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Abstract
This study investigates an optimization-based heuristic for the Robotic Cell Prob-

lem. This problem arises in automated cells and is a complex �ow shop problem with a
single transportation robot and a blocking constraint. We propose an approximate de-
composition algorithm. The proposed approach breaks the problem into two scheduling
problems that are solved sequentially: a �ow shop problem with additional constraints
(blocking and transportation times) and a single machine problem with precedence con-
straints, time lags, and setup times. For each of these problems, we propose an exact
branch-and-bound algorithm. Also, we describe a genetic algorithm that includes, as a
mutation operator, a local search procedure. We report the results of a computational
study that provides evidence that the proposed optimization-based approach delivers
high-quality solutions and consistently outperforms the genetic algorithm. However,
the genetic algorithm delivers reasonably good solutions while requiring signi�cantly
shorter CPU times.
Keywords : Flow Shop, Robotic Cell, Blocking, Branch-and-bound, Genetic Al-

gorithm.

1 Introduction

The Robotic Cell Problem (RCP ) is a generalization of the classical permutation �ow shop
problem. It may be formulated as follows. Given a job set J = f1; 2; :::; ng where each
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job has to be processed nonpreemptively on m machines M1; M2;..., Mm in that order.
The processing time of job j (j = 1; :::; n) on machine Mi (i = 1; :::;m) is pij. At time
t = 0; all jobs are available at an input device denoted by M0: After completion, each job
must be taken from Mm to an output device that is denoted by Mm+1 (for convenience,
we set pm+1;j = 0;8j 2 J): The transfer of a job j 2 J from Mi to Mi+1 (i = 0; :::;m) is
performed by means of a single robot. An empty or a loaded move of the robot from Mi to
Mh (i; h = 0; :::;m+1) takes � ih units of time. The machines have neither input nor output
bu¤ering facilities. Consequently, after processing a job j on machine Mi (i = 1; :::;m), this
latter remains blocked until the robot picks up j and transfers it to the following machine
Mi+1: Such a move could only be performed if machine Mi+1 is free (that is, no job is being
processed by or waiting at Mi+1). At any time, each machine can process at most one job
and each job can be processed on at most one machine. Moreover, the robot can transfer at
most one job at any time. The problem is to �nd a processing order of the n jobs, the same
for each machine (because of the blocking constraint, passing is not possible), such that the
time Cmax at which all the jobs are completed (makespan) is minimized.
The particular case of the robotic cell problem where the transportation times are neg-

ligible reduces to the much studied �ow shop scheduling problem with blocking (Pinedo,
2008). Hall and Sriskandarajah (1996) prove that this latter problem is strongly NP-hard
for m � 3. Consequently, the RCP is strongly NP-hard for m � 3 as well.
Our motivation for the investigation of the robotic cell problem stems from its practical

relevance to Flexible Manufacturing Systems (FMSs), which are highly automated produc-
tion systems capable of producing a wide variety of job types. As pointed out in Blazewicz
et al. (1991), one of the most di¢ cult operational problems in FMSs is the development of
e¤ective schedules considering jobs, machines and transportation devices in order to provide
a proper coordination of the production sequencing and time allocation of all required re-
sources. Blocking constraints arise for example in the manufacturing process or the chemical
industry where some characteristics (such as temperature) of the material requires that each
job must wait on the machine before being processed on the next machine. The RCP is
a speci�c problem in FMSs. Only very special cases can be solved in polynomial-time and
various cases with a single robot are already NP-hard (see Knust (1999)).
The main contribution of this paper, is to propose an approximate decomposition al-

gorithm for the RCP that requires sequentially solving two scheduling problems. Each of
these problems is solved exactly. More precisely, we propose the following two-phase solution
strategy:

� Phase 1: We solve a relaxation of RCP that is derived by partially relaxing the robot
capacity constraints. More precisely, we assume that after transferring a job j from
Mi to Mi+1 (i = 1; :::;m), the robot is always immediately available to perform an
empty move fromMi+1 toMi�1 and pick up the next scheduled job k when it becomes
ready. Moreover, we assume that after �nishing a job j on the last machine Mm; the
robot can immediately transfer this job to the output device. Finally, we assume that
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the �rst scheduled job will be processed without waiting at any machine. With these
assumptions, we obtain a �ow shop problem with blocking and transportation times.
We shall provide a formal description of this problem in Section 3. The solution of
this relaxed problem (hereafter, denoted by F jBlock; tkjCmax) yields a solution which
consists of a permutation � of the jobs with a corresponding completion time C1max(�).

