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Abstract

We consider the problem of scheduling multiple projects subject to joint resource constraints.

All approaches proposed in the literature so far are based on the assumption that resources can

be transferred from one project to the other without any expense in time or cost. In many real-

world settings this assumption is not realistic. For example, cranes have to be transported to an-

other location and reinstalled there. In order to consider this additional aspect, we generalise the

multi-project scheduling problem by additionally including transfer times which represent

transportation, installation, adjustment, (re-) learning and other setup activities necessary when

a resource is removed from one project and reassigned to another (or from one job to another

within the same project). 

In this paper, we define the modified multi-project scheduling problem with transfer times

(called RCMPSPTT), formulate it as an integer linear programme, propose heuristic solution

procedures and present results of comprehensive computational experiments.

Keywords: 

project scheduling – combinatorial optimisation – mathematical model – transfer times
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1 Introduction

1.1 Multi-project scheduling

Project scheduling has been playing a vital role in scheduling literature for some decades now.

The common resource constrained project scheduling problem (RCPSP) has been studied ex-

tensively. However, single-project environments are rarely encountered in business today. Usu-

ally, companies run more than one project simultaneously. According to Payne (1995) up to

90 % of all projects (measured by their value) worldwide are executed in a multi-project envi-

ronment. This finding goes along with Lova and Tormos (2001), who questioned 202 Spanish

companies and found that 84 % of them run multiple projects in parallel. Nonetheless, single-

project management concepts are by no means irrelevant as they provide a solid basis for multi-

project concepts. For excellent introductions to resource constrained single-project scheduling

see Kolisch (1995), Klein (2000), Demeulemeester and Herroelen (2002) and Neumann et al.

(2003). For surveys of solution approaches see e.g. Brucker et al. (1999), Kolisch and Padman

(2001) as well as Kolisch and Hartmann (1999, 2006).

The resource constrained multi-project scheduling problem (RCMPSP) as an extension of the

RCPSP is considered as the simultaneous scheduling of two or more projects which demand the

same scarce resources. Precedence constraints are defined only within projects. Projects are

linked by the usage of the same restricted resources of the company. An objective function on

company level often has to be considered although objectives of single projects may also be re-

garded (Kurtulus and Davis 1982, pp.161). The company objective as e.g. maximising profit is

aimed at by managing the whole project portfolio or multi-project of the company by a resource

manager, whereas project targets are set by single project managers. The latter aim to minimise

project delay, project cost, etc.

Multi-project scheduling as considered here has been a research topic since the late 1960s. How-

ever, it has been studied not nearly as comprehensively as single-project scheduling. One may

distinguish two main research fields in multi-project scheduling - the static and the dynamic

project environment (Dumond and Mabert 1988, p. 102). The static environment view assumes

a closed project portfolio. All projects of the company are summarised to a super-project (port-

folio) and scheduled once. The multi-project is unequivocal and no rescheduling necessary. Af-

ter the last project of a multi-project has been completed, a new multi-project may start. On the

contrary, the dynamic environment view considers an open project portfolio. While scheduled

projects are executed, new projects arrive to the system and have to be integrated because the

portfolio is changing over time. Rescheduling of the system becomes necessary frequently. 

Research mainly focuses on the static environment. Scheduling in such a static environment has

been researched amongst others by Fendley (1968), who was the first discussing the modelling

of a complete multi-project scheduling system and proposing methods for assigning due dates

to incoming projects and priority rules for sequencing individual activities. Pritsker et al. (1969)
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present a zero-one integer programme for the problem considering various possible constraints,

e.g. job splitting or resource substitutability and objectives like, e.g., total throughput time,

makespan or total lateness. Kurtulus and Davis (1982) introduce the single-project approach,

whereas Kurtulus and Narula (1985) add the multi-project approach for the multi-project sched-

uling problem (see below). In both papers, special priority rule based solution procedures are

developed and tested. Lawrence and Morton (1985) test resource price based priority rules to

minimise weighted tardiness costs within a multi-project. Lova and Tormos (2001) analyse ex-

isting priority rules for the single- and multi-project approach. Moreover, they present new two-

phase rules for the multi-project approach. Vercellis (1994) suggests a decomposition tech-

nique. However, these are only some examples for research on static multi-project scheduling,

further references are, amongst others, Patterson (1973), Mohanty and Siddiq (1989), Wiley et

al. (1998), and Lova et al. (2000).

Dynamic environments are researched by Dumond and Mabert (1988). Their study is based on

priority rules for static environments. Due date assignment rules, which are tested by simula-

tion, are added. Dumond (1992) as well as Dumond and Dumond (1993) extend the former

study by introducing different resource availability levels. Bock and Patterson (1990) allow re-

source pre-emption in the multi-project. Yang and Sum (1993, 1997) give attention to dynamic

project environments by establishing a dual-level management structure for assigning resources

to projects on a higher level and operative project scheduling on a lower level. Ash and Smith-

Daniels (1999) put emphasis on the learning, forgetting and relearning cycle in dynamic multi-

project environments while Anavi-Isakow and Golany (2003) apply queuing theory and adapt

the production management concept of CONWIP (constant work in progress) to the multi-

project environment.   

Another approach to multi-project scheduling to be mentioned is hierarchical planning. This as-

pect is not to be discussed here because it leads to a completely different way of scheduling. We

refer to Hans et al. (2003) and De Boer (1998) for further reading.

The following of this paper extends the concept of static project environments. That is why a

short summary of this concept is given in the following. As already mentioned, in literature a

single- and a multi-project approach to static multi-project scheduling are classified. On the one

hand, the single-project approach merges all projects of the multi-project to an artificial super-

project with a dummy start and end activity for time and resource scheduling (Kurtulus and

Davis 1982, p. 162). Hence, in this case multi-project scheduling is identical to single-project

scheduling of large projects. In comparison to the RCPSP, the multi-project duration, which is

given by the realised finishing time of the last activity of the latest project, is minimised. On the

other hand, the multi-project approach keeps the projects separate for (resource unconstrained)

time scheduling. Consequently, critical path analysis identifies a critical path for each project.

Afterwards, the projects are merged for resource scheduling. The objective of this approach is

to minimise the mean project delay, which is often measured by the deviation from the critical

path bound for each project if no due dates are given.
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The only scheduling procedures applied to both approaches so far are heuristics using priority

rules. According to Lova and Tormos (2001), a multi-project consists of about 120 to 480 ac-

tivities. Exact procedures cannot handle problems of this size so far since already the basic

RCPSP is NP-hard. Hence, heuristics are the only realistic possibility for solving the RCMPSP.

Even though the static project environment is emphasised in literature, it still fails to pay atten-

tion to some important aspects of multi-projects. One of the aspects is resource transfers within

a multi-project. Virtually all papers neglect resource transfers between projects or assume them

having zero duration. Resources may be shifted between projects unlimitedly, without any re-

strictions and any control. Time delays and costs caused by these transfers are not taken into

account. In reality, transfers may take time 

• when a resource is physically moved from one location to another, e.g. heavy machines,

specialists that fly around the world, and/or

• when a resource has to be adjusted in respect to content, e.g. setup times for machines,

human resources that have to get acquainted with new projects. Especially for human

resources the learning, forgetting and relearning life-cycle plays a vital role in transfer time

considerations.

This problem is being tackled in our paper to resolve this criticism of the state-of-the-art sched-

uling approaches. Resource transfers are going to be considered as an additional aspect to the

RCMPSP in a static environment.

1.2 Setup times in project scheduling

First and foremost, a review of papers that already considered transfer or setup times in the sin-

gle-project case and first attempts to consider resource transfers among projects in a multi-

project case is presented.

Setup times which are a variant of transfer times have already been investigated in production

scheduling and lot sizing extensively. In single-project scheduling some research on the field of

setup times has been done. Kolisch (1995) develops a zero-one integer programme for the

RCPSP with sequence-independent setup times. Setup times are incorporated by introducing

two modes for activity execution. If a setup is needed the setup time is integrated into the task

duration (mode 2), otherwise the activity is scheduled in mode 1 with its normal duration. It is

assumed that the capacity of each resource is one unit. Moreover, only one of the resources that

are required by an activity can demand a setup. Debels and Vanhoucke (2006) consider setup

times in the pre-emptive resource-constrained project scheduling. They assume that a setup is

always needed when a pre-empted activity is continued. The setup times are considered to be

sequence-independent and added to the duration of the pre-empted activities. Neumann et al.

(2003, ch. 2.14) extend the approach of Trautmann (2001) and present the RCPSP with time

windows and sequence-dependent changeover times. Unlike Trautmann, who assumes that re-

source requirements can only take values of 0 or 1, Neumann et al. allow for arbitrary resource
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capacities and resource requirements of activities. They split the problem into two interdepend-

ent subproblems. In a first step, a precedence-feasible schedule is determined. In a second step

it is checked whether this schedule is changeover feasible. Changeover feasibility is given when

all resource constraints are met while setup times are considered. Mika et al. (2006) give a more

extensive literature review on setup times in project scheduling. They classify setups into sev-

eral categories but do not focus on resources which have to changeover to other activities or

projects. Instead, they classify setups from an activity perspective.

