
Up- and downgrading the 1-center in a network

Elisabeth Gassner ∗

July 17, 2007

Abstract

We study budget constrained network improvement and degrading problems based
on the vertex 1-center problem on graphs: Given a graph with vertex weights and edge
lengths the task is to decrease and increase the vertex weights within certain limits such
that the optimal 1-center objective value with respect to the new weights is minimized and
maximized, respectively. The upgrading (improvement) problem is shown to be solvable in
O(n2) time provided that the distance matrix is given. The downgrading 1-center problem
is shown to be strongly NP-hard on general graphs but can be solved in O(n2) time on
trees. As byproduct we suggest an algorithm that solves the problem of minimizing over
the upper envelope of piecewise linear and monotone functions in O(K) time where K is
the total number of breakpoints.

Keywords: combinatorial optimization, location problem, vertex center, upgrading, down-
grading, network improvement, network modification, complexity, tree.

1 Introduction

Location problems are - due to their practical relevance - among the best investigated prob-
lems in Operations Research. There are two classical models, the median problem (minimize
the sum of weighted distances to the customers) and the center problem (minimize the max-
imum among the weighted distances to the customers). Both problems have received much
attention during the last decades (e. g., see Kariv and Hakimi [15], Mirchandani and Francis
[18] and Drezner and Hamacher [8]). However, less attention was paid to network modification
problems where the goal is to change the parameters (vertex weights and/or edge lengths) in
order to improve or downgrade the network in respect of the optimal location of a facility.

In this paper, we are interested in a variant of the 1-center problem on graphs where
we are allowed to invest a given budget in order to increase or decrease the vertex weights.
We distinguish two problems, the improvement (or upgrading) problem and the downgrading
(or degrading) problem: In the improvement problem we are allowed to decrease the vertex
weights within certain limits such that the optimal 1-center objective value after the weight
modification is minimized. This means, we improve the network before deciding where the
center should be located. In the downgrading problem we have to increase the vertex weights,

∗gassner@opt.math.tu-graz.ac.at. Department of Optimization and Discrete Mathematics, Graz University

of Technology, Steyrergasse 30, A-8010 Graz, Austria.

This research is partially supported by the Austrian Science Fund Project P18918-N18 Efficiently solvable

variants of location problems.

1

i. e., there is an adversary who increases the vertex weights within certain limits such that the
optimal 1-center objective value after the weight modification is maximized.

Both problems can be seen as bilevel problems with an actor who changes the vertex
weights and a reactor who locates the center. While in the improvement model both decision
makers, the actor and reactor, have the same goal, i. e., to minimize the maximum weighted
distance, in the downgrading model the goals of the decision makers are conflicting.

1.1 Related Problems

Network up- and downgrading versions have been applied to several classical combinatorial
optimization problems. Fulkerson and Harding [10] and Hambrusch and Tu [12] investigated
how to maximally reduce the length of a shortest and longest path, respectively, by edge
length modifications. Phillips [19] introduced a flow interdiction problem, i. e., the problem
of attacking edges to reduce the maximum flow value. Frederickson and Solis-Oba [9], Drang-
meister et al. [7] and Krumke et al.[16] investigated network improvement and degrading
versions for the minimum spanning tree and Steiner tree problem. A general framework for
up- and downgrading versions of 0/1-combinatorial optimization problems was investigated
by Burkard, Klinz and Zhang [3] and Burkard, Lin and Zhang [4].

Network modification problems are closely related to reverse problems where the task is
to maximally improve a prespecified solution within certain limits. Observe that for reverse
problems a feasible solution is given while this is not the case for up- and downgrading prob-
lems. Due to the large number of publications in this area, we restrict ourselves to location
problems. Burkard, Gassner, and Hatzl [1] proved NP-hardness of the reverse 1-median prob-
lem with edge length modification on general graphs and suggested a linear time algorithm
for the problem on a cycle. In [2] the same authors presented an O(n log n) time algorithm for
the reverse 2-median problem on trees as well as the reverse 1-median problem on unicyclic
graphs. Zhang, Yang and Cai [20, 21] investigated the problem of how to shorten the lengths
of edges at minimum cost (measured in different norms) such that the shortest distances be-
tween the vertices are within given bounds. For the case of the ℓ∞-norm a strongly polynomial
algorithm is developed while for ℓ1- and ℓ2-norm the problem is even hard to approximate.

Finally, the class of inverse problems should be mentioned. The goal of an inverse location
problem is to modify parameters at minimum cost such that a given feasible solution becomes
optimal. Several papers deal with inverse location problems like the inverse p-median problem
on a graph and the inverse 1-median problem in the plane with ℓ1- or ℓ∞-norm and vertex
weight modification (Burkard, Pleschiutschnig and Zhang [5]). Gassner [11] proved NP-
hardness of the inverse 1-maxian problem with variable edge lengths (even on series-parallel
graphs) and suggested an O(n log n) time algorithm for this problem on a tree. And Cai,
Yang and Zhang [6] proved that the inverse center problem with edge length modification
is NP-hard. The reader is referred to the comprehensive survey on inverse combinatorial
optimization by Heuberger [14].

1.2 Organization and contribution of this paper

In this paper, we investigate up- and downgrading versions of the 1-center problem.
The (vertex) 1-center problem is given by a graph G = (V,E) with positive edge lengths

ℓe ∈ R+ for e ∈ E and positive vertex weights wv ∈ R+ for v ∈ V . The task is to find a vertex

2

x ∈ V which minimizes
f(x) = max{wvd(v, x) | v ∈ V }

where d(i, j) denotes the shortest distance between the vertices i and j with respect to edge
length ℓ. The optimal objective value with respect to vertex weights w is denoted by

z(w) = min
x∈V

max{wvd(v, x) | v ∈ V }.

In Section 2, we give a short introduction to the 1-center problem and related problems.
The up- or downgrading 1-center problem is given by an instance of the 1-center problem

and in addition we are given cost coefficients cv ∈ R+, bounds uv ∈ Rv for the vertices v ∈ V
and a total budget B.

A vertex modification δ = (δv)v∈V of the up- or downgrading problem is called feasible if
δ ∈ ∆ with

∆ =

{

δ ∈ R
|V |

∣

∣

∣

∣

∑

v∈V

cvδv ≤ B and 0 ≤ δv ≤ uv∀v ∈ V

}

.

The upgrading 1-center problem, Up1Center for short, is to solve

min
δ∈∆

z(w − δ) = min
δ∈∆

min
x∈V

max{(wv − δv)d(v, x) | v ∈ V }.

