
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Warmstarting for interior point methods applied to the long-term
power planning problem

Citation for published version:
Pages, A, Gondzio, J & Nabona, N 2009, 'Warmstarting for interior point methods applied to the long-term
power planning problem', European Journal of Operational Research, vol. 197, no. 1, pp. 112-125.
https://doi.org/10.1016/j.ejor.2008.05.022

Digital Object Identifier (DOI):
10.1016/j.ejor.2008.05.022

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
European Journal of Operational Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1016/j.ejor.2008.05.022
https://doi.org/10.1016/j.ejor.2008.05.022
https://www.research.ed.ac.uk/en/publications/0f4c1a92-8337-40ac-9e1a-3501caa591c7


0.5 setgray0 0.5 setgray1

Warmstarting for Interior Point Methods

Applied to the Long-term Power Planning

Problem ?

Adela Pagès

Dept. of Statistics and Operations Research, Universitat Politècnica de Catalunya,
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08034 Barcelona, Spain

Abstract

The long-term planning of electricity generation in a liberalised market using the
Bloom and Gallant model can be posed as a quadratic programming (QP) problem
with an exponential number of linear inequality constraints called load-matching
constraints (LMCs) and several other linear non-LMCs. Direct solution methods are
inefficient at handling such problems and a heuristic procedure has been devised to
generate only those LMCs that are likely to be active at the optimiser. The problem
is then solved as a finite succession of QP problems with an increasing, though still
limited, number of LMCs, which can be solved efficiently using a direct method,
as would be the case with a QP interior-point algorithm. Warm starting between
successive QP solutions helps then in reducing the number of iterations necessary
to reach the optimiser.

The warm start technique employed herein is an extension of Gondzio and Gro-
they’s approach to quadratic programming problems. We also propose how to ini-
tialise new variables in the problem to which a warm start technique is applied.

This study shows that warm starting requires on average 50% fewer iterations
than a cold start in the test cases solved. The reduction in computation time is
smaller, however.

Key words: Warmstarting, quadratic programming, long-term power generation
planning, interior point method.
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1 Introduction

The long-term planning of electricity generation in a liberalised market [11]
using the Bloom and Gallant formulation [4] can be posed as a quadratic
programming (QP) problem with an exponential number of linear inequality
constraints called load-matching constraints (LMCs) and several other linear
constraints (we will call them non-LMCs for short). Direct solution methods
are inefficient at handling such problems and a heuristic procedure, called GP
heuristic, has been devised [15] to generate only those LMCs that are likely to
be active at the optimiser. The problem is then solved as a finite succession of
QP problems with an increasing, though still limited, number of LMCs, which
can be solved efficiently using a direct method, as would be the case with a
QP interior-point algorithm. Warmstarting between successive QP solutions
helps to reduce the number of iterations required to reach the optimiser. The
warm start technique for interior point methods used herein is an extension
of the one presented by Gondzio and Grothey [8].

Long-term energy generation planning is an issue of key importance to the
operation of generation companies. It is used to budget for and plan fuel ac-
quisitions and to provide a framework for short-term energy generation plan-
ning.

A long-term planning period (e.g. one year) is subdivided into shorter intervals,
for which parameters are known or predicted. The variables to be optimised
are the expected energy productions of each generating unit in each interval.
In long-term planning, it is the production of each unit in the whole interval
that is of relevance, rather than the generation rate per hour.

In each interval, the balance of the load must be satisfied, in addition to several
other technical or economical constraints (e.g. maximum hydro generation,
limits on emissions and market share constraints). A Load Duration Curve
(LDC) is a practical means for representing the load of a future interval.

Bloom and Gallant [4] proposed a linear model to find the optimal method
for matching the LDC of a single interval and subject to any other linear op-
erational constraints. This model can easily be extended to the multi-interval
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case.

When a long-term power planning problem needs to be solved for a generation
company operating in a liberalised market, the company will not have a load
of its own to satisfy, but will rather bid the energy produced by its units to a
market operator, which selects the lowest-priced energy to match the load from
amongst the units of bidding companies. In this case, the scope of the problem
is no longer that of the generation units of a single generation company, but
that of all the units of all companies bidding in the same competitive market,
which match the load of the whole system. The goal of a company participating
in a liberalised market is to maximise its profit, which is understood as the
revenue for its generation at market price minus the generation costs. Using a
linear function of the market price the resulting objective function is quadratic
on the expected energies.

Bloom and Gallant [4] proposed an active set methodology in which a small
subset of LMCs is considered and updated at each iteration. Computational
experience [14] shows that such an approach is slow to converge. Pérez-Ruiz
and Conejo [16] proposed using a Dantzig-Wolfe decomposition. This approach
makes it unnecessary to formulate the LMCs explicitly by generating ver-
tices of the polyhedron defined by the load-matching and non-negativity con-
straints. However, solution accuracy is hard to achieve [12].

Pagès and Nabona [15] proposed a heuristic that tries to guess the active
LMCs at the optimiser using a limited number of LMCs. This heuristic, called
GP heuristic because it is used for solving the generation planning problem,
solves a sequence of problems (as many as the number of units, at most) in
which some new LMCs are included at each stage. The solution is found using
interior point methods. The problems only differ in the fact that new LMCs
are added, which makes the use of warm-start techniques a good strategy for
obtaining the new solution more quickly.

There are many papers on warmstarting for interior point methods, mainly for
linear programming. Gondzio [7] applies warm-start techniques to a cutting
plane scheme where new columns are appended. Yildirim and Wright [18] give
two different approaches with the theoretical worst-case analysis, where the
size of the problem does not change. Gondzio and Grothey [8] describe a new
version of the warm start for linear programming and problems of constant
size. This paper extends the Gondzio and Grothey approach to the quadratic
case and to the infeasible algorithm. The main difference between the linear
and the quadratic case is that in the latter primal variables directly contribute
to dual feasibility.

Benson and Shanno [2] introduce a warmstarting procedure for linear pro-
gramming. The problem is modified by introducing new positive variables
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whose negative values relax the nonnegativity of the original primal and dual
variables. These new positive values are added to the primal and dual objec-
tive functions through `1 penalty terms. The warm-start initial point is the
optimal solution of the unperturbed problem. The structure of the reduced
KKT system is similar to that of the original problem, but it neither requires
factorization refinement nor produces very short steps at the initial iterations.
The same authors [3] have extended their warmstarting technique to nonlinear
programming problems. Both in linear and in nonlinear cases, a logarithmic
barrier of the relaxed variables plus their corresponding new variables is em-
ployed to develop the first order optimality conditions. Forsgren [5] develops a
theoretical warm start for nonlinear programming which distinguishes between
“almost active” and “almost non-active” constraints at the optimal point. For
warmstarting, it is assumed that the active set does not change for the new
solution. The slacks of the “almost active” constraints and the dual variables
of the rest are eliminated from the Newton system.