In the context of multi-project scheduling, setup times or transfer times are rarely encountered

in literature up to now. Yang and Sum (1993, 1997) consider resource transfer times in a dy-

namic multi-project environment with dual-level management structure. A central resource

pool manager assigns resources to projects, whereas a project manger schedules activities

within his project using the allocated resources. Resource changeovers can only be handled via

a central pool. No transfer times from the project to the pool occur, while transfers from the pool

to any project are assumed to take a constant time for all resource types, i.e., the times are se-

quence- as well as resource type-independent. Neumann (2003) points out that the problem for-

mulation presented in Neumann et al. (2003) can be applied to multi-project scheduling with

distributed locations, too. 

In the following, we consider general resource transfers with sequence- and resource-dependent

transfer times with emphasis on the resources which changeover between activities in the same

projects or between activities in different projects. In Section 2, the new resource constrained

multi-project scheduling problem with transfer times (RCMPSPTT) is defined. Section 3

presents a mathematical model for this novel optimisation problem. In Section 4 and 5, heuristic

solution frameworks based on priority rules are described. Computational experiments and their

result are presented in Section 6. Conclusions are given in Section 7.

2 Problem description

In the new problem RCMPSPTT, we consider a multi-project made up of a set of single projects

. Each project  consists of a set  of real jobs as well as a dummy start ac-

tivity  and a dummy end activity . The multi-project comprises all project activities as well

as a global super source  and sink , which are all summarised in set . 

The activities and precedence constraints of the multi-project can be represented by a finish-to-

start activity-on-node network without time lags. A set of direct predecessors Aj is given for

each job . The global source s0 has no predecessor, whereas each local project source is

successor of s0 and the global sink e0 succeeds each local project sink. Except for this global

linkage of all projects, precedence constraints exist only between jobs of the same project but

not between different projects. To ease presentation, we (re-)number all jobs  topologi-

cally, i.e.  for each pair  and . Thus, job 1 is the global source node s0 and job n

the global sink node e0. 

P 1…m{ }= p P∈ Jp
sp ep

s0 e0 J' 1…n{ }=

j J'∈

j J'∈
j i> j J'∈ i Aj∈
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An activity j with integer duration dj must not be interrupted once it has been started. Several

types of renewable resources  with constant capacity ar are available for project execution

in every period. Executing activity  requires a constant integer number of resource units ujr

of resource type  per period. The required amount must be transferred from other activities

to job j and, thus, often from other projects to the job that is to be executed. This transfer takes

time  depending on the originating activity  and receiving activity  as

well as the resource type  irrespective of the number of resource units transferred. Transfer

times may occur within projects but also and, more importantly, among projects. All transfer

times are assumed to fulfil the triangular inequality. Due to the static view, transfers from the

global source and to the global sink are assumed to consume no time. However, in case of phys-

ical resources like cars and machines, these nodes can be considered to represent a global re-

source pool where all (physical) resources are stored before the multi-project starts and to which

all resources must return after having terminated the multi-project. Hence, non-zero transfer

times from and to the pool might occur as well. However, transfers which flow from the global

source s0 to the global sink e0 directly take no time because these flows absorb redundant re-

source units and are not executed in reality.

Dummy activities are characterised by a duration and resource usage of zero for each resource

type with exception of the global source s0 and sink e0. These two dummy jobs take no time but

their resource usage is defined by  for  because the global source needs to

provide all resources to the multi-project while the global sink collects them.

The RCMPSPTT is constituted by determining finishing times Fj for all activities  and cor-

responding resource transfers  such that a multitude of constraints is met. All precedence

and resource constraints must be observed while sequence- and resource-type-dependent trans-

fer times for resources changing to other activities are considered. 

In the single-project approach, the multi-project duration MPD, i.e., the finishing time  of

the global sink e0, or its relative increase MPDI is minimised. MPDI is measured as the relative

deviation of MPD from the time of the multi-project’s critical path from s0 to e0. The critical

path time, which represents a simple lower bound LB1 on the multi-project duration, is used to

evaluate the delay of the multi-project caused by resource restrictions. 

In the multi-project approach, the objective consists in minimising mean project delay MD de-

fined as average relative deviation of the realised finishing time  from the critical path time

 over all projects .  is used as a surrogate for a due date of each project to eval-

uate their delays, because due dates are not pre-determined in this problem version. 

Both objective functions, one for each scheduling approach, are commonly used in existing lit-

erature on the basic multi-project scheduling problem (Pritsker et al. 1969, Kurtulus and Davis

1982, Kurtulus and Narula 1985 as well as Lova and Tormos 2001). However, these objectives

for scheduling multiple projects should not be taken for granted. This paper uses them for a first

analysis of the new problem but will point out other possibilities in the conclusion.

r R∈
j J'∈

r R∈

∆ijr i J'∈ j J' i Ai∪{ }–∈
r R∈

us0r ue0r ar= = r R∈

j J'∈
xijr

Fe0

Fep

LB1p p P∈ LB1p
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3 Mathematical model

We develop a mixed-integer linear programme for RCMPSPTT, which is based on combining

the traditional model for RCPSP by Pritsker et al. (1969) with a network flow based formulation

of the single-project scheduling problem with sequence-dependent setup times as proposed by

Neumann et al. (2003, ch. 2.14). The model includes the typical assumptions of the RCPSP and

extends it by considering transfer times between activities of different or the same project(s).

The following parameters are used:

P set of projects; index: p

Jp set of real activities of project ; index: j

J set of real activities within all projects; 

activities of project  including dummy start activity sp and dummy end activity ep; 

set of activities within all projects plus single global source s0 and global sink e0, i.e., 

n number of jobs; 

dj duration of activity  (with  for )

T upper bound on the project duration

t index for periods; t = 0,...,T

Aj set of direct predecessors of job ; , ,  for ; 

for  with :  (precedence constraints only within a project)

set of direct and indirect predecessors of job  (predecessors in the transitive closure of the graph)

set of direct successors of job ; , ,  for 

for  with : 

set of direct and indirect successors of job 

EFj earliest finishing time of activity ;  for  (forwards path)

LFj latest finishing time of activity  (backwards path)

TIj time window for finishing activity ; 

LB1 lower bound of multi-project duration (critical path time)

LB1p lower bound of project  (individual critical path time of project p)

R set of resources; index: r

ar number of units of resource  available per period

ujr number of units of resource  required for performing activity  per period

set of real activities to which resources might be transferred after having performed ; 

time for transferring units of resource  from task  to task , 

We define the following variables:

for  and 

     realised finishing time of activity 

for , , 

number of units of resource  transferred from activity  to activity 

p P∈

J Jpp P∈
∪=

Jp' p P∈ Jp' Jp sp ep,{ }∪=

J' J' Jp' s0 e0,{ }∪
p P∈
∪=

n J '=

j J'∈ dsp
dep

0= = p P 0{ }∪∈

j J'∈ As0
 { }= Ae0

ep{ }p P∈∪= Asp
s0{ }= p P∈

j Jp∈ p P∈ Aj Jp j{ }–⊆

Aj
∗ j J'∈

Sj j J'∈ Se0
 { }= Ss0

sp{ }p P∈∪= Sep
e0{ }= p P∈

j Jp∈ p P∈ Sj i  i Jp ep{ }∪∈ j Ai∈∧{ }=

Sj
∗ j J'∈

j J'∈ EFsp
0= p P 0{ }∪∈

j J'∈

j J'∈ TIj EFj LFj,[ ]=

p P∈

r R∈

r R∈ j J'∈

Jrj j J∈
Jrj := J j{ }– Aj

∗–

∆ijr r R∈ i J s0{ }∪∈ j Jri e0{ }∪∈ ∆s0e0r 0 r R∈∀=

fjt
1

0⎩
⎨
⎧

=
if activity j is terminated at the end of period t

otherwise
j J'∈ t TIj∈

Fj j J'∈

zijr
1

0⎩
⎨
⎧

=
if resource r is transferred from activity i to j

otherwise
r R∈ i J s0{ }∪∈ j Jri e0{ }∪∈

xijr r R∈ i J s0{ }∪∈ j Jri∈ e0{ }∪
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The model is given by the objective function (1) and the set of constraints (2) to (13).

The objective function (1) depends on the approach applied. In the single-project perspective,

the multi-project duration increase MPDI is minimised, which is equivalent to minimising the

multi-project duration MPD:

Minimise (14)

In the multi-project approach, the mean project delay MD is used as performance measure:

Minimise (15)

Time scheduling constraints (2) - (4) are well-known from the RCPSP formulation. Constraints

(8) - (9) represent resource flows in the multi-project. Inequalities (5) to (7) link the time sched-

uling and the resource flow parts of the model. Moreover, they handle resource transfers. Even-

tually, (10) - (13) define decision variables of the problem.

Constraints (2) ensure that each job is terminated in a unique period. Equations (3) transform

the binary decision variables fjt into realised finishing times for model reduction reasons. In-

equations (4) represent the explicit precedence relationships within a project while (5) express

implicit precedence relationships, which are necessary for possible resource transfers. 