The downgrading 1-center problem, Down1Center for short, is to solve

max
δ∈∆

z(w + δ) = max
δ∈∆

min
x∈V

max{(wv + δv)d(v, x) | v ∈ V }.

In Section 3, we deal with Up1Center and suggest an O(n2) time algorithm for this prob-
lem on general graphs provided that the distance matrix is given. Section 4 is dedicated to
Down1Center. We show that the problem is in general NP-hard (Subsection 4.1) and suggest
an efficient algorithm for trees that runs in O(n2) time (Subsection 4.2).

1.3 Notation

Throughout this paper, we will use the following notation: Let G = (V,E) be a graph. Then
n = |V | is the number of vertices and m = |E| is the number of edges.

Let T = (V,E) be a tree and (i, j) ∈ E. Then Ti(i, j) denotes the subtree that contains
vertex i after deleting edge (i, j). If no confusion is possible, we write v ∈ Ti(i, j) instead of
v ∈ V (Ti(i, j)).

A function f(x) : X → Y is called unimodal if there exists a value y such that either
f is monotonically increasing for x ≤ y and monotonically decreasing for x ≥ y or f is
monotonically decreasing for x ≤ y and monotonically increasing for x ≥ y.

2 A short survey of the 1-center problem

The 1-center problem is a special case of the p-center problem where the task is to find a set
S ⊂ V of at most p elements which minimizes

max
v∈V

min
x∈S

wvd(v, x).

3

Observe that even the unweighted p-center problem (where wv = 1 for all v ∈ V) is
strongly NP-hard since it can easily be transformed to a dominating set problem.

Based on the property that the 1-center objective function is convex on every path, the
1-center problem on trees can be solved in linear time (Megiddo [17]). On general graphs the 1-
center problem can be solved by determining the 1-center objective value for every vertex and
then choosing the best one. Observe that the bottleneck of this procedure is the computation
of the distance matrix (e. g., using Floyd-Warshall’s algorithm which runs in O(n3) time).

More attention was paid to so-called absolute center problems where the center may be
located anywhere on the graph, i. e., on vertices or in the interior of edges. An absolute 1-
center can be found in O(mn log n) time provided that the distance matrix is available (Kariv
and Hakimi [15]). The following lemma is crucial for solving the 1-center in a tree:

Lemma 2.1 (Kariv and Hakimi [15]). Let v ∈ V and let s, t ∈ V such that s and t
lie in different subtrees Ta(a, v) and Tb(b, v) (a 6= b) and let w(s)d(s, v) = w(t)d(t, v) =
maxv′∈V w(v′)d(v′, v). Then v is the 1-center.

Based on this lemma Kariv and Hakimi developed an O(n log n) time algorithm which was
improved to a linear time algorithm by Megiddo [17].

Next we discuss some properties of the 1-center in a graph that will be of interest for the
investigations of up- and downgrading versions of center problems. We will mainly focus on
necessary and sufficient conditions for the optimal objective value to be at most and at least
a threshold L, respectively.

Let us start with an upper bound on the optimal objective value.

Lemma 2.2. Let (G, ℓ,w) be an instance of the 1-center problem and let L ∈ R+. Then

min
x∈V

f(x) ≤ L

if and only if there exists a vertex x ∈ V such that wvd(v, x) ≤ L for all v ∈ V .

The above lemma is trivial. However, we mention it in order to point out the contrast to
the lower bound.

Lemma 2.3. Let (G, ℓ,w) be an instance of the 1-center problem and let L ∈ R+. Then

min
x∈V

f(x) ≥ L

if and only if for every v ∈ V there exists a vertex q(v) ∈ V such that

wq(v)d(v, q(v)) ≥ L.

Proof. There exists a solution x ∈ V with minx∈V f(x) ≥ L if and only if f(x) ≥ L for all
x ∈ V and hence maxv∈V wvd(v, x) ≥ L for every x ∈ V . And this is true if and only if for
every x ∈ V there exists a vertex q(x) ∈ V with wq(x)d(q(x), x) ≥ L.

Lemma 2.3 implies a kind of anti-domination property of the 1-center problem. There
exists a feasible solution with objective value at least L if and only if for every vertex v ∈ V
there exists another vertex q(v) ∈ V that is far away. If we ask for a set S of vertices such
that for every v ∈ V there exists a vertex q(v) ∈ S such that q(v) is near to v then we
get a generalized domination problem. Due to this relationship, a vertex v ∈ V is called

4

3

21

4

1

1

1

1

2

2

Figure 1: An instance of the 1-center problem where every vertex is a anti-domination vertex
for L = 2.

q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)q∗(j) i j q∗(i)

Figure 2: An illustration for the proof of Lemma 2.4.

anti-dominated by q(v) ∈ V if wq(v)d(q(v), v) ≥ L holds and q(v) is called anti-domination
vertex.

Observe that there may exist a threshold L such that every vertex is a anti-domination
vertex. This is illustrated in the following example:

Consider the graph of Figure 1. The edge lengths are given in the figure, all vertex weights
are equal to 1 and L = 2. Observe that w2d(2, 1) = 1 = w3d(3, 1) and w4d(4, 1) = 2 ≥ L.
Therefore, vertex 1 is uniquely anti-dominated by vertex 4. By similar arguments, we see that
vertex 2 is only anti-dominated by vertex 3, vertex 3 is only anti-dominated by vertex 2 and
finally vertex 4 is only anti-dominated by vertex 1. Hence, the set of anti-domination vertices
is unique and contains all vertices.

However, if the underlying graph is a tree then there exists a set of two vertices that
anti-dominate the rest of vertices:

Lemma 2.4. Let (G, ℓ,w) be an instance of the 1-center problem where G = (V,E) is a tree
and let L ∈ R+. Then

min
x∈V

f(x) ≥ L

if and only if there exist two vertices s, t ∈ V such that

max{wsd(i, s), wtd(i, t)} ≥ L for every i ∈ V.

Proof. Clearly, if there are two vertices s, t ∈ V that anti-dominate all vertices, then every
vertex is anti-dominated and hence Lemma 2.3 implies that the optimal objective value is at
least L.

Hence, we assume that minx∈V f(x) ≥ L, i. e., every vertex v is anti-dominated by another
vertex q(v) ∈ V . Let k ∈ V and let q∗(k) be a vertex of maximum weighted distance to k,
i. e.,

wq∗(k)d(k, q∗(k)) = max{wvd(k, v) | v ∈ V }.

5

Since k ∈ V is anti-dominated by assumption, we conclude that k is also anti-dominated by
q∗(k), i.e.,

wq∗(k)d(k, q∗(k)) ≥ L

for every k ∈ V . Now let

L′ := wq∗(i)d(i, q∗(i)) = min{wq∗(k)d(k, q∗(k)) | k ∈ V }.

