
ar
X

iv
:c

s/
06

12
14

0v
2

 [
cs

.D
M

]
 2

8
M

ar
 2

00
7

On Simulating Nondeterministic Stochastic Activity Networks1

Valmir C. Barbosa2 Fernando M. L. Ferreira3 Daniel V. Kling4

Eduardo Lopes5 Fábio Protti6 Eber A. Schmitz7

Abstract. In this work we deal with a mechanism for process simulation called a NonDeterministic

Stochastic Activity Network (NDSAN). An NDSAN consists basically of a set of activities along with

precedence relations involving these activities, which determine their order of execution. Activity

durations are stochastic, given by continuous, nonnegative random variables. The nondeterministic

behavior of an NDSAN is based on two additional possibilities: (i) by associating choice probabilities

with groups of activities, some branches of execution may not be taken; (ii) by allowing iterated

executions of groups of activities according to predetermined probabilities, the number of times an

activity must be executed is not determined a priori. These properties lead to a rich variety of

activity networks, capable of modeling many real situations in process engineering, project design,

and troubleshooting. We describe a recursive simulation algorithm for NDSANs, whose repeated

execution produces a close approximation to the probability distribution of the completion time of

the entire network. We also report on real-world case studies.

Keywords: activity networks, stochastic activity networks, nondeterministic activity networks,

stochastic project scheduling problems.

1 Introduction

In this work we deal with a mechanism for process simulation called a NonDeterministic Stochastic

Activity Network (NDSAN). An NDSAN consists basically of a set of activities along with prece-

dence relations involving these activities, which determine their order of execution. This order is

captured by a digraph with some special properties: the possibility of defining nondeterministic

branches of execution, by associating choice probabilities with some activities, and loops of execu-

tion, which specify the iterated execution of a group of activities according to predetermined loop

1This work is partially supported by CNPq, CAPES, and a FAPERJ BBP grant.
2COPPE/PESC, UFRJ, C.Postal 68511, Rio de Janeiro, Brazil, CEP 21941-972. E-mail: valmir@cos.ufrj.br
3NCE, UFRJ, C.Postal 2324, Rio de Janeiro, Brazil, CEP 20001-970. E-mail: fmachado@nce.ufrj.br
4NCE, UFRJ, C.Postal 2324, Rio de Janeiro, Brazil, CEP 20001-970. E-mail: danielvk@posgrad.nce.ufrj.br
5NCE, UFRJ, C.Postal 2324, Rio de Janeiro, Brazil, CEP 20001-970. E-mail: eduardolopes@gmx.net
6IM and NCE, UFRJ, C.Postal 2324, Rio de Janeiro, Brazil, CEP 20001-970. E-mail: fabiop@nce.ufrj.br
7IM and NCE, UFRJ, C.Postal 2324, Rio de Janeiro, Brazil, CEP 20001-970. E-mail: eber@nce.ufrj.br

1

http://arxiv.org/abs/cs/0612140v2

probabilities. These properties allow for a rich variety of activity networks, capable of modeling

many real situations in process engineering, project design, and troubleshooting.

There are two main types of activity networks. A deterministic activity network is represented by

a precedence digraph whose topology remains fixed as the activities are executed. Examples of

deterministic activity networks include CPM and PERT networks, see e.g. [10]. On the other hand,

a nondeterministic activity network allows for the possibility of a dynamic topology. Examples of

such networks are inhomogeneous Markov chains, GANs (Generalized Activity Networks) [4], and

GERT (Graphical Evaluation and Review Technique) networks [11].

The duration of each network activity is given by a random variable. Thus, a fundamental problem

is determining the distribution of the completion time of the entire network. For deterministic

activity networks, this general problem is known as the Stochastic Project Scheduling Problem [3].

Our definition of NDSANs combines stochastic activity durations with nondeterminism. In an

NDSAN, activities are represented by nodes, and an arc oriented from activity ai to activity aj

means that the execution of aj may only start after the execution of ai has ended. Nondeterminism

is achieved, as indicated above, by means of two possibilities: (i) some branches of execution

are not necessarily taken, and (ii) the number of times a group of activities is to be executed

is not determined a priori. These additional possibilities are supported by the introduction of

two new categories of nodes, namely decision nodes and loop nodes. A decision node associates

probabilities with its out-neighbors and selects one of them to be executed accordingly; this selection

is interpreted as one possible deterministic scenario among many. A loop node allows the repeated

execution of a group of activities, the number of iterations depending on probabilities associated

with the loop node. Loop nodes are particularly interesting to model refinement processes, such as

quality control and error testing/correction. We also define junction nodes for adequately combining

the two new constructions into the network. In Section 2 we define NDSANs formally, in terms

of recursive construction steps that combine smaller NDSANs into larger ones via certain types of

structured templates.

In Section 3, we give an analytical description of the random variable T [D] associated with the

completion time of NDSAN D. We assume that the duration of each activity ai in D is given by a

continuous, nonnegative random variable Ti. The random variable T [D] is thus given in terms of

the Ti’s and the probabilities associated with the decision/loop nodes.