From a time feasibility point of view, a transfer of resource r from activity i to j ( ) may only

occur (zijr = 1) if activity i ends before activity j is started and the time lag between both activ-

Minimise   s.t. (1)

for all (2)

for all (3)

        for  and (4)

for ,  and (5)

for ,  and (6)

for ,  and (7)

for  and (8)

for  and (9)

for  and (10)

for (11)

for , , (12)

for , , (13)

Φ F f x z, , ,( )

fjt

t TIj∈
∑ 1= j J'∈

Fj t fjt⋅
t TIj∈
∑= j J'∈

Fj Fi dj≥– j J'∈ i Aj∈

Fi ∆ijr dj+ Fj T 1 zijr–( )⋅+≤+ i J s0{ }∪∈ j Jri e0{ }∪∈ r R∈

xijr zijr min uir ujr;{ }⋅≤ i J s0{ }∪∈ j Jri e0{ }∪∈ r R∈

zijr xijr≤ i J s0{ }∪∈ j Jri e0{ }∪∈ r R∈

xhir

h J i{ }– S∗i–∈
∑ uir= i J e0{ }∪∈ r R∈

xijr

j Jri e0{ }∪∈
∑ uir= i J s0{ }∪∈ r R∈

fjt 0 1,{ }∈ j J'∈ t TIj∈

Fj 0≥ j J'∈

zijr 0 1,{ }∈ r R∈ i J∈ j Jri∈

xijr 0≥ r R∈ i J s0{ }∪∈ j Jri∈ e0{ }∪

(I
)

T
im

e
sc

he
du

lin
g

(I
I)

R
es

ou
rc

e
L

in
ki

ng
(I

)
an

d
(I

I)
V

ar
ia

bl
es

sc
he

du
lin

g

MPDI F f x z, , ,( )
Fe0

 LB1–

LB1
------------------------ 100%⋅=

MD F f x z, , ,( ) 1
P
----- Fep

LB1p–( )
p P∈∑⋅=

i j→
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ities is larger than or equal to the required transfer time for resource type r (constraints (5)).

From the resource feasibility point of view, a resource transfer of resource r from i to j can only

take place if both activities have a positive resource demand. The amount of resource type r,

which is actually transferred, thus, depends on whether a time-feasible and resource-feasible

transfer is possible (zijr = 1 and min{uir, ujr} > 0) as expressed in constraints (6). Yet, it is lim-

ited by the demand of activity i or j, whatever is lower. Constraints (7) ensure that the indicator

variable zijr is set only to 1 if a transfer really takes place (xijr>0). Since triangular inequations

are true for all transfer times, it is not useful to transfer more resources than needed. While equa-

tions (8) satisfy that the incoming flows of resource r to activity i sum up to its resource demand

uir, (9) guarantee that this very quantity of resource r flows out of activity i. The incoming flow

of resource r can only be provided by activities preceding i directly or indirectly (including s0),

whereas the outgoing flow can only be directed to succeeding activities (including e0). Moreo-

ver, constraint (9) for  guarantees that the global source provides resource capacity ar of

each resource type r to the multi-project, whereas constraint (8) for  ensures that all re-

sources are collected at the end of the project. 

Since RCMPSPTT is a generalisation of RCPSP, the problem is NP hard. As expected, prelim-

inary experiments indicate that modelling and solving the problem with modern optimisation

software like XPress-MP or CPlex is not sufficient to solve problems of realistic size. Therefore,

we develop heuristic solution frameworks which combine elements for time and resource

scheduling. Basics for time scheduling are the two common schedule generation schemes and

priority rules well-known for RCPSP and RCMPSP (cf. e. g. Kurtulus and Davis 1982, Klein

2000, Lova and Tormos 2001) which have to be adapted adequately. For resource and transfer

scheduling new scheduling rules are presented. In Section 4, we define a solution framework

based on the parallel scheduling scheme. In Section 5, the framework is adapted to the serial

scheme.

4 Parallel scheduling framework

4.1 Algorithm

The time oriented parallel scheduling scheme creates a feasible schedule by considering in-

creasing decision times t. At each decision time t as many activities as possible are started such

that precedence and resource feasibility is given (Lova and Tormos 2001, p. 267). The sequence

in which jobs are considered is determined by a priority rule. This common scheduling scheme

is adapted to the case of sequence- and resource type-dependent transfer times. 

In order to ease presentation, the dummy source nodes  and end nodes  of all single projects

are eliminated by directly linking the projects to the global source node  and the global sink

node e0. Finally, the starting and finishing times of those nodes can simply be set as follows:

,  for p = 1,...,P

i s0=

i e0=

sp ep
s0

sp min Fj dj–  j Jp∈{ }= ep max Fj  j Jp∈{ }=
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The algorithmic representation is based on that of Kolisch and Hartmann (1999). It uses the fol-

lowing additional parameters complementing the notation of Section 3:

due to temporarily deleting the dummy sources and sinks of the projects, we get ; 

set of completed jobs at scheduling time ; 

set of jobs active in period t; 

set of jobs scheduled up to time t; 

available units of resource type  at scheduling time  with 

set of eligible jobs at scheduling time  with 

number of units of resource r delivered to job j and still awaiting to be delivered to a another job

set of transfer-feasible activities able to deliver units of resource type r to job j up to time t; 

total supply of resource type  by transfer-feasible jobs at time ; 

Algorithm 1 starts out with an initialisation of the problem instance. All quantities of resource

transfers  and activity resource stocks  are initialised to zero. The dummy global source

s0=1 is scheduled at time 0 and put into the set of completed activities. Afterwards, the modified

parallel scheduling scheme is applied. 

For each trial scheduling time t, as many eligible activities as possible are scheduled provided

resource and precedence constraints including transfer times are not hurt. From the set  of el-

igible jobs, the jobs j to be examined are chosen one after another in a sequence defined by an

appropriate job rule (see Section 4.2). For each considered j, the sets , which contain all ac-

tivities that can deliver at least one unit of resource type r to job j up to time t, are determined.

If these jobs supply sufficient resource units of each resource type , job j is scheduled and

delivering jobs i are chosen from  by a resource transfer rule until the demand of job j is

satisfied (see Section 4.3). Simultaneously, transfer quantities  from i to j are calculated for

each r. Should any determined set  offer insufficient resource amounts to the selected job j,

this job is removed from the set  of eligible jobs. If there does not remain any job in the set

of eligible activities  for which feasible resource transfers can be determined, scheduling time

t is increased step by step until a non-empty set  is determined and at least one job j is con-

tained for which all required resources can be provided in time. When all jobs have been sched-

uled, the algorithm stops.

4.2 Job rules

Job selection rules (job rules for short) are the original priority rules known for the RCPSP or

the RCMPSP. A job rule assigns priority values to all jobs and orders them according to non-

increasing or non-decreasing values. Within a scheduling scheme, the jobs are examined and, if

possible, scheduled in this order. A plethora of such rules are known for the RCPSP. Overviews

can be found in, e.g., Kolisch and Hartmann (1999), Kolisch and Padman (2001), Klein (2000,

ch. 5.2+7.4). 

J' J' J s0 e0,{ }∪= n J'=

C t C j J'∈  Fj t≤{ }=

A A j J'∈  Fj dj– t Fj<≤{ }=

S S A C∪=

ãr t( ) r R∈ t ãr t( ) ar ujrj A∈∑–=

D t D j J' S–  Aj C⊆ ujk ãr t( ) r R∈∀≤∧∈{ }=

yjr

TJr

TJr  i S  Fi ∆ijr t   y∧ ir 0>≤+∈{ }=

sr r R∈ t sr yir
i TJr∈

∑=

xijr yjr

D

TJr

r R∈
TJr

xijr
TJr

D
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job rule (job j) extremum priority value 

m
ul

ti-
pr

oj
ec

ta
pp

ro
ac

h minSASP

minSLK_MP  with CPp(j) as critical path of project p(j)

minLFT_MP  with CPp(j) as critical path of project p(j)

maxTWK(dyn)

maxRD_MP

si
ng

le
-p

ro
je

ct
ap

pr
oa

ch

minSLK_SP  with CP as critical path of the super-project

minSLK_SP(dyn)  with PS as partial schedule of the super-project

minLFT_SP  with CP as critical path of the super-project

maxRD_SP

in
de

-
pe

nd
en

t FCFS(dyn)

Random

Table 1. Job rules for parallel and serial scheme

Initialise ; ; ; ;  for all  and ;

 for all  and ;  for all  and 

; /* set of eligible jobs at t=0

While  do /* iterate on increasing t until all jobs are assigned 

While  do /* assign as many jobs as possible to current time t

Select best job ;   /* apply job rule (Section 4.2)

For  do /* for each resource type ...

; /* ... compute transfer-feasible set

; /* ... compute total supply of resource r for j in t

If (  for all ) do /* if supply is sufficient for all resources, then ...