Then
L ≤ L′ = wq∗(i)d(i, q∗(i)) ≤ wq∗(k)d(k, q∗(k))

holds for all vertices k ∈ V .
Consider the path from i to q∗(i) and let vertex j be adjacent to i on this path. We will

prove that q∗(i) and q∗(j) anti-dominate all vertices. This means, we have to show that

either wq∗(i)d(k, q∗(i)) ≥ L or wq∗(j)d(k, q∗(j)) ≥ L

for every k ∈ V .
We partition the set of vertices into two subsets. Let Ti(i, j) = (Vi, Ei) and Tj(i, j) =

(Vj , Ej). Then every vertex is either in Vi or in Vj.
Let k ∈ Vi, then by definition q∗(i) ∈ Vj and therefore d(k, q∗(i)) = d(k, i) + d(i, q∗(i)).

Hence, we get

wq∗(i)d(k, q∗(i)) = wq∗(i) (d(k, i) + d(i, q∗(i))) ≥ wq∗(i)d(i, q∗(i)) = L′ ≥ L.

It remains to show that q∗(j) ∈ Vi. Assume that q∗(j) ∈ Vj then

L′ = wq∗(i)d(i, q∗(i)) ≥ wq∗(j)d(i, q∗(j))

= wq∗(j) (d(i, j) + d(j, q∗(j)))

> wq∗(j)d(j, q∗(j)).

Observe that the first inequality holds because of the maximality property of q∗. The above
statement contradicts the minimality of vertex i and proves that q∗(j) ∈ Vi. Let k ∈ Vj then
we have d(k, q∗(j)) = d(k, j) + d(j, q∗(j)) and

wq∗(j)d(k, q∗(j)) = wq∗(j) (d(k, j) + d(j, q∗(j))) ≥ wq∗(j)d(j, q∗(j)) ≥ L.

Hence, every vertex is either anti-dominated by s = q∗(j) or by t = q∗(i) which proves the
lemma.

The previous lemma as well as the additional properties used in its proof immediately imply
that minx∈V f(x) ≥ L if and only if there exists an edge (i, j) ∈ E and vertices s ∈ Ti(i, j),
t ∈ Tj(i, j) such that

wsd(s, j) ≥ L and wtd(i, t) ≥ L.

Therefore, the following theorem follows:

Theorem 2.5. Let (G, ℓ,w) be an instance of the 1-center problem where G = (V,E) is a
tree. Then the optimal objective value is equal to

max
(i,j)∈E

s∈Ti(i,j)
t∈Tj(i,j)

min{wsd(s, j), wtd(i, t)}.

6

Observe that Theorem 2.5 provides a dual formulation of the vertex 1-center problem
(which is a minimization problem). For the absolute 1-center problem a dual formulation was
already known before. It is of the form

max
i,j∈V

wiwj

wi + wj

d(i, j).

It should be mentioned that Theorem 2.5 and Lemma 2.1 are closely related. Nevertheless,
the vertices s and t of Theorem 2.5 and Lemma 2.1 are not the same and hence our theorem
is not a direct consequence of the lemma. Consider a path of four vertices T = (V,E) with
V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4)} and let ℓ(1, 2) = ℓ(3, 4) = 3 and ℓ(2, 2) = 4.
Moreover, w1 = w4 = 1 and w2 = w3 = 2. Then the midpoint x of edge (2, 3) is the absolute
1-center and the vertices 1 and 4 have maximum weighted distance to x (s = 1, t = 4 for the
criterion of Lemma 2.1). On the other hand, the vertices 2 and 3 are vertex 1-centers and
vertex 3 has maximum weighted distance to 2 and vertex 2 has maximum weighted distance
to 3 (s = 2, t = 3 for the criterion of Theorem 2.5).

Finally, it should be mentioned that for the special case of trees a lower bound on the
optimal vertex 1-center objective value can be verified by fixing a vertex and checking the
weighted distances to it while an upper bound is verified by fixing an edge and checking the
weighted distances to its endpoints.

3 Upgrading the 1-center by vertex weight modification

This section is dedicated to the network improvement problem Up1Center. The task of
Up1Center is to modify the vertex weights within certain limits in such a way that the opti-
mal 1-center objective value with respect to the new vertex weights is minimized. Recall that
Up1Center is defined as follows:

min
δ∈∆

min
x∈V

max
v∈V

{(wv − δv)d(x, v)}.

Clearly, we can reverse the first two minimization tasks and get an equivalent problem

min
x∈V

min
δ∈∆

max
v∈V

{(wv − δv)d(x, v)}.

Let x ∈ V be a fixed vertex, then

P(x) min
δ∈∆

max
v∈V

{(wv − δv)d(x, v)}

is the problem of maximally improving the potential center location x ∈ V . Problem P(x) is a
reverse center problem where the goal is to maximally improve a given location within certain
limits. Since for upgrading problems the locations are not fixed a priori, we have to try out
all locations, maximally improve them and take the best choice, i. e., Up1Center is equivalent
to

min
x∈V

h(x)

where h(x) is the optimal objective value of P(x). Observe that the optimal 1-center before
changing the vertex weights and the optimal location after an optimal weight modification is

7

1

10

1

10

2

1

1

1

3

10

1

10

4

1

1

1

wv

cv

uv

1 1 1

Figure 3: Instance of Up1Center where h(x) is not unimodal along a path.

in general not the same. This is the reason why it is not sufficient to solve only P (x∗) where
x∗ is a 1-center with respect to the original weights w. Moreover, h(x) is not unimodal along
a path. This is shown by the following example: Consider the instance given in Figure 3 with
B = 8.

The optimal solutions of P(x) for all vertices x ∈ V are given in the following table.

optimal solution optimal objective value

P(1) δ3 = 8 4
P(2) δ1 = δ3 = 4 6
P(3) δ1 = 8 4
P(4) δ1 = 7, δ3 = 1 9

It can be seen that vertex 2 is the unique 1-center before the weight modification while
either vertex 1 or vertex 3 are 1-centers after an optimal weight modification. Moreover, the
optimal objective value is not unimodal along a path.

Therefore, we determine h(x) for every x ∈ V . Let us start with the following characteri-
zation of an optimal solution of P(x).

Lemma 3.1. Let δ∗ be an optimal solution of P(x) and let h(x) = L∗. Then (wv−δ∗v)d(v, x) =
L∗ if wvd(v, x) ≥ L∗ and δ∗v = 0 otherwise.