2

Although T [D] can be described precisely, we lack a closed-form expression for it and even numerical

methods to find its distribution from such a description may be computationally too hard, especially

when the number of activities is large. In Section 4, we describe a recursive simulation algorithm

whose execution returns a single plausible value (“observation”) in the sample space of T [D].

Running the simulation algorithm a suitable number N of times produces a close approximation to

the probability distribution of T [D]. The value of N can be obtained by using the same statistic

as the Kolmogorov-Smirnov test, see e.g. [7] (Section 13.5), as we also discuss in Section 4.

Section 5 presents two computational experiments. For each experiment, the result of the sim-

ulations is shown as a frequency histogram together with a fitting curve that approximates the

expected shape of the density of T [D], an approximate probability distribution of T [D], and an

approximate probability density of T [D] obtained from the approximate distribution. Section 6

discusses ongoing work.

In a recent related work, Leemis et al. [9] develop algorithms to calculate the probability distribution

of the completion time of a stochastic activity network with continuous activity durations. In their

work, activities are modeled by arcs and the networks are acyclic and deterministic (i.e., allow

no variation in topology). The authors describe a recursive Monte Carlo simulation algorithm,

which is network-specific and must therefore be rewritten specifically for each new network. Also,

they provide two exact algorithms, one for series-parallel networks and another for more general

networks whose nodes have at most two incoming arcs each.

We remark that all the discussion on random variables in this work can be adapted to the case of

discrete random variables. (In [13], pp. 122–123, for example, an activity network with discrete

activity durations is given.)

2 Formal definition of NDSANs

In this work, D denotes a digraph with n nodes and m arcs. If (v,w) is an arc of D, then node

v is an in-neighbor of node w, whereas w is an out-neighbor of v. By disregarding arc orientation,

we may also simply say that v and w are neighbors. A node having no in-neighbors (resp. out-

neighbors) is called a source node (resp. sink node). If D is a digraph containing a single source

(resp. sink) node v , then v is denoted by source(D) (resp. sink(D)).

3

An NDSAN is a special digraph whose node set is partitioned into four subsets of nodes: a subset

Sa = {ai | 1 ≤ i ≤ na} of activity nodes; a subset Sb = {bi | 1 ≤ i ≤ nb} of junction nodes; a subset

Sd = {di | 1 ≤ i ≤ nd} of decision nodes; and a subset Sℓ = {ℓi | 1 ≤ i ≤ nℓ} of loop nodes.

An activity node ai represents a single activity (or task) to be executed in the network. The execution

of ai starts only after the execution of all of its in-neighbors has ended. When the execution of ai

ends, all of its out-neighbors start executing simultaneously. Each activity node ai has a duration

(execution time) Ti, which is a continuous, nonnegative random variable. We assume that the

execution time of an activity node does not depend on the execution time of any other activity

node. That is, the Ti’s are independent random variables. An activity node is represented by a

circle. See Figure 1(a).

A junction node bi is used for a syntactic purpose. It may have several in-neighbors, but it has

a single out-neighbor v. When the execution of any in-neighbor of bi ends, the execution of v is

started immediately. In other words, bi acts simply as a “connecting point” of incoming arcs. A

junction node is represented by a square. See Figure 1(b).

A decision node di is used to select one particular branch of the execution flow, as described in

what follows. By construction, all of di’s neighbors are activity nodes. It has a single in-neighbor

ah and αi ≥ 2 out-neighbors aj1 , . . . , ajαi
. The execution of di is assumed to be instantaneous, and

consists of selecting exactly one of its out-neighbors, say ajk , as the next node to execute. The

activity node ajk is selected by di with probability pik, k = 1, . . . , αi, such that
∑αi

k=1 p
i
k = 1. A

decision node is represented by a lozenge. See Figure 1(c).

A loop node ℓi represents the usual iteration mechanism. By construction, ℓi has a single in-neighbor

(a junction node bh) and two out-neighbors (activity nodes ar and aj). After the execution of bh, a

Boolean condition Ei associated with ℓi is instantaneously tested: if Ei is false then ar is executed

next, otherwise aj is. An array of real values associated with ℓi gives the sequence qi1, . . . , q
i
βi

of

probabilities corresponding to βi consecutive passages through ℓi, in such a way that the probability

that Ei is false at the kth passage through ℓi is qik. That is, the probability of exiting the loop

at this point is 1 − qik. We assume that qiβi
= 0 in order to guarantee the termination of the loop

in at most βi consecutive passages through ℓi. A loop node is represented by a filled lozenge. See

Figure 1(d).

4

...
...

...

...

(a) (b)

(c) (d)

...

Figure 1: Types of node: (a) activity node; (b) junction node; (c) decision node; (d) loop node.

We are now ready to give the formal definition of NDSANs in terms of recursive construction steps.

The base NDSAN is a digraph consisting of a single activity node. In a general step, NDSANs

containing a single source node and a single sink node are combined to yield a larger NDSAN.