For  do /* ... find delivering jobs for all r as follows:

While  do /* repeat until resource demand of j for r is satisfied

Select and remove best job ; /* apply resource transfer rule  (Section 4.3)

; /* compute transferable amount of resource r

; /* update resource stocks

; ;  /* ... schedule job j starting in t and finishing in 

For  and  do 

:= ; /* ... reduce available capacity of resources

; /*  remove j from the set of (unexamined) eligible jobs

t := t+1; /* increase current scheduling time t

; /* set of tasks just completed in current t

; ;  /* update set of active and completed jobs

/* compute set of eligible tasks for current t

t := 0 A := ∅ S := C := 1{ } F1 := 0 ãr t( ) := ar r R∈ t 0 … T, ,=

yjr := 0 j J'∈ r R∈ xijr := 0 i j, J'∈ r R∈

D := j J' Aj = 1{ }∈{ }

S n<

D ∅≠

j D∈

r R∈

TJr  i S  Fi ∆ijr t   y∧ ir 0>≤+∈{ }=

s r := yiri TJ
r∈∑

s r ujr≥ r R∈

r R∈

yjr ujr<

i TJr∈

xijr := min yir ujr yjr–,{ }

yjr := yjr xijr+ yir := yir xijr–

Fj := t dj+ S := S j{ }∪ A := A j{ }∪ t dj+

τ [t t dj[+,∈ r R∈

ãr τ( ) ãr τ( ) ujr–

D := D j{ }–

C ' i A  Fi t≤∈{ }=

A := A C '– C := C C '∪

D := j J' S– Aj C⊆ ujk ãr t( ) r R∈∀≤∧∈{ }

Algorithm 1. Modified parallel scheduling scheme
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Yet, in the context of multi-project scheduling specialised job rules have been developed and

applied both in the parallel and the serial scheme. The rules can be classified according to the

approach they are designed for. There are special rules for the single- and the multi-project ap-

proach as well as rules that are independent of these approaches. The most common rules for

the multi-project scheduling problem are summarised in Table 1 (see Lova and Tormos 2001,

Pritsker et al. 1969, Kurtulus and Davis 1982, Kurtulus and Narula 1985). Column 1 classifies

the presented rules regarding the approach they are used with. For the notation used see Section

3; additionally  indicates the project to which a job j belongs, i.e., . Shortest activity

from shortest project (minSASP), minimum slack (minSLK), minimum latest finishing time

(minLFT), maximum total work content (maxTWK) as well as maximum resource demand

(maxRD) are rules for the multi-project approach because they rely on information about each

project within the multi-project (extension "MP"). Apart from minSASP and maxTWK, the

rules can be used for the single-project approach as well (extension "SP"). They use information

of the super (multi-)project for priority calculation. In this context, dynamic rules ("dyn") are

possible, too. Priority values are updated in each iteration depending on the already scheduled

activities (partial schedule PS) and their fixed starting and finishing times instead of being com-

puted only once at the beginning of the whole procedure (static rules). The rules first come first

served (FCFS) and Random are independent of the approach to multi-project scheduling.

4.3 Resource transfer rules 

When a job j is selected to be scheduled at time t and all sets  supply sufficient resource

units, it must be decided which of the jobs in each  is chosen to deliver resources to job j.

This is obviously only necessary if there is a surplus of provided resource units.

To find the delivering jobs for each resource r required by job j, all jobs in  are sorted by a

priority rule which we call resource transfer rule (to be more specific, it is a transfer-from rule,

cf. Section 5.2). Even if the same rule is applied to each r, different priority lists will result.

We suggest three rules, divided into time and

resource oriented ones (Table 2). A time ori-

ented rule is minTT, which selects a job i

with lowest transfer time from i to job j first,

regarding the considered resource type r. The

rule minGAP prefers jobs with minimal gap

between the earliest delivery time (= finish-

ing time Fi + transfer time ) and the start

time t of j. The resource oriented rule RS

sorts the jobs of  according to their free resource stock after task execution, i.e., the amount

of resource units that are not transferred to another job yet. minRS selects the job with minimum

and maxRS with maximum stock first. 

p j( ) j Jp j( )∈

TJr

TJr

TJr

transfer- 
from rule

extre
mum

priority value  for 

tim
e

or
ie

nt
ed minTT

minGAP

re
so

ur
ce

or
ie

nt
ed minRS

maxRS

 

Table 2. Resource transfer rules for parallel scheme

π'ir
i TJr∈

min
i

π'ir = ∆ijr

min
i π'ir = gapijr t= Fi ∆ijr+( )–

min
i

max
i

π'ir = yir uir xikr
k S∈

∑–=

∆ijr

TJr
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After the transfer-feasible activities have been sorted, the actually delivering tasks are selected.

We propose two different ways, forward and backward selection.

Forward selection uses the original priority

list. The activity with highest priority is

chosen and delivers as many free resource

units to job j as possible or necessary, what-

ever is the lower. Activities from the top of

the list are selected until the resource de-

mand of job j is satisfied. Backward selec-

tion sums the provided free resources along

the priority list up, starting with the highest

priority activity. The first activity in the list

which causes equality or surplus of re-

source units when added is used as the start-

ing point for backward transfer scheduling.

From this starting point on, the resource de-

mand of job j is satisfied by the activities

along the list downwards to the task with

the highest priority. In each step as many

free resources are provided to job j as required and available, whatever comes first. 

Figure 1 illustrates both selection principles by means of an example with P=4 projects and a

single resource with capacity . Each job is visualised as a rectangle with its duration de-

fining the horizontal and its resource usage the vertical extent. Job  out of project 2 with

a resource demand of  is selected by some job rule for the current scheduling time

. All jobs in  are already scheduled. As transfer times we consider

, = 5, , , and  (last index for r=1 omitted). Due

to , we obtain . The minTT rule determines the

priority list <12, 29, 3, 20]. To fulfil the resource needs of job 11, the first three jobs of the list,

which can provide 9 resource units, are sufficient. The actual quantities sent by those jobs are

different depending on the selection principle used. Forward selection results in transfers from

all three jobs as illustrated in Figure 1 while for backward selection only job 3 delivers resource

units to task 11.

Assuming that transfer times within the same project are smaller than between different

projects, the forward selection principle together with the minTT rule ensures that resources are

kept and used within the same project if possible. However, as the example shows, this may lead

to splitting up transfers (job 3 delivers only a single unit). It could be of advantage if job 3 pro-

vided all its free resource units to task 11 since a resource transfer from project 1 to project 2

takes place anyway. Then the resource supply of jobs 12 and 29 could be fully used for other

transfers as achieved by backward selection here. 
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Figure 1. Forward and backward selection

<12,29,3] (job 20 not required)
backward selection

<3,29,12] (job 20 not required)
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5 Serial scheduling framework

5.1 Basic algorithm

Contrary to the parallel scheduling scheme, the serial one is activity oriented and builds the

schedule in n stages with n activities to be scheduled. At each stage g, an activity is selected and

scheduled as early as possible such that precedence and resource feasibility is given (Lova and

Tormos 2001, p. 267).

Algorithm 2 illustrates the time sched-

uling frame of the adapted serial sched-

uling scheme based on the representa-

tion of Kolisch and Hartmann (1999).

After initialisation, one activity j, which

is selected by a job rule, is scheduled at

each stage g. For this purpose, the same

rules as in case of the parallel scheme

can be used (cf. Section 4.2). However,

the set of eligible jobs  is now de-

fined by . For

the selected job j the earliest prece-

dence-feasible finishing time  is de-

termined by usual time calculation. The earliest resource-feasible finishing time  of job j

considers all resource capacities additionally. Finally, the earliest transfer-feasible finishing

time  is calculated. It is the earliest time at which job j can be finished when precedence,

resource and transfer constraints are taken into account. Thus, it is used as realised finishing

time Fj in the solution schedule. Obviously,  holds. When an activity j has

been scheduled, it is inserted in the set of scheduled activities  while available resources and

the set  of eligible jobs are updated. 

The function CalcResTrans(j, ERFj) for determining a transfer-feasible finishing time 

and corresponding resource flows is given in Algorithm 3. It begins with trial starting time t=

 of the selected job j and increases t incrementally until transfer-feasibility is achieved

for all resource types. As in case of the parallel scheme, it has to be ensured that each resource

unit required by job j arrives in t or earlier. Moreover, if activity j is inserted between already

scheduled jobs, it must be ensured that the broken resource flows can be repaired feasibly.

Therefore, for each already scheduled i and each resource r, any transfer from i to an also sched-

uled k is examined. If it is possible to deliver resource units from i to j at time t or earlier and to

transfer them to k after finishing j without delaying job k, a breakable transfer is found and k is

added to the set Kir. The set  of jobs potentially delivering resource r to j in-time consists of

all jobs which have still undelivered resource units ( ) and of those from which at least one

breakable transfer starts ( ). All those possible deliveries are summed up in .

Initialise  for , ; ; ;
 for , ;  for  , ;

;  /* set of eligible jobs
For g := 1 to n do

Select the best job  /* apply job rule

;
;

; ; /* schedule job j
For  and  do 

:= ; /* reduce available capacity

; /* update eligible set

ãr t( ) ar= r R∈ t 0 … T, ,= F1 0= S 1{ }=

yjr := 0 j J'∈ r R∈ xijr := 0 i j, J'∈ r R∈

D := j J' 1{ }– Aj = 1{ }∈{ }

j D∈

EFj := max Fh  h Aj∈{ } dj+

ERFj := min t EFj≥  ujr ãr τ( ) r∀ R τ [t dj t[;–∈,∈≤{ }

ETFj := CalcResTrans j ERFj,( )

S := S j{ }∪ Fj := ETFj

τ [Fj dj Fj[,–∈ r R∈

ãr τ( ) ãr τ( ) ujr–

D := j J' S– Aj S⊆∈{ }

Algorithm 2. Modified serial scheduling scheme

D
D j J' S  Aj S⊆–∈{ }=

EFj
ERFj

ETFj

EFj ERFj ETFj≤ ≤
S

D

ETFj

ERFj dj–

TJr

yir 0>
Kir ∅≠ sr
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When enough units are available for all resources, j can be scheduled to start at time t. The de-

livering activities i are selected from  one after another according to a transfer-from rule (cf.

