂∈G1
w(v̂) > Volm(C(vε)) + δ + Volm(C(v)) − Volm(C(vε)) − δ = Volm(C(v)).

Therefore,
∑

v̂∈G αv(v̂) > 1 and we have a contradiction.

Case 2: For each ε > 0, there is vε such that Volm(C(vε)) < ε and w(vε) < Volm(C(vε)).

We claim that Case 2 implies Case 1. Let {vεk
}k∈N be such that {εk} → 0 and, for each

k ∈ N, εk > 0 and w(vεk
) < Volm(C(vεk

)) < εk. For each δ > 0, let Gδ ∈ BGn be a

dissection of v, Gδ := G1 ∪ G2, where G1 satisfies i) for each v̂ ∈ G1, there is k ∈ N such

that C(v̂) is a translation of C(vεk
) and ii)

∑

v̂∈G1
Volm(C(v̂)) > Volm(C(v)) − δ. Then,
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since ϕ satisfies strong trade-off, for each v̂ ∈ G1, w(v̂) = w(vεk
). Since

∑

v̂∈G αv(v̂) = 1,
∑

v̂∈G w(v̂) = Volm(C(v)). Hence, there is vδ ∈ G2 such that Volm(C(vδ)) < δ and w(vδ) >

Volm(C(vδ)). Therefore, we are in Case 1.

Hence, we have shown that there is ε > 0 such that if Volm(C(v′)) < ε, then w(v′) =

Volm(C(v′)). Now, for each game v′ ∈ BGn belonging to a dissection of v, we can dissect

v′ in such a way that the cores of the games of the dissection cover C(v′) and their volumes

are less than ε. Hence, w(v′) = Volm(C(v′)).

Corollary 1. Let ϕ be an allocation rule satisfying the strong trade-off property. Let v ∈

BGn and {v1, . . . , vr} ⊂ BGn dissection of v. If C(v) is an m-polytope, then

ϕ(v) =
r

∑

i=1

αv(vi)ϕ(vi), where αv(vi) =
Volm(C(vi))

Volm(C(v))
.

Proof. Immediate from Proposition 2.

The above two results imply that, for any allocation rule satisfying strong trade-off,

the weights of the games in a dissection contained in BGn have to be proportional to the

volumes of their cores. This is a crucial result to characterize the core-center.

The outline of the proof of Theorem 2 is as follows.

Step 1: We characterize the core-center when the core is simple enough. (Section 5.2.1).

Step 2: We show that the four properties T1-T4 characterize the core-center for the class

of games with full dimensional core (Section 5.2.2).

Step 3: We show that the core of a game in BGn can be approximated by full dimensional

cores. Hence, the previous results along with the continuity property lead to the proof

of Theorem 2 (Section 5.2.3).

In the first two steps we study full dimensional cores. We only deal with the degenerate

case, when the core coincides with the least core, in the last step.

5.2.1 An elemental core

Let v ∈ BGn, and let A denote the set of active restrictions in C(v). We say C(v) is

elemental if it is full dimensional and A = {xi ≥ v(i) : i ∈ N} = {elemental restrictions}.

By definition, if C(v) is an elemental core, then C(v) = I(v).

Lemma 4. Let v ∈ BGn be such that C(v) is elemental. Then, C(v) is a simplex and its

center of gravity is the allocation x such that, for each i ∈ N , xi =
v(N)−

∑

j∈N v(j)

n + v(i).
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Proof. Since C(v) is elemental, C(v) = I(v) and I(v) is a simplex with vertices u1, . . . , un,

where, for each i ∈ N and each j 6= i, ui
j = v(j) and ui

i = v(N) −
∑

j 6=i v(j). Hence, to

obtain the result, we only need to calculate the center of gravity of the simplex, i.e., the

average of the vertices.

Proposition 3. Let v ∈ BGn be such that C(v) is elemental. Let ϕ be an allocation

rule satisfying efficiency, extended weak symmetry, continuity and strong trade-off. Then,

ϕ(v) = µ(v).

Proof. Since C(v) is elemental, it coincides with the simplex I(v), which is either a point

or an (n− 1)-polytope. Suppose that I(v) is an (n− 1)-polytope. Let w ∈ BGn be defined

by w(N) := v(N) and, for each S ( N , w(S) :=
∑

i∈S v(i). Clearly, C(w) = I(w) = I(v) =

C(v). We show that ϕ(w) = ϕ(v). Fix i ∈ N and let w̄ ∈ BGn be defined, for each S ⊂ N ,

S 6= N\{i}, by w̄(S) := w(S) and w̄(N\{i}) := v(N) − v(i). So defined, C(w̄) is a face of

C(w) (it lies in the hyperplane xi = v(i)). Therefore, {C(w), C(w̄)} is a dissection of C(v).

By the trade-off property, there is α ∈ [0, 1] such that ϕ(v) = αϕ(w) + (1 − α)ϕ(w̄). Yet,

since C(v) is an (n−1)-polytope and C(w̄) is an (n−2)-polytope, by Corollary 1, 1−α = 0

and hence, ϕ(v) = ϕ(w).