The recursive construction steps are based on the following Substitution Rule:

Substitution Rule: Let D0 be a digraph and {v1, v2, . . . , vη} a subset of its node set. Let

D1,D2, . . . Dη be NDSANs, each containing a single source node and a single sink node.

Construct an NDSAN D by replacing vi by Di, 1 ≤ i ≤ η, in such a way that every in-

put (output) arc of vi in D0 is an input (output) arc of source(Di) (sink(Di)) in D. Let

Sub(D0,D1, . . . ,Dη) = D.

Definition 1 An NDSAN is defined as follows:

1. A digraph D consisting of a single activity node is an NDSAN, called the trivial NDSAN.

2. Let D1,D2, . . . Dη be NDSANs.

2.1 If D0 is an acyclic digraph of node set {v1, . . . , vη} containing a single source node and

a single sink node (Figure 2(a)), then Sub(D0,D1, . . . ,Dη) is an NDSAN, called an

acyclic NDSAN (Figure 2(b)).

2.2 If D0 is the digraph in Figure 3(a), then Sub(D0,D1, . . . ,Dη) is an NDSAN, called a

decision NDSAN (Figure 3(b)).

5

D2 D4 D7

D5

D6

D8D3

(b)

D9

(a)

v1

D1

v5

v2

v6

v7

v8

v9

v4

v3

Figure 2: Construction of an acyclic NDSAN.

2.3 If D0 is the digraph in Figure 4(a), then Sub(D0,D1,D2,D3) is an NDSAN, called a

loop NDSAN (Figure 4(b)).

It is easy to see that the network Sub(D0,D1, . . . ,Dη) resulting from 2.1, 2.2, or 2.3 in the above

definition contains a single source node and a single sink node, both activity nodes.

Scope of the definition of NDSANs. Although other definitions of NDSANs may be possible,

we believe that Definition 1 not only determines a wide class of activity networks, but also allows

the realization of any structured project, since it provides basic constructions that are generally

thought to suffice for the specification of how concurrent tasks are to interrelate. In other words:

– an acyclic NDSAN embodies the notion of multiple concurrent execution threads, which may

be started as a single thread branches out into several independent ones, and terminated as

they coalesce into a single thread for further execution.

– a decision NDSAN allows for nondeterministic switches, or decision points, to be incorporated

into the course of a thread’s execution.

– a loop NDSAN allows any of the above to be iterated, possibly for a probabilistically selected

number of times.

6

...

(b)

D

D

D

2

3

η−1

D1 Dη

...

(a)

v1

v2

v3

vη−1

vη

Figure 3: Construction of a decision NDSAN.

(b)

D2

D1 D3

(a)

v1 v3

v2

Figure 4: Construction of a loop NDSAN.

7

3 Execution time of an NDSAN

In this section we use the following terminology and notation. (See, for instance, [6, 7].) If X is

a random variable, then FX denotes the probability distribution function (PDF) of X, and fX the

probability density function (pdf) of X. Recall that, for any t in the domain of X, FX(t) = Pr(X ≤
t). If X is a continuous variable, we have

FX(t) =

∫ t

−∞
fX(x) dx. (1)

Hereafter, the random variable standing for the execution time of NDSAN D will be denoted by

T [D]. This random variable can be determined as follows.

Case 1: D is a trivial NDSAN

Assuming that D consists of the activity node ai, we have T [D] = Ti.

Case 2: D is not a trivial NDSAN

By 2.1, 2.2, and 2.3 in Definition 1, T [D] can be recursively determined in terms of T [D1], T [D2], . . . ,

T [Dη].

Case 2.1: D is an acyclic NDSAN

Consider item 2.1 in Definition 1. Let P be the collection of all directed paths from source(D0)

to sink(D0). Let P ∈ P, and write P = vi1vi2 . . . vi|P |
, where |P | denotes the number of nodes of

P . Let Di1 ,Di2 , . . . ,Di|P |
be the NDSANs that substitute for vi1 , vi2 , . . . , vi|P |

. If SP is the time

required for the serial execution of Di1 ,Di2 , . . . ,Di|P |
, then

SP =

|P |
∑

k=1

T [Dik]. (2)

(Recall that T [Dik] is the random variable standing for the execution time of Dik , 1 ≤ k ≤ |P |.)

Since the T [Dik]’s are independent random variables, the pdf fSP
of SP is given by the convolution

of the pdfs fT [Di1
], fT [Di2

], . . . , fT [Di|P |
], that is,

fSP
(t) = (fT [Di1

] ∗ fT [Di2
] ∗ · · · ∗ fT [Di|P |

])(t). (3)

8

Define f1 = fT [Di1
] and fk = fk−1 ∗ fT [Dik

], 2 ≤ k ≤ |P |. Then we have, for any t,

fk(t) =

∫ ∞

0
fk−1(t− x)fT [Dik

](x) dx and fSP
(t) = f|P |(t). (4)

Following Equation (1), the PDF of SP is then given by

FSP
(t) =

∫ t

0
fSP

(x) dx. (5)

Having described the variables SP for P ∈ P, the random variable T [D] is given by their maximum:

T [D] = max
P∈P

SP . (6)

We remark that the variables SP are not independent, because two distinct paths in P may have

nodes in common. Hence the PDF of T [D] is given by

FT [D](t) = Pr(T [D] ≤ t) = Pr(SP ≤ t for all P ∈ P), (7)

but no further simplification is in general possible. To determine the pdf of T [D], simply apply

Equation (1):

fT [D](t) = (FT [D])
′(t). (8)

Case 2.2: D is a decision NDSAN

In Figure 3(b), assume that the decision node is di. Then αi = η − 2 and each node source(Dk) is

selected by di with probability pik, k = 2, 3, . . . , η− 1. Let Xi be a random variable associated with

di in such a way that

Xi =



























T [D2] with probability pi2 ;

T [D3] with probability pi3 ;
...

T [Dη−1] with probability piη−1 .

(9)

Then, clearly,

T [D] = T [D1] +Xi + T [Dη]. (10)

In order to proceed, note that the events Xi = T [Dk], 2 ≤ k ≤ η − 1, are mutually disjoint, since

they correspond to disjoint subdigraphs of D. We then have

fXi
(t) = pi2 fT [D2](t) + pi3 fT [D3](t) + · · · + piη−1 fT [Dη−1](t) (11)

9

and

FXi
(t) = pi2 FT [D2](t) + pi3 FT [D3](t) + · · ·+ piη−1 FT [Dη−1](t). (12)

Thus,

fT [D](t) = (fT [D1] ∗ fXi
∗ fT [Dη])(t) (13)

and, by Equation (1),

FT [D](t) =

∫ t

0
fT [D](x) dx. (14)

Case 2.3: D is a loop NDSAN

In Figure 4(b), assume that the loop node is ℓi. For simplicity, assume also that βi = β. Recall

that, at the kth passage through ℓi, the execution flow returns to source(D2) with probability

qik, k = 1, . . . , β, where qi
β
= 0 and β is the maximum number of consecutive passages allowed

through ℓi.

Let Zk be the random variable standing for the total execution time of k serial independent execu-

tions of D2. Clearly, Zk is the sum of k independent random variables, each one having distribution

identical to that of T [D2]. Therefore, fZk
and FZk

can once again be determined respectively by

convolution and subsequent integration.

Consider now a random variable Yi associated with di and such that

Yi =











































0 with probability 1− qi1 ;

Z1 with probability qi1(1− qi2) ;

Z2 with probability qi1q
i
2(1− qi3) ;

...
Zβ−1 with probability qi1q

i
2 · · · qiβ−1

,

(15)

where the events Yi = 0, Yi = Z1, . . . , Yi = Zβ−1 are all mutually disjoint. Then

T [D] = T [D1] + Yi + T [D3], (16)

and the functions fT [D] and FT [D] can be obtained as in Case 2.2, since the definition of Yi in

Equation (15) has the same structure as that of Xi in Equation (9).

10

4 Obtaining an approximate distribution of the execution time

Given an NDSAN D, obtaining the distribution and density functions of the target random variable

T [D] numerically may be an extremely costly computational task, even in simple cases. We refer

the reader once again to the work by Leemis et al. [9], where even small networks are seen to need

an elaborate mathematical analysis.

Our efforts are then directed toward seeking an approximate distribution of T [D] within some

required confidence level. We base our approach on collecting a random sample formed by a suitable

number N of independent observations of T [D]. Let us denote such an approximate distribution

by F
N

T [D]. Once F
N

T [D] is obtained, a frequency histogram and an approximate density f
N

T [D] can be

easily determined, as we discuss later.

First, we present a simulation algorithm that, on input D, outputs a single observation t of the

sample space of T [D]. Next, we deal with the question of how many times the simulation algorithm

must be repeated in order to obtain F
N

T [D] as required.

4.1 Simulation algorithm

The simulation algorithm is based on recursive references to subdigraphs, whose results are com-

bined to obtain a single observation t of T [D]. The basis of the recursion occurs when D is a trivial

NDSAN.

For acyclic NDSANs (refer to item 2.1 in Definition 1 and to Figure 2(b)), a single observation of

T [D] is obtained as follows: (i) Observations t1, t2, . . . , tη of T [D1], T [D2], . . . , T [Dη] are obtained

recursively; (ii) Denote by CD(t1, t2, . . . , tη) the completion time of D when T [Di] = ti, 1 ≤ i ≤ η;

the determination of CD(t1, t2, . . . , tη) can be done by assigning weight ti to vertex vi, 1 ≤ i ≤ η,

and then calculating the critical path of the resulting weighted digraph.

The description of the simulation algorithm is as follows.