� Phase 2: Given the permutation � that is derived in Phase 1, we determine the
sequence of robot moves (including both empty as well as loaded moves) that minimizes
the maximum completion time (makespan). In Section 4, we show that this amounts
to solving a single machine problem with side-constraints. In doing so, we obtain a
completion time C2max(�):

Clearly, since the �ow shop problem that is de�ned in Phase 1 is a relaxation of the RCP
then the optimal makespan C1max(�) is a valid lower bound on the optimal makespan of the
RCP . Moreover, the optimal makespan of the solution of the single machine problem that
is de�ned in Phase 2 is an upper bound on the optimal makespan of the RCP .
The remainder of this paper is organized as follows. In Section 2, we review the literature

pertaining to job scheduling and transportation planning in �exible manufacturing systems.
In Section 3, we present several lower bounds for F jBlock; tkjCmax and we describe an exact
branch-and-bound algorithm for solving this latter problem. In Section 4, we describe an
optimization algorithm for sequencing the robot moves. In Section 5, we describe a genetic
algorithm. The empirical performance of the proposed approach is assessed in Section 6
where we present the results of a comprehensive computational study. Finally, we provide
in Section 7 some concluding remarks and we outline topics for future investigations.

2 Literature review on scheduling and transportation
planning in FMSs

The impressively rapid spread of robotic cells in manufacturing systems that occurred during
the last two decades has prompted the emergence of many new scheduling problems. We
refer to the excellent book of Dawande et al. (2007) for an up-to-date and comprehensive
review of sequencing and scheduling problems arising in robotic cells. Actually, almost all
previously investigated robotic cell scheduling problems deal with cyclic scheduling problems
with machines producing a family of similar parts, in a steady-state. We refer to Dawande
et al. (2005) for a classi�cation scheme of these challenging problems. However, to the best
of our knowledge, the multiple-part-type robotic cell problem that is addressed in this paper
has never been investigated before in the foregoing very general form. Indeed, multiple-part
type problems that have been addressed so far are often de�ned as follows. We are given
a minimal part set (MPS) that includes p di¤erent part-types to be produced. Each type
k (k = 1; :::; p) includes dk similar parts. The MPS requires to be scheduled repetitively
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using p repetitions of a one-unit robot move cycle with the objective of maximizing the
throughput rate, or equivalently, minimizing the cycle time (for example see Sriskandarajah
et al. (1998)).
Furthermore, although there is a vast literature pertaining to integrated job and vehicle

scheduling (see Ganesharajah et al. (1998)), there are few papers which consider �ow shop
problem with blocking to minimize makespan (see Hall and Sriskandarajah (1996)). Mascis
and Pacciarelli (2002) study the job shop problem with blocking. They formulate it by means
of a generalization of the disjunctive graph of Roy and Sussman (1964) and they show that
several properties used to design heuristic procedures do not hold in the blocking case.
Reddi and Ramamoorthy (1972) show that the problem F2jBlockjCmax could be reduced to
a special case of the traveling salesman problem that can be solved in polynomial time by the
Gilmore and Gomory (1964) algorithm. Dutta and Cunningham (1975) propose dynamic
programming procedures to solve this problem with limited bu¤er. Levner (1969) presents
branch-and-bound algorithms for solving the �ow shop problem with blocking. Mc Cormick
et al. (1989) study a �ow shop scheduling problem in an assembly line where the problem
with limited bu¤ers can be studied as a blocking one (all machines have no intermediate
bu¤ers). Abadi et al. (2000) propose a heuristic for minimizing the cycle time in order to
establish a connection between the no-wait �ow Shop problem and �ow shop with blocking.
This approach has been used by Cara¤a et al. (2001) for calculating the value of makespan
for a given sequence of the jobs. Ronconi (2005) proposes a branch-and-bound algorithm
using a lower bound that exploits the blocking feature. The author shows that the obtained
bounding scheme outperforms the lower bounds proposed in Ronconi and Armentano (2001).
Recently, Grabowski and Pempera (2007) propose two new heuristic algorithms to minimize
the makespan in a �ow shop problem with blocking based on a tabu search approach. Lee
and Chen (2001) and Hurink and Knust (2001) studied �ow shop scheduling with explicit
transportation capacity and transportation times. Moreover, they assumed an unlimited
bu¤er space between the machines and negligeable empty moving times. The literature
pertaining to other scheduling models with transportation aspects is summarized in Crama
et al. (2000). In addition, Agnetis (2000) and Agnetis and Pacciarelli (2000) investigate the
complexity of a no-wait �ow shop problem in which one robot is used to move the parts
from a machine to the next, as well as between the machines and the input/output devices.
In this model, jobs are not allowed to wait neither on a machine nor on the robot.
Not surprisingly, most robotic cell scheduling problems are intractable. In particular,