In most of the papers, new instances do not change size. In our case new
constraints (LMCs) are appended from one iteration to the next. We propose
a strategy for initialising the new variables and for computing a direction to
quickly recover primal and dual feasibility.

Section 2 is a brief description of the long-term electric power generation plan-
ning model. Section 3 outlines the main steps in the LMC oracle heuristic, and
describes the nature of the cuts added. Section 4 considers the warm-start
technique from a general point of view and Section 5 features the computa-
tional results of using warm starts and the GP heuristic method to solve the
long-term power generation planning problem.

2 Problem formulation

This section is devoted to the long-term generation planning problem. The
whole period considered is split into ni intervals, because some parameters are
not constant throughout the period or some constraints refer to brief lapses.

The most important part of the formulation is modelling the matching of the
load for each interval. The load of a future interval is forecast using a Load
Duration Curve (LDC) whose shape limits the generation of certain units.
Given that the problem is set in a liberalised market framework, the only
LDC that can be predicted is the system load. This makes it necessary to
include a representation of all the units in the pool. As Bloom and Gallant
proposed [4], the matching of the load is formulated by an exponential number
of inequality constraints.
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The long-term generation planning problem is formulated as a linearly con-
strained model with a quadratic objective function. A detailed explanation of
the model can be found in [12].

2.1 Load Duration Curve

The LDC is the most natural technique for representing the load of a future
interval. For a past interval, for which the hourly load record is available, the
LDC is equivalent to the load-over-time curve sorted in order of decreasing
power. It should be noted that in a predicted LDC, random events such as
weather or shifts in consumption timing, which cause modifications of different
signs in the load, tend to cancel out and, that the LDC maintains the power
variability of the load in its entirety.

For a future interval, the base load p, the peak load p̂, the interval energy, ê,
and the shape of the LDC must be predicted.

2.2 Thermal Units

The relevant parameters of a thermal unit j are the power capacity cj (the
maximum power output in MW that the unit can generate), the outage prob-
ability qj (the probability of the unit not being available when it is required
for generating power) and a linear generation cost vj (the production cost in
e/MWh). Let Ω be the set of units and nu the number of units.

2.3 Matching of the Load

Let ej be the expected generation of unit j. The expected generation of each
unit depends on the loading order used to dispatch the generation in order to
match the LDC.

Let ψ be a subset of units. The load survival function, Sψ(x), after the units
in ψ have been loaded, where ψ 6= ∅, satisfies:

Sψ(x) = S∅(x)
∏

m∈ψ

qm +
∑

χ⊆ψ

(
S∅(x +

∑

j∈χ

cj)
∏

j∈χ

(1 − qj)
∏

j∈ψ\χ

qj
)
,

where χ represents any subset of ψ different from ∅. When ψ = ∅, S∅(x)
corresponds to the LDC rescaled and rotated. The load survival function,
Sψ(x), is computed from S∅(x) through convolution, as Balériaux et al [1]
proposed.
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The expected generation ej, of unit j for a particular interval of length t and
loaded after all units in ψ, is

ej = t(1 − qj)
∫ cj

0
Sψ(x)dx.

Given that the load-survival function follows the property Sψ(x) ≤ Sθ(x) for
θ ⊆ ψ, the maximum expected generation of a unit is achieved when unit j is
loaded first:

ej = t(1 − qj)
∫ cj

0
S∅(x) dx (1)

2.4 Bloom and Gallant’s model for matching the LDC

Bloom and Gallant [4] established that, in order for the expected energies ej,
j ∈ Ω, to match the LDC, the linear inequality constraints

∑

j∈ψ

ej ≤ ê− w(ψ) (2)

must be satisfied for all subsets ψ of Ω. The expected unsupplied energy, w(ψ),
when the units in ψ have been loaded, is:

w(ψ) = t
∫ p̂

0
Sψ(x) dx

Given that there are 2nu − 1 subsets of Ω = {1, 2, . . . , nu}, we have an expo-
nential number of linear inequality constraints. For 20 units, there are over
one million LMCs.

These constraints ensure that any possible ordering of the units is feasible
although only one of them will be optimal.

2.5 Non load-matching constraints

The objective of long-term planning is to determine the optimal loading order

of the units and the corresponding values of the expected generations ej at
each interval (and thus match the LDC) and other operational constraints.
Matching the LDC is expressed by an exponential number of LMCs. There
are other constraints that must be satisfied in terms of the expected energies,
ejs, such as the limited availability of fuels or emission limits over one or
several intervals. These constraints are termed non-load-matching constraints

(non-LMCs) and are modelled through linear constraints.
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2.6 Profit maximisation

In liberalised markets, generation companies bid their generation to a market
operator and a market price is determined every hour by matching the demand
with the lowest-priced bids. Generation companies are interested in obtaining
a maximum profit, which is given by the difference between the revenue at
market price and the generation cost of any bids accepted. In long-term op-
eration, all the bids accepted over a time interval (a week or a month) must
match the LDC of the interval.

An estimated linear market-price function with respect to load duration is
calculated for each interval: bi + lit (t being the interval duration and bi and
li < 0 the parameters to be estimated). Taking into account the estimated
duration of the expected energy generated by unit j in interval i, eij/cj, the
profit (i.e. the revenue at market price minus cost) will be

∫ ei
j
/cj

0
cj

{
bi + lit− vj

}
dt =

(
bi − vj

)
eij +

li

2cj
eij

2 .

If we add up all the intervals and units, we obtain the profit function to be
maximised, which is quadratic on the generated energies. A detailed explana-
tion can be found in [11].

2.7 Long-term electric power generation planning

The Bloom and Gallant quadratic profit-maximisation formulation extended
to ni intervals is expressed as:

maximize
ei
j

ni∑

i

nu∑

j

{(
bi − vj

)
eij +

li

2cj
eij

2

}
(3)

subject to:
∑

j∈ψ

eij ≤ êi − wi(ψ) ∀ψ ⊂ Ω i = 1 : ni (4)

C e ≥ d (5)

eij ≥ 0 j = 1 : nu i = 1 : ni (6)

where ni is the number of intervals, nu is the number of units, bi and li are
the basic and linear coefficients of the long-term market price function of the
ith interval; C ∈ R

n≥×(ni·nu) is the (multi-interval) matrix of non-LMCs, e is
the vector notation of variables eij and d ∈ R

n≥ the corresponding right hand
side vector of non-LMC inequalities.
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The number of variables is equal to ni×nu and there are ni× (2nu −1) LMCs.
A more detailed development of the model can be found in [11].

