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Abstract

This paper considers the stability of BMAP/GI/1 periodic polling models with
mixed service disciplines. The server attends the N stations in a repeating se-
quence of stages. Customers arrive to the stations according to batch Markov arrival
processes (BMAP s). The service times of the stations are general independent and
identically distributed. The characterization of global stability of the system, the
order of instability of stations and the necessary and sufficient condition for the sta-
bility are given. Our stability analysis is based on the investigation of the embedded
Markov chains at the polling epochs, which allows a much simpler discussion than
the formerly applied approaches. This work can also be seen as a survey on stability
of a quite general set of polling models, since the majority of the known results of
the field is a special case of the presented ones.
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1 Introduction

The stability of polling models has been investigated for several decades. In
this paper we introduce a new framework that allows the stability analysis of
a wide set of periodic polling models. In the considered set of polling models
each station has an infinite queue, a BMAP arrival stream and a general
service time distribution (GI). The server attends the stations in repeating
sequences of stages. A stage is an interval the server spends at a station. The
repeating sequence of stages is referred to as cycle, in which each station is
visited at least once. The time required for the server to travel from one station
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to the next one is the switchover time. The periodic model is one among the
several polling model variants. For a summary on different polling models see
the book of Takagi [1].

One of the first works on the stability of polling systems is the early paper of
Kuehn in 1979 [2], who gave a heuristic sufficient stability condition for the
l-limited token ring. However this condition was derived without formal proof.
The proof of the stability conditions of the same polling model was given first
by Georgiadis and Szpankovsky in 1992 [3].

The stability of the polling model with Poisson arrivals and with general in-
dependent service times and switchover times was studied by many authors.
Altman, Konstantinopoulos and Liu [4] used Foster’s criteria to derive suffi-
cient conditions for the stability of cyclic polling systems with mixed service
policies. In the work of Borovkov and Schassberger [5] the polling model with
Markovian server routing and with limited gated service policy is investigated.
They studied the ergodicity and stability of the model by Lyapounov func-
tions. Fricker and Jäıbi [6] studied the stability for periodic polling model.
They applied monotonicity arguments, which utilize the monotonicity prop-
erty of service policies.

Stability conditions based on fluid models associated to Markov processes
have been developed for more general polling models. Down [7] presented the
stability condition for polling model with multiple servers and with general
independent interarrival and service times. His model with server routing is
a generalization of the cyclic model. Foss, Chernova and Kovalevskii [8] in-
vestigated the stability of multi-server polling models with state-independent
server routing. Foss and Kovalevskii [9] introduced a generalized criterion for
the stability of Markovian queueing systems and considered a polling system
with two stations and two heterogeneous servers as an example.

Some stability results are also available for polling models with general sta-
tionary input. Massoulie [10] gave a sufficient but not necessary condition for
the stability of polling models with Markovian server routing. In [10], the in-
terarrival times of the customers and their service times are assumed to be
jointly stationary, ergodic processes, which are independent of the switchover
times and of the routings of the server. The service policy is typically gated or
binomial-gated. Foss and Chernova [11] presented the sufficient and necessary
stability condition for polling models with state-independent server routing
allowing general assumption on service policies. The arrival times of the cus-
tomers and their service times form a common general, stationary egodic input
flow, where however the customers are randomly routed to the stations. The
proofs of [11] are based on the monotonicity properties of the model and dom-
inance theorems.
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Recently Lillo [12] gave an ergodicity analysis for polling systems with two
queues. The proofs of [12] rely on the combination of three embedded processes
that were previously used in the literature. For a recent survey of the available
results on polling models we refer to Vishnevskii and Semenova [13].

In this paper, we investigate the stability of the polling model, but in contrast
to the above references, we consider the periodic polling models with general
assumptions on service policies and with BMAP arrival processes. To the
best of our knowledge no stability criterions are available for these models.
The intended contributions of this paper are twofold. The first one is the
applied framework based on the properly chosen embedded Markov chains.
This framework allows the generalization of the arrival process to BMAPs and
a much simpler stability analysis than the existing ones (e.g., the one based on
monotonicity properties and dominance theorems). The second contribution
is the complete survey of stability results for a fairly general set of polling
models, which includes:

• necessary assumptions for BMAP arrival processes and for the service dis-
ciplines,

• characterization of global stability,
• order of instability of stations,
• conditions for partial stability,
• necessary and sufficient condition for the stability states of the system.

The rest of this paper is organized as follows. Section II gives the introduction
to the model and the notations. In section III we characterize the global sta-
bility. The analysis of the particular stations follows in section IV. Stability
relationships and the order of instability are studied in section V. In section
VI we give the conditions for partial stability and for the stability of the whole
system. Concluding remarks are given in section VII.