Section 5.2.1). The receiving jobs  of breakable flows are chosen one after another ac-

cording to a transfer-to rule (cf. Section 5.2.2). The current flow  from i to k is broken up

and activity j receives this very quantity from job i while activity j delivers the same amounts

back to job k. If still necessary, the remaining resource stocks of activity i ( ) are used to sat-

isfy the demands of job j. This process is repeated until all resource needs of job j are satisfied. 

Figure 2 represents a cutout of a multi-project schedule with 2 projects and a resource capacity

of  units of the single resource 1. Activity j=23 as part of project 1 is to be scheduled.

It requires 6 units of the resource. Regarding all precedence relations, it may start after job 22

is finished. Jobs 21 and 22 deliver all their resource units to already scheduled jobs, which are

not part of the cutout (indicated by the solid bar at the end of those jobs). Moreover, it has al-

ready been decided that jobs 26 and 27 provide all their resource supply to activities 28 and 29,

which for some reasons cannot start earlier. Since transfer times within a project are supposed

to be zero, the resources supplied by jobs 26 and 27 are waiting for their usage by 28 and 29

(this slack is indicated by a dotted bar). The right Gantt chart shows that a part of these waiting

resources can be transferred to job 23, used to perform it and return to 28 and 29 in-time. If this

would not be possible without delaying already scheduled activities, insertion must be forbid-

den due to the logic of the serial scheme to schedule each task finally. Notice that activity inser-

Initialise ; ; /* zr adds up the resource units delivered to j

Repeat /* repeat until feasible starting time t is found

For each  do /* consider each resource r separately

For each  do /* set of receiving jobs in breakable transfers

;

; /* set of potentially delivering jobs

/* total supply of resource r for j 

If  (  for each ) then /* if supply is sufficient for all resources then ...

For each  do /* ... generate deliveries for all resource types r

While  do /* repeat as long as units of r are missing

Select and remove best delivering job  /* apply transfer-from rule
While  and  do /* repeat for all breakable transfers

Select the best receiving job  /* apply transfer-to rule
; ; /* set transferable quantity, reduce 

; ; ; /* modify transfers

; /* transfer remaining supply of i to j

; ; ; /* modify transfers

Return ETFj = ; /* ... terminate function, return feasible time for j 

Else t := t+1; /* increase trial time t and repeat

zr := 0 r∀ R∈ t := ERFj dj–

r R∈

i S∈

Kir := s S {i}– xisr 0 F∧> i∈ ∆ijr t Fs ds– ∆jsr– dj–≤ ≤+{ }

TJr := i S (yir 0 F∧> i ∆ijr t) Kir ∅≠∨≤+∈{ }

sr := yir xikr
k Kir∈
∑+⎝ ⎠

⎛ ⎞

i TJ
r∈

∑

sr ujr≥ r R∈

r R∈

zr ujr<

i TJr∈

Kir ∅≠( ) zr ujr<( )

k Kir∈

x' := min xikr ujr yjr–,{ } Kir := Kir k{ }– Kir

xijr := xijr x'+ xikr := xikr x'– xjkr := x' zr := zr x+ '
x' := min yir ujr yjr–,{ }

xijr :=xijr x'+ yir := yir x'– yjr := yjr x'+ zr := zr x+ '
t dj+

Algorithm 3. Function CalcResTrans(ERFj) for feasible starting time of selected job j and resource flows

re
so

ur
ce

 sc
he

du
lin

g

TJr

k Kir∈
xikr

yir

a1 18=



16

tion cannot occur in the parallel scheduling scheme, because the starting time t of jobs is in-

creased monotonic from iteration to iteration in this scheme. 

5.2 Resource transfer rules

In contrast to the parallel scheme, two types of transfer rules are necessary in the serial scheme

because resource transfers to be broken up must be priorised as well.

5.2.1 Transfer-from rules

Like for the parallel scheduling scheme, it must be determined by a priority rule which of the

transfer-feasible jobs  deliver resources to the selected job j. Again, this is to be consid-

ered only, if there is a surplus of available resources. The rules that are established in Table 2

for the parallel scheme can also be applied for the serial scheme. Yet, additional rules are pos-

sible and summarised in Table 3.

Besides minTT and minGAP, minES is another time oriented rule. It selects that job i which

leads to the earliest starting time of job j. The group of resource oriented rules is extended by

the total resource supply (TRS) rule, which considers not only still freely available resource

stocks of a job but also the resources that can be provided by breaking up existing resource flows

transfer-
from rule extremum priority value  for 

time oriented minES

resource
oriented

minTRS,
maxTRS , 

compound maxCV

 with

, 

, 

, 

Table 3. Additional transfer-from rules for resource transfers (serial scheduling scheme)
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Figure 2. Activity insertion (serial schedule generation scheme)
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feasibly. For the parallel scheme, this rule does not differ from the resource stock (minRS,

maxRS) rule since breaking up resource flows (activity insertion) is impossible.

Finally, a compound priority rule was built. It joins time and resource oriented aspects by con-

sidering relative transfer times, relative earliest starting times and relative resource stocks. In

each category, the relative values are obtained by normalising the absolute values to the interval

[0,1] with the best job in this category set to 1 and the worst one set to 0. Finally, the ratings of

the three categories are weighted and summed up. The weights can be set according to the pref-

erences of the decision maker, whatever he assumes most important. For the parallel scheme,

the relative earliest starting time component is irrelevant but can be replaced by the relative gap

(with the biggest gap as best value) to form a compound rule for this scheme, too.

The delivering jobs for the re-

source transfer can be selected

from the priority list forwards

or backwards just as described

in Section 4.3 for the parallel

scheduling scheme until the re-

source demand of activity j is fulfilled. 

5.2.2 Transfer-to rules

If an activity i, which has been selected by a transfer-

from rule as described in the preceding section, deliv-

ers more units of a resource r to already scheduled ac-

tivities than still needed by job j, i.e.,

 (for  see Algorithm 3), the

sequence of breaking up resource flows becomes rel-

evant. Thus, an additional priority rule (called trans-

fer-to rule) is required to determine which of the ex-

isting resource flows from j to other activities 

are broken up to satisfy the demand of job j for re-

source r. Table 4 presents two transfer-to rules. 

Figure 3 illustrates the effect of the rules. Transfer

times are indicated by grey areas. Job 7, with a re-

source demand of  for the only resource

r = 1, is to be inserted between jobs 3, 4 and 5, 6.

When job 3 is selected first as delivering activity, the insertion  does not need a pri-

ority rule because all resource units of the flow  must be redirected via job 7. When job 7

breaks the flows from task 4 afterwards, an additional rule is necessary since these flows pro-

vide one more resource unit than needed. A simple rule based on increasing job numbers breaks

flow  first and then  (Figure 3 (a)). The remaining flow  is not disturbed. The

transfer- 
to rule

extre-
mum priority value 

time oriented minTT

resource
oriented maxFlow

Table 4. Transfer-to rules for breaking up flows
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Figure 3. Example for breaking up flows

a1 = 9

7

4

6 8 10 12 14 16 18 20 22 24 26 28 30 32

2
4
6
8

t

6

53

a1 = 9

7

7

4 6→3

4 5→1

3 5→4

4 6→1

7 6→2

7 5→53 7→4
4 7→3

4 5→1
7 6→3

7 5→43 7→4

4 7→3

(a) minimal index (min k)

(b) minimal transfer time (minTT)

i k→
xikr

xikrk Kir∈∑ ujr zr–> zr

k Kir∈

u7 1, 7=

3 7 5→ →
43 5→

14 5→ 24 6→ 14 6→



18

minTT rule breaks flows which lead to a minimal transfer time from job j to k primarily. Due

to ,  is broken and  is kept. The advantage of the minTT rule is

that the gap between the inserted job j and the receiving job k will be relatively large. Thus, other

jobs may be inserted between j and k in later scheduling steps. In case of the rule maxFlow large

flows are broken first in order to break as few flows as possible when job j is inserted. For the

example, this rule would also result in schedule (b). 

5.3 Resource based version of the serial scheme

The serial scheme as well as our adaptation to RCMPSPTT described above rely on minimising

the starting time for each job j selected to be scheduled (called time based serial scheme). This

might lead to arranging resource flows in a disadvantageous manner. In order to overcome this

problem, another approach may be used which focuses on resource flows primarily. 