11

Sample(D)

1 if D is a trivial NDSAN then

2 let ai be the single activity node of D

3 return a single observation of Ti

4 else if D is an acyclic NDSAN then

5 let D1,D2, . . . Dη be NDSANs as in Figure 2(b)

6 return CD(Sample(D1), Sample(D2), . . . , Sample(Dη))

7 else if D is a decision NDSAN then

8 let D1,D2, . . . Dη be NDSANs as in Figure 3(b)

9 let di be the decision node of D

10 select k from {2, 3, . . . , η − 1}
11 return Sample(D1) + Sample(Dk) + Sample(Dη)

12 else if D is a loop NDSAN then

13 let D1,D2,D3 be NDSANs as in Figure 4(b)

14 let ℓi be the loop node of D

15 select k from {0, 1, . . . , βi − 1}
16 tloop := 0

17 repeat k times

18 tloop := tloop + Sample(D2)

19 return Sample(D1) + tloop + Sample(D3)

We assume that obtaining the single observation in Line 3 can be done in constant time. We also

assume that the selections in Lines 10 and 15 take constant time. Note that they are related to

observations of the random variables Xi and Yi, respectively (see Equations (9) and (15)). Then

they must be made according to the probabilities expressed there. Calculating CD in Line 6 takes

O(m) time. (The critical path can be determined by a depth-first search starting at source(D).)

Overall, the time complexity of the algorithm is determined by the maximum number of nested

loop NDSANs in D. Suppose that D1,D2, . . . ,Dγ is the longest sequence of subdigraphs of D such

that:

– Dk is a loop NDSAN, 1 ≤ k ≤ γ;

– Dk+1 is a proper subdigraph of Dk, 1 ≤ k ≤ γ − 1.

12

Let β̄ = max{βi | 1 ≤ i ≤ nℓ}. Then in each Dk at most β̄−1 consecutive iterations are performed.

Hence, the worst-case time complexity of the algorithm is O(β̄ γm). Although γ = O(n) and β̄

can be arbitrarily large, for most typical NDSANs the values of γ and β̄ are bounded by small

constants. Thus the algorithm has, in practice, an O(m) time complexity.

4.2 Repeated executions of the simulation algorithm

Since FT [D] is a continuous variable, we may resort to the same statistic on F
N

T [D] as the Kolmogorov-

Smirnov (KS) test. We refer the reader to [7] (Section 13.5) and to [8] (Section 3.3.1) for more

details on what follows.

Let t1, t2, . . . , tN be a random sample of T [D], obtained by N independent executions of the simu-

lation algorithm. Define F
N

T [D] as

F
N

T [D](x) =
| {ti | ti ≤ x} |

N
. (17)

The KS test is based on the difference between FT [D](x) and F
N

T [D](x). To measure this difference,

we form the statistic

K
N
= sup

x≥0
| FN

T [D](x)− FT [D](x) | (18)

(hereafter referred to as the KS statistic), which may be visualized as the maximum distance (error),

along the ordinate axis, between the plots of FT [D](x) and F
N

T [D](x) over the range of all possible x

values. It can be shown (see [7], p. 346) that the distribution of K
N
does not depend on FT [D]. As

a consequence, K
N

can be used as a nonparametric random variable for constructing a confidence

band for FT [D].

Let Kε
N

denote a value satisfying the relation

Pr(K
N
≤ Kε

N
) = 1− ε (19)

for some 0 < ε < 1. Following Equations (18) and (19), we have:

1− ε = Pr(sup
x≥0

| FN

T [D](x)− FT [D](x) | ≤ Kε
N
)

= Pr(| FN

T [D](x)− FT [D](x) | ≤ Kε
N

for all x ≥ 0)

= Pr(F
N

T [D](x)−Kε
N
≤ FT [D](x) ≤ F

N

T [D](x) +Kε
N

for all x ≥ 0). (20)

The last equality in Equation (20) shows that the functions F
N

T [D](x)−Kε
N
and F

N

T [D](x)+Kε
N
yield

a confidence band, with confidence level 1− ε, for the unknown distribution function FT [D](x).

13

Table 1: Some critical values Kε
N

for KN .

N ε = 0.20 ε = 0.10 ε = 0.05 ε = 0.01

10 0.32 0.37 0.41 0.49
20 0.23 0.26 0.29 0.36
30 0.19 0.22 0.24 0.29
40 0.17 0.19 0.21 0.25
50 0.15 0.17 0.19 0.23

large 1.07/
√
N 1.22/

√
N 1.36/

√
N 1.63/

√
N

Some of the values Kε
N
of the distribution of K

N
are given in Table 1 (see [7], p. 411). From Table 1

we have, for example, K0.20
50 = 0.15. Thus

Pr(K50 ≤ K0.20
50) = Pr(K50 ≤ 0.15) = 1− 0.20 = 0.80. (21)

That is, by repeating the simulation algorithm N = 50 times, the probability that the error K
N

is

at most 0.15 is 0.80. More accurate results can be obtained by using the last row of Table 1. For

example, by requiring a maximum error 0.02 with confidence 95%, we have ε = 0.05 and

Pr(K
N
≤ K0.05

N
) = Pr(K

N
≤ 0.02) = 0.95. (22)

For large N , Table 1 gives us K0.05
N

= 1.36/
√
N . From 1.36/

√
N = 0.02 we conclude that N = 4624

repeated executions of the simulation algorithm are needed in this case.

We can summarize the application of the KS statistic as follows.

