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We address the problem for finding the K best path trees connecting a source node with any other non-

source node in a directed network with arbitrary lengths. The main result in this paper is the proof that 

the kth shortest path tree is adjacent to at least one of the previous (k−1) shortest path trees. 

Consequently, we design an O( +Km) time and O(K+m) space algorithm to determine the K 

shortest path trees, in a directed network with n nodes, m arcs and maximum absolute length , where 

O( ) is the best time needed to solve the shortest simple paths connecting a source node with 

any other non-source node. 
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The shortest path (SP) problem in a directed network of n nodes an m arcs with arbitrary 

lengths on the arcs, finds shortest length paths from a source node to all other nodes or detects 

a cycle of negative length. The SP problem appears in many important real cases and there are 

numerous algorithms to solve it (see, for example, Ahuja et al. [1]). The mathematical 

formulation of the SP problem lets the solutions of the SP problem to be characterized by 

path trees, that is, a tree containing a directed only one path from source node to any non-

source node. The determination of the optimal path tree (shortest path tree) can be efficiently 

determined by Bellman-Ford-Moore (Bellman [3], Ford [7], and Moore [21]) label-correcting 

algorithm achieving the best strongly polynomial running time of O(nm). 

In this paper, we consider the K shortest path trees problem as the problem to determine the 

K best basis trees (solutions) of the classical mathematical formulation of the SP problem. 

The determination of the K shortest paths in a network has a wide range of applications. Some 

of them are cited in Eppstein [8]. We are unaware of any previous references to this problem 

in the literature. A proof is offered which shows that the kth best basis tree is adjacent to at 

least one of the previous k−1 best basis trees. In other words, the kth best solution is obtained 

from one of the previous best solutions by exchanging an arc in the basis tree for an arc 

outside of the basis tree. This results allows an algorithm to be designed running in 



maxO(  ( , , ))Km f n m C+  time and requiring O(K+m) memory space, where 

(> ) is the best bound to solve the SP problem in a directed network. 

On the other hand, this problem is similar to the K shortest simple paths problem. This last 

problem has been the subject of a large number of references in the literature. We can 

chronologically cite Hoffman and Pavley [15], Pollack [23], Yen [25, 26], Lawler [18], Katoh 

et al. [17] for undirected networks, Perko [22], Brander and Sinclair [4], Martins et al. [20], 

Hadjiconstantinou and Chirstofides [12], Martins and Pascoal [19] and Hersberger et al. [14]. 

The best bound to solve the problem in directed networks is reached in the early paper of Yen 

[25]. Yen’s [25] algorithm runs in . An extended bibliography of several 

K best shortest path problems is available at 

<http://www.ics.edu/~eppstein/bibs/kpath.bib>. We claim that the theoretical 

results from this paper can be an initial and alternative point of view when considering its 

application to other K best combinatorial optimization problems. 

maxO( ( , , ))f n m C O( )m

maxO(  ( , , ))Kn f n m C

The structure of the paper follows. Section 1 presents the linear programming formulation 

of the SP problem and the K shortest path trees problem are given. In section 2, we introduce 

the foundations which the algorithm is based on. The adjacency property between the kth best 

solution and some of the previous best solutions is proved. Section 4 contains a detailed 

pseudo code and an explanation of the proposed algorithm and some procedures. Moreover, 

the worse case time and space theoretical complexity of the algorithm is proven. Finally, in 

section 5, we offer our conclusions, lines of future research and open problems. 

1. THE SHORTEST PATH TREE AND THE K SHORTEST PATH TREES 

PROBLEMS. 

Given a directed network G = (V, A), let V  be the set of n nodes and let A be the set of m 

arcs. The network has a distinguished node s, called the source node. For each arc Aji ∈),( , 

let  be its length and ijc ∈ { }max ( , )
max
i j A

C c
∈

= ij . We denote by { }| ( , )i j V j i A−Γ = ∈ ∈  for all 

node . The length of a directed path is the sum of the arc lengths in the path. The 

shortest path tree problem consists in finding a shortest length path from node s to every non-

source node 

i V∈

{ }\i V s∈  or in determining a negative cycle, that is, a directed cycle of negative 

length.  
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If a flow  is associated with each arc , a supply ijx ),( ji ( 1sb n )= −  with node s, and 

demands  for all others nodes i1ib = − s≠ , then the following linear programming problem 

represents the SP problem (see Ahuja et al. [1]): 

 

{ }{ }

( , )

:( , ) :( , )

Minimize   ( )                          (1)

subject to 
        ,           (2)

         0,                        ( , )            (3)

ij ij
i j A

ij ji i
j i j A j j i A

ij

c x c x

x x b i V

x i j A

∈

∈ ∈

=

− = ∀ ∈

≥ ∀ ∈

∑

∑ ∑
 

 
The above problem is a special case of the minimum cost network flow (MCNF) problem. 

The network simplex algorithm can be used to find the solution to the above problem by 

taking advantage of the fact that of any basic solution of the MCNF problem is a spanning 

tree  of G. Moreover, every feasible spanning tree T is non-degenerate, i.e. , 

. Therefore, the network simplex algorithm will never perform degenerate pivots 

for the SP problem. In addition, all feasible spanning trees are trees rooted at node s such that 

the unique path in the tree from node root s to every other node is a directed path. We refer to 

these spanning trees as directed out-spanning trees. Note that in this kind of tree, each node 

T A⊆ 0ijx >

( , )i j T∀ ∈

{ }\i V s∈  has only one node predecessor in the tree ( )( )ipred T , that is, its in-degree is one. 

Also, let { }| ( , )iT j V i j T+ = ∈ ∈ . 