This resource based serial scheme works as follows: For each job j, resource transfers from all

scheduled jobs are considered possible, defining the extended set  of all

potentially delivering jobs i. From this set, jobs are selected using a transfer-from rule one after

another until the supplied quantity of all resources is just sufficient for job j. For this minimal

subset  of the most promising potentially delivering jobs, the earliest feasible starting time of

job j is computed using a transfer-to rule for sorting the flows to be broken as described in Al-

gorithm 3. If not enough flows are breakable, a feasible schedule cannot be generated. For re-

sources r that cause infeasibility, a further potentially delivering job i is added to  according

to the transfer-from rule used. Finding a feasible (earliest) starting time for j is tried again. This

process stops with a feasible starting time t and the corresponding end time  for job

j as in case of the time based version of the serial scheme (see Algorithm 3).

Within the resource based serial scheme,

the same transfer-from rules as collected

in Table 2 and 3 can be applied. However,

for the minGap rule the question of a trial

time t which serves as reference point for

gap computation arises: An initial trial

time is given by . For this

trial time,  is calcu-

lated for each job in  for the first resource r to be examined. Now, as

many jobs as necessary for satisfying the resource demand of job j for the considered resource

r are chosen from the priority list and collected in . If only jobs with positive gaps are chosen,

trial time t can be achieved for resource r. If jobs with negative gaps are also necessary to satisfy

the demand of j for r, trial time t will not be a feasible scheduling time. The modified priority

rule minGAP, therefore, prefers jobs which will increase the intended scheduling time least (see

Table 5). If sufficient resources can be provided by free resource stocks and feasibly broken

flows, i. e.,  offers enough resources, job j is (temporarily) scheduled as early as possible at

∆7 6, 2 3< ∆7 5,= = 34 6→ 14 5→

ETJr i S  uir 0>∈{ }=

Ir

Ir

ETFj t dj+=

transfer-
from rule

extre-
mum priority value  for 

minGAP

min|GAP|

π'ir i ETJr∈
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i π'ir = 

gapijr 

gapijr T+
 
 if gapijr 0 ≥

 else⎩
⎨
⎧

min
i π'ir = gapijr

Table 5. Modified transfer-from rules for resource transfers 
(resource based serial scheduling scheme)
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time  for the examined resource r. To schedule transfers for

another resource type  the trial time t is set to  and the above process is repeated. If not

enough resources of  can be delivered up to t, this trial time needs to be increased. This might

result in unscheduling the resource flows of already examined resource types. If for any of these

resource types r flows from i to k were broken, it must be calculated whether the insertion of job

j for resource type r is still feasible for the new trial scheduling time t. If not, they must be re-

scheduled assuming this new trial time. This process is repeated until for all resource types fea-

sible resource transfers can be scheduled.

An additional transfer-from rule min  is introduced for the resource based serial scheme,

which is a an adaptation of minGap and considers only the absolute deviations from the sched-

uling time t. It is assumed that resources should be delivered as closely to trial time t (before and

after) as possible. Hence, positive and negative deviations from t are rated equally (see Table 5). 

The potential advantage of the resource based view is illustrated in Figure 4. Job 6 is to be

scheduled after task 4 and 5. The time based serial scheme schedules job 6 at the earliest time

t = 14 by providing it with resources from job 4 because it is the only one allowing this minimal

starting time ( ). In a next step, activity 7 is selected by the job rule. Its earliest possi-

ble starting time is t = 19 after having received its resources from task 5. Finally, job 8 is sched-

uled at t = 25. Using the resource based serial scheme, we get  for j=6. Thus, the

transfer  may be chosen by an appropriate transfer-from rule instead of . Job 6 does

not start earliest possible but the project duration is, nevertheless, shortened since job 7 can be

scheduled in t = 15 due to a shorter transfer time when it receives it resources from task 4 instead

of 5. Using  obviously allows a greater range of possible schedules, because there are more

possibilities for resource flows than with . Notice that there is no difference if all transfer

times are zero, i.e., in case of RCPSP and RCMPSP because each job is scheduled the earliest

by both approaches. 

6 Computational experiments

In order to examine the performance of the different heuristic procedures developed for the new

problem RCMPSPTT, we carry out a number of computational experiments. On the one hand,

we consider the effect of transfer times within single projects as that has not been done before.

On the other hand, we examine the consequences of transfer times in a multi-project environ-
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Figure 4. Time based versus resource based serial scheme
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ment. The heuristic frameworks were coded in the programming language C and the tests have

been performed on an Intel Pentium 4 processor with 3.2 GHz and 1 GB RAM. 

6.1 Classification scheme for tested procedures

The heuristic frameworks presented in Section 4 and Section 5 consist of different generation

schemes and priority rules which can be combined to a considerable number of concrete heu-

ristic procedures. In order to reference these procedures in a comfortable manner, we use a clas-

sification tuple  with the following meanings: 

a generation scheme;  for parallel scheme, time based and resource based serial scheme 

b job rule (see Table 1)

c transfer-from rule (see Table 2, Table 3, Table 5)

d planning direction;  for forward and backward selection of delivering jobs (cf. Section 4.3) 

e transfer-to rule (see Table 4); left empty for the parallel scheme

For example, (tbser | minLFT_SP | minTT | bwd | maxFlow) specifies a procedure using the

time based serial scheduling scheme, the job rule minLFT_SP, the transfer-from rule minTT,

backward selection and the transfer-to rule maxFlow. 

6.2 Experiments for single projects

At first, we evaluate the heuristic frameworks for single projects with and without transfer

times. This experiment allows conclusions for real single projects and combined multi-projects

within the single project approach of multi-project management. 

6.2.1 Generating test data

The experiment is based on the standard benchmark data set J60 of the ProGen library (Kolisch

et al. 1995). To get a stable and reliable basis of comparison, all 480 project instances of the J60

set have been solved by Scatter PROGRESS (Klein and Scholl 1999, 2000). 400 of these in-

stances could be solved optimally within 3600 s. These 400 instances and the corresponding op-

timal solutions were used to build a data set containing transfer times. Transfer times have been

introduced for each resource type such that optimality of the solution found by Scatter

PROGRESS is retained. This is done in order to have available optimal solutions for

RCMPSPTT such that the quality of heuristic solutions can be judged in the best possible man-

ner. 

Moreover, the generated transfer times comply with triangular inequalities for all (h,i,j)-

combinations with  and . This means that the time for a transfer from h to j
cannot be reduced by sending the resource via i. Under these conditions, symmetric transfer
times  are generated systematically and randomly for each resource type . In a
first step, the optimal time schedule is complemented by a corresponding feasible resource flow.
This is done by solving the resource flow problem contained in the mathematical programme

a b c d e( )

a par tbser rbser,,{ }∈

d fwd bwd,{ }∈

h i j J∈, , h i j≠ ≠

∆ijr ∆jir= r R∈
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given the optimal finishing times  of all jobs (cf. Section 3). When a job i delivers a resource
r to another job j in this resource flow, feasible transfer times are bounded from above by

. In order not to get a very tight and unrealistic problem, the maximal value allowed
is, however,  set to . For relations (i, j) without an actual resource flow,
a maximal transfer time  is sampled uniformly from an interval [0, maxijr]. The upper bound

 depends on the time span between the first and the last usage of resource r in the optimal

schedule as well as the number of activities that require r during this period. It can be interpreted

as the average time an activity that requires the considered resource r could use this resource in

the optimal solution until r is set free ultimately. This value is used to limit transfer times to re-

alistic durations which may be lower or higher than real activity durations but will not be ex-

traordinary high. Transfers from the global source and to the global sink node are set to zero
because resources are assumed to be already available at the respective jobs when the project
starts and need not be transferred elsewhere after the project has been finished
( ). Furthermore, . Given these maximal

transfer times for each potential relation (i, j), a linear programme is formulated and solved

which sets all transfer times as large as possible such that the triangular conditions and the upper

limits are fulfilled. Due to the triangular conditions, in many cases smaller transfer times than

 must be chosen such that no more than 80 % non-zero elements are contained in the transfer

time matrices of the 400 modified J60 projects within the data set on average.

6.2.2 Selected results

As a reference point, we apply the

heuristic frameworks to the 400 se-

lected instances of the original J60

data set (all transfer times are 0). In

this case, both serial schemes are

identical (tbser = rbser) and only

job rules are required. 

Table 6 summarises the mean rela-

tive deviations from optimum for selected job rules. The performance obtained is consistent

with test results by Klein (2000). The experiments show that the parallel scheme often generates

better results than the serial one. The only exception is minLFT_SP which proves to be the best

rule of the test in combination with the serial scheme. An average deviation from optimum of

2.85 % has been reached. For the parallel scheme minSLK(dyn) outperformed other rules with

a deviation of 3.49 %. However, minLFT is not far behind with 3.87 %. Concluding one can

remark that critical path based rules like minLFT or minSLK generally turn out to be more ef-

ficient than resource based rules like maxRD. 

When resource transfer times are added to the problem, the results get significantly worse. At

first, several transfer-from rules were evaluated. Here, the results only for some of the tests are

Fj

Fj dj– Fi–

∆ijr := 0.5 Fj dj– Fi–( )⋅
∆ijr

maxijr

∆e0ir ∆ie0r 0 i J' r R∈,∈∀= = ∆iir 0 i J' r R∈,∈∀=

∆ijr

scheduling scheme tbser par
job rule avg min max avg min max
minSLK_SP 6.69 0 55.17 4.64 0 42.71
minSLK_SP(dyn) 6.92 0 44.83 3.49 0 26.19
minLFT_SP 2.85 0 31.11 3.87 0 28.99
maxRD_SP 11.01 0 51.72 8.11 0 45.33
FCFS 8.40 0 38.55 7.11 0 40.96
Random 13.15 0 60.94 8.71 0 52.38

Table 6. Selected job rules applied to original J60 data set
(relative deviation from optimum in %)
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presented, a large number of further tests confirm the obtained statements. Since minLFT

proved to be the best job rule for the serial scheduling scheme and one of the best ones for the

parallel scheme in absence of transfer times, it is selected as a basis of this very first analysis.