2 Model and Notation

2.1 The BMAP/GI/1 periodical polling model

We consider a continuous-time asymmetric polling model with N stations
[1]. A single server attends the stations in a repeating sequence of V stages,
defined by the polling table t : {1, . . . , V } → {1, . . . , N} , where t(l) is the
station attended by the server at stage l. Each station has infinite buffer
queues, which is served when the server attends that station [14]. A stage
is the time interval during which the server works continuously on a single
station, and the cycle is the time needed for the server to accomplish all the
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1, . . . , V consecutive stages. If no customer is present at a stage, the server
immediately attends the next station according to the polling table. Station i
is attended by the server Vi > 0 times in a cycle and

∑N
i=1 Vi = V . We refer

to the j-th stage belonging to station i as the i(j)-stage. An i-stage is any
of these i(j)-stages. At each station batch of customers arrive according to a
BMAP process satisfying assumptions B.1, B.2 (see subsection 2.2). We call
the BMAP arrival process at station i as i-th BMAP arrival process and λi

denotes its stationary arrival rate. The customer who arrives to station i is
called i-customer. Customers of station i are served for a general independent
random service time and bi denotes its mean. The server utilization and the
overall utilization are ρi = λibi and ρ =

∑N
i=1 ρi. The switchover time from

stage i(j) to the next stage is general independent and identically distributed
with mean ri(j). It can be different for each i and j. Furthermore ri =

∑Vi
j=1 ri(j)

and r =
∑N

i=1 ri.

On the periodical polling model we impose the following assumptions:

A.1 The polling order is the same in each cycle (static polling order).

A.2 Each station can have different service discipline at each stage (mixed-
discipline system).

A.3 The mean service time is positive and finite at each station, 0 < bi < ∞.

A.4 The mean switchover times are positive and finite after each stage, 0 <
ri(j) < ∞ (nonzero-switchover-times model).

A.5 The arrival processes, the customer service times and the switchover times
are mutually independent.

Definition 1 The arrival of the server to a station and the departure of the
server from a station are called polling epoch and departure epoch, respec-
tively. We call the j-th polling epoch of station i in a cycle as i(j)-polling
epoch. An i-polling epoch is any of the i(j)-polling epochs. We also use i(j)-
departure epoch and i-departure epoch, which are defined similarly.

Definition 2 The sum of the duration of stages of a given station in a cycle
is called station time.

Definition 3 The time the server spends away from the given station between
the first server departure from that station in the actual cycle to the first server
arrival to the same station in the next cycle is called intervisit time.

Definition 4 The cycle time of a given station is defined as the time elapsed
from the first server visit to the given station in the actual cycle to the first
server visit to the same station in the next cycle. It is also called as polling
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cycle time. The polling cycle of station i is called i-polling cycle.

2.2 BMAP process

At each station the arrival process is a BMAP , which is a general-
ization of the batch Poisson process, such that the arrivals are gov-
erned by a background continuous-time Markov chain (CTMC). Λ(t) is
the count of the number of arrivals in interval (0, t] and J(t) is the
state of the background CTMC at time t, which is referred to as phase.
A BMAP is a bivariate CTMC {(Λ(t), J(t)) ; t ≥ 0} on the state space
((Λ(t), J(t)); Λ(t) ∈ {0, 1, . . .}, J(t) ∈ {1, 2, . . . , P}). It has the following infin-
itesimal generator:




D0 D1 D2 D3 . . .

0 D0 D1 D2 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

...
. . .




,

where {D`; ` ≥ 0} is a set of P × P matrices.

The infinitesimal generator of the phase process is D =
∑∞

`=0 D`. π denotes
the stationary probability vector of the phase process. If the phase process is
irreducible, then πD = 0 and πe = 1 uniquely determine π, where e denotes
the column vector having all elements equal to one. λ is the stationary arrival
rate of a BMAP, and λ = π

∑∞
`=0 `D`e. For more details on BMAPs we refer

to [15].

We make the following assumptions on the BMAP arrival process of the sta-
tions:

B.1 The phase process is irreducible.

B.2 The stationary arrival rate is positive and finite, 0 < λi < ∞.

Remark 1 The diagonal elements of the D0 matrix are strictly negative.
Consequently the BMAP process can remain in any phase without an arrival
for any finite time interval with positive probability.

Recall that our stability analysis is based on properly chosen embedded
Markov chains. The assumptions (B.1) and (B.2) together with Remark 1 are
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used to show the structural properties of the state space of these embedded
Markov chains.

2.3 Service discipline

Definition 5 The service discipline gives the condition on the beginning and
on the end of the service of a given stage.