Distance labels of the nodes (negative dual variables) corresponding to a basis tree T are 

also obtained by setting  and solving ( ) 0sd T = ( ) ( ) 0ij i jc d T d T+ − = , . Thus, 

given a basis tree T, we define the reduced cost 

( , )i j T∀ ∈

( ) ( ) ( )ij ij i jc T c d T d T= + − , . ( , )i j A∀ ∈

Let X be the convex polyhedron defined by constraints (2)-(3) (decision space). Two 

fundamental results in the literature (see, for example, Ahuja et al. [1], Goldfarb et al. [11]) 

are: 

(i) Any feasible solution of the SP problem is a vertex of X and vice-versa. 

(ii)  Every vertex of X has associated only one directed out-spanning tree. 

In the rest of paper, we refer to a directed out-spanning tree as tree (or basis tree). Let 

 be the value of the function objective associated with the basis tree T. We 
( , )

( ) ij ij
i j T

C T c x
∈

= ∑
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also define ( )iD T  to be the set of descendants of node i in the basis tree T, that is, the set of 

nodes in the subtree rooted at i, including node i. Note that ( ) 1iD T ≥ . 

In a simplex pivot, an arc ( , with reduced cost ) \i j A T∈ ( )ijc T  and is added to T 

and 

( )ji D T∉

( ( ),j )pred T j  is deleted from T yielding a new basis tree T ′ . The arc flow values are 

given by ( )ij jx D T= , ( , )i j T∀ ∈ , and the objective function value by 
( , )

( ) ( )ij j
i j T

C T c D T
∈

= ∑  

or, equivalently, . Once a pivot is performed, the distance labels in T( ) ( )i
i V

C T d T
∈

= ∑ ′  are 

updated in the following way: ( ) ( ) ( )k k ijd T d T c T′ = + , ( )jk D T∀ ∈ . Furthermore, the 

objective function value is ( ) ( ) ( )ij jC T C T c D T′ = + . 

For an optimal tree , we obtain the following optimality conditions: 

 or, equivalently, 

*T
* *( ) ( ) , ( , )íj i jc d T d T i j A+ ≥ ∀ ∈ *( ) 0,  ( , )ijc T i j A≥ ∀ ∈ . These inequalities 

are called Bellman’s optimality conditions.  

The K shortest path trees problem consists in determining the K best solutions of the 

problem (1)-(3). In other words, identifying the K best basis tree  with kT { }1,...,k ∈ K  such 

that 1 2( ) ( ) ... ( )KC T C T C T≤ ≤ ≤  and for any other basis tree pT T k≠  with { }1,...,k K∈  is 

. ( ) ( )p KC T C T≥

2. FOUNDATIONS. 

In this section, we introduce and prove the basic results to the efficient resolution of the K 

shortest path trees problem. 

First we need to introduce the following definitions and results which deal with the 

concept of adjacency between two basis trees: 

 

Definition 1. Two basis tree T and T ′  are adjacent if and only if both have  arcs in 

common, that is, both trees differ in only one arc. 

2n−

 

The above definition implies that the basis tree T ′  can be reached from the basis tree T by 

a simplex pivot where the entering arc is just the arc ( , ) \i j T T′∈  and ( , ) \p q T T ′∈  is the 

leaving arc. Moreover, let T and T  be two basis trees that differ in the ′ p n<  arcs. Then the 

following property introduced in Sedeño-Noda and González-Martín [24] holds: 
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Proposition 1. If T and T differ in p < n arcs, where E = { ,…, } are the arcs in 

 that are not in T, then: (1) E does not contain a directed cycle; (2) 

′ 1 1( , )i j ( , )p pi j

T ′ u vj j≠  holds for all 

{ }, 1,...,u v p∈  with u v≠ ; (3) These arcs define the smallest simplex pivot sequence to obtain 

 from T, and the order in which these simplex pivots are performed is irrelevant. T ′

 

Proposition 2 indicates that to obtain an optimal basis tree  from any basis tree T, we 

must choose a set of 

*T

p n<  arcs, ,…, , satisfying 1 1( , )i j ( , )p pi j u vj j≠  for all { }, 1,...,u v p∈  

with u . Given any basis tree T, we use the term multiple pivot for the operation where p < 

n arcs are entered simultaneously in T, satisfying proposition 2. 

v≠

 

We now need to obtain the best basis tree T ′ , that is, the basis tree with a smaller objective 

value , from the basis tree T with all its non-tree arcs with non-negative reduced 

cost (for example an optimal basis tree 

( ) ( )C T C T′ ≥

*T T= ). To do so, we must investigate which p n<  

arcs that satisfy proposition 2 lead to the smallest increase in the objective function of the SP 

problem when they are introduced into the basis tree T, thereby obtaining the basis tree T ′ . 

We must investigate the value of objective function when a multiple pivot on basis tree T is 

made in order to identify this set of arcs. 

For simplicity consider a multiple pivot with the arcs ( ){ }1 1 2 2, , ( , )i j i j  with  in tree 

T, obtaining tree T . Without a loss of generality, we assume that 

1j j≠ 2

′
21 ( )jj D T∉  (note that if 

21 ( )jj D T∈  then 
12 ( )jj D T∉  and we can interchange 1j  by 2j  and vice versa in our 

arguments). Now, the objective function value of the basis tree T ′  as a function of  

must be considered. Let us examine the following cases: 

( )C T

 

 

Case A) If 
21 ( )jj D T∉  and 

21 ( )jj D T ′∉  then, theses subcases must be considered: 
 

A1). 
12 ( )jj D T∉  and 

12 ( )jj D T ′∉ ⇒ 
1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( )′ = + +i j j i j jC T C T c T D T c T D T  

j1 j2i1 i2

s
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A2). 
12 ( )jj D T∈  and 

12 ( )jj D T ′∉ ⇒ 
1 1 1 2 2 1 1 2

( ) ( ) ( ) ( ) ( ( ) ( )) ( )′ = + + −i j j i j i j jC T C T c T D T c T c T D T  

j1

j2

i1 i2

s

  
A3). 