3 Solution method

Several approaches to solving the long-term electric power planning problem
using the Bloom and Gallant formulation have been considered. A direct ap-
proach (standard QP or Interior Point QP) is of no use due to the exponential
number of LMCs. The problem does not only arise from storage requirements
but also from the complexity of computing the corresponding right-hand sides
of (4), which is very time-consuming. These computations require numerical
integration and convolutions of the load survival function. Moreover, only a
few of the LMCs (at most ni × nu out of ni × (2nu − 1)) are active at the
optimiser.

In this section we outline the main ideas behind the GP heuristic for the
LMC oracle introduced in [15]. The heuristic is an iterative process in which
a succession of similar problems must be solved. This section presents the
problems that need to be solved and the cuts generated at each stage.

3.1 Outline of the GP heuristic

The GP heuristic exploits the fact that any feasible solution must correspond
to a loading order of the units (to match an LDC, which can be different
for each interval). The translation of a loading order into load-matching con-
straints is a set of nu constraints nested in keeping with the loading order.

Let us recall the expression of a load-matching constraint (2):

∑

j∈ψ

ej ≤ ê− w(ψ).

A set ψ of units determines a unique LMC. The body of the constraint has
a 1 for each unit in ψ and the right-hand side depends on ψ. It is said that
the constraint formed by the set ζ is nested by the constraint defined by θ if
ζ ⊂ θ.

The following is an example in which the constraint defined by ζ is nested by
the one defined by θ for a case with nu = 6 units:
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u1 u2 u3 u4 u5 u6

ζ = {u2, u4} . 1 . 1 . .

θ = {u1, u2, u4, u5, u6} 1 1 . 1 1 1

In general, a set of LMCs is nested if it is possible to sort each constraint of
the set in such a way that each constraint is nested in the next. Similarly,
the unit sequence of the loading order can be deduced from the nested set of
LMCs as the unit that differs between two consecutive constraints. Following
with the example, for a loading order {u2, u4, u1, u5, u6, u3} the corresponding
LMC coefficients are:

loading order: u2 u4 u1 u5 u6 u3

LMC 1 . . . . .

1 1 . . . .

1 1 1 . . .

1 1 1 1 . .

1 1 1 1 1 .

1 1 1 1 1 1

For a point at which none of the non-LMCs is active, all the nu load-matching
constraints corresponding to a certain ordering will be active. Otherwise, only
a subset of LMCs will be active, although it is guaranteed that this subset will
be nested [10].

The procedure characterised below refers to a single interval but is applied to
all intervals simultaneously. Given that the LMCs refer to a single interval,
the loading order may be different in each interval. The GP heuristic has three
main stages:

• Initialization stage:
Solve the problem with the non-LMCs, the upper bound of the variable

(1) and only the all-one LMC (of each interval):
∑
j∈Ω ej ≤ ê− w(Ω). The

all-one LMC always nests any other constraint.

u1 u2 u3 u4 u5 u6

list of LMCs 1 1 1 1 1 1

• Self-ordering stage:
From the previous solution, the subset φ of units that generate at their

maximum capacity is chosen. Then, all LMCs that are composed exclusively
of units in φ are added to the new problem.

The incorporation of these constraints means that the new solution will
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have the best ordering for the units in φ, thus ensuring that any other
ordering with these units in the highest position will be feasible. Compu-
tational experience shows that at most 10 units per interval are at their
upper bound, |φ| ≤ 10, and (210 − 1)ni is still an acceptable number of
LMCs. For example, for a solution in which the units at the upper bound
were φ = {u1, u2, u4}, the new problem would have the following LMCs:

u1 u2 u3 u4 u5 u6

list of LMCs 1 1 . . . .

1 . . 1 . .

. 1 . 1 . .

1 1 . 1 . .

1 1 1 1 1 1

Note that LMCs with only one unit are not explicitly stated here because
they are already considered as the upper bounds of the variable.

• Iterative stage:
The third stage consists in solving a sequence of problems in which only

one new LMC (per interval) is added at each iteration. This new constraint
nests the former ones except the all-one LMC and has one unit of difference
with respect to the last LMC considered.

For example, u5 could be the next unit in the loading order and constraint

u1 u2 u3 u4 u5 u6

new LMC 1 1 . 1 1 .

which nests constraint {u1, u2, u4} would be added to the list of LMCs
considered.

The heuristic requires that a range of similar problems be solved. It employs
a reduced subset of LMCs and is moderately enlarged in successive steps until
the optimal active set and solution are found. The use of direct methods is
therefore appropriate. We solved the problems using interior point methods.
Warm start techniques reduce the number of iterations needed to find the
successive solutions.
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4 Warm Start applied to Interior Point Methods

4.1 Interior Point Steps

Within a general framework, consider the quadratic problem

minimize hTx+ 1
2
xTHx

subject to Bx ≤ d

x ≥ 0.

(7)

Any of the problems defined in the GP heuristic described in section 3.1 is
covered by such a formulation. The inequality constraint is converted into an
equality constraint by adding the nonnegative slack variable f . Let u and z be
the Lagrange multipliers associated with constraints Bx + f = d and x ≥ 0,
respectively. The first-order optimality conditions of (7) are

Bx + f = d

−BTu−Hx+ z = h

Xz = 0

Fu = 0

x, z, f, u ≥ 0.

(8)

The first set of equations ensures primal feasibility, the second dual feasibility

and the last two complementarity. We use the upper-case letters X and F to
denote the diagonal matrices formed by spreading elements of vectors x and
f on the diagonal of these matrices, respectively (a common notation in the
interior point literature [17]).

A primal-dual interior point method relaxes the complementarity with the
parameter µ and finds an approximate solution of the perturbed first-order
optimality conditions

Bx + f = d

−BTu−Hx+ z = h

Xz = µe

Fu = µe

x, z, f, u > 0.

(9)

The first-order optimality conditions of (7) when the logarithmic barrier of
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parameter µ is applied to the non-negativity of the variables are the same as
(9). The parameter µ is thus commonly known as the barrier parameter. At
each iteration of an interior-point method, the parameter µ is reduced.