The most commonly known disciplines are, e.g., exhaustive, gated, binomial-
exhaustive, binomial-gated, non-exhaustive, semi-exhaustive, limited-N, non-
preemptive limited-T and so on [1]. In case of exhaustive discipline, the server
continues serving until the station is emptied. Under gated policy only those
customers are served, which are present at the polling epoch. By binomial-
gated discipline every customer present at the polling epoch is served with
probability pr. Similarly for binomial-exhaustive discipline every customer
present at the polling epoch and arrived during its associated busy period is
served with probability pr. At a station with limited-N discipline N customers
are served if the station does not get empty before, in which case served leaves
the station. The non-exhaustive discipline is a special case of limited-N disci-
pline with N=1. Under semi-exhaustive policy the service continues until the
number of customers becomes one less than it was at the polling epoch. In
the nonpreemptive limited-T discipline either all customers are served or the
station time limit, T, is reached before, in which case the server first finishes
the service of the customer under service and then stops the service of that
station.

We define the following notations:

Jk
i(j)(m) - the phase of the k-th BMAP arrival process at the i(j)-polling epoch

of the m-th cycle. Furthermore Jk
i(j) = limm→∞ Jk

i(j)(m) and Ji(j) = J i
i(j).

F k
i(j)(m) - the number of k-customers at the i(j)-polling epoch of the m-th

cycle, F k
i(j) = limm→∞ F k

i(j)(m), Fi(j) = F i
i(j),

Gi(j)(m) - the number of customers served in the i(j)-stage in the m-th

polling cycle, Gi(j) = limm→∞ Gi(j)(m), gi(j)(m) = E
(
Gi(j)(m)

)
, gi(j) =

limm→∞ gi(j)(m), gi =
∑Vi

j=1 gi(j),

g∞i(j) - the mean number of customers served at the i(j)-stage given that
the number of i-customers at i(j)-polling epoch goes to infinity: g∞i(j) =
∑P

q=1 P
{
Ji(j) = q

}
limn→∞ E

(
Gi(j) | Fi(j) = n, Ji(j) = q

)
, g∞i =

∑Vi
j=1 g∞i(j) ,
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gmax
i(j) - the maximum of the mean number of customers, which can be served

during an i(j)-stage: gmax
i(j) = maxn,q E

(
Gi(j) | Fi(j) = n, Ji(j) = q

)
, gmax

i =
∑Vi

j=1 gmax
i(j) .

We also use the shorthand notation Fi(j) = ∞ for limm→∞ Fi(j)(m) = ∞.

The set of service disciplines we allow to assign with the stages of the polling
cycle is wider than the list of the most commonly known disciplines and it is
limited by the following properties:

P.1 Memoryless property: In general the service discipline is independent from
the history of the system.

P.2 Lack of anticipation assumption (LAA) [16]: The service discipline does
not depend on the future of the system.

P.3 Work-conservation property: If the service of the actual stage begins,
then it is work conserving up to the end of that stage according to the used
discipline. Note, that if at least one customer is present at the polling epoch it
does not necessarily mean, that the service immediately begins (e.g., binomial-
gated or binomial-exhaustive disciplines).

P.4 Nonpreemptive service property: The service is nonpreemptive. Hence the
server departs from a station only when the customer under service, if any, is
served.

P.5 Determination property: If the service discipline of the i(j)-stage and
the customer service time of that station are given, then the number of i-
customers and the phase of the i-th BMAP arrival process at the i(j)-polling
epoch completely determines, in stochastic sense, the number of i-customers
served during that stage, the length of that stage, the number of i-customers,
and the phase of the i-th BMAP at the i(j)-departure epoch. Additionally
for each k 6= i the number of k-customers and the number of i-customers
together with the phase of the k-th and i-th BMAP arrival processes at the
i(j)-polling epoch determines also the number of k-customers, and the phase
of the k-th BMAP at the i(j)-departure epoch in stochastic sense.

P.6 Non-zero maximum property: If at least one i-customer is present at i(j)-
polling epoch, then at least one i-customer is served with positive probability
in that i(j)-stage. Furthermore the maximum of the mean number of cus-
tomers that can be served during the i(j)-stage is greater than zero, gmax

i(j) > 0.

P.7 Maximum limit property: If the number of i-customers at the i(j)-polling
epoch goes to infinity then the limit of mean number of i-customers served
during the i(j)-stage equals the maximum of the mean number of customers

7



that can be served during that stage, g∞i(j) = gmax
i(j) .

P.8 Mean maximum limit property: If the mean number of i-customers at the
i(j)-polling epoch goes to infinity and g∞i(j) = ∞ then the mean number of
i-customers served during the i(j)-stage is also tends to infinity. That is, if

E
(
Fi(j)

)
= ∞ than

E
(
Gi(j) | Fi(j), Ji(j)

)
=

∞∑

`=0

P
{
Fi(j) = `

} P∑

q=1

P
{
Ji(j) = q

}
E

(
Gi(j) | Fi(j) = `, Ji(j) = q

)
= ∞.