12 ( )jj D T∉  and 
12 ( )jj D T ′∈ ⇒ 

1 1 1 2 2 1 1 2
( ) ( ) ( ) ( ) ( ( ) ( )) ( )′ = + + +i j j i j i j jC T C T c T D T c T c T D T  

j1 j2i1

i2

s

  
A4). 

12 ( )jj D T∈  and 
12 ( )jj D T ′∈ ⇒ 

1 1 1 2 2 2
( ) ( ) ( ) ( ) ( ) ( )′ = + +i j j i j jC T C T c T D T c T D T  

j1

j2

i1

i2

s

  
 
Case B). If 

21 ( )jj D T∉  and 
21 ( )jj D T ′∈ (

12 ( )jj D T ′∉ ) then, these subcases must be 

considered: 

B1). 
12 ( )jj D T∉  and 

12 ( )jj D T ′∉ ⇒ 
2 2 2 1 1 2 2 1

( ) ( ) ( ) ( ) ( ( ) ( )) ( )′ = + + +i j j i j i j jC T C T c T D T c T c T D T
 

j1 j2

i1

i2

s

  
B2). 

12 ( )jj D T∈  and 
12 ( )jj D T ′∉ ⇒ 

1 1 2 2 1 1 1 2
( ) ( ) ( ( ) ( )) ( ) ( ) ( )i j i j j i j jC T C T c T c T D T c T D T′ = + + −  

j1

j2 i1

i2

s

  
 
From the above cases, we can conclude that: 
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Lemma 1. Given a basis tree T, let T ′ be the basis tree obtained from T making a multiple 

pivot with two arcs ( ){ }1 1 2 2, , ( , )i j i j  both with non-negative reduced cost. Then ( )C T ′  is 

greater than or equal to the objective function value of at least one of the two basis trees that 

can be obtained by making a simplex pivot with only one arc in the set ( ){ }1 1 2 2, , ( , )i j i j . 

 

Proof. Since , ,
1
( ) 0>jD T

2
( ) 0>jD T

1 1
0i jc ≥  and 

2 2
0i jc ≥ , we have the following results: 

• In case A1), we conclude that 
1 1 1 2 2 2 1 1 1

( ) ( ) ( ) ( ) ( ) ( )i j j i j j i j jc T D T c T D T c T D T+ ≥  and 

1 1 1 2 2 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( )i j j i j j i j jc T D T c T D T c T D T+ ≥ . 

• In case A2), since 
1 2
( ) ( )>j jD T D T , we conclude that 

1 1 1 2 2 1 1 2 2 2 2
( ) ( ) ( ( ) ( )) ( ) ( ) ( )i j j i j i j j i j jc T D T c T c T D T c T D T+ − ≥ . In addition, if 

1 1 1 2 2 1 1 2 1 1 1
( ) ( ) ( ( ) ( )) ( ) ( ) ( )+ − <i j j i j i j j i j jc T D T c T c T D T c T D T  then, 

1 1 2 2
>i j i jc c  and vice 

versa. 

• In case A3), we conclude that 

1 1 1 2 2 1 1 2 2 2 2
( ) ( ) ( ( ) ( )) ( ) ( ) ( )i j j i j i j j i j jc T D T c T c T D T c T D T+ + ≥  and also that 

1 1 1 2 2 1 1 2 1 1 1
( ) ( ) ( ( ) ( )) ( ) ( ) ( )i j j i j i j j i j jc T D T c T c T D T c T D T+ + ≥ . 

• In case A4) we obtain the same conclusions as in case A1). 

• In case B1), we obtain the same conclusions as in case A3). 

• In case B2), we have a special situation. A basis tree has not been obtained by making a 

pivot only with the arc  because 1 1( , )i j
11 ( )ji D T∈ . Thus, since 

1 2
( ) ( )>j jD T D T , we 

obtain that 
1 1 2 2 1 1 1 2 2 2 2

( ( ) ( )) ( ) ( ) ( ) ( )) ( )i j i j j i j j i j jc T c T D T c T D T c T D T+ − ≥ . 

From the above comparisons, we arrive to the conclusion of the lemma. � 

 

Given a basis tree T, we denote by ( )A T  a subset of arcs of A\T and 

{ }( ( )) | ( , ) ( )i A T j V i j A T+Γ = ∈ ∈  (the set of nodes adjacent to node i in the directed graph (V, 

A(T))). Then we define { }( ) ( , ) ( )
( , ) arg min ( ) ( ) : ( )A T ul l lu l A T
i j c T D T u D T

∈
= ∉ . We do not consider 

in the previous minimum the arcs ( ,  such that )u l ( )lu D T∈  because a simple simplex pivot 

with any of these arcs does not allow us to obtain a basis tree. Then, we obtain the next result. 
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Lemma 2. Given a basis tree T with a set of arcs ( )A T  with non-negative reduced cost. Let 

be the basis tree obtained from T making a simplex pivot with the arc . 

Then any arc in the set 

T ′ ( )( , ) ( )A Ti j A T∈

{ }( )( ) ( ) ( , )A TA T A T i j′ = −  has a non-negative reduced cost with 

respect to the basis tree T . ′

 

Proof. Given a basis tree T, when a simplex pivot is made with the entering arc 

,the basis tree T( )( , ) ( , ) ( )A Ti j i j A T= ∈ ′  is obtained, and only the distance labels of the nodes 

in ( )jD T  increase by , ( )i jc T . 