In order to make a ceteris paribus comparison of different transfer-from rules, we choose back-

ward selection and the transfer-to rule maxFlow. Table 7 summarises the results (omitted values

indicate the corresponding rule being inappropriate for that scheme).

The results show huge differences for the resource based serial scheme. The mean deviation

from optimum lies between 11.04 % and 257.08 % while the maximum deviation even reaches

601.85 % for the maxTRS rule. The same is true for tests considering other combinations of job

rules, transfer-to rules and planning directions. It becomes clear that for the resource based se-

rial scheme only minGAP and minES are good transfer-from rules. The four resource based

rules, however, show very poor performance as the extended set of potentially delivering jobs

together with a resource oriented point of view leads to unnecessarily enlarged starting times.

The time based serial scheme avoids these large deviations and gets rather acceptable results for

most of the rules and slightly better results even for minGAP and minES. Here, the different sets

of potentially delivering jobs have only a minor effect due to preferring resource transfers that

allow for an early starting of job j. Since minGAP is the rule which tries to avoid unproductive

times of resources most consequently, it performs best in both serial schemes.

However, the parallel scheme turns out to be better whatever transfer-from rule is used. The dif-

ferences between these rules are marginal. Even the random rule gets the same performance

level. Obviously, the strict manner of using resources in each period as completely as possible

reduces the degree of freedom in making transfer decisions thereby reducing the potential of

making wrong decisions. 

As a first result, we can state that in case of single projects with transfer times applying the par-

allel scheme is usually preferable to applying one of the serial schemes. Concerning the serial

scheme, the time based version clearly outperforms the resource based one. In both cases, se-

lecting a transfer-from rule is a sensitive decision.

scheduling scheme rbser tbser par
transfer-from rule avg min max avg min max avg min max
minTT 141.65 0 375.00 13.91 0 93.20 10.36 0 45.92
minES 18.12 0 94.18 17.98 0 94.18 – – –
minGAP 11.04 0 86.41 10.98 0 82.52 10.47 0 56.48
min |GAP| 89.65 4.48 263.51 – – – – – –
minRS 236.76 41.00 470.31 13.62 0 96.12 10.37 0 56.48
maxRS 241.59 21.21 583.33 15.19 0 93.20 10.40 0 54.63
minTRS 202.83 27.47 433.33 14.50 0 93.20 – – –
maxTRS 257.08 31.88 601.85 14.18 0 94.18 – – –
maxCV 126.40 0 322.03 14.59 0 93.20 10.42 0 51.61
Random 142.11 23.08 324.07 14.56 0 94.18 10.43 0 51.61

Table 7.  J60 test with (* | minLFT_SP | * | bwd | maxFlow)-combinations (relative deviation from optimum in %)
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In any case, the transfer-from rule minGAP is a good decision. Therefore, we fix this rule for a

further test which examines job rules for all schemes. The results are presented in Table 8. 

It reveals that in case of both versions of the serial scheme only two rules are acceptable, namely

minLFT_SP and FCFS. The latter has indeed a larger average deviation but a smaller maximal

one. The performance of rbser is for most rules slightly worse than that of tbser, except for FCFS

and maxRD_SP where it is even better. Obviously, the chosen transfer-from rule minGAP

makes the schemes almost identical as it prefers resource transfers that enable early starting

times for the job j to be scheduled. However, for maxRD_SP the difference between both serial

schemes is a lot larger than for other rules. Thus, one can assume that for resource based job

rules the resource based serial scheme is more suitable than the time based one. 

The overall best results are achieved by the parallel scheduling scheme again. The best job rule

for this scheduling method is minSLK_SP with a mean deviation of only 6.09 %. It must also

be noticed that the resource based job rule maxRD_SP is often the 2rd or 3nd best rule for all

scheduling schemes, which is a completely different result to the evaluation without transfer

times where it was one of the worst. The differences between all scheduling schemes diminish

when FCFS is used as a job rule since it aims at scheduling jobs in order of increasing starting

times even in the serial scheme.

In order to find the overall best scheme-rule combination, a fur-

ther systematic test is performed using the job rule minSLK_SP

and the parallel scheme by varying the transfer-from rules (c)

and the planning direction (d) as summarised in Table 9. It turns

out that only small differences exist. The best combination is

(parallel | minSLK_SP | minGAP | fwd | ) with an average

relative deviation of 5.81 % closely followed by the combina-

tion (parallel | minSLK_SP | minTT | bwd | ). However, even

the random selection of delivering jobs gives reasonable result.

To summarise, the presented results allow the following conclusions. Basically, the parallel

scheme should be preferred. If a serial scheme should be applied the time based one is slightly

preferable. In both cases, selecting an appropriate transfer-from rule is more essential than se-

lecting the job rule. On the contrary, the job rule is more important for the parallel scheme.

scheduling scheme rbser tbser par
job rule avg min max avg min max avg min max
minSLK_SP 32.56 0 111.63 32.23 0 124.00 6.09 0 49.07
minSLK_SP(dyn) 34.48 0 133.33 34.33 0 133.33 11.48 0 60.22
minLFT_SP 11.04 0 86.41 10.98 0 82.52 10.47 0 56.48
maxRD_SP 31.82 0 108.33 34.98 0 114.46 9.60 0 46.94
FCFS 13.50 0 71.58 13.63 0 71.58 13.77 0 59.14
Random 36.15 0 133.33 35.66 0 133.33 10.53 0 58.95

Table 8.  J60 test with (* | * | minGAP | bwd | maxFlow)-combinations (relative deviation from optimum in %)

c           d fwd bwd

minTT 5.92 5.82
minGAP 5.81 6.09
minRS 5.99 5.99
maxRS 6.39 6.14
maxCV 6.15 6.11
Random 6.40 6.08

Table 9. Results for combinations
(par | minSLK_SP | * | * | )∅

∅

∅
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Transfer-to rules and the planning direction have much less influence as further test series,

which are not documented here, show. Perhaps, the following recommendation may be given:

If the aim of project management is to keep resources in the project as long as possible, forward

selection (fwd) should be applied together with the transfer-to rule minTT. If transferring as

many resource units as possible when a resource must change projects anyway is the approach

to project management, backward selection (bwd) together with the transfer-to rule maxFlow

will be preferable.

6.3 Experiments in a multi-project environment

In the following, experiments concerning the performance of the heuristic frameworks within a

multi-project environment are reported. A corresponding data set is generated and selected re-

sults are given and interpreted.

6.3.1 Generating test data

The multi-project data set is based on the well-known Patterson data set (Patterson 1984) as it

contains different projects of different sizes which enables to construct realistic multi-projects.

A total of 100 multi-project instances are generated with  and  by randomly

choosing five Patterson instances, respectively, each forming a project within the multi-project,

i. e. . The common capacity  of any resource  in the new multi-projects is sampled

uniformly from the interval

  

with  denoting the capacity of resource r in the original project p. To ensure existence of a

feasible solution, the lower bound of the interval for resource type r is given by the maximal

resource usage of any activity within the multi-project or the minimal resource capacity of any

original single project whatever is greater. The upper bound ensures that the projects actually

compete for the resources.

Transfer times are once again generated randomly depending on minimal and maximal activity

durations and considering triangular inequalities. In order to reflect realistic conditions in many

multi-projects, it is assumed that non-zero times only occur for transfers between projects.

Transfers from the sink and to the source are given zero times as well. 

This data set is used to test the single- and the multi-project perspective based on the multi-

project duration increase MPDI and the mean project delay MD, respectively. Yet, as optimal

solutions are not known, both objective values are calculated using the critical path lower

bounds LB1 and LB1p, respectively, as commonly recommended (see Section 3). 

6.3.2 Selected results

To examine the performance of the heuristic frameworks depending on job rules and scheduling

schemes, we again fix the transfer-to rule to minGAP, the transfer-to rule to minFlow, and use

J 93 204,[ ]∈ R 3=

P 5= ar r R∈

max max ujr  j J'∈{ } min apr  p P∈{ },{ }  aprp 1=
5∑ max apr  p P∈{ }–;[ ]
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the backwards selection. In order to judge the influence of transfer times, the same test is per-

formed completely ignoring these times on the one hand and considering them on the other. The

results are summarised in Table 10, the best rules in each group are highlighted. 

The results for the transfer-less data set (columns 2-4) are largely consistent with that reported

in Lova and Tormos (2001). For minimising the objective MPDI of the single-project approach,

the parallel scheme performs always better than the serial one. However, for minimising the ob-
jective MD of the multi-project approach, it depends on the job rule which scheme is better.