Hence, the problem can be solved by sorting the vertices according to wvd(v, x), i. e.,
wv1

d(v1, x) ≥ wv2
d(v2, x) ≥ · · · ≥ wvnd(vn, x). Then decrease the weight of vertex v1 until

either the upper bound uv1
is reached, the whole budget is used or (wv1

− δv1
)d(v1, x) =

wv2
d(v2, x). If one of the first two stop criteria occurs then an optimal solution is found.

Otherwise decrease simultaneously the weights of v1 and v2 until one of the upper bounds is
reached, the whole budget is used or (wv1

−δv1
)d(v1, x) = wv3

d(v3, x) and (wv2
−δv2

)d(v2, x) =
wv3

d(v3, x), and so on. Clearly, this algorithm solves problem P(x) in O(n2) time because
there are at most n iterations and in iteration i we have to change i weights.

However, we can solve the problem even in linear time: For every L ∈ R+ we define the
following solution:

δv(L) =

{

wv −
L

d(v,x) if wvd(v, x) ≥ L

0 else
.

According to Lemma 3.1, δ(h(x)) is an optimal solution of problem P(x). Therefore P(x) is
equivalent to the problem of finding the smallest value L such that δ(L) is a feasible solution,
i. e., satisfies the upper bounds and budget constraint. Observe that if δ(L) is feasible then
δ(L′) is feasible for all L′ ≥ L.

8

Assume that we know a lower and upper bound on h(x), i. e., h(x) ∈ [a, b]. Moreover, let

I ′ = {v ∈ V | wvd(v, x) ≥ b}

α′ =
∑

v∈I′

cvwv

β′ =
∑

v∈I′

cv

d(v, x)
.

We assume that

max
v∈I′

(wv − uv)d(v, x) ≤ a (1)

α′ − B

β′
≤ a (2)

holds. Observe that we know that the weights of all vertices in I ′ have to be changed in an
optimal solution. Therefore, the upper bounds for these vertices have to be satisfied and the
budget we need for these vertices must not exceed B.

Inequality (1) and h(x) ≥ a ensure that

δv(h(x)) = wv −
h(x)

d(v, x)
≤ uv

holds for all v ∈ I ′.
Now we investigate the budget we need for all vertices in I ′. Let L ∈ [a, b] then

B′(L) =
∑

v∈I′

cvδv(L) =
∑

v∈I′

cvwv − L
∑

v∈I′

cv

d(v, x)
= α′ − Lβ′

is equal to the investment for vertices in I ′. Due to inequality (2), we conclude that B′(L) =
α′ − Lβ′ ≤ α′ − aβ′ ≤ B holds for all a ≤ L ≤ b.

The goal is to decide whether L ≤ h(x) or L ≥ h(x). If δ(L) is feasible then h(x) ≤ L
otherwise h(x) ≥ L. Hence, the goal is to check the feasibility of δ(L). Define

I ′′ := {v ∈ V \ I ′ | wvd(v, x) ≥ L}

the set of all vertices whose weights have to be changed for δ(L) (for a ≤ L ≤ b) in addition
to those that are in I ′. Now we test the feasibility of solution δ(L):

1. wv −
L

d(v,x) ≤ uv for all v ∈ I ′′

2.
∑

v∈I′′ cv

(

wv −
L

d(v,x)

)

+ (α′ − Lβ′) ≤ B.

Observe that the upper bound constraint of all vertices v ∈ I ′ is satisfied. The total cost
of solution δ(L) consists of the cost of vertices in I ′ ∪ I ′′ where B′(L) is the part of vertices in
I ′.

If δ(L) is not feasible then h(x) ≥ L. But then the weights of all vertices v ∈ V \ (I ′ ∪ I ′′)
remain unchanged in an optimal solution. Therefore we can delete all these vertices (set

9

V = I ′ ∪ I ′′). Now assume that δ(L) is feasible and therefore h(x) ≤ L. Then the weight of
all vertices in I ′′ are changed in an optimal solution. Therefore, we can merge I ′ and I ′′ and
create a new instance:

I ′ = I ′ ∪ I ′′

α′ = α′ +
∑

v∈I′′

cvwv

β′ = β′ +
∑

v∈I′′

cv

d(v, x)
.

a = max

{

a,max
v∈I′′

(wv − uv)d(v, x),
α′ − B

β′

}

b = L

Observe that the new instance again fulfills the inequalities (1) and (2). This procedure is
now iterated until all undeleted vertices are in I ′ because then obviously a = h(x).

Hence, we start with a = 0, b = maxv∈V wvd(v, x) + 1 and I ′ = ∅. In every iteration the
test value L is chosen as the median of {wvd(v, x) | v ∈ V \ I ′}. Let k = |V \ I ′| then it takes
O(k) time to determine the median, check the feasibility of δ(L) and to update the instance.
If h(x) ≥ L then all vertices in V \ (I ′ ∪ I ′′) are deleted, i. e., in the new instance there are at
most k

2 vertices in V \ I ′. If h(x) ≤ L then all vertices in I ′′ change to I ′ hence in the new

instance there are again at most k
2 vertices in V \ I ′. Let T (k) be the time needed to solve an

instance with k vertices in V \ I ′ then

T (k) = O(k) + T

(

k

2

)

and hence T (n) = O(n).
Since we have to determine h(x) for all x ∈ V , we get an overall running time of O(n2).

Theorem 3.2. Upgrading the 1-center problem can be solved in O(n2) time provided that the
distance matrix is given.

4 Downgrading the 1-center by vertex weight modification

In this section, we deal with increasing the vertex weights within certain bounds and fulfilling
a budget constraint such that the optimal 1-center objective value after the modification is
maximized. It is shown that the problem is in general NP-hard but for the special case of
trees there exists a polynomial time algorithm that solves Down1Center in O(n2) time.

4.1 NP-hardness proof for general graphs

In this section, we show that Down1Center is strongly NP-hard on general graphs. Lemma
2.4 already suggests a reduction from the total domination problem, which is known to be
NP-hard even on bipartite, split, line, circle graphs and several further graph classes (see
Haynes, Hedetniemi and Slater [13] for a comprehensive survey).

An instance of the total domination problem is given by a (simple) graph G = (V,E) and
a natural number K. The task is to find a total dominating set of cardinality at most K, i. e.,

10

find a subset of vertices S ⊆ V such that for every i ∈ V there exists a vertex j ∈ S such that
(i, j) ∈ E. Observe that in contrast to the classical dominating set problem we have to make
sure that all vertices within the set S are dominated by another vertex in S. This means,
vertices in S do not dominate themselves.