The approximate solution of (9) is found by applying one iteration of the
Newton method. The system to be solved at each iteration is




−H I −BT

B I

Z X

U F







∆x

∆f

∆z

∆u




=




h +BTu+Hx− z

d− Bx− f

µe−Xz

µe− Fu




. (10)

A primal step-length αP and a dual step-length αD are chosen to ensure that
all components of the new iterate are positive.

The central path is the sequence of points (x, f, z, u) that depend on µ and
that satisfy (9), with (x, f, z, u) > 0. It is proved that if the interior of the
primal and dual feasible region is non-empty the central path is unique [17].

4.2 Warm Start Framework

The technique known as warmstarting takes advantage of some prior knowl-
edge of the problem (for example, by drawing on a solution to a similar prob-
lem) to produce an initial point that should lead to better performance than
by starting the algorithm from scratch, see for example [7].

Suppose problem (7) is solved. From its solution, and according to the GP
heuristic, new constraints are generated

B̃x ≤ d̃, (11)

where B̃ is the matrix of coefficients for the new constraints and d̃ is its right
hand side. The new problem to be solved is

minimize hTx+ 1
2
xTHx

subject to Bx ≤ d

B̃x ≤ d̃

x ≥ 0.

(12)

13



Our goal is to find the new optimiser of (12) as fast as possible using infor-
mation collected from the previous solution to (7). The first order optimality
conditions for the new problem are:

Bx + f = d

B̃x + f̃ = d̃

−BTu− B̃T ũ−Hx + z = h

Xz = µe

Fu = µe

F̃ ũ = µe

x, z, f, f̃ , u, ũ ≥ 0,

(13)

where f̃ are the slack variables of the new constraints and ũ are the associated
Lagrange multipliers. Again, F̃ is a diagonal matrix formed from the vector
f̃ .

The differences between the old problem (see equations (9)) and the new one
(13) as regards the modified first order optimality conditions are:

• Regarding the variables, the aforementioned new primal slacks, f̃ , and the
corresponding dual variables, ũ, of the new constraints.

• Regarding the constraints, the new primal constraints, B̃x + f̃ = d̃, a new
term, B̃T ũ, in the dual constraints, and the complementarity condition for
the new variables, F̃ ũ = µe.

4.3 Restoring Primal and Dual Feasibilities

Although in practice any positive value can be employed as an initial point,
the theory of the path-following algorithms requires that the iterates stay in
a neighbourhood of the central path [17]. However, since this neighbourhood
is rather wide, the practical requirement is that the iterates simply stay away
from the boundary of the feasible region.

As an illustration, we have computed the exact points in the central path
for several values of µ of a small problem. We have re-solved the problem
with one new constraint. In Figure 1, both central paths are plotted. The
extra constraint and the new central path are represented by the dotted lines.
The small problem, with x ∈ R

2, has a quadratic objective function, with
h = [−34; −68] and H = [3 2; 2 12]. There is one constraint: B = [0 − 1],
d = [−5]. The new constraint has coefficients B̃ = [−1 − 1] and d̃ = [−8].
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Figure 1(a) shows the central paths for the primal variables (the slack variables
f are implicit). An ∗ mark highlights the points with µ equal to 103, 102, 10,
1 and 0.1. Figure 1(b) displays the dual variables in terms of µ. Note that the
bottom-right plot of the dual variables corresponds to the new variable ũ2,
which is present only on the new problem. This variable was not present in
the old problem, therefore it does not have a solid line.

In this example, the additional constraint does not cut across the the central
path but it shrinks the feasible area. Then, if the feasible area changes, the
central path moves. By means of this example, we wish to illustrate that even
if the starting point remains feasible for the new problem, some special steps
must always be taken.

Primal variables
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Figure 1. Change in the central path when a new constraint is introduced (dotted
line)

In a general situation (when the new constraint is violated by the current
point), several procedures can be implemented to recover the feasibilities. A
first approach is to recover primal and dual feasibility independently. This is
a reasonable approach for linear programming where primal variables do not
directly contribute to the dual infeasibility. In quadratic optimisation, primal
and dual feasibilities are related because of the term Hx (which depends on
the primal variables) that appears in the dual feasibility constraint.

It is a well-known fact from the theory of interior-point methods [17] that
the inclusion of a new constraint, even a feasible one, changes the central
path. Therefore our initial goal in warmstarting is always to restore a primal,
dual and central solution and to start the usual algorithm with a feasible and
well-centered point.

4.4 Initial Point

• Old variables
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As initial values for the old variables (x, f , z and u) we choose the first
iterate from the previous solution which has primal and dual relative in-
feasibilities below a given threshold εc (e.g., εc = 0.001) and also a small
relative gap [7]. However, the complementarity products in this point are
still large, µ > 0. Once the usual algorithm attains such a point one or
two recentering steps are carried out in order to have all complementarity
products within the interval [γµ, µ/γ] (e.g., γ = 0.1). The stored point is
known as the approximate µ-center.

The advantage of using a point close to optimality for warmstarting, in-
stead of the optimal one, is that there is more room to change from the
neighborhood of the former central path to that of the new one. The cen-
tering steps are a safeguard to avoid storing a point with elements that may
be too close to the boundary. A start from such a point could easily get
trapped.

• Barrier parameter
No improvement to the complementarity condition is required, so we

maintain the µ of the stored µ-point (old variables).
• New variables

The only requirement in interior point methods is that the iterates have to
be strictly positive. This gives a wide range of options for the initialisation
of the new variables, so we try to avoid degrading the first order optimality
conditions (13).

Because new primal constraints have been added (11), the magnitude of
the primal infeasibility is beyond our control.

Given that an iterate that satisfies the modified first order optimality
conditions (9) is chosen for the old variables, the dual infeasibility in the
new problem is B̃T ũ. If small positive values are chosen for the new dual
variables, ũ, then dual feasibility is not significantly violated. In this case, we
face a trade-off: either centrality is lost or primal infeasibility is artificially
increased. This approach flies in the face of the common-sense assumption
that some of the new constraints will become active and the corresponding
Lagrange multipliers will have a large value.

As our objective is to reach the neighbourhood of the new central path,
we assign a value to the new variables which maintains the complementarity
products, f̃jũj, equal to µ. Our proposal is:

f̃j =




d̃j − B̃j.x if d̃j − B̃j.x > ε

max(µ/mean(û), ε) otherwise

ũj = µ/f̃j

(14)

where B̃j. is row j of matrix B̃.
If the constraint is sufficiently feasible at the stored µ-point, we maintain

this information. Otherwise, we take the value for the dual variable to be
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the arithmetic mean of a subset û of the old dual variables u. It has been
observed that some components of u have large values compared with the
others. In û we exclude all the components such that: uj > mean(u) + 2 ×
stdev(u), where stdev(u) is the square root of the variance.