A numerous service disciplines satisfies properties P.1-P.8. For example all the
above mentioned examples fulfill these conditions. Note, that due to P.1 the
service discipline is independent of the BMAP arrival processes. Hence gmax

i(j)

and as a consequence of P.7 also g∞i(j) are independent of the i-th BMAP
arrival process. Properties P.6 and P.7 are similar to the assumptions S1 and
S2 of the model of Down [7].

2.4 Stability related property of service disciplines

Definition 6 The service discipline of the i(j)-stage is called unlimited type
when g∞i(j) = ∞.

In this case

g∞i(j) = gmax
i(j) = ∞, (1)

due to P.7.

Definition 7 The service discipline of the i(j)-stage is called limited type
when g∞i(j) < ∞.

In this case

0 < g∞i(j) = gmax
i(j) < ∞, (2)

due to P.6 and P.7.

Definition 8 A station is of unlimited type, if at least one stage of the station
has unlimited type service discipline.
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A station is of limited type, if all stages of the station have limited type service
discipline.

Remark 2 If Fi(j) = ∞ at least for one stage of a limited type station i
then it is also valid for every other stages of that station and it follows from
(2), that gi = gmax

i < ∞.

The exhaustive, the gated, the binomial-gated and the binomial-exhaustive
service disciplines are unlimited types. On the other hand the non-exhaustive,
the semi-exhaustive, the limited-N, as well as the nonpreemptive limited-T
service disciplines are limited types.

3 Global stability

3.1 Stability

Definition 9 The distribution of the non-negative integer valued random
variable, Z, is proper, if

∑∞
n=0 P {Z = n} = 1 and degenerate otherwise.

The distribution of the non-negative integer variable Z is totally degenerate,
if

∑∞
n=0 P {Z = n} = 0.

Definition 10 The distribution of multivariate random variable is proper, if
the marginal distribution of each component is proper.

The distribution of multivariate random variable is degenerate (totally degen-
erate), if the marginal distribution of at least one component is degenerate
(totally degenerate).

Definition 11 Station i of the polling model is said to be stable, when the
number of i-customers at each i(j)-polling epochs has proper limiting distrib-
ution and the limiting cycle time has a finite mean.

Definition 12 The polling model is said to be stable, when the number of
customers at each i(j)-polling epochs have proper limiting distributions and
the limiting cycle time has a finite mean.

This stability definition of polling models is equivalent with the one of Fricker
and Jäıbi [6].

P.7 implies, that an unlimited type station with proper distribution of cus-
tomers at polling epoch, Fi(j), but with infinite mean, E

(
Fi(j)

)
= ∞, results

in an infinite mean number of customers served at i(j)-stage, gi(j) = ∞. In
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this case, the mean cycle time is also infinite because the mean service times
are finite (A.3). Hence this case is excluded from the stability definition.

For the limited type stations this stability definition allows E
(
Fi(j)

)
= ∞,

since in this case gi(j) < ∞, and hence it does not lead to infinite mean cy-
cle time. This kind of definition might be unusual. But it means, that the
number of customers does not increase to infinity (does not become degener-
ate), instead it converges to a proper distribution, which has an infinite mean,
therefore it fits to an intuitive understanding of stability. Note, that this def-
inition is different from the stability definition of Kuehn [2] since it excludes

the case E
(
Fi(j)

)
= ∞.

3.2 Global stability of the polling system

Theorem 1 There are 3 possible stability states of the polling model:

• Whole stability: all stations are stable.
• Partial stability: 1 or more limited type stations are instable, but the rest of

the stations are stable.
• Instability: all stations are instable and the limiting mean cycle time is in-

finite.

Proof. The theorem is a straightforward consequence of the following proper-
ties:

• All unlimited type stations share the same stability state.
When an unlimited type station becomes instable, then at least the mean
number of customers to be served at its polling epochs tends to infinity.
This results in an infinite mean number of customers served in the actual
cycle (P.7 and P.8). Due to finite service times (A.3) the associated station
time tends to infinity, and hence the other stations accumulate infinitely
many customers during this time. It implies, that all stations become
instable and also the mean cycle time tends to infinity, from which the
first two properties follow.

• When the unlimited type stations are instable the limited type stations are
instable as well, and the limiting mean cycle time is infinite.

By the same reason as before.
• When the unlimited type stations are stable the limited type stations can

be both stable and instable.
The third property comes from the fact that for the limited type station i
the maximal mean service time is finite due to gi ≤ gmax

i < ∞. Hence the
other stations accumulate only a finite number of customers during this
time, which might be served by the unlimited type stations. ¤
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4 Stability of stations

4.1 State of the system

Our analysis is based on a memoryless representation of the considered polling
system.

Definition 13 The state of the system at an i(j)-polling epoch consists of
the number of customers at the stations and the phases of the BMAP arrival
processes.