We show now that, ϕ(w) = µ(w) and, since C(w) = C(v), we have that ϕ(v) = ϕ(w) =

µ(w) = µ(v). Note that w is quasi symmetric. Hence, by extended weak symmetry, for

each pair i, j ∈ N , ϕi(w) − w(i) = ϕj(w) − w(j). Hence, there is k ∈ R such that, for each

i ∈ N , ϕi(w) = k + w(i). The latter comment, along with the efficiency property, implies

that, for each i ∈ N , ϕi(w) =
w(N)−

∑

j∈N w(j)

n + w(i). By Lemma 4, ϕ(w) is the center of

gravity of C(w), i.e., the core-center. Hence, ϕ(w) = µ(w).

Now, if I(v) is a point, let {vk}k∈N be the sequence of games such that, for each k ∈ N,

vk(N) = v(N)+ 1
k and, for each S ( N , vk(S) = v(S). Then, {vk}k∈N converges to v. Since

for each k ∈ N, I(vk) is an (n − 1)-polytope, ϕ(vk) = µ(vk). Hence, since µ(vk) converges

to I(v), the result follows from the continuity property.

Remark. Note that, if we restrict to the class of superadditive games with nonempty

core,12 then we can get Proposition 3 without needing strong trade-off and continuity (any

superadditive game whose core coincides with the set of imputations is quasi-symmetric).

That is, in that class of games, any allocation rule satisfying efficiency and extended weak

symmetry selects the core-center for games with an elemental core.

5.2.2 The core is full dimensional

The role of the games with an elemental core is now similar to that of the unanimity games

in the characterization of the Shapley value using additivity. Given a game in BGn, we can

12A game v is superadditive if, for each S, T ⊆ N such that T ∩ S = ∅, v(S ∪ T ) ≥ v(S) + v(T ).
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find dissections of its core mainly composed by elemental cores. Taking to zero the volume

of the cores of a dissection that are not elemental and combining Proposition 3 with the

continuity and the strong trade-off properties we get the desired result for any game with

a non-degenerate core.

Proposition 4. Let v ∈ BGn be such that C(v) is full dimensional. Let ϕ be an allocation

rule satisfying the four properties T1-T4. Then, ϕ(v) = µ(v).

Proof. Let ϕ be an allocation rule satisfying the properties T1-T4. Let v ∈ BGn be

a game with a full dimensional core. In order to save notation, we denote the cores

of games v and v′ by C and C ′, respectively; moreover, Vol(P ) denotes the (n − 1)-

dimensional volume of polytope P . Given a dissection G of v, let EG denote the games

in G whose cores are elemental. We can find a sequence {Gt}t∈N of dissections of v such

that i) limt→∞

∑

v′∈Gt\EGt Vol(C(v′)) = 0 and ii) there is m ∈ R such that, for each t ∈ N,

each w ∈ Gt and each S ⊆ N , we have that m ≤ w(S) ≤ v(N).13 Now, by the strong

trade-off property of ϕ and Corollary 1,

ϕ(v) =
∑

v′∈Gt

Vol(C ′)

Vol(C)
ϕ(v′) =

1

Vol(C)

(

∑

v′∈EGt

Vol(C ′)ϕ(v′) +
∑

v′∈Gt\EGt

Vol(C ′)ϕ(v′)

)

.

By Proposition 3, we have already characterized ϕ for the games in EGt. Moreover, since

ϕ is continuous, it is uniformly continuous in the set B := {w ∈ Gn : for each S ⊆ N,m ≤

w(S) ≤ v(N)}. Hence, ϕ is bounded in B. Since, by construction, all the games in the Gt

dissections belong to B, we have limt→∞

∑

v′∈Gt\EGt Vol(C ′)ϕ(v′) = 0. Then,

ϕ(v) = lim
t→∞

∑

v′∈Gt

Vol(C ′)

Vol(C)
ϕ(v′)

=
1

Vol(C)

(

lim
t→∞

∑

v′∈EGt

Vol(C ′)ϕ(v′) + lim
t→∞

∑

v′∈Gt\EGt

Vol(C ′)ϕ(v′)

)

= lim
t→∞

1

Vol(C)

∑

v′∈EGt

Vol(C ′)ϕ(v′)

Prop 3
= lim

t→∞

1

Vol(C)

∑

v′∈EGt

Vol(C ′)µ(v′)

= µ(v).

5.2.3 The core is not full dimensional

Proposition 5. Let v ∈ BGn be such that C(v) is not full dimensional. Let ϕ be an

allocation rule satisfying the properties T1-T4. Then, ϕ(v) = µ(v).

13Refer to González-Dı́az (2005, Chapter 6) for a formal proof of the above claim.
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Proof. By Lemma 2, C(v) is the least core of v. Let {v1/t}t∈N be a sequence of shifted games.

Now, limt→∞ v1/t = v. The core of v1/t coincides with the 1
t -core of v. By Lemma 2, all

these 1
t -cores are full dimensional and hence,

ϕ(v)
cont
= lim

t→∞
ϕ(v1/t)

Prop 4
= lim

t→∞
µ(v1/t)

cont
= µ(v).

Proof of Theorem 2. The assertion of the theorem follows from Propositions 3, 4, and 5.

Remark. The reasons why core-selection is implied by the other axioms are more trans-

parent now. Proposition 3 implies that, for games with an elemental core, any allocation

rule satisfying extended weak symmetry, efficiency and strong trade-off selects the center

of the core. Then, the fact that any core can be approximated by elemental cores, along

with the trade-off and continuity properties, implies the core selection property for general

games with nonempty core.
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