Parameter ε (e.g., ε = 100) is a safeguard against small values of µ. This
precaution is linked to the way the search direction is computed. Given
that B is of different size at each iteration of the GP heuristic and BTB
is block diagonal, we factorise the normal equations form of the Newton
system. This form gives a system of the same size at each iteration of the
heuristic and still has a good sparsity pattern. The normal equations form

is the system that results after pivoting on the slack variables ∆z, ∆f and
∆f̃ and on the dual variables ∆u and ∆ũ in the Newton system for (13).
The normal equations matrix takes the following form

[
H +X−1Z +BTF−1UB + B̃T F̃−1Ũ B̃

]
. (15)

The choice of a small f̃j value may worsen the conditioning of the matrix

(15). Consequently, it is advisable to keep the ratio ũj/f̃j of moderate size.

In view of the way we choose f̃j values, the diagonal components ũj/f̃j are

safely bounded: ũj/f̃j = µ/f̃ 2
j ≤ µ/ε2. This is a satisfactory upper bound

for an ε > 1.

4.5 Recovering step

Primal and dual feasibility may be violated at the proposed initial point, but
the complementarity products are uniform. From this point, the usual interior
point algorithm would try to reduce the infeasibilities and would also attempt
to approach optimality by reducing the barrier parameter µ. However, as this
initial point was built artificially, we propose to retain the parameter µ for
a few iterations and concentrate on reducing primal and dual infeasibilities.
The system that should be solved is




−H I −BT −B̃T

B I

B̃ I

Z X

U F

Ũ F̃







∆x

∆f

∆f̃

∆z

∆u

∆ũ




=




h+BTu+ B̃T ũ+Hx− z

d− Bx− f

d̃− B̃x− f̃

µe−Xz

µe− Fu

µe− F̃ ũ




. (16)

This system is equivalent to the one that would be solved by the usual in-
feasible interior point method applied to (13) except that in this case no
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improvement to complementarity condition is required.

4.6 Weighted Newton Step

It is unrealistic to assume that a full step in the direction obtained from
(16) will be performed, for the reason that variables must remain positive. It
may occur that only a very small step is allowed, because of poor scaling of
either the data of the problem or the variable values, and then the amount
of infeasibility absorbed is very small. When this occurs, our proposal is to
perturb the direction and apply multiple centrality correctors [6] in order to
provide a better chance for improvement in primal and/or dual feasibilities.

Rather than solving (16) in one go, we split the right-hand side into three
parts:




τD

0

0



,




0

τP

0



,




0

0

τµ



, (17)

where

τD =
[
h +BTu+ B̃T ũ+Hx− z

]
, τP =



d−Bx−f

d̃−B̃x−f̃


 , τµ =




µe−Xz

µe−Fu

µe−F̃ ũ




(18)
and solve the system for each part (using the same factorisation). We obtain
the directions ∆D, ∆P and ∆µ, respectively. Note that ∆P only attempts to
recover primal feasibility: it leaves the dual infeasibility and the complemen-
tarity unchanged. Analogously, ∆D attempts to recover dual feasibility only,
while ∆µ does not alter the infeasibilities at all and concentrates on driving
the complementarity products close to the barrier parameter µ.

An estimate of the amount of infeasibility to be absorbed can be computed
from these directions. If any of the estimates are not satisfactory we propose to
scale the direction and apply multiple-centrality correctors. Scaling a direction
with a factor β (β < 1) is equivalent to reducing the infeasibilities in the right
hand side of (16) by this factor. The advantage of solving the system in three
steps is that β can be chosen after solving the system.
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4.6.1 Estimates of the infeasibility to be absorbed

In linear programming, the reduction rate of the infeasibilities is 1 minus the
step size, which may be different for the primal and the dual direction. Namely,
if step αP is performed on the primal direction, then primal infeasibility is
reduced (1 − αP ) times. Analogously, if the step αD is carried out, then dual
infeasibility is reduced (1 − αD) times.

In quadratic programming, the same results apply if primal and dual step
lengths are the same. However, the usual practice is to choose different step
sizes for the primal and dual directions, αP and αD. While primal infeasibility
is monotonically decreasing, the dual one behaves erratically. Given that the
initial point was feasible (or nearly feasible) in the previous problem

τ oldD = h +BTu+Hx− z ≈ 0,

the warm-starting point in the new problem will satisfy

τnewD = h +BTu+ B̃T ũ+Hx− z

= (h +BTu+Hx− z) + B̃T ũ

= τ oldD + B̃T ũ ≈ B̃T ũ .

After the step in Newton direction the dual infeasibility will be the following:

τ̂newD = h+BT (u+ αD∆u) + B̃T (ũ+ αD∆ũ) +H(x+ αP∆x) − (z + αD∆z)

= h+BTu+ B̃T ũ+Hx− z + αDB
T∆u+ αDB̃

T∆ũ+ αPH∆x− αD∆z

≈ B̃T ũ+ αD(BT∆u+ B̃T∆ũ− ∆z) + αPH∆x .

Extending the linear case to the quadratic case, but only to compute the
estimates of the infeasibility to be absorbed, we propose:

• As estimates of the primal infeasibility to be absorbed, αPP , which is the
maximum step length with the primal variables along ∆P .

• As estimates of the dual infeasibility to be absorbed, αDD, which is the max-
imum step length with the dual variables along ∆D.

Direction ∆µ could be omitted if we only intended to recover feasibility. More-
over, if the initial point is well centred τµ will be nearly 0 in all its components,
at least in the first iteration.
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4.6.2 Final direction

When an estimate, either αPP or αDD, is very small, this is a sign that certain
components of this direction are not satisfactory. We hope that by using a
weighted direction plus a few multiple centrality correctors, the total reduction
in primal and dual infeasibilities will be larger.

Given that the final direction will be a composition of the three directions, we
try a more ambitious target, weighting each direction according to:

βP = min(καPP , 1) βD = min(καDD, 1) βµ = 1 or 0 (19)

with κ > 1. On the basis of previous computational experience and [8] we
propose to use κ = 2, but there may be other cases in which a larger κ is more
suitable. The final composite direction ∆ is:

∆ = βP∆P + βD∆D + βµ∆µ

to which some centrality correctors are applied.