The state vector, Y i(j)(m), describes the state of the system in the m-th i(j)-
polling epoch:

Y i(j)(m) = (F 1
i(j)(m), J1

i(j)(m), F 2
i(j)(m), J2

i(j)(m), . . . FN
i(j)(m), JN

i(j)(m)).

4.2 Embedded Markov chain

Lemma 1 For any fixed i ∈ {1, . . . , N}, j ∈ {1, . . . , Vi} the{
Y i(j)(m),m > 0

}
sequence is an embedded Markov chain.

Proof. It follows from the determination property (P.5) and the independence
of switchover times (A.4). ¤

Theorem 2 The
{
Y i(j)(m),m > 0

}
Markov chain is homogeneous and its

state space consists of one irreducible class of aperiodic recurrent states and
an optional class of transient states.

Proof. It follows from the determination property P.5, that the evolution of
the system does not depend on the elapsed number of cycles. Therefore the{
Y i(j)(m),m > 0

}
Markov chain is homogeneous.

To study the structure of the state space, we investigate the reachability of
state (0, 1, 0, 1, . . . 0, 1). We show, that (0, 1, 0, 1, . . . 0, 1) can be reached from
any state (l1, p1, l2, p2, . . . lN , pN), where l1, l2, . . . lN ≥ 0. The state transi-
tion from (l1, p1, l2, p2, . . . lN , pN) to (0, 1, 0, 1, . . . 0, 1) can be realized in two
steps. In the first step each BMAP performs the phase transition to phase
1, while customers can arrive. This occurs with positive probability in fi-
nite time since the phase processes are irreducibile (B.1) and independent
(A.5). Furthermore only finite number of customers can arrive during it, be-
cause the stationary arrival rates are finite (B.2). Now the system state is
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(l1 + n1, 1, l2 + n2, 1, . . . lN + nN , 1), where n1, n2, . . . nN ≥ 0 are the numbers
of newly arrived customers. Due to finite stationary arrival rates (B.2), finite
mean switchover times (A.4) and finite mean service times (A.3) the duration
of state transitions Y i(j)(m) → Y i(j)(m + 1) is finite for every finite m > 0. It
follows, that the (l1, p1, l2, p2, . . . lN , pN)→ (l1 + n1, 1, l2 + n2, 1, . . . lN + nN , 1)
transition occurs in finite number of state transitions with positive probability.
In the second step the system is let to become empty, that is no arrival occurs
until all customers in the system are served and the next i(j)-stage is reached,
while the phases of the BMAP s remain unchanged. The numbers of customers
l1 +n1, l2 +n2, . . . , lN +nN are finite, thus due to non-zero maximum property
(P.6) the system becomes empty in finite number of state transitions. Due to
finite duration of state transitions this happens in finite time. Also the phases
of the BMAP s can remain unchanged without any arrival for this finite time
with positive probability (Remark 1). All these together ensures, that also the
second step occurs in finite number of state transitions with positive proba-
bility. Therefore the chain has at least one state, which can be reached from
all states in finite number of state transitions. This implies, that this state is
recurrent. In general the states belonging to different irreducible classes of re-
current states of a Markov chain can not reach each other. It follows, that the
state space of the

{
Y i(j)(m),m > 0

}
Markov chain has only one irreducible

class of recurrent states, which includes the (0, 1, 0, 1, . . . 0, 1) state. This state
can be reached also from itself, so this state is aperiodic. As a consequence all
states of the irreducible class are aperiodic. ¤

Let Y i(j) be the following limit: Y i(j) = limm→∞ Y i(j)(m).

Theorem 3 The distribution of Y i(j) is either proper or totally degenerate.

Proof. Due to Theorem 2 the
{
Y i(j)(m),m > 0

}
Markov chain is homoge-

neous, and it has one irreducible class of aperiodic recurrent states. Assuming
that there are no additional transient states, it follows, that the chain is either
positive recurrent or null recurrent. In the positive recurrent case the distribu-
tion of Y i(j) is proper, while in the null recurrent case it is totally degenerate.
Assuming that there are also transient states in the Markov chain the prob-
ability that the chain is in the transient class tends to zero as the number of
polling cycles goes to infinity. From which the theorem follows. ¤

We define the following quantities:

J i(j)(m) =
(
J1

i(j)(m), J2
i(j)(m), . . . , JN

i(j)(m)
)
, J i(j) = limm→∞ J i(j)(m),

F i(j)(m) =
(
F 1

i(j)(m), F 2
i(j)(m), . . . , FN

i(j)(m)
)
, F i(j) = limm→∞ F i(j)(m).