First, we must consider the next cases to verify the sign of each arc ( ,  in )u l

{ }( ) ( ) ( , )A T A T i j′ = −  with : ( )lu D T∉

Case 1) if  and  or ( )ju D T∈ ( )jl D T∈ ( )ju D T∉  and ( )jl D T∉  then, we have 

 and therefore ( ) ( ) ( ) ( )u l u ld T d T d T d T′ ′− = − ( ) ( ) 0ul ulc T c T′ = ≥ . 

Case 2) if  and  then  ( )ju D T∈ ( )jl D T∉

( ) ( ) ( ) ( ) ( ) ( )ul ul u l ul u ij lc T c d T d T c d T c T d T′ ′ ′= + − = + + − ( ) ( ) 0ul ijc T c T= + ≥ . 

Case 3) if  and  then ( )ju D T∉ ( )jl D T∈

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ul ul u l ul u l ij ul ijc T c d T d T c d T d T c T c T c T′ ′ ′= + − = + − − = − , but since 

{ }( ) ( , ) ( )
( , ) arg min ( ) ( ) : ( )A T ul l lu l A T
i j c T D T u D T

∈
= ∉  and ( ) ( )j lD T D T>  then, 

( ) ( ) ( ) ( ) ( ) ( )ij j ul l ul jc T D T c T D T c T D T≤ ≤  and therefore, ( ) ( ) 0ul ijc T c T− ≥ . 

Now, we consider an arc ( ,  in )u l { }( ) ( ) ( , )A T A T i j′ = −  with ( )lu D T∈ . Then, only the 

previous cases 1 and 2 must be considered, since case 3 is not possible, because if  

and , then . Therefore, using similar arguments it is proved that 

( )jl D T∈

( )lu D T∈ ( )ju D T∈

( ) 0ulc T ′ ≥ . 

Therefore, in all of the above cases ( ) 0ulc T ′ ≥  and, any arc in ( )A T ′  has a non-negative 

reduced cost. � 
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Note that when a simplex pivot with the entering arc ( )( , )A Ti j  is made, only the leaving arc 

( ( ),j )pred T j  could have negative reduced cost for the basis tree T ′ , but this arc does not 

belong to ( )A T ′ . 

From the previous results, we can establish the following: 

 

Lemma 3. Given a basis tree T, let T ′  be the basis tree obtained from T making a multiple 

pivot with the arcs ( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j  with non-negative reduced cost and with 

2 p n≤ < . Then  is greater than or equal to the objective function value of at least one 

of the p basis trees that can be obtained by making a simplex pivot with only one arc in the set 

( )C T ′

( ){ }1 1 2 2, , ( , ),..., ( , )p pi j i j i j . 

 

Proof. Let ( ){ }1 1 2 2( ) , , ( , ),..., ( , )p pA T i j i j i j= . Note that any arc in  a has non-negative 

reduced cost for the basis tree T. From Lemma 1, we have already proven the statement of 

this lemma for . Now, we assume that 

( )A T

2p = 3p =  and determine ( )( , )A Ti j . Thus, the multiple 

pivot with the arcs ( )A T  can be considered in the next order: first we make a simplex pivot 

with the arc ( )( , )A Ti j  obtaining the basis tree T ′  and then a multiple pivot with the two 

remainder arcs in { }( )( ) ( ) ( , )A TA T A T i j′ = − . Note that from lemma 2 any arc in  has a 

non–negative reduced cost for the basis tree T

( )A T ′

′ . Therefore, the basis tree T  and the set ′

( )A T ′  satisfy the conditions of lemma 1. That is, the basis tree obtained making multiple 

pivots with the two arcs in ( )A T ′  has an objective function value greater than or equal to at 

least one of the two basis trees that can be obtained by making a simple simplex pivot with 

only one arc in the set ( )A T ′  in T . Thus, consider the basis tree T′ ′′  obtained by making a 

simple simplex pivot with any arc ( , ) ( )u l A T ′∈ . Note that T ′′  can be obtained from T making 

a multiple pivot with the arcs ( )( , )A Ti j  and ( , . In other words, the set of arcs )u l ( )( , )A Ti j  and 

 for the basis tree T satisfy the conditions of lemma 1. Therefore, a basis tree with the 

lowest increase in the objective function value  can be obtained from T by making a 

simple simplex pivot with the arc 

( , )u l

( )C T

( )( , )A Ti j . Thus, we have proved the statement of this lemma 

for . By induction and using the above arguments, the statement of this lemma is proven 

for any

3p =

p n< . � 
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We are interested in generating the K best shortest simple path trees in order without 

repeating the calculation of the same best solution. To do so, given a basis tree T, the entering 

arc { }( ) ( , ) ( )
( , ) ( , ) arg min ( ) ( ) : ( )A T ul l lu l A T
i j i j c T D T u D T

∈
= = ∉  and the basis tree T  obtained by 

making a simplex pivot with the entering arc , we modify the respective set of non-tree 

arcs as follows: 

′

( , )i j

{ }( ) ( ) ( , )A T A T i j= −  and { }( ) ( ) ( , ) ( ) :A T A T u l A T l j′ = − ∈ = . Note that 

since  does not contain any incoming arc in node j, any basis tree obtained from T( )A T ′ ′  

subsequently contains the arc . In addition, any basis tree obtained from T does not 

contain the arc  (binary partition strategy). From these comments, it is clear that the 

determination of the same basis tree is not performed twice or more times. 

( , )i j

( , )i j

Finally, based on lemmas 2 and 3; we come to the first conclusion included in the main 

results in this paper: 

 

Theorem 1. The kth best shortest path tree is adjacent to at least one of the previous (k−1)th 

best shortest path trees. 

 

Proof. Let  be the first best basis tree, that is, an optimal shortest simple path tree. 