4.7 Outline of a warm-start iteration

The warm start in interior point methods, as opposed to the cold start, pro-
duces an initial point using some prior knowledge of the problem (or a similar
one), with the idea of making the usual algorithm perform better. Therefore,
when considering a warm start for the following problem, we must store a
near-optimal and well-centered µ-point.

From the optimal solution, new cuts are appended to the problem. The new
variables, both primal and dual, are initialized as in (14). From this point the
following warm-start procedure is carried out and produces the initial point.
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Warm-start procedure

i Compute the primal and dual infeasibilities, τP and τD, and the
centrality deviations, τµ.

ii Compute the directions needed to recover primal and dual fea-
sibility and centrality, solving system (16) with right-hand sides
(17)-(18): ∆P , ∆D, ∆µ.

iii Compute the usual Newton direction: ∆ = ∆p+∆d+∆µ and the
maximum primal and dual step lengths αP and αD. If αP > εs
and αD > εs then go to (vii).

iv Compute the maximum step length and the estimates of the
infeasibility to be absorbed:

∆P → αP

P
, αDP

∆D → αPD, α
D

D

v Compute the direction weights:

βP = min(καPP , 1)

βD = min(καDD, 1)

βµ = 1

vi Compute the predictor composite direction:
∆ = βP∆P + βD∆D + βµ∆µ

vii Apply multiple centrality correctors to ∆.
viii Compute the step lengths on ∆ and update the point.
ix Compute primal and dual infeasibilities, τP and τD.
x If ‖τP‖ > εw or ‖τD‖ > εw and there has been a significant

reduction of the infeasibilities, repeat from (i)
Otherwise switch to the usual infeasible interior point method.

In this warm-start procedure (step x), we consider the reduction of the infeasi-
bility to be significant if the infinity norm of the primal and dual infeasibilities
at the current iteration has been reduced by at least 40% compared with that
in the previous iteration.

5 Computational Results

The warm-start approach presented was tested for the solution of the long-
term generation planning using the GP heuristic for the LMC oracle. These
problems are realistic test cases from the Spanish liberalised power pool. Some
of the units represent a single generation unit while some others merge a group
of similar generation units. The data of the test cases is available from [13].
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5.1 Implementation issues

The code used was implemented in C programming language. The warm-
start procedure is an extension of the infeasible primal-dual interior point
method [17]. The interior point algorithm applies the Mehrotra’s predictor-
corrector direction [9] with Gondzio’s multiple-centrality correctors [6]. The
usual algorithm was slightly modified in order to store the µ-point: when
the algorithm attains a point which is a good candidate for the warm-start
procedure, this point is recentered and stored for later use in the warm-start
function if a new problem has to be solved.

The warm-start procedure allows the user to choose some parameters. The
values that gave the best results when we were solving the instances were:

• εc = 0.001: if relative primal and dual infeasibilities and the relative duality
gap are smaller than εc then perform some centering steps and store the
µ-point.

• κ = 2: scaling directions parameter used in (19).
• βµ = 1: the centering direction usually helps.
• εs = 0.1: if the Newton step does not make enough progress (αP < εs or
αD < εs) then compute the weighted Newton step.

• εw = 10−4: if relative primal and dual infeasibilities are less than εw the
warm start procedure stops.

5.1.1 Problem description

Table 1 shows the basic statistics of each problem: number of units, nu, number
of intervals, ni, and number of non-LMCs, n≥. Thus, the number of variables is
ni×nu. The total number of LMCs that the complete model has is ni×(2nu−1).
Note the reduced subset of LMCs employed by the heuristic shown in the
column consid. nlmc, of which active nlmc are active at the solution point. The
number of LMCs generated is highly related to the number of active upper
bounds (1) because the self-ordering stage of the GP heuristic adds a new
LMC for any combination of the variables at their upper bound (see columns
active up. bound and consid. nlmc).

5.1.2 GP heuristic statistics

The number of problems re-solved during the solution of each case with the GP
heuristic is reported in Table 2. The first problem generated by the heuristic
is solved from a cold start and the following ones are fed with an initial warm-
start point, derived from the previous solution.
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non-LMCs LMCs (all intervals)

active active consid.

case nu ni n≥ nlmc up. bound nlmc

ltp 01 13 11 9 24 59 171

ltp 02 15 11 43 48 22 117

ltp 03 17 11 66 46 23 137

ltp 04 18 11 77 51 24 147

ltp 05 45 11 40 34 108 2293

ltp 06 63 11 222 176 82 2484

ltp 07 18 52 321 130 69 703

ltp 08 25 27 190 85 76 411

ltp 09 52 15 90 27 32 622

ltp 10 29 8 61 39 9 213

ltp 11 33 13 34 23 12 317

ltp 12 67 15 329 243 74 794

ltp 13 56 52 32 88 218 2386

ltp 14 13 27 25 39 127 138

ltp 15 14 27 24 40 40 169

ltp 16 12 27 25 33 15 182

ltp 17 16 27 24 40 37 241

ltp 18 18 27 17 77 42 318

ltp 19 19 27 25 80 112 354

Table 1
Characteristics of the test cases solved and active constraints at the solution point.

In each iteration of the GP heuristic a number of LMCs are added to the prob-
lem. We reoptimise when one or more of the LMCs generated are infeasible,
but the new problem contains all previously generated constraints. In Table
2, the new LMCs column shows the average number of new LMCs appended
to each problem being reoptimized. The adjacent columns show the average
number of infeasible LMCs at the optimal point, inf ∗, and at the stored µ-
point, inf µ. The average is calculated with respect to the number of problems
solved using a warm start, shown in the column num prb re-solved.

Table 3 details the relative infeasibility (of the newly added LMCs), which is
only calculated for information purposes, at each iteration of the GP heuristic
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num prb LMCs

re-solved new inf * inf µ

ltp 01 4 40.5 26.5 3.3

ltp 02 7 15.0 6.3 2.0

ltp 03 9 13.9 4.8 3.1

ltp 04 10 13.5 4.7 3.1

ltp 05 1 1983.0 1983.0 1697.0

ltp 06 1 1983.0 1983.0 1099.0

ltp 07 6 108.5 12.5 2.0

ltp 08 6 62.5 4.7 0.0

ltp 09 5 106.0 1.2 0.0

ltp 10 7 28.3 2.7 0.1

ltp 11 3 90.7 1.0 0.0

ltp 12 0 0.0 0.0 0.0

ltp 13 2 1127.5 1.0 0.0

ltp 14 2 48.0 3.0 2.5

ltp 15 4 31.5 1.5 1.0

ltp 16 1 91.0 1.0 1.0

ltp 17 9 21.6 1.2 0.4

ltp 18 12 23.9 4.0 3.5

ltp 19 9 31.7 3.2 0.1

Table 2
Number of problems re-solved starting from a warm-start point, and average number
of added LMCs and infeasible LMCs at the optimizer and at the stored µ-point.

where at least one of the new LMCs is infeasible and the new problem must
be re-solved (see the columns heading for the explicit definition of relative
infeasibility). The 0 value indicates that the norm of the infeasibility is smaller
than 10−6. There is a significant difference between iteration 2, which is the
self-ordering stage, and the following ones corresponding to the iterative stage
(see Section 3.1).