Let G = (V,E) and K ∈ N be an instance of the total dominating set problem. Then Ḡ =
(V, Ē) denotes the complement of G. We construct an associated instance of Down1Center in
the following way: Down1Center should be solved on graph Ḡ = (V, Ē), all edge lengths are
equal to one and all vertex weights are equal to zero. Moreover, cv = uv = 1 for all v ∈ V
and B = K. Observe that the distance d(i, j) between two vertices i, j ∈ V is equal to 1 if
(i, j) ∈ Ē ((i, j) /∈ E) and at least 2 if (i, j) /∈ Ē ((i, j) ∈ E).

We show that there exists a total dominating set of cardinality at most K if and only if
there exists a feasible solution of the associated Down1Center problem with objective value
at least 2.

Let S be a total dominating set of cardinality at most K then set δv = 1 if v ∈ S and
0 otherwise. Clearly δ is a feasible solution of Down1Center. For every i ∈ V there exists a
vertex j ∈ S with (i, j) ∈ E, i. e., there exists a vertex j with modified weight wj + δj = 1
such that (i, j) /∈ Ē. Therefore, max{(wj + δj)d(i, j) | j ∈ V } ≥ 2 for every i ∈ V and hence,
we have a feasible solution of Down1Center with objective value at least 2.

Now let δ be a feasible solution of Down1Center with objective value at least 2. We
conclude that for every i ∈ V there exists a vertex j ∈ V such that (wj + δj)d(i, j) ≥ 2.
Obviously, i 6= j, δj = 1 and (i, j) /∈ Ē because otherwise either (wj + δj) = 0 or d(i, j) ≤ 1.
Let S = {j ∈ V | δj = 1}. Clearly, |S| ≤ B and for every i ∈ V there exists a vertex j ∈ S
with (i, j) ∈ E.

Theorem 4.1. Downgrading the 1-center by vertex weight modification is in general strongly
NP-hard.

Observe that due to our construction of the reduction above Down1Center is NP-hard on
all graph classes G such that the total domination problem is NP-hard on the complement
graphs of G.

4.2 An efficient algorithm for trees

In this subsection a quadratic time algorithm for Down1Center on trees is developed.
Let δ be a feasible solution of Down1Center then Theorem 2.5 implies that the associated

optimal objective value with respect to the new weights w + δ is equal to

max
(i,j)∈E

s∈Ti(i,j)
t∈Tj(i,j)

min{(ws + δs)d(s, j), (wt + δt)d(i, t)}.

Therefore, Down1Center on trees can be rewritten in the following way

max
δ∈∆

max
(i,j)∈E
s∈Ti(i,j)
t∈Tj(i,j)

min{(ws + δs)d(s, j), (wt + δt)d(i, t)}.

Obviously, this is equivalent to

11

1

1

1

20

2

1

1

20

3

1

1

20

4

1

1

20

5

1

1

20

6

1

1

20

wv

cv

uv

13 3 1 13 1

Figure 4: Instance of Down1Center with B = 20.

max
(i,j)∈E

max
δ∈∆

s∈Ti(i,j)
t∈Tj(i,j)

min{(ws + δs)d(s, j), (wt + δt)d(i, t)}.

The last formulation of Down1Center on trees immediately leads to the following algorithm:
For every edge (i, j) ∈ E solve the inner maximization problem. Finally, take the solution
associated to that edge that leads to the maximal objective value. Therefore, our task is to
solve a series of the following subproblem for fixed (i, j) ∈ E:

P(i, j) max
δ∈∆

s∈Ti(i,j)
t∈Tj(i,j)

min{(ws + δs)d(s, j), (wt + δt)d(i, t)}

Let us start with two examples. Consider a path with four vertices V = {1, 2, 3, 4} with
cv = wv = 1 for all v ∈ V , u1 = u2 = 1, u3 = u4 = 6 and ℓ(1, 2) = 2, ℓ(2, 3) = ℓ(3, 4) = 1.
Moreover, the total budget B = 12. Before modifying the vertex weights vertex 2 is the unique
1-center with objective value equal to 2. Now fix each edge and solve P(i, j):

• P(1,2): Since u1 = 1 and vertex 1 is the only vertex in T1(1, 2), we conclude that the
optimal objective value of P(1,2) is equal to 4.

• P(2,3): It is straightforward to verify that δ1 = 1 and δ4 = 6 is an optimal solution and
hence we have 6 as optimal objective value.

• P(3,4): Since 3 ∈ T3(3, 4) and 4 ∈ T4(3, 4) and both of these two vertices are allowed to
be increased by 6 units, we get 7 as optimal objective value.

We conclude that 7 is the optimal objective value of Down1Center on this instance with
δ3 = δ4 = 6. The new vertex weights are of the form w̃1 = 1 = w̃2 and w̃3 = 7 = w̃4.
Therefore vertex 3 and vertex 4 are 1-centers after an optimal vertex weight modification.

The above example shows that the optimal 1-center will change after an optimal modi-
fication of the vertex weights. Next, consider the instance of Down1Center given in Figure
4:

Vertex 3 is the (vertex) 1-centers with respect to weight w and the absolute 1-center is on
edge (2, 3). It is a well-known fact that the absolute 1-center lies on an edge which is adjacent
to a vertex 1-center. If we consider the downgrading version for the absolute 1-center problem
then (since all weights and cost coefficients are equal) it is an optimal solution to increase the
weight of vertex 1 and of vertex 6 by 10 units each. The (downgraded) absolute 1-center with
respect to the new weights lies on edge (2, 3).

Now let us consider the downgrading version for the vertex 1-center problem: We solve
P(i, j) for every edge (i, j) and get the following optimal solutions for the subproblems:

12

1

2

2

4

3

3

4

1
1 2 3

Figure 5: Example: Illustration

optimal solution optimal objective value

P(1, 2) δ1 = 29
2 , δ6 = 11

2 201.5
P(2, 3) δ1 = 181

17 , δ6 = 159
17 ≈ 186.4

P(3, 4) δ1 = 149
16 , δ6 = 171

16 ≈ 175.3
P(4, 5) δ1 = 6, δ6 = 14 210
P(5, 6) δ6 = 20 21

First, we can see that the optimally downgraded vertex 1-center is equal to vertex 4 and
5, i. e., the downgraded absolute 1-center is not adjacent to the downgraded vertex 1-center.
Moreover, the optimal objective value for the subproblem P(i, j) are not unimodal along a
path.