1. Stipulate the maximum error e and the confidence level c.

2. Set ε = 1− c and determine from Table 1 the value of N for which Kε
N
≈ e.

3. Run the simulation algorithm N times and obtain a random sample t1, t2, . . . , tN .

4. Let F
N

T [D] be as in Equation (17).

5. If needed, an approximate density f
N

T [D] can be determined as follows, assuming t1 ≤ t2 ≤
· · · ≤ tN . For some step value δ > 0, let

f
N

T [D](t1+kδ
) =

F
N

T [D](t1+kδ
)− F

N

T [D](t1+(k−1)δ
)

t
1+kδ

− t
1+(k−1)δ

, k = 1, 2, . . . , ⌊N/δ⌋ − 1. (23)

For instance, for δ = 25 we compute the values

f
N

T [D](t26) =
F

N

T [D](t26)− F
N

T [D](t1)

t26 − t1
, f

N

T [D](t51) =
F

N

T [D](t51)− F
N

T [D](t26)

t51 − t26
,

14

and so on. (We remark that better, nonparametric methods are available, as explained in

[14], for example.)

5 Computational experiments

5.1 A typical development process

Figure 5 shows a simple, yet typical, development process represented by a NDSAN D with Sa =

{a1, . . . , a27}, Sb = {b1, . . . , b8}, Sd = {d1}, and Sℓ = {ℓ1, . . . , ℓ7}.

Table 2 describes the activity nodes, whose durations are expressed in days. Here, all Ti’s follow

triangular densities, which are suitable for describing single activities of a business or industrial

process [5]. The pdf fX of a triangular variable X with parameters x1 < x2 < x3 is given by:

fX(x) =











































0, x < x1;

y0
x2−x1

(x− x1), x1 ≤ x < x2;

y0
x3−x2

(x3 − x), x2 ≤ x < x3;

0, x ≥ x3,

(24)

where y0 = 2
x3−x1

. Table 3 shows the probabilities associated with the decision node d1, Table 4

those associated with the loop nodes ℓ1 through ℓ7.

If we require a maximum error of 2% with confidence 95%, the KS statistic yields K0.05
N

= 1.36/
√
N

(see Table 1). From 1.36/
√
N = 0.02, we conclude that N = 4624 repeated executions of Sample(D)

are required. Each of these executions can be represented by a tree of recursive calls, as follows.

Let Di be the trivial NDSAN consisting of the activity node ai, 1 ≤ i ≤ 27, and, for i < j,

let Di,j be the NDSAN defined as the maximal connected induced subdigraph D′ of D satisfying

source(D′) = ai and sink(D′) = aj. Figure 6 depicts the tree of recursive calls. For example, D5,27

is a decision NDSAN, and in order to obtain a single observation of T [D5,27] we first recursively

obtain observations of T [D5], T [D6], T [D7,26], and T [D27].

The frequency histogram of the resulting sample of T [D] is shown in Figure 7 for 1-wide bins. Each

bin is an interval of the form (a, b] and abscissae in the figure give the values of b. The histogram

suggests that fT [D] follows a bimodal pattern. Figure 7 also shows the fitting curve

f1(x) = 2115 lognorm(2.379610, 0.125138, x) + 2509 lognorm(3.853650, 0.072067, x), (25)

15

a1 a2 a3 a4 a5

a6a7a8a9

a10

a11

a14

a17 a18

a12

a15

a13

a16

a19

a20

a22a23

a26a25a24 a27

a21

l1

d1l2

l3

l4

l5

l6

b7

b1

b2

b3

b4

b5

b6

l7 b8

Figure 5: An NDSAN representing a development process.

16

Table 2: Activity nodes of the NDSAN of Figure 5.
Node Description Density parameters

a1 requirement analysis 2, 4, 5
a2 contract negotiation 1, 2.5, 3.5
a3 renegotiation 1, 1.5, 2
a4 contract conclusion 0.5, 1, 1.5
a5 contract presentation 0.5, 1, 1.5
a6 project abandonment 0.5, 1, 1.5
a7 system analysis 4, 8, 12
a8 system analysis refinement 0.5, 2, 3
a9 system analysis conclusion 0.5, 1, 1.5
a10 division into modules 0.5, 1, 1.5
a11 1st module implementation 4, 6, 12
a12 1st module refinement 1, 2, 3
a13 1st module conclusion 0.5, 1, 1.5
a14 2nd module implementation 4, 6, 12
a15 2nd module refinement 1, 2, 3
a16 2nd module conclusion 0.5, 1, 1.5
a17 3rd module implementation 4, 6, 12
a18 3rd module refinement 1, 2, 3
a19 3rd module conclusion 0.5, 1, 1.5
a20 module integration 0.5, 1.5, 3
a21 integration test 1, 3.5, 4
a22 error fixing 0.5, 1, 1.5
a23 product deployment 0.5, 1, 1.5
a24 client test 2, 4, 6
a25 error fixing 0.5, 1, 1.5
a26 production dispatch 0.5, 1, 1.5
a27 project documentation 0.5, 1, 1.5

Table 3: Probabilities associated with the decision node d1 in Figure 5.
Node Description Outcome Next activity Probability

d1 contract accepted? yes a7 55%
no a6 45%

17

Table 4: Probabilities associated with the loop nodes in Figure 5.
Node Description Outcome Next activity 1st iter. 2nd iter. 3rd iter.