Clearly, any arc in 

1T T= *

11( ) \A T A T=  has a non-negative reduced cost and G does not have 

negative length cycle. Otherwise  is not an optimal shortest path tree. From Lemma 3, we 

obtain a second best basis tree  by making a simple simplex pivot in  with the arc 

. Clearly,  is adjacent to basis tree . Now, let 

1T
2T 1T

1( )
( , )

A T
i j 2T 1T { }1

1 1
( )

( ) ( ) ( , )
A T

A T A T i j= −  and 

{ }2 1 1( ) ( ) ( , ) ( ) :A T A T u l A T l= − ∈ = j

1

 be the associated non-tree arcs sets of the trees  and 

, respectively. From lemma 2, any arc in 

1T

2T 2( ) ( )A T A T⊂  has a non-negative reduced cost 

with respect to . Therefore, let 2T 1T ′  be the basis tree obtained from  making a simple 

simplex pivot with the entering arc . Similarly, let be 

1T

1( )
( , )

A T
i j 2T ′  be the basis tree obtained 

from  by making a simplex pivot with the entering arc . From Lemma 3, 2T 2( )
( , )

A T
i j 1T ′  and 

 are the closest basis trees that can be obtained from  and , respectively, using their 

corresponding set of arcs 

2T ′ 1T 2T
1( )A T  and 2( )A T . Clearly, the third best basis tree is 

{ }{ }3 1arg min ( ) | ,T C T T T ′ ′= ∈ 2T . If  equals 3T 1T ′  then  is adjacent to  and we set 3T 1T

10 



{ }1
1 1

( )
( ) ( ) ( , )

A T
A T A T i j= −  and { }3 1 1( ) ( ) ( , ) ( ) :A T A T u l A T l j= − ∈ = . Otherwise, if  

equals  then  is adjacent to  and we set 

3T

2T ′ 3T 2T { }2
2 2

( )
( ) ( ) ( , )

A T
A T A T i j= −  and 

{ }3 2 2( ) ( ) ( , ) ( ) :A T A T u l A T l j= − ∈ = . Note again that from Lemma 2, any arc in the 

resulting set of non-tree arcs has a non-negative reduced cost and, therefore the conditions of 

Lemma 3 are satisfied. Therefore, by induction it is proved that 

{ }{ }1arg min ( ) | ,...,k kT C T T T T′ ′= ∈ p where T ′  is the basis tree obtained from the pth best 

basis tree  by making a simplex pivot with the entering arc pT

{ }( ) ( , ) ( )
( , ) arg min ( ) ( ) : ( )p p

p p p
ul l lA T u l A T

i j c T D T u D T
∈

= ∉ . In other words, the theorem holds. � 

3. AN EFFICIENT ALGORITHM FOR THE K SHORTEST PATH TREES 

PROBLEM. 

This section introduces an algorithm to solve efficiently the K shortest path trees problem. 

We begin introducing additional notation.  

Given a basis tree T, the proposed method uses distance labels  and the predecessor 

labels 

( )ud T

( )upred T  for all u . The algorithm also needs to know the value of V∈ ( )uD T  for all 

 and the objective value . Thus, given a basis tree T, we assume that in the 

adjacency node list 

u V∈ ( )C T

{ }| ( , )iT j V i j T+ = ∈ ∈  the values of  are stored. We initially set 

, 

ijc

( ) 0,C T = ( ) 0sd T = ( )spred T s=  and ( ) 0uD T = , u V∀ ∈ . Then, the ComputingLabels 

procedure is called with u  for a given basis tree T to calculate the previous information in 

O(n) time. 

s=

 

Procedure (CL) ComputingLabels(u, var , var , var , var( )C T ( )d T ( )pred T ( )D T , T); 

(1) For all  do +∈ ul T

(2) =( )lpred T u ; 

(3) = +( ) ( )l ud T d T cul ; 

(4) ComputingLabels(l, , , ,( )C T ( )d T ( )pred T ( )D T ,T); 

(5) = +( ) ( ) ( )u u lD T D T D T ; 

(6) = +( ) ( ) 1u uD T D T ; 

(7) ( )C T = + ; ( )C T ( )ud T
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Additionally, we associated a subset of non-tree arcs  with each basis tree T. For each 

calculated basis tree , the arc 

( )A T

pT { }( ) ( , ) ( )
( , ) arg min ( ) ( ) : ( )p p

p p p
ul l lA T u l A T

i j c T D T u D T
∈

= ∉  is 

calculated and it is stored together with the index p indicating the associated pth best basis 

tree in a heap using as key the value ( ) ( ) (p p
ij jc T D T C T+ )p . We denote this heap by H in 

the algorithm. Assuming that t is the size of a heap, the operation Insert requires an effort 

O(log t) and the operation of extracting the element of the min-key (Extract First) takes O(1) 

time. The Create Heap operation takes O(1) time. 

In order to simplify the examination of the set of arcs ( )A T  for a given basis tree T, we 

maintain an additional Boolean label named  for each node i .  is 

FALSE if and only if the arc ( (

( )ieligible T V∈ ( )ieligible T

),i )pred T i  can not be chosen to leave the basis tree T 

(equivalently, no arc arriving at node i can be selected to enter into the basis tree T). 

Otherwise,  is TRUE. On the other hand, given a basis tree T and its 

corresponding set of non-tree arcs 

( )ieligible T

( )A T , we assume that in the adjacency node list 

{ }( ( )) | ( , ) ( )+Γ = ∈ ∈i A T j V i j A T  the value of  and Boolean label ijc _ (ij )Arc eligible T  are 

stored. _ ij ( )Arc eligible T  is TRUE for arc ( , ) ( )i j A T∈  if and only if this arc can be chosen 

to enter into the basis tree T. Initially the label _ ij ( )Arc eligible T  is TRUE for all arc  in 

G. 