Corollary 1 Both Y i(j) and F i(j) have either proper or totally degenerate
distributions.
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Proof. J i(j) has a proper distribution, since each BMAP process has finite
number of phases. Since Y i(j) is the union of F i(j) and J i(j) the statement
follows from Theorem 3. ¤

4.3 System description in partial stability

Let U ≤ N is the number of the stable stations and k1, . . . , kU are their
indexes. In addition kU+1, . . . , kN denote the indexes of the instable stations.
To evaluate the system properties in partial stability, we introduce Y ∗

i(j)(m)

similar to Y i(j)(m). Supposing that for the instable stations F k
i(j)(m) = ∞,

∀k ∈ {kU+1, . . . , kN},m ≥ 0, we define Y ∗
i(j)(m) as the state of the stable

stations, i.e., Y ∗
i(j)(m) = (F k1

i(j)(m), Jk1

i(j)(m), . . . F kU

i(j)(m), JkU

i(j)(m)).

Lemma 2 Y ∗
i(j)(m) is a discrete time Markov chain with a proper limiting

distribution and limm→∞ P
(
Y ∗

i(j)(m) = (0, 1, . . . , 0, 1)
)

> 0.

Proof. Y i(j)(m) is a Markov chain. All the instable stations are of limited
type (Theorem 1) with gi = gmax

i < ∞, and thus their mean station times
are independent of their number of customers and of phases of their arrival
processes at their polling epochs. Therefore in partial stability the number of
customers and the phases of the arrival processes of instable stations do not
play any role in the evolution of the state of stable stations.

It follows from the stability of stations k1, . . . , kU , that all of the one dimen-
sional marginal distributions of Y ∗

i(j)(m) are proper. The topology of Y ∗
i(j)(m)

is similar to the one of Y i(j)(m), i.e., the (0,1,. . . ,0,1) state is reachable from
each state in finite time with positive probability. Consequently (0,1,. . . ,0,1)

state is positive recurrent and hence limm→∞ P
(
Y ∗

i(j)(m) = (0, 1, . . . , 0, 1)
)

>
0. ¤

4.4 Stability of a particular station

Theorem 4 The necessary and sufficient condition of the stability of station
i is

gi < gmax
i . (3)

Proof. We show that the stability of station i implies gi < gmax
i and its insta-

bility implies gi = gmax
i .
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Let us start with the case when station i is stable. In this case Fi(j) (∀j ∈
{1 . . . Vi}) has a proper distribution and the limiting cycle time has finite
mean. The mean service times are finite (A.3), and hence gi(j) < ∞. Property
P.6 implies, that gmax

i(j) > 0. If no customer is present at an i(j)-polling epoch,

then no service occurs at that stage, i.e., E
(
Gi(j)|Fi(j) = 0

)
= 0. However

from Lemma 2 we have P
(
Fi(j) = 0

)
> 0, from which, ∀j ∈ {1 . . . Vi}

gi(j) = E
(
Gi(j)

)

= P
(
Fi(j) = 0

)
E

(
Gi(j)|Fi(j) = 0

)

+
(
1− P

(
Fi(j) = 0

) )
E

(
Gi(j)|Fi(j) > 0

)

≤ P
(
Fi(j) = 0

)
· 0 +

(
1− P

(
Fi(j) = 0

) )
gmax

i(j)

< gmax
i(j) .

(4)

Now we consider the case when station i is instable. In this case the distrib-
ution of Fi(j) is not proper for at least one j ∈ {1 . . . Vi} or the limiting cycle
time has infinite mean. Now we distinguish limited and unlimited type sta-
tions. First we consider the case, when station i is of limited type. Either the
mean limiting cycle time is finite and Corollary 1 implies that the not proper
distribution of Fi(j) must be totally degenerate. Or the mean limiting cycle
time is infinite, in which case infinitely many customers accumulate during it.
In both cases the distribution of Fi(j) is totally degenerate. Hence Fi(j) = ∞,
and according to Remark 2 it holds for every j ∈ {1 . . . Vi} and gi = gmax

i .
If station i of unlimited type is instable, then at least the mean number of
i-customers to be served at its polling epochs tends to infinity. In this case
gi = gmax

i follows from P.7 and P.8. ¤

5 Stability relationships

5.1 Stability of stations

Let Ai(j)(m) be the number of arriving i-customers between the mth and the
m+1th i(j)-polling epoch for every i ∈ {1, . . . , N}, j ∈ {1, . . . , Vi}. In addition
we define ai(j)(m) = E(Ai(j)(m)), ai(j) = limm→∞ ai(j)(m) and ai = ai(1).

Lemma 3 If station i is stable, then the limiting mean number of arriving
and served i-customers are the same,

ai = gi. (5)
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Fig. 1. Stability regions of the stations

Proof. From

Fi(1)(m + 1) = Fi(1)(m)−
Vi∑

j=1

Gi(j)(m) + Ai(1)(m)

we have

E
(
Fi(1)(m + 1)

)
= E

(
Fi(1)(m)

)
−

Vi∑

j=1

E
(
Gi(j)(m)

)
+ E

(
Ai(1)(m)

)
.