ℓ1 negotiation finished? yes a4 50% 80% 100%
no a3 50% 20% 0%

ℓ2 use cases approved? yes a9 10% 50% 100%
no a8 90% 50% 0%

ℓ3 1st module passed? yes a13 20% 50% 100%
no a12 80% 50% 0%

ℓ4 2nd module passed? yes a16 20% 50% 100%
no a15 80% 50% 0%

ℓ5 3rd module passed? yes a19 20% 50% 100%
no a18 80% 50% 0%

ℓ6 integration passed? yes a23 60% 80% 100%
no a22 40% 20% 0%

ℓ7 client test passed? yes a26 20% 50% 100%
no a25 80% 50% 0%

D

1 2,4 5,27

2 3 4

5 6 7,26 27

7,9 10,20 21,23 24,26

7 8 9 24 25 2621 22 23

10 2011,13 14,16 17,19

11 12 13 14 15 16 17 18 19

D D D

D D D

D D D D

D D D D

D D D

D D

D D D D D D

D D D

D D D D DD D DD

Figure 6: Recursive calls invoked by Sample(D); D is the NDSAN of Figure 5.

18

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60

Figure 7: Fitting curve drawn on the frequency histogram of T [D] for N = 4624 and 1-wide bins;
D is the NDSAN of Figure 5.

where lognorm(µ, σ, x) is the density function of the log normal distribution [15] with parameters

µ (the scale parameter) and σ (the shape parameter):

lognorm(µ, σ, x) =
1

σ
√
2πx

e−(ln x−µ)2/2σ2
. (26)

The function f1(x) is therefore proportional to the sum of two densities, the former yielding positive

values over the range (7, 16], the latter over (37, 60].

The approximate F
N

T [D] and f
N

T [D] are shown in Figures 8 and 9 respectively, the latter with δ = 25

in Equation (23).

5.2 A paper reviewing process

Figure 10 shows an NDSAN D representing the typical peer-review process of scientific publishing.

Table 5 describes the activity nodes, whose durations are once again expressed in days. The Ti’s

follow truncated normal distributions. In the third column of Table 5, each line shows a pair µi, σ
2
i ,

standing for the mean and the variance of Ti, respectively. Each Ti is restricted to lie in the range

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Figure 8: Approximate distribution F
N

T [D] for N = 4624; D is the NDSAN of Figure 5.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60

Figure 9: Approximate density f
N

T [D] for N = 4624 and δ = 25; D is the NDSAN of Figure 5.

20

[µi − 3σi, µi + 3σi]. Table 6 shows the probabilities associated with the decision node d1, Table 7

the probabilities associated with the loop nodes ℓ1 and ℓ2.

For the same 2% error and 95% confidence as above, we give the results from N = 4624 repeated

executions of Sample(D) in Figures 11 through 13. These figures show, respectively, the fitting

curve f2(x) = 4624 lognorm(4.965323, 0.421285, x) drawn on the frequency histogram of T [D] for

1-wide bins, the approximate distribution of T [D], and the approximate density of T [D] (with

δ = 25 in Equation (23)).

6 Ongoing work

The introduction of the constraint that each activity node requires certain amounts of finitely avail-

able resources to execute gives raise to the so-called activity networks with constrained resources.

The problem associated with such networks is known as RCPSP (Resource-Constrained Project

Scheduling Problem) [2]. The RCPSP has many variations, but even the deterministic RCPSP

with fixed activity durations is NP-hard [1].

Resource-Constrained NDSANs (RCNDSANs) combine stochastic activity durations, nondeter-

minism, and constrained resources. We are currently targeting the simulation algorithm of RCND-

SANs, based on iterating the combination of two phases as many times as necessary for accuracy.

The first phase is responsible for obtaining a non-stochastic, deterministic instance of the input

RCNDSAN, by selecting one of its possible execution paths. (Here, the term “path” stands for

a plausible non-stochastic, deterministic scenario: a network represented by a directed acyclic

graph with fixed topology and fixed activity durations.) The second phase consists of employ-

ing a heuristic procedure for the solution of the deterministic RCPSP. The repeated execution of

“path selection” combined with “scheduling heuristics” will generate close approximations to the

probability distribution of the variables under analysis.

We remark that our simulation algorithms turn out to be low-cost tools for the identification of the

factors that most strongly influence completion time. After a simulation round, if needed, changes

in the structure of the NDSAN/RCNDSAN under analysis can be proposed in order to improve

its performance. Several simulation rounds may be rapidly performed until the desired efficiency is

actually achieved.

21

a1

a2

a3 a4

a5

a12

a6

b1

l1

l2

a14

b3

a19

a17

a18

a15

a16

a21

a13

d1

a11

a9 a10 b2

a7

a8

a20

a22

a23

Figure 10: An NDSAN representing a paper reviewing process.