( , )i j

Using the above notation, one way to easily implement the selection of the arc 

{ }( ) ( , ) ( )
( , ) ( , ) arg min ( ) ( ) : ( )A T ul l lu l A T
i j i j c T D T u D T

∈
= = ∉  consist in applying the following 

recursive procedure: 

Procedure (SMA) Searching_Minimum_Arc(u, var C, T, , ,( )AT ( )d T ( )D T ,eligible(T)); 

(1) = TRUEuvisited ; 

(2) For all  do +∈ ul T

(3) Searching_Minimum_Arc (l, C); 

(4) For all  do +∈ Γ ( ( ))ul AT

(5) If ( ) and (== FALSElvisited ( )leligible T TRUE== ) and 

( ) and (==_ ( ) TRulArc eligible T UE + − ⋅ <( ( ) ( )) ( )ul u l lc d T d T D T C ) Then 

(6) = + − ⋅( ( ) ( )) (ul u l lC c d T d T D T) ; 

(7) =i u ; 

(8) =j l ; 

(9) = FALSEuvisited ; 
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The procedure SMA is called with parameters u s=  and the variable  to determine 

the arc 

C = ∞

{ }( ) ( , ) ( )
( , ) arg min ( ) ( ) : ( )A T ul l lu l A T
i j c T D T u D T

∈
= ∉  for a given basis tree T with the set of 

non-tree arcs ( )A T . Moreover, when a non-tree arc  is examined in the procedure and 

, this means that 

( , )u l

TRUElvisited == ( )lu D T∈  and, therefore, this arc is not considered for 

selection. The only local variable in the procedure is l. All elements used in the procedure are 

defined out of this procedure (initially all nodes are not visited). This procedure returns a 

pointer to the arc  belonging to  if it exist, otherwise it returns NULL. As T is a 

basis tree, each node 

( , )i j ( )A T

u V∈  is reached exactly once when this procedure is called from node s. 

For each node, the set of arcs  with  are scanned. Thus the computational 

effort performed by this procedure is O(m). 

( , )u l ( ( ))ul A T+∈Γ

Finally, we use an additional data structures as in Gabow [9] to reduce the memory space 

needed in the algorithm. Thus, let us assume that the first k basis trees , kT ′ { }1,...,k ′∈ k , have 

been calculated. Then, we use the following structures to store these basis trees as a directed 

out tree: [ ]father k′  stores the index p associated with basis tree  and a pointer to the 

entering arc  in G that leads to obtaining a basis tree 

pT

( , )i j kT ′ ( [ ]father k′ ={p, }). Each 

element of the list  stores the index and a pointer to the entering arc  in G that 

allowed the basis tree  be obtained from 

( , )i j

[ ]sons k′ ( , )i j
pT kT ′ . The list [ ]sons k′  is arranged in such a way 

that the indices increase from left to right ( [ ]′sons k ={{ 1p , },…,{1( , )i j rp , }} and ( , )ri j

1 ... rp p< < ). 

In Gabow [9] the following sets are described to build  and partially build kT ( )kA T : Let B 

be the set of basis trees in the path from  to  in the tree of trees, then define: 1T kT

{ }1 the entering arc ( , ) to obtain |  is in  and 1p p
pO i j T T B= >p   

{ }2 the leaving arc ( ( ), ) to obtain |   is in and 1p p
j pO pred T j T T B= >p  

*
1 2

kT T O O= ∪ −  

{ }
{ }
the entering arc ( , )  to obtain |  is the left brother of in  for all in  and 1

the entering arc ( , )  to obtain |  is a son of 

p p l l
p

p p k
k p

I i j T T T B T B

I i j T T T

= >

=

l

We additionally define the set 

{ }*( , ) \ | ( , ) is the entering arc to obtain  belonging to  for  1p
k pJ l j A T i j T B p= ∈ >  
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Then *( ) ( )k
k kA T A T J I= − − − I . Note that . 1 2 kO O J∪ ⊆

Using this information, any basis tree  and its corresponding set of non-tree arcs kT ( )kA T  

can be derived from the initial optimal basis tree  and *T *( )A T  by the next two procedures. 

 

Procedure (BTA) BuildingT&A(T)(k, ,  var , var eligible(T), var T, var 

); 

father sons ( )pred T

( )AT

(1) If (k ≠ 1) then 

(2) For all { } ∈,( , ) [ [ ]. ]l i j sons father k p  with <l k  do 

(3) =_ ( ) FALijArc eligible T SE ; 

(4) BuildingT&A(T)( , , so , , eligible(T), T, ); [ ].father k p father ns ( )pred T ( )AT

(5) ( ){ } ( ){ }= ∪ [ ]. , \ ( ),jT T father k i j pred T j  

(6) ( )jpred T i= ; 

(7) =( )jeligible T FALSE ; 

 

The previous procedure is called by the next procedure: 

Procedure (CBTA) CallingBTA(k, , , var , var eligible(T), var T, var 

); 

father sons ( )pred T

( )AT

(1) =_ ( ) TRUEijArc eligible T ( , ) ( )i j AT ∀ ∈ ; 

(2) For all { },( , ) [ ]l i j sons k∈  do 

(3) ==_ ( ) FALijArc eligible T SE ; 

(4) BuildingT&A(T)(k, , so , , eligible(T), T, ); father ns ( )pred T ( )AT

 

The procedure CBTA is called with *T T=  and *( ) ( )u upred T pred T=  for all u V∈ , 

where  is an optimal tree and the index p of the basis tree to be constructed. The output of 

this procedure is  and 

*T
kT T= ( )A T  with some arcs marked as ineligible. Line (1) in procedure 

CBTA initializes the flags _ ( )ijArc eligible T TRUE=  for each arc ( , ) ( )i j A T∈ . Furthermore, 

in lines (2)-(3) of procedure CBTA, we set _ ij ( )Arc eligible T  equal to FALSE for all 

{ }, ( , ) [ ]p i j sons k′ ∈ , that is, each arc in ( )kA T  that was selected is made ineligible 

( *( ) ( )k
kA T A T= − I ). Line (4) calls the procedure BTA.  