Let us start with investigating subproblem P(i, j). Observe that a feasible solution of
P(i, j) is a triple (δ, s, t). Let us start with some observations about the structure of an
optimal solution of P(i, j):

1. (Obs.1) We may assume without loss of generality that ckuk ≤ B for all k ∈ V . Other-

wise, we may use the modified bounds ũk = min
{

uk,
B
ck

}

.

2. (Obs.2) There exists an optimal solution (δ, s, t) such that at most two weights are
changed, i. e., δk = 0 for all k 6= s, t.

3. (Obs.3) There exists an optimal solution (δ, s, t) of P(i, j) such that either csδs+ctδt = B
or δs = us, δt = ut and csus + ctut < B. This can be proved by assuming that
csδs + ctδt < B. If δs < us then δs can be increased without violating the feasibility of
the solution while the new solution is still optimal. The same can be done for δt. This
procedure is repeated until either csδs + ctδt = B or δs = us and δt = ut.

In order to solve P(i, j), we have to decide about the amount of investment into subtree
Ti(i, j) and Tj(i, j). As soon as we know the amount of investment into the two subtrees, we
invest into these vertices that are most valuable. Therefore, we introduce a profit function
with parameter λ where λ represents the amount of investment into subtree Ti(i, j):

pk(λ) :=

{

(wk + min{uk,
λ
ck
})d(k, j) if k ∈ Ti(i, j)

(wk + min{uk,
B−λ
ck

})d(i, k) if k ∈ Tj(i, j)

for k ∈ V .
Consider the instance given in Figure 5 with B = 10 and c1 = c2 = 1, c3 = 2, c4 = 5 and

u1 = 3, u2 = u3 = 4 and u5 = 2. An illustration of the corresponding profit functions for
fixed edge (i, j) = (2, 3) is given in Figure 6.
Observe that the solution (δ, s, t) with

δs = min

{

us,
λ

cs

}

δt = min

{

ut,
B − λ

ct

}

13

32 4 10

p1(λ)
p2(λ)

p3(λ)
p4(λ)

Figure 6: Example: Illustration of the functions pk(λ).

and δk = 0 for all k 6= s, t is a feasible solution for every 0 ≤ λ ≤ B, s ∈ Ti(i, j) and t ∈ Tj(i, j).
This is true because the upper bounds are fulfilled and

csδs + ctδt ≤ cs
λ

cs
+ ct

B − λ

ck

= B.

Hence, given a triple (λ, s, t), we get an associated feasible solution of P(i, j) with objective
value

min{ps(λ), pt(λ)}.

Now let 0 ≤ λ ≤ B then we define

s(λ) := arg max
s∈Ti(i,j)

ps(λ)

t(λ) := arg max
t∈Tj(i,j)

pt(λ)

α(λ) := ps(λ)(λ)

β(λ) := pt(λ)(λ)

Observe that given a parameter value λ then s(λ) ∈ Ti(i, j) and t(λ) ∈ Tj(i, j), respectively,
are the most valuable vertices if λ is the investment into Ti(i, j) and B − λ is the investment
into Tj(i, j). The functions α(λ) and β(λ) are introduced in order to simplify the notation.
First we will reformulate P(i, j) as optimization problem over α(λ) and β(λ) and finally these
two functions are again translated in terms of pk(λ). Observe that α(λ) is monotonically
increasing since all functions pk(λ) for k ∈ Ti(i, j) are increasing while β(λ) is monotonically
decreasing. See Figure 7 for an illustration of α(λ) and β(λ).

Obviously, if 0 ≤ λ ≤ B and s ∈ Ti(i, j), t ∈ Tj(i, j) we have

min{ps(λ), pt(λ)} ≤ min{α(λ), β(λ)}. (3)

It remains to show that we may restrict ourselves to the optimization over min{α(λ), β(λ)}.
First we show that there exists a value 0 ≤ λ ≤ B such that the associated feasible solution
for s(λ) and t(λ) is optimal.

14

32 4 10

α(λ)

β(λ)

Figure 7: Illustration of the profit functions pk(λ).

Lemma 4.2. Let (δ, s, t) be an optimal solution such that Obs. 3 holds. Then there exists a
parameter value 0 ≤ λ ≤ B such that

(ws + δs)d(s, j) = ps(λ) and (wt + δt)d(i, t) = pt(λ).

Proof. Set λ = csδs. Since Obs. 3 holds, we distinguish the following two cases:

1. Case: csδs + ctδt = B
Observe that λ = csδs ≤ csus and B − λ = ctδt ≤ ctut holds. Therefore, min{us,

λ
cs
} =

λ
cs

= δs and min{ut,
B−λ

ct
} = B−λ

ct
= δt.

2. Case: δs = us, δt = ut and csus + ctut < B
Then λ = csus and B−λ = B−csus > ctut holds and we conclude min{us,

λ
cs
} = us = δs

and min{ut,
B−λ

ct
} = ut = δt.

Obviously the above result immediately follows.

Combining the previous results, we get the following implications: Let z∗ be the optimal
objective value of P(i, j). Then there exists an optimal solution (δ, s, t) which satisfies Obs. 3.
Due to Lemma 4.2 there exists a value λ′ ∈ [0, B] with

(ws + δs)d(s, j) = ps(λ
′) and (wt + δt)d(i, t) = pt(λ

′).

Therefore,
z∗ = min{ps(λ

′), pt(λ
′)}.

According to (3) we know that

z∗ = min{ps(λ
′), pt(λ

′)} ≤ min{α(λ′), β(λ′)}.

But since there exists a feasible solution with objective value min{α(λ′), β(λ′)} and z∗ is
the optimal objective value we conclude

z∗ = min{α(λ′), β(λ′)}.

15

Since there exists a feasible solution with objective value min{α(λ), β(λ)} for every 0 ≤ λ ≤ B
it follows that

z∗ ≥ min{α(λ), β(λ)}

holds for every 0 ≤ λ ≤ B. We conclude that

z∗ = max
0≤λ≤B

min{α(λ), β(λ)}. (4)

Observe that due to the monotonicity and continuity of α and β there exists an intersection
point of α(λ) and β(λ) in [0, B] if and only if α(0) ≤ β(0) and α(B) ≥ β(B).