22

Table 5: Activity nodes of the NDSAN in Figure 10.
Node Description Mean, variance

a1 authors submit paper 1, 0.1
a2 editor sends paper to referees 1 and 2 1, 0.1
a3 referee 1 processes the paper 90, 45
a4 referee 2 processes the paper 90, 45
a5 editor processes reports 2, 0.2
a6 editor sends reports to authors 1, 0.1
a7 authors perform modifications 14, 7
a8 editor sends revised version to referees 1 and 2 1, 0.1
a9 referee 1 processes revised version 14, 7
a10 referee 2 processes revised version 14, 7
a11 editor processes new reports 2, 0.2
a12 editor checks agreement of reports 1, 0.1
a13 editor makes final decision based on two reports 2, 0.2
a14 editor sends paper to referee 3 1, 0.1
a15 referee 3 processes the paper 90, 45
a16 editor processes report of referee 3 2, 0.2
a17 editor sends report of referee 3 to authors 1, 0.1
a18 authors perform modifications 14, 7
a19 editor sends revised version to referee 3 1, 0.1
a20 referee 3 processes revised version 14, 7
a21 editor processes new report of referee 3 2, 0.2
a22 editor makes final decision based on three reports 2, 0.2
a23 editor sends final result to authors 1, 0.1

Table 6: Probabilities associated with the decision node d1 in Figure 10.
Node Description Outcome Next activity Probability

d1 referees agree? yes a13 75%
no a14 25%

Table 7: Probabilities associated with the loop nodes in Figure 10.
Node Description Outcome Next activity 1st iter. 2nd iter. 3rd iter.

ℓ1 no need of modifications? yes a12 81% 98% 100%
no a6 19% 2% 0%

ℓ2 no need of modifications? yes a22 90% 99% 100%
no a17 10% 1% 0%

23

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450

Figure 11: Fitting curve drawn on the frequency histogram of T [D] for N = 4624 and 1-wide bins;
D is the NDSAN of Figure 10.

References

[1] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to resource con-

straints: classification and complexity. Discrete Applied Mathematics 5 (1983) 11–24.

[2] E. Demeulemeester, W. Herroelen, and B. De Reyck. A classification scheme for project schedul-

ing. In J. Weglarz (ed.), Project Scheduling: Recent Models, Algorithms and Applications,

Kluwer, Dordrecht, 1999, pp. 1–26.

[3] E. Demeulemeester, W. Herroelen, and M. Vanhoucke. Discrete time/cost trade-offs in project

scheduling with time-switch constraints. Journal of the Operational Research Society 53,7 (2002)

741–751.

[4] S. E. Elmaghraby. Activity Networks, Wiley, New York, 1977.

[5] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions, 3rd ed., Wiley, New York,

2000, pp. 187–188.

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

Figure 12: Approximate distribution F
N

T [D] for N = 4624; D is the NDSAN of Figure 10.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 50 100 150 200 250 300 350 400 450

Figure 13: Approximate density f
N

T [D] for N = 4624 and δ = 25; D is the NDSAN of Figure 10.

25

[6] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. I, 2nd ed., Wiley,

New York, 1991.

[7] P. G. Hoel. Introduction to Mathematical Statistics, 3rd ed., Wiley, New York, 1965.

[8] D. E. Knuth. The Art of Computer Programming, Vol. II, 3rd ed., Addison-Wesley, Reading,

Massachusetts, 1997.

[9] L. M. Leemis, M. J. Duggan, J. H. Drew, J. A. Mallozzi, and K. W. Connel. Algorithms

to calculate the distribution of the longest path length of a stochastic activity network with

continuous activity durations. Networks 48 (2006) 143–165.

[10] J. J. Moder, C. R. Phillips, and E. W. Davis. Project Management with CPM, PERT and

Precedence Diagramming. Van Nostrand Reinhold Company, New York, 3rd ed., 1983.

[11] L. J. Moore and E. R. Clayton. GERT Modeling and Simulation: Fundamentals and Applica-

tions. Petrocelli/Charter, New York, 1976.

[12] R. A. V. Olaguibel and J. M. T. Goerlich. Heuristic algorithms for resource-constrained project

scheduling. In R. Slowinski and J. Werglarz (eds.), Advances in Project Scheduling, Elsevier,

Amsterdam, 1989, pp. 113–134.

[13] D. R. Shier. Network Reliability and Algebraic Structures. Oxford University Press, New York,

1991.

[14] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall,

London, 1986.

[15] E. W. Weisstein. Log normal distribution. Wolfram MathWorld,

http://mathworld.wolfram.com/LogNormalDistribution.html.

26

http://mathworld.wolfram.com/LogNormalDistribution.html

	Introduction
	Formal definition of NDSANs
	Execution time of an NDSAN
	Obtaining an approximate distribution of the execution time
	Simulation algorithm
	Repeated executions of the simulation algorithm

	Computational experiments
	A typical development process
	A paper reviewing process

	Ongoing work