Lines (4)-(6) in procedure BTA lead to recursively building the basis tree , that is, 

these lines backtracking on index  using the father labels until 

′kT

k 1k = . This process lets us 

identify the needed exchanges in  to obtain T and we need line (6) to correctly compute *T kT ′  

14 



( ). On the other hand, lines (2), (3) and (7) lets us determine which 

additional arcs in  are not eligible to enter in the basis tree T . Recall that when we make 

a simplex pivot with arc ( ,  in T then, we set 

*
1

kT T O O= ∪ − 2

( )AT

) ( )i j A T∈ { }( ) ( ) ( , )A T A T i j= −  and 

{ }( ) ( ) ( , ) ( ) :A T A T u l A T l j′ = − ∈ = . In other words, we set _ ij ( )Arc eligible T  and 

 equal to FALSE. Thus, if ( )jeligible T ′ kT ′  is obtained from  by a sequence of simplex 

pivots  with 

*T

( , )w wi j { }1,...,w∈ u ) then, ( k
weligible T ′  is FALSE { }1,...,w∀ ∈ u . Additionally 

in lines (2)-(3), if kT ′  is a son of the basis tree with index [ ].father k p′ , then, we set 

_ ( k
ij )Arc eligible T ′  equal to FALSE { }, ( , ) [ [r k ]. ]p i j sons fathe p′ ′∀ ∈  such that p k′ < ′  and 

then, we set [ ].k father k p′=  and the process is repeated until 1k =  

( ( ) ( )k k
kA T A T J= − I− ). 

Note that Line (1) of the procedure CBTA requires an effort O(m) and line (4) is the called 

to the procedure BTA. The recursive procedure BTA is called at most  times, since the 

depth of the tree of trees is at most 

1n−

1n− . Line (3) of this procedure and line (3) of the 

procedure CBTA are executed at most m times in overall. Since for any basis tree  in the 

tree of trees, the number of its sons (

kT ′

kI ′ ) plus the number of its ancestors belonging to the set 

I ( I ) is at most m. Therefore the computational effort of procedure CBTA and BTA is 

O(n+m). 

Taking into account the above notation and remarks, we introduce the algorithm to solve 

the problem. 
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 K Shortest Path Trees (KSPT) Algorithm; 

 /* Initialitation */ 
(1) Let  be an optimal basis tree; Store  with  

; 

*T = *( ) \AT A T ( , )_ Ti jArc eligible = RUE

∀ ∈( , ) ( )i j AT

(2) Set ; ; = 1k *T T= ( )ueligible T TRUE=  *( ) ( )u upred T pred T= u V∀ ∈ ; 

(3) Set  ; =( ) 0;C T ( ) 0sd T = ( ) 0uD T =  u V∀ ∈ ; 

(4) CL(s, , , ,( )C T ( )d T ( )pred T ( )D T , T); 

(5) Create Heap H; 
(6) =uvisited FALSE  ; u V∀ ∈

(7) Let ( ,  determined by SMA(s, C = ∞ T, , ,)i j ( )AT ( )d T ( )D T ,eligible(T)); 
(8) If (( , ≠ NULL) then Insert {( , , k, )i j )i j ( )C C T+ } in H; 

 /* loop */ 
(9) While ((k < K) and (H ≠ ∅)) 
(10) Extract first {( , ,C ,p} of H;  )i j

(11) { }[ 1] ,( , )father k p i j+ = ; Add { }1,( , )k i j+  at the end of ; [ ]sons p

(12) *T T= ;  =( )ueligible T TRUE *( ) ( )u upred T pred T= u V∀ ∈ ; 

(13) CBTA(p, ,sons , ,eligible(T), T, ) father ( )pred T ( )AT

(14) Set  ; =( ) 0;C T ( ) 0sd T = ( ) 0uD T =  u V∀ ∈ ; 

(15) CL(s, , , ,( )C T ( )d T ( )pred T ( )D T ,T) 

(16) Let ( ,  determined by SMA(s, C = ∞ T, , ,)i j ( )AT ( )d T ( )D T ,eligible(T)); 
(17) If (( , ≠ NULL) then Insert {( , , p, )i j )i j ( )C C T+ } in H; 

(18) Set ; = + 1k k

(19) ( ){ } ( ){ }= ∪ [ ]. , \ ( ),jT T father k i j pred T j  

(20) =( )jeligible T FALSE ; 

(21) Set  ; =( ) 0;C T ( ) 0sd T = ( ) 0uD T =  u V∀ ∈ ; 

(22) CL(s, , , ,( )C T ( )d T ( )pred T ( )D T , T); 

(23) Let ( ,  determined by SMA(s, C = ∞ T, , ,)i j ( )AT ( )d T ( )D T ,eligible(T)); 

(24) If (( , ≠ NULL) then Insert {( , , k, )i j )i j ( )+C C T } in H; 

 /* end of the loop */ 

 
The algorithm starts with an optimal basis tree  that is stored as the first best basis tree 

and its corresponding set of arcs  is also stored. The flags Arc_eligible for each 

arc in 

*T

= *( ) \AT A T

( )A T  is set to TRUE. The index of the number of best solutions determined k is set to 

1. Then the procedure CL is called to compute all labels associated with basis tree T. The arc 

 is determined by calling the procedure SMA(s, ( , )i j C = ∞ , T, , , ( )A T ( )d T ( )D T , 
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( )eligible T ). The heap H is created and the element {( , , 1, )i j ( ) ( ) ( )⋅ +ij jc T D T C T } is 

inserted in H wherever arc  exists. Then, the algorithm starts with a loop until the K best 

solutions are identified or no more feasible solutions are possible. Thus, in any iteration in the 

algorithm, the first element in the heap is extracted. This element identifies the way to obtain 

the (k +1)th best solution. In the algorithm 

( , )i j

{ }[ 1] , ( , )father k p i j+ =  lets us determine 1kT +  . 