Moreover, for minimising MPDI, which is the objective for the single-project approach, all

rules developed for this very approach (lower part of Table 10) perform better than their multi-

project counterparts (upper part of Table 10). This is not only true for the serial scheme but also

for the parallel one, with exception of maxRD. Yet, for minimising MD, rules specialised on the

multi-project approach perform better than the corresponding single-project rules. 

The overall best combination for MPDI uses the parallel scheme together with the rule

minSLK_SP(dyn), directly followed by minLFT_SP. The latter rule is the best one combined

with the serial scheme. The rules maxTWK, maxRD_MP and minSASP, as rules for the multi-

project approach, are among the worst job rules for this objective, whereas they turn out to be

among the best ones for minimising MD.

When resource transfers are considered (columns 5-10), the parallel scheme is now generally

superior to the serial ones irrespective of the objective confirming our results in Section 6.2.

However, job rule performance is quite different to the transfer-less test. Likewise the results of

Section 6.2.2, for both objectives, it is confirmed that the time based serial scheme is (slightly)

better than the resource based one for time oriented job rules. Moreover, for both objectives, it

can be affirmed that the resource based serial scheduling scheme performs better than the time

based one for resource oriented job rules. It emerges that the resource based scheduling scheme

no transfer times considered transfer times considered

MPDI [%] MD [days] MPDI [%] MD [days]

job rule   scheme tbser par tbser par rbser tbser par rbser tbser par

minSASP 141.63 126.89 31.41 30.05 210.98 208.33 150.67 47.81 47.36 39.78
minSLK_MP 117.06 115.91 41.60 41.23 197.91 193.76 143.52 71.84 69.98 45.06
minLFT_MP 105.12 101.95 39.32 38.41 198.63 196.72 135.04 76.01 75.28 41.21
maxTWK 121.18 113.76 36.08 35.18 179.31 184.34 151.91 46.94 48.14 47.53
maxRD_MP 112.34 107.21 39.73 39.91 175.48 179.20 136.51 57.54 58.22 45.03
minSLK_SP 105.23 103.71 44.78 43.69 183.74 180.31 135.73 74.30 73.42 46.73
minSLK_SP(dyn) 110.41 89.67 41.49 49.19 182.40 180.33 147.21 65.50 64.75 52.33
minLFT_SP 93.77 90.40 50.35 48.47 193.79 192.28 138.77 96.29 95.51 52.43
maxRD_SP 111.41 111.95 45.80 43.10 179.31 184.34 140.19 46.94 48.14 45.55
FCFS 103.84 102.19 44.70 43.37 206.82 205.31 145.64 88.46 87.59 44.99
Random 126.65 116.39 43.79 42.61 199.06 195.50 144.67 62.33 60.58 45.93

Table 10. Results for (* | * | minGAP | bwd | maxFlow)-combinations
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together with maxTWK or maxRD_SP achieves best results and outperforms the time based

scheme for MPDI and MD in general. Therefore, it can be stated that in presence of transfer

times, the resource orientation of serial scheduling procedures has a positive effect. 

Moreover, it can be observed that for minimising MPDI for both serial schemes single-project

time oriented rules are once again better than their multi-project counterparts. However, when

it comes to resource oriented rules, the approach, for which the rules are designed, is irrelevant.

MaxRD_MP, maxTWK and maxRD_SP, which perform poorly when no transfer times oc-

curred, produce best results now. The other way around, minLFT_SP, FCFS and minLFT_MP,

which are pretty good rules before, turn out to be some of the worst now. For the parallel

scheme,  minLFT_MP, which is a multi-project rule, appears to be the best rule. Thus, the pref-

erence of single-project rules for minimising MPDI with the parallel scheme cannot be sup-

ported when transfer times occur. Yet, minSLK_SP and minLFT_SP are only slightly worse.

Consequently, independent of the considered approach the rules are intended for, one can say

that minLFT_MP, minLFT_SP and minSLK_SP show a good performance again. Yet,

minSLK_SP(dyn) which is best in the transfer-less test is one of the worst rules in presence of

transfer times. 

The conclusions for minimising MD are quite different. For both versions of the serial scheme

and the parallel scheme, maxTWK and SASP, which already obtain good results without re-

source transfers, and now additionally maxRD_SP outperform other rules again. The SASP rule

is once again the best rule with the parallel and the time based serial scheme.

A final experiment indicates once more

that the remaining components c, d, and

e of the heuristic frameworks, in partic-

ular the transfer-from-rules, have con-

siderable influence on the performance

of the serial schemes and minor influ-

ence on the parallel scheme. This is

achieved by selecting the actual trans-

fer-from rule, transfer-to rule and the

planning direction randomly. Further-

more, in each iteration of the serial

scheme it is decided randomly, if the

normal or extended set of potentially

delivering jobs is determined (random

selection between tbser or rbser). Table 11 summarises the results. Obviously, the serial scheme

performs considerably worse while the parallel one is effected only slightly. 

Further extensive tests not reported here indicate that the transfer-from rule minGAP is the best

transfer-from rule in (almost) all cases and that the influence of the transfer-to rule and the plan-

MPDI [%] MD [days]

job rule   scheme *ser par *ser par

minSASP 538.99 153.8 129.28 39.45
minSLK_MP 627.26 148.04 226.40 45.32
minLFT_MP 524.55 139.19 195.47 41.12
maxTWK 529.78 156.11 159.93 48.03
maxRD_MP 542.84 139.33 177.57 47.16
minSLK_SP 600.84 139.78 220.16 47.70
minSLK_SP(dyn) 573.78 151.58 186.00 53.50
minLFT_SP 526.86 141.42 237.18 52.40
maxRD_SP 612.01 142.43 255.08 46.40
FCFS 483.10 149.34 195.88 49.40
Random 552.84 148.28 178.34 45.71

Table 11. (* | * | Random | Random | Random)-combinations
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ning direction is negligible. Thus, the results presented in Table 10 indeed show the best avail-

able performance of the tested combinations of job rule and scheduling scheme. 

To summarise the most important findings, transfer times should not be neglected when sched-

uling projects, because they have an important influence on objective values. They must be con-

sidered when scheduling a multi-project but the usage of special transfer priority rules is not vi-

tal for the parallel scheme, which is in marked contrast to the results for the serial scheme. More-

over, when transfer times occur, resource based information and, thus, resource orientation of

the scheduling process gain in importance for priority calculation and the following job selec-

tion, especially in the serial scheduling scheme. 

7 Conclusions and future research

In this paper, aspects of resource transfers in multi-project scheduling are considered for the first

time. We present a mathematical model for the resulting new multi-project scheduling problem

with resource transfers. Furthermore, a heuristic framework based on the well-known priority

rule based heuristics for the RCPSP and RCMPSP has been developed and tested. The results

illustrate that resource transfers should not be neglected since they increase the multi-project

duration or the mean project delay whichever is the aim to be minimised by project managers.

Yet, it has been shown that applying sensible transfer scheduling rules is of great importance

for the serial scheduling scheme whereas for the parallel scheme emphasis must be put on se-

lecting appropriate job rules. Especially resource based rules gain in importance. However, the

obtained results are still not satisfying. Deviations from optimum of about 5% on average are

still relatively high. It should be aimed at improving the results by developing new and im-

proved solution procedures as meta heuristics, e .g. genetic algorithms. The presented heuristic

solution procedure can build an essential basis for this.

Finally, other aspects should be taken into account. For this paper, it is assumed that precedence

constraints are defined only within the projects. This assumption holds for multi-project sched-

uling as researched here. However, the developed models and procedures can be transferred to

programme scheduling as well, which requires that precedence constraints between projects be-

come relevant. This can easily be integrated. Moreover, we only analyse time oriented objective

functions in this paper. However, in practice cost aspects play an important role as well. Re-

source transfers increase cost measures. Thus, they should be integrated into the models and so-

lution procedures in next research steps. In a wider context additional considerations should be

remarked. The underlying static environment assumption often does not hold for multi-projects

in practice. In a real multi-project environment, dynamic aspects as stochastically arriving

projects must be considered as well. Furthermore, the changing of project and task portfolios is

frequently caused by change requests. These requests are an even more important reason for the

dynamic nature of projects. Change requests express a formalised wish to change the character-

istics of the project content which the parties to a contract already agreed on. The aspect of
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projects arriving stochastically to the system are already considered in the literature on dynamic

environments. But the way they are dealing with this problem is still not satisfying for applica-

ble project scheduling in the real world. Finally, they are not considering the changing of the

structure of projects that are already in the portfolio. In this case of changing project requisi-

tions, the concept of resources changing between projects becomes even more important.

Last but not least, the absence of uncertainty in multi-project scheduling, e.g. in activity dura-

tions or resource availability, up to now is a point of criticism that should not be neglected. In

single-project scheduling this aspect is already part of research. In multi-project scheduling it

has not been considered yet. However, one can assume that deterministic scheduling deals with

the uncertainty problem by working with expected activity durations or resource requirements

as one-point estimators. Incorporating all aspects of uncertainty into models and solution pro-

cedures will certainly lead to very complex systems, especially since the problem becomes more

complex in the context of multiple interdependent projects.

Despite all the mentioned open questions, a first step to resolve the criticism of the state-of-the-

art research is being made in this paper by considering the sequence- and resource type-depend-

ent resource transfers as an additional aspect to the RCMPSP in a static environment.
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