If station i has a proper limiting distribution, then
limm→∞ E

(
Fi(1)(m + 1)− Fi(1)(m)

)
= 0, which gives the lemma. ¤

Lemma 4 The following relation holds for station i:

• if station i is of limited type then

ai ≥ gi, (6)

• if station i is of unlimited type then

ai = gi. (7)

Proof. The system cannot serve more customers than arrive, hence ai ≥ gi

holds for both station types. For an instable limited type station gi is bounded
by the service discipline (gi ≤ gmax

i < ∞) while ai can be any large value. Thus
ai can be greater than gi It follows, that ai ≥ gi. For an unlimited type station
gi is not bounded by the service discipline (gmax

i = ∞) hence ai = gi. ¤
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Proposition 1 Station i is stable if and only if:

ai < gmax
i . (8)

Proof. We show, that the stability of station i implies ai < gmax
i , and its

instability implies ai ≥ gmax
i . If station i is stable then (8) follows from Lemma

3 and Theorem 4.

If station i is instable then it follows from Theorem 4, that gi ≥ gmax
i , but by

its definition gmax
i can not be less than gi, hence gi = gmax

i . Combining it with
(6) and (7) we have ai ≥ gmax

i . ¤

Table 1 summarizes the stability relevant relationships of particular station i.

5.2 Order of instability of stations

Let Ci(m) be the polling cycle time of station i from the m-th i(1) polling
epoch to the m+1-th i(1) polling epoch for every i ∈ {1, . . . , N}. Additionally
we define ci(m) = E (Ci(m)), ci = limm→∞ ci(m), as well as c = c1.

Lemma 5 The mean number of arriving i-customers during a cycle equals
to the mean cycle time multiplied by the stationary arrival rate to station i:

ai = λic. (9)

Proof. If the system is stable or partially stable, then we can compute the
limiting arrival rate of station i as the mean number of arriving i-customers
during the polling cycle divided by the mean length of that cycle, λi = ai

c
.

If the whole system is instable, λi is finite, c = ∞ (Theorem 1), and thus
ai = ∞. Hence (9) holds for this case as well. ¤

Corollary 2 Station i is stable if and only if:

λic < gmax
i . (10)

Proof. Taking into account Lemma 5 the statement follows from Proposition
1 by applying (9). ¤

Let D
(i)
` denote the D` matrix of BMAP process of station i (` ≥ 0, i ∈

{1, . . . , N}). Let us control the traffic intensity by applying scaling parameter

α, such that D
(i)
l (α) = αD

(i)
l , l ≥ 0. This way λi(α) = αλi, and thus the

relative ratios of station arrival rates remain fixed.
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Theorem 5 Scaling the traffic intensity from 0 to ∞ the stations gets in-
stable in order i1, i2, . . . , iN , where

λi1

gmax
i1

≥ λi2

gmax
i2

≥ . . . ≥ λiN

gmax
iN

. (11)

Proof. It follows from Corollary 2, that station k gets instable, when cλk(α) =
gmax

k . Since c is common to all stations the λk/g
max
k ratio determines the order

of instability. ¤

From now on, we assume that the stations are indexed such that λ1

gmax
1

≥ λ2

gmax
2

≥
. . . ≥ λN

gmax
N

. According to Theorem 1, if there are L limited type stations, it

follows, that the first L indexes identify the limited type stations.

5.3 Mean cycle time

Let Si(j)(m) be the station time of the i(j)-stage in the mth polling cycle
for every i ∈ {1, . . . , N}, j ∈ {1, . . . , Vi}. Additionally we define si(j)(m) =

E(Si(j)(m)), si(j) = limm→∞ si(j)(m) and si =
∑Vi

j=1 si(j).

Theorem 6 If the first U limited type stations (1 ≤ U ≤ L) are out of
stability and the remaining N − U stations are stable, then the mean cycle
time is

c =
r +

∑U
k=1 gmax

k bk

1−∑N
k=U+1 ρk

. (12)

Proof. If U ≤ L limited type stations are out of stability and the remaining
stations are stable, then the mean cycle time, c, is finite. We express c as the
sum of switchover times and station times:

c = r +
N∑

k=1

sk = r +
N∑

k=1

gkbk.