During the self-ordering stage (iteration 2) of the GP heuristic a number of
LMCs are added so that the generation of the units that, at the initialization
stage, were generating at their maximum capacity conform to the shape of
the LDC. The subset of the LMCs added that become active generally means
the deepest cut in the application of the GP heuristic. The following LMCs
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‖max(0, (d̃j − B̃j.x
∗)/d̃j)‖2

ite 2 ite 3 ite 4 ite 5 ite 6 ite 7 ite 8 ite 9 ite 10 ite 11 ite 12

ltp 01 4.1e-03 1.5e-05 4.9e-05 6.8e-05

ltp 02 1.4e-03 4.1e-05 6.5e-05 5.5e-05 4.7e-05 2.9e-05 6.3e-05

ltp 03 1.4e-03 6.0e-06 5.0e-06 3.1e-05 5.4e-05 4.5e-05 3.8e-05 2.3e-05 5.4e-05

ltp 04 1.4e-03 6.0e-06 6.0e-06 3.1e-05 5.4e-05 6.2e-05 4.1e-05 3.4e-05 2.1e-05 5.1e-05

ltp 05 1.7e-02

ltp 06 1.7e-02

ltp 07 2.0e-06 8.0e-06 8.0e-06 5.4e-05 6.3e-05 1.2e-04

ltp 08 8.0e-03 0 0 0 0 0

ltp 09 1.0e-06 1.0e-06 0 0 0

ltp 10 1.2e-02 3.8e-03 3.0e-06 1.0e-06 0 0 0

ltp 11 3.0e-06 0 0

ltp 12

ltp 13 0 0

ltp 14 2.9e-05 2.3e-04

ltp 15 3.5e-05 1.6e-04 3.9e-05 3.4e-05

ltp 16 1.3e-02

ltp 17 7.4e-05 1.0e-05 3.5e-05 3.4e-05 4.2e-05 3.4e-05 3.6e-05 1.8e-05 2.9e-05

ltp 18 9.9e-03 1.2e-02 4.6e-05 6.0e-06 4.0e-06 7.2e-05 1.4e-04 3.9e-05 2.8e-05 1.3e-05 4.0e-06

ltp 19 0 0 0 0 0 0 0 0 0
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last added unit; the cut is generally more shallow as more units are added in
the iterative stage.

5.2 Warm-start results

The results in Table 4 show time (in seconds) and the number of iterations
obtained by solving the long-term power planning instances with the warm
start technique. The way the interior-point solver begins is compared here:
using a cold start or a warm start. The first problem solved (of the GP heuristic
described in Section 4) is always initialized with a cold start (all the variable
values are 106).

The column headed prb ws shows the number of problems where the warm
start procedure was applied, and therefore these are the compared solutions.
The adjacent column shows the results obtained using the cold start solution:
time and average number of iterations executed by the interior-point solver.
The warm start results are detailed next: solution time, the average number of
warm start iterations (ws) as displayed in the warm start procedure in Section
4.7, the average number of iterations required to find the new solution using
the usual interior-point method (ipm), and the sum of both columns (total),
giving the total number of iterations. The total number of iterations should
be compared to the number of iterations needed by a cold start solution.

The last part of Table 4 shows the variations in computation time and in
the number of iterations between the solutions obtained using a cold or warm
start. The bottom row shows the average for the test cases computed. On
average, 15 iterations are required to solve each subproblem if we start from
an arbitrary point (cold start) and 7 iterations if we use information from the
previous solution (warm start). On average, the warm-start routine performs 1
iteration (and 6 iterations of the usual interior-point algorithm). The average
saving on interior point iterations is around 50%.

The difference in time in most of the instances is a matter of fractions of a
second (see Table 4). Considering that the timing function is inexact (the time
given is computed with the Linux time command, adding up user and system
time), the difference in time is almost imperceptible. We further analyzed
how much of the time is employed by the routines that solve the problems
(including the warm start routine when applicable) using the -pg option of
the gcc compiler and the gprof profiler 1 . Figure 2 shows the percentage
of time employed by the interior-point solver function plus the warm start
routine (where applicable). In 17 of the 19 cases, the time employed to solve
the problems represents less than 30% of the total time (for the cold start

1 We wish to thank Andreas Grothey for his guidance on this issue
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prb Cold start Warm start Difference

ws time ite time ws ipm total time ite

ltp 01 4 1.00 15.5 0.80 1.5 8.3 9.8 0.20 5.75

ltp 02 7 0.70 15.1 0.62 1.9 5.7 7.6 0.08 7.57

ltp 03 9 0.74 14.0 0.71 1.1 7.1 8.2 0.03 5.78

ltp 04 10 0.81 14.3 0.77 1.1 6.7 7.8 0.04 6.50

ltp 05 1 2.66 18.0 2.59 1.0 11.0 12.0 0.07 6.00

ltp 06 1 4.03 21.0 3.94 1.0 12.0 13.0 0.09 8.00

ltp 07 6 4.17 13.8 2.72 1.7 5.3 7.0 1.45 6.83

ltp 08 6 2.14 16.2 1.38 0.5 5.0 5.5 0.76 10.67

ltp 09 6 2.91 17.8 2.20 0.8 4.8 5.6 0.71 12.23

ltp 10 7 0.77 15.1 0.68 1.1 4.0 5.1 0.08 10.00

ltp 11 6 1.19 15.7 1.12 0.0 4.7 4.7 0.07 11.00

ltp 12 0 3.49 - 3.47 - - - - -

ltp 13 1 6.74 14.0 6.54 0.0 4.0 4.0 0.20 10.00

ltp 14 2 0.48 15.5 0.50 0.5 6.5 7.0 -0.02 8.50

ltp 15 4 0.57 14.5 0.70 1.5 4.0 5.5 -0.14 9.00

ltp 16 1 0.50 12.0 0.48 2.0 4.0 6.0 0.01 6.00

ltp 17 9 0.75 14.1 0.63 0.8 4.8 5.6 0.12 8.55

ltp 18 12 1.08 13.9 0.99 1.3 7.4 8.7 0.08 5.25

ltp 19 9 1.76 16.1 1.20 0.7 5.1 5.8 0.55 10.33

avg 1.92 15.4 1.69 1.0 6.1 7.2 0.24 8.22

Table 4
Time and average number of iterations done with a cold start or with a warm start.

solution), being the average at 17.14% for the cold start and 11.17% for the
warm start solution. From the rest of the time, most of it is spent on the
computation of the LMC right-hand sides. Consequently, the scope for time
savings resulting from the use of warm start technique is very limited.