Lemma 4.3. The optimal objective value z∗ of P(i, j) is of the form

z∗ =

max
s∈Ti(i,j)

ps(B) if max
s∈Ti(i,j)

ps(B) ≤ max
t∈Tj(i,j)

pt(B)

max
t∈Ti(i,j)

pt(0) if max
s∈Ti(i,j)

ps(0) ≥ max
t∈Tj(i,j)

pt(0)

min
0≤λ≤B

max
k∈V

pk(λ) otherwise

Before proving this lemma, we try to get an intuition about its statement. If the total
investment is put into Ti(i, j) and still the weighted distance from the most valuable vertex
in Ti(i, j) to j is at most the weighted distance from the best vertex in Tj(i, j) then the best
choice is to invest the whole budget into Ti(i, j) because the minimum is always attained by a
vertex in Ti(i, j). The second case reflects the reverse situation to the first one, i. e., the whole
budget is used for Tj(i, j) but still the minimum is attained by a vertex in Tj(i, j). Finally, if
the minimum may be attained by a vertex in Ti(i, j) or by a vertex in Ti(i, j) then we have
to minimize over the upper envelope of the piecewise linear functions pk(λ).

Proof. Recall that α(λ) is monotonically increasing while β(λ) is monotonically decreasing.
We distinguish two cases:

1. Case: There exists a λ′ ∈ [0, B] such that α(λ′) = β(λ′)
Then λ′ is an optimal solution of P(i, j) because

min{α(λ), β(λ)} =

{

α(λ) ≤ α(λ′) if λ ≤ λ′

β(λ) ≤ β(λ′) if λ ≥ λ′

But due to the monotonicity of α and β we have

max{α(λ), β(λ)} =

{

α(λ) ≥ α(λ′) if λ ≥ λ′

β(λ) ≥ β(λ′) if λ ≤ λ′

Therefore, z∗ = min0≤λ≤B max{α(λ), β(λ)} holds. Using the definition of α and β we
get max{α(λ), β(λ)} = maxk∈V pk(λ) which proves the third branch of the lemma.

2. Case: There is no intersection point of α(λ) and β(λ) in [0, B]

(a) α(B) ≤ β(B): This property is equivalent to the first branch of the lemma’s
statement. Due to the monotonicity of α and β, we know that α(λ) ≤ β(λ) for all
0 ≤ λ ≤ B. Hence, we have

z∗ = max
0≤λ≤B

min{α(λ), β(λ)} = max
0≤λ≤B

α(λ) = α(B).

16

(b) α(0) ≥ β(0): Finally, we deal with the second branch of the lemma’s statement.
Here we have α(λ) ≥ β(λ) for all 0 ≤ λ ≤ B and therefore

z∗ = max
0≤λ≤B

min{α(λ), β(λ)} = max
0≤λ≤B

β(λ) = β(0).

Observe that Lemma 4.3 implies the following algorithm for Down1Center on trees:

• For every (i, j) ∈ E:

– If max
s∈Ti(i,j)

ps(B) ≤ max
t∈Tj(i,j)

pt(B) then

z∗ = max
s∈Ti(i,j)

ps(B)

δk =

{

B if k ∈ Ti(i, j), k = s(B)

0 otherwise

– Else if max
s∈Ti(i,j)

ps(0) ≥ max
t∈Tj(i,j)

pt(0) then

z∗ = max
t∈Ti(i,j)

pt(0)

δk =

{

B if k ∈ Tj(i, j), k = t(0)

0 otherwise

– Else solve min
0≤λ≤B

max
k∈V

pk(λ)

The first two cases can be solved in O(n) time since one has to evaluate the profit functions
p at certain values and compare the function values. For the third case the problem of
minimizing over the upper envelope of piecewise linear and monotone functions has to be
solved. In the next section it is proved that this problem can also be solved in O(n) time.
Therefore, we get the following theorem:

Theorem 4.4. The Downgrading 1-center problem on a tree can be solved in O(n2) time.

5 Minimizing over the upper envelope of piecewise linear and

monotone functions

In this section, we show that minimizing over the upper envelope of piecewise linear and
monotone functions can be done in O(K) time where K is the total number of breakpoints.

Let n piecewise linear functions fi : [0, B] → R for i = 1, . . . , n be given. We consider the
following problem:

min
0≤λ≤B

max
i=1,...,n

fi(λ) (5)

this means, we want to find a minimizer on the upper envelope.

17

We assume that every function has at least one breakpoint. If this is not the case then we
assign breakpoint B to all affine-linear functions. Let K be the total number of breakpoints
then clearly n ≤ K holds.

Moreover, we assume that the upper envelope of the functions fi (i = 1, . . . , n) is unimodal.
This is the case if each function fi is either monotonically increasing or decreasing.

Our algorithm is a generalization of Megiddo’s search and prune algorithm for solving
linear programs with two variables which is equivalent to problem (5) where all functions are
affine-linear. The main idea is to reduce the number of breakpoints successively. This is done
by splitting up the current interval into two subintervals and continuing with that subinterval
which contains an optimal solution. In each interval reduction procedure at least 1

8 of the
breakpoints are dropped. During the whole algorithm it is guaranteed that every function has
at least one breakpoint in the current interval.

Let λ ∈ [0, B]. Then it is possible to decide whether there exists an optimal solution
λ∗ ∈ [0, B] with λ∗ ≤ λ or λ∗ ≥ λ in the following way: Let I = I+ ∪ I− be the set of
functions where I+ is the set of increasing functions and I− is the set of decreasing functions.
Then determine maxk∈I+∪I− fk(λ) = fj(λ). If j ∈ I+ then λ∗ ≤ λ and otherwise λ∗ ≥ λ.
Obviously, it takes O(|I|) time to decide which of the two cases is true, i. e., the time we need
is linear in the number of functions.

The above described test of a fixed value λ is used several times during our algorithm. Each
iteration of the algorithm consists of two steps: In the first step the number of breakpoints
and in the second step the number of functions is reduced.

1. The breakpoint reduction step:

Determine the median m among the breakpoints and test the value m. In order to
simplify the notation let us assume that m ≤ λ∗. Then there are a ≤ K

2 breakpoints in
(m,B]. Hence, we have halved the number of breakpoints.