Moreover, adding { }1, ( , )k i j+  at the end of  will let us correctly identify the set [ ]sons p

( )A T  for  and for all descendants of 1kT + 1kT +  in the tree of trees. Furthermore, the 

construction of the set of arcs ( )A T  avoids determining each basis tree more than once, as 

previously mentioned. Now, in the algorithm the basis tree  and pT ( )pA T  are reconstructed 

calling procedure CBTA and the labels of the basis tree  are calculated by calling 

procedure CL. Then, the new 

pT

( )
( , ) pA T
i j  arc is found by calling the procedure SMA for the 

basis tree . The resulting arc (if it exists) and the index p are stored in the heap H using the 

key value  where C is the value calculated in procedure SMA. Next in the 

algorithm, the index k is increased and the basis tree  and its associated set of non-tree arcs 

pT

( pC C T+ )
kT

( )kA T are built from the basis tree  and the set pT ( )pA T  (lines (19)-(20)). The necessary 

labels of the tree  are calculated by calling procedure CL. Finally, for this new best basis 

tree, the arc  is determined and the element { , k, 

kT

( )
( , ) kA T
i j

( )
( , ) ( , ) kA T
i j i j=

( ) ( ) ( )k k
ij jc T D T C T⋅ + k

*

} is inserted in H. 

 

Theorem 2. The KSPT algorithm computes the K shortest path trees in O(Km+ ) 

time and O(K+m) space in directed graph G. 

max( , , )f n m C

 

Proof. In the beginning of the algorithm, the determination of  requires 

O( ) time, that is O(min{nm,

1T T=

max( , , )f n m C log( )nm nC }) (see Bellman [3], Ford [7], Moore 

[21] for example for the first bound and Goldberg [10] for the second bound) for a network 

with possible negative arc lengths or O(min{ logm n n+ , ,log logm C logm n C+ }) for a 

network with non-negative arc lengths (se Ahuja et al. [1] to find the references of these 

bounds of the modified Dijkstra [6] algorithm). Storing *( ) \A T A T=  and making all arc 

eligible needs O(m) time. Lines (2)-(3), (6) involve an O(n) time. The procedure CL in line 
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(4) involves O(n) time. The calculation of the arc  by the procedure SMA requires an 

effort O(m) and the operation of create (line (5)) and insert (line (8)) in the heap takes O(1) 

time. Clearly, the algorithm makes at most K iterations. In each iteration of the algorithm, the 

procedure CBTA is called once and the procedures CL, SMA are called twice requiring 

O(n+m) time overall and two insert heap operations are made in O(log k +log (k+1)). The 

operations relative to lines (10)-(11), (18)-(20) are made in O(1) time. Thus, the worst case 

complexity of the algorithm is O( +

( , )i j

max( , , )f n m C
1

1
(log log( 1) )

K

k
k k n

−

=

m+ + + +∑ ) = 

O( +Km + KlogK) time and, since max( , , )f n m C 2mK < , then O( +Km) time. On 

the other hand, the space required by the algorithm is O(K + m), since the father, sons and 

heap structures require O(K) space; the basis tree T and its corresponding labels need O(n) 

space and the storing 

max( , , )f n m C

( )A T employs O(m) space. � 

4. CONCLUSIONS. 

From this paper, we conclude that the K shortest path trees problem has the same difficulty 

as the K minimum spanning trees problem (see Katoh et al. [16]). This result is possible since 

in both problems, the kth best solution is adjacent to at least one of the k−1 best previous 

solutions. Thus, we design a similar algorithm that takes the advantage of the pivot 

(exchange) operation for the basis tree of the shortest path tree problem formulated by 

constraints (1)-(3). Furthermore, since problem (1)-(3) is a particular case of the K best 

minimum cost flow problem, an open problem consists in verifying if the main result of this 

paper holds for this problem. An early result for the K best minimum cost flow problem was 

derived by Hamacher [13]. Moreover, since the shortest simple path between two pair of 

nodes is a particular case of problem (1)-(3), we ask us self if it is possible to modify the 

proposed algorithm to obtain an efficient algorithm to solve the K shortest simple paths 

problem? If the answer is affirmative, the bound of Yen [25] will be significantly improved. 

On the other hand, the results addressed in this paper are fundamental to develop new 

algorithms for the multiobjective shortest path problem from one source node to all other non-

source nodes in a network (see Azvedo et al. [2] and Climaco and Martins [5]). 
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	ANTONIO SEDEÑO-NODA 
	CARLOS GONZÁLEZ-MARTÍN
	We address the problem for finding the K best path trees connecting a source node with any other non-source node in a directed network with arbitrary lengths. The main result in this paper is the proof that the kth shortest path tree is adjacent to at least one of the previous (k) shortest path trees. Consequently, we design an O( +Km) time and O(K+m) space algorithm to determine the K shortest path trees, in a directed network with n nodes, m arcs and maximum absolute length  , where O( ) is the best time needed to solve the shortest simple paths connecting a source node with any other non-source node.