To complete the analysis, Table 5 shows the percentage of time used by the
interior-point solver (tIP ) within the solution of the GP heuristic (tGP ), the
percentage of time used by the warm-start routine (tWS) within the interior-
point algorithm and the percentage of time used by the warm-start routine
within the solution of the case. The conclusion drawn here is that on average:
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% tIP /tGP % tWS/tIP % tWS/tGP

ltp 01 4.9 13.3 0.65

ltp 02 6.5 25.0 1.62

ltp 03 12.8 11.8 1.50

ltp 04 14.8 13.3 1.97

ltp 05 3.5 3.1 0.11

ltp 06 9.7 4.2 0.41

ltp 07 53.5 18.3 9.82

ltp 08 29.5 6.3 1.87

ltp 09 9.4 11.4 1.07

ltp 10 9.3 20.0 1.85

ltp 11 3.6 0 0

ltp 12 8.4

ltp 13 4.1 0 0

ltp 14 2.8 0 0

ltp 15 3.6 14.3 0.51

ltp 16 1.8 0.0 0.00

ltp 17 7.2 9.5 0.68

ltp 18 11.7 16.3 1.91

ltp 19 15.7 9.8 1.53

avg 11.19 9.81 1.24

Table 5
Statistics on the percentage of time used for the warm-start solution.
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Figure 2. Percentage of time used by the interior-point solver in the GP heuristic
(cold start represented by solid line and warm start by dotted line)

• about 90% of the time is devoted to computing LMC right-hand sides,
• the warm-start routine stands for about 10% of time used by the interior-

point solution, and
• the warm-start routine, in a global vision, uses 1% of the GP heuristic

solution time.

5.2.1 Importance of the µ-point

The analysis of the results presented in Table 4 reveals that warmstarting
in interior point methods works well. Table 6 shows the average number of
iterations saved by carrying out the warm-start procedure instead of simply
making a straightforward start from the stored µ-point. It is worth noting that
in some cases, rather than carrying out a previous step, it is better to quite
simply feed the usual algorithm with the stored µ-point as the initial point.
These results support the idea that making sure that the stored approximate
µ-center has good centrality properties pays off.

The small advantage presented by the warm-start procedure in the test cases
solved may be a consequence of the shallowness of the appended cuts (LMCs).
When problems arise with deeper cuts, the warm-start technique should pre-
sent an advantage.

Another conclusion that can be drawn from the analysis of the results is that
the number of warm-start iterations not only depends on the magnitude of
the primal and dual infeasibility, but also on the quality of the stored µ-point:
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Cold start Warm start µ-point

time ite time ite time ite

ltp 01 1.00 15.5 0.80 9.8 0.96 9.0

ltp 02 0.70 15.1 0.62 7.6 0.66 8.9

ltp 03 0.74 14.0 0.71 8.2 0.66 7.9

ltp 04 0.81 14.3 0.77 7.8 0.76 8.3

ltp 05 2.66 18.0 2.59 12.0 2.66 11.0

ltp 06 4.03 21.0 3.94 13.0 3.78 12.0

ltp 07 4.17 13.8 2.72 7.0 3.81 12.3

ltp 08 2.14 16.2 1.38 5.5 2.10 10.4

ltp 09 2.91 17.8 2.20 5.6 2.16 6.0

ltp 10 0.77 15.1 0.68 5.1 0.57 6.5

ltp 11 1.19 15.7 1.12 4.7 0.94 4.7

ltp 12 3.49 - 3.47 - 3.44 -

ltp 13 6.74 14.0 6.54 4.0 6.55 4.0

ltp 14 0.48 15.5 0.50 7.0 0.49 6.5

ltp 15 0.57 14.5 0.70 5.5 0.66 6.3

ltp 16 0.50 12.0 0.48 6.0 0.56 6.0

ltp 17 0.75 14.1 0.63 5.6 0.61 5.3

ltp 18 1.08 13.9 0.99 8.7 0.90 10.8

ltp 19 1.76 16.1 1.20 5.8 1.55 13.6

avg 1.92 15.4 1.69 7.2 1.78 8.3

Table 6
Comparison of several initializing procedures.

the larger µ is, the easier it is to warm start interior point method.

6 Conclusions

• The solution through the GP heuristic in [15] of the long-term generation
planning modeled with the Bloom and Gallant formulation requires solv-
ing a succession of QP problems with an increasing number of inequality
constraints, where warm starting can be applied.

• The warm start procedure of Gondzio and Grothey [8] has been extended to
the quadratic case. The idea is to absorb the primal and dual infeasibility in
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several steps maintaining the complementarity products close to µ. When
the steps along the usual Newton direction are small, the Newton system is
solved in three steps, giving a direction to recover primal feasibility, another
to recover dual feasibility and the third one is to recover the centrality. We
try to reduce the amount of infeasibility using a weighted Newton direction.
The weights are based on estimates of the primal and dual infeasibility
reduction.

• We have also proposed a way to initialise the new variables. It maintains
the same µ for the new point.

• The weighted Newton warm start produces savings with respect to the cold
start both in the number of iterations (53% on average) and in CPU time
(12% on average).

• Initialising the new variables in the way put forward and then continuing
with normal interior-point iterations is also advantageous with respect to
cold start, because on average the savings in iterations are of 46% and the
savings in CPU time are of 7%.

• As regards CPU time, it must be borne in mind that on average 90% of it
is devoted to the calculation of the right-hand sides of the newly created
constraints. In the general context of interior-point methods for QP the CPU
time savings are proportional to the number of iterations saved. However,
in this specific application the vast majority of time is spent on evaluating
the right-hand sides of the LMCs. Therefore, leaving out the calculations of
the right-hand sides, the savings resulting from the use of the warmstarting
procedure would be more significant.
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