2. The function reduction step:

Observe that there are K − a breakpoints in [0,m] and since every function has at least
one breakpoint there are at most b ≤ K − a functions having no breakpoint in (m,B].
Observe that our goal is to continue with interval [m,B]. Even if there are at most
a ≤ K

2 breakpoints in this interval, we have to make sure that every function has at
least one breakpoint in [m,B]. Simply assigning breakpoint m to all functions that are
affine-linear in [m,B] will in general not decrease the number of breakpoints, e. g., if
every function has exactly one breakpoint. Therefore the goal is to reduce the number
of affine-linear functions in [m,B]. We do this on the line of Megiddo’s linear time
algorithm for linear programming problems with two variables:

Take all functions that are affine-linear in [m,B] and arrange them in disjoint pairs. If
the number of of affine-linear functions is odd then one function remains unmachted.
Then determine the intersection points of these pairs. If two affine-linear functions have
no intersection point, i. e., they are parallel, then one function can be deleted since it is
dominated by its partner function. Let 2b1 be the number functions that are matched
with a parallel function and let 2b2 be the number of remaining matched functions.
Then there are b2 intersection points. Then the median m′ of the intersection points is
determined and it is tested whether m′ ≤ λ∗ or m′ ≥ λ∗. Assume that m′ ≥ λ∗ then
there are at least ⌈ b2

2 ⌉ ≥ b2
2 breakpoints in [m′, B] (in the wrong subinterval). Observe

18

that we will continue with interval [m,m′]. For every pair whose intersection point is
in [m′, B] one affine-linear function can be deleted since it is dominated in [m,m′] by
its partner function. Hence, we can delete at least b2

2 affine-linear functions in addition
to all those function that were deleted because they have a parallel partner function.
Therefore the number of remaining affine-linear functions is at most

b1 +

(

2b2 −
b2

2

)

+ 1 ≤
3b + 1

4
.

Finally, one (arbitrarily chosen) endpoint of the new interval is assigned to the remaining
affine-linear functions as breakpoint. Again every function has a breakpoint.

Next the running time of the algorithm is analyzed. We start with the breakpoint reduction
step: It takes O(K) time to determine the median among the breakpoints. Since every function
has at least one breakpoint, we have n ≤ K and therefore O(K) is an upper bound for the
time needed to decide whether m ≤ λ∗ or m ≥ λ∗.

Next the running time of the function reduction step is investigated: First we have to
find all affine-linear functions, match them and determine the intersection points. This can
be done in O(b) time. Then the median among the intersection points is determined. This
takes again O(b) time. To test the median m′, we have to consider all functions (including
all functions with at least one breakpoint). Therefore, we need O(K) time. And finally all
intersection points are checked and several functions are deleted. This takes again O(b) time.
Therefore, the total running time of this second step is O(K) time.

Putting all together the number of breakpoints in the new interval [m,m′] is at most

a +
3b + 1

4
≤ a +

3

4
(K − a) +

1

4
=

3

4
K +

1

4
a +

1

4
≤

7

8
K +

1

4
.

Let T (K) be the time needed to solve the problem if there are K breakpoints then we
conclude that the following recurrence equation holds:

T (K) = O(K) + T

(

7

8
K +

1

4

)

and hence T (K) = O(K).

6 Conclusion

In this paper two network modification problems, the upgrading 1-center problem and the
downgrading 1-center problem, are investigated. The upgrading 1-center problem can be
solved in quadratic time if the shortest distances are available while the corresponding down-
grading version is in general strongly NP-hard. However, if the underlying graph is a tree
then both versions can be solved in quadratic time.

The suggested algorithm for the downgrading version of the 1-center problem includes an
algorithm for minimizing over the upper envelope of piecewise linear and monotone functions
in O(K) time where K is the number of breakpoints. We assume that this algorithm can be
used as subroutine for several problems in different areas of optimization in order to improve
the running time of existing algorithms.

19

References

[1] R. E. Burkard, E. Gassner, and J. Hatzl, A linear time algorithm for the reverse 1-median
problem on a cycle, Networks 48, No. 1, 16–23, 2006.

[2] R. E. Burkard, E. Gassner, and J. Hatzl, The reverse 2-median problem on trees, accepted
for publication in Discrete Applied Mathematics.

[3] R.E. Burkard, B. Klinz, and J. Zhang, Bottleneck capacity expansion problems with
general budget constraints, RAIRO Recherche Operationelle 35, 1–20, 2001.

[4] R.E. Burkard, Y. Lin, and J. Zhang, Weight reduction problems with certain bottleneck
objectives, European Journal of Operational Research 153, 191–199, 2004.

[5] R.E. Burkard, C. Pleschiutschnig, and J. Zhang, Inverse median problems, Discrete Op-
timization 1, 23–39, 2004.

[6] M.C. Cai, X.G. Yang, and J. Zhang, The complexity analysis of the inverse center location
problem, Journal of Global Optimization 15, 213–218, 1999.

[7] K.U. Drangmeister, S.O. Krumke, M.V. Marathe, H. Noltemeier, and S.S. Ravi, Modi-
fying edges of a network to obtain short subgraphs, Theoretical Computer Science 203,
91–121, 1998.

[8] Z. Drezner and H. W. Hamacher, Facility location. Applications and Theory. Springer,
Berlin, 2002.

[9] G.N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning trees,
Journal of Algorithms 33, 244–266, 1999.

[10] D.R. Fulkerson and G.C. Harding, Maximizing the minimum source-sink path subject to
a budget constraint, Mathematical Programming 13, 116–118, 1977.

[11] E. Gassner, The Inverse 1-Maxian Problem with edge length modification, accepted for
publication in Journal of Combinatorial Optimization.

[12] S. E. Hambrusch and Hung-Yi Tu, Edge Weight Reduction Problems in Directed Acyclic
Graphs, Journal of Algorithms 24, Issue 1, 66–93, 1997.

[13] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs.
Pure and Applied Mathematics. Marcel Dekker, New York, 1998.

[14] C. Heuberger, Inverse Combinatorial Optimization: A Survey on Problems, Methods,
and Results, Journal of Combinatorial Optimization 8, 329–361, 2004.

[15] O. Kariv and S. L. Hakimi, An algorithmic approach to network location problems. I:
The p-centers and II: The p-medians. SIAM Journal on Applied Mathematics 37, No. 3,
513–560, 1979.

[16] S.O. Krumke, M.V. Marathe, H. Noltemeier, R. Ravi, and S.S. Ravi, Approximation
algorithms for certain network improvement problems, Journal of Combinatorial Opti-
mization 2, 257–288, 1998.

20

[17] N. Megiddo, Linear-Time algorithms for linear programming in R
3 and related problems,

SIAM Journal on Computing 12, No. 4, 759–776, 1983.

[18] P. B. Mirchandani and R. L. Francis, Discrete Location Theory. Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons Ltd., New York, 1990.

[19] C. A. Phillips, The network inhibition problem, Annual ACM Symposium on Theory
of Computing, Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing table of contents, San Diego, California, United States, 776 – 785, 1993.

[20] J. Zhang, X.G. Yang and M.C. Cai, Inapproximability and a polynomially solvable special
case of a network improvement problem, European Journal of Operational Research 155,
251–257, 2004.

[21] J. Zhang, X.G. Yang and M.C. Cai, A network improvement problem under different
norms, Computational Optimization and Applications 27, 305–319, 2004.

21