For the instable limited type station k (1 ≤ k ≤ U) Corollary 1 implies, that
the not proper distribution of Fk(j) is totally degenerate. Hence Fk(j) = ∞ and
it follows from Remark 2, that gk = gmax

k . For the stable stations it follows
from (9) and (5), that gk = cλk. Substituting them we get:

c = r +
U∑

k=1

gmax
k bk +

N∑

k=U+1

cλkbk.
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Solving it for c results in (12). ¤

If U = 0, that is the whole system is stable, then (12) is reduced to the
well-known form:

c =
r

1− ρ
. (13)

6 Stability conditions

6.1 Partial stability

Theorem 7 If the first i − 1 stations are instable then station i of limited
type (i ≤ L) is stable if and only if

N∑

k=i

ρk +
λi

gmax
i

(
r +

i−1∑

k=1

gmax
k bk

)
< 1. (14)

Proof. First we show that the stability of station i results in (14). Since station

i is stable λic < gmax
i (Corollary 2) and applying (12), λi

r+
∑i−1

k=1
gmax

k bk

1−
∑N

k=i
ρk

< gmax
i ,

results the inequality.

Starting from (14)

=================

MASIK IRANY HIANYZIK !!!!

¤

Let ρu denote the utilization of the unlimited stations:

ρu =
N∑

k=L+1

ρk. (15)

Theorem 8 Station i of unlimited type (i > L) is stable if and only if

ρu < 1. (16)

Proof. We show, that the stability of station i implies ρu < 1, while from its
instability ρu ≥ 1 follows.
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Let us start with the case, when station i is stable. Applying Theorem 6, we

get c =
r+

∑j

k=1
gmax

k bk

1−
∑N

k=j+1
ρk

, where the first j stations (1 ≤ j ≤ L) are the instable

limited type ones. Applying c < ∞ and utilizing c > 0 implies
∑N

k=j+1 ρk < 1.

Furthermore using
∑N

k=L+1 ρk ≤ ∑N
k=j+1 ρk and applying notation (15) results

in ρu < 1.

To study the case when station i is instable, we start increasing the traffic
load of the system from α = 0 and increase α to the boundary situation, when
all stations of limited type are already instable, but the stations of unlimited
type are still stable. By setting j = L in the expression of the mean cycle time
we get

c =
r +

∑L
k=1 gmax

k bk

1−∑N
k=L+1 ρk

=
r +

∑L
k=1 gmax

k bk

1− ρu

for this case. Further increase in the traffic intensity does not change the
expression of c, but it leads to the instability of the system due to infinite
cycle time, when ρu = 1. ¤

6.2 Stability of the system

Theorem 9 The system is in

• whole stability if and only if

ρ +

(
λ1

gmax
1

)
r < 1, (17)

• partial stability if and only if

ρ +

(
λ1

gmax
1

)
r ≥ 1 and ρu < 1, (18)

• instability if and only if

ρu ≥ 1. (19)

Proof. The first statement comes from Theorem 7 by setting i = 1. The second
and the third statements are consequences of Theorem 1, Theorem 8 and the
first statement. ¤
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7 Concluding remarks

We have analyzed the stability of BMAP/GI/1 periodical polling model. We
have got the following results for this model:

• necessary assumptions for BMAP arrival processes (Assumptions B.1 and
B.2) and for the service disciplines (Properties P.1 - P.7),

• characterization of global stability (Theorem 1),
• order of instability of stations (Theorem 5),
• conditions for partial stability (Theorems 7 and 8),
• necessary and sufficient condition for the stability of the system (Theorem

9).

Several properties of service disciplines play crucial role in the completion of
the stability proofs. These key properties are:

• Property P.5 used in Theorem 2,
• Property P.6 used in Theorem 2 and Theorem 4,
• and Properties P.7 and P.8 used in Theorem 1 and Theorem 4.

The properties P.6, P.7 and P.8 are relaxed condition on the service disciplines
in comparison with the monotonicity property of Fricker and Jäıbi in [6].

The work-conservation property (P.3) and the nonpreemptive service property
(P.4) can be relaxed. In this case other quantities can be handled in the evo-
lution of the system, like e.g., set-up time or repair time. However these quan-
tities may depend only on the state of the system at the polling epochs prior
to the start of set-up time, repair time, respectively. Hence state-dependent
set-up times, repair times can be allowed in the model.

We believe that it is straightforward to extend the technique used in this paper
for other polling models. The possible extensions are:

• general independent batch customer service times (GI [y]),
• arrival process dependent customer service times,
• polling model with Markovian server routing,
• dependence of the service disciplines, and the customer service time on the

past through finite valued discrete variables.

20



References

[1] H. Takagi, Analysis of Polling Systems (MIT Press, 1986).

[2] P.J. Kuehn, Multiqueue Systems with Nonexhaustive Cyclic Service, The Bell
System Technical Journal 58 (1979) 671-698.

[3] L. Georgiadis and W. Szpankowski, Stability of token passing rings, Queueing
Systems 11 (1992) 7-34.

[4] E. Altman, P. Konstantopoulos, and Z. Liu, Stability, monotonicity and
invariant Quantities in General Polling Systems, Queueing Systems 11 (1992)
35-57.

[5] A. A. Borovkov and R. Schassberger, Ergodicity of polling network, Stochastic
Processes and their Applications 50 (1994) 253-262.
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