Hall and Sriskandarajah (1996) prove that the robotic cell problem is strongly NP-hard
for m � 3. However, an O(n4) algorithm that solves this problem in two-machine cells
is provided in Hall et al. (1997). Aneja and Kamoun (1999) improve this complexity to
O(n log n).
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3 Solution of the �ow shop problem with blocking and
transportation delays

In this section, we are concerned with the exact solution of the �ow shop problem with
blocking and transportation times (F jBlock; tkjCmax) that requires to be solved in Phase 1
after partially relaxing the constraints on the robot capacity. Clearly, since this problem
generalizes several �ow shop problems that are strongly NP-hard for m � 3, then it is itself
strongly NP-hard for m � 3 (Hall and Sriskandarajah (1996)). In the sequel, we shall prove
that the problem is solvable in O(n2) for m = 2.
Given a permutation of the n jobs � = (�(1); �(2); :::; �(n)); we denote by ti;�(j) the

starting time of job �(j) (j = 1; :::; n) on machine Mi (i = 1; :::;m). The robot has to
transfer job �(j) (j = 2; :::; n), after its processing on machine Mi�1 (i = 2; :::;m), from
machine Mi�1 to machine Mi. Hence, we have ti;�(j) � ti�1;�(j)+ pi�1;�(j)+ � i�1;i. Also, after
unloading job �(j � 1) on machine Mi+1, the robot has to move to machine Mi�1 to upload
job �(j) and transfer it to machine Mi. Hence, we have ti;�(j) � ti+1;�(j�1)+ � i+1;i�1+ � i�1;i.
Therefore, the starting times can be computed through the following recursive equations:

t0;�(j) = 0 j = 1; :::; n;
ti;�(1) = ti�1;�(1) + pi�1;�(1) + � i�1;i i = 1; :::;m+ 1;
t1;�(j) = t2;�(j�1) + � 20 + � 01 j = 2; :::; n;
ti;�(j) = max(ti�1;�(j) + pi�1;�(j); ti+1;�(j�1) + � i+1;i�1) + � i�1;i j = 2; :::; n; i = 2; :::;m;
tm+1;�(j) = tm;�(j) + pm;�(j) + �m;m+1 j = 2; :::; n:

(1)
Moreover, the completion time Ci;�(j) of job �(j) on machine Mi is

Ci;�(j) = ti;�(j) + pi;�(j) 8i = 1; :::;m+ 1; j = 1; :::; n (2)

and the makespan is Cm+1;�(n).
The F jBlock; tkjCmax requires �nding a permutation �� such that Cm+1;��(n) is minimal.

3.1 Lower bounds

In this section we describe one-machine as well as two-machine relaxations for
F jBlock; tkjCmax. Consequently, the derived lower bounds are also valid for the RCP as
well.

3.1.1 One-machine based lower bounds

As a consequence of the transportation delays, the minimum elapsed time on machine Mi

between the completion time of a job j and the starting time of a following job k is
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�i = � i;i+1 + � i+1;i�1 + � i�1;i 8i = 1; :::;m (3)

Also, by setting for each job j 2 J and each machine Mi (i = 1; :::;m) :

� a head (or, release date) rij =
i�1P
k=1

pkj +
i�1P
k=0

� k;k+1 if i > 1 and r1j = � 01;

� a tail (or, delivery time) qij =
mP

k=i+1

pkj +
mP
k=i

� k;k+1 if i < m and qmj = �m;m+1.

Hence, a simple O(mn) lower bound is

LB1 = max
1�i�m

f min
1�j�n

rij +

nX
j=1

pij + (n� 1)�i + min
1�j�n

qijg (4)

Remark 1 A better bound can be derived by observing that if job k is scheduled immedi-
ately after job j, then the minimum elapsed time on machine Mi (i = 2; :::;m) between the
completion of j and the starting of a job k is given by

sijk = max(pij + � i;i+1 + � i+1;i�1; pi�1;k + � i;i�2 + � i�2;i�1)� pij + � i�1;i 8i = 2; :::;m (5)

Proof. Let tij denote the starting time of job j on machineMi. At tij+pij, job j is ready to
be transferred to Mi+1 and could start processing on machine Mi+1at tij + pij + � i;i+1: Thus,
the next job (say, k) could not be transferred fromMi�1 toMi before time tij+pij+ � i;i+1+
� i+1;i�1:Moreover, job k cannot be transferred before time tij+� i;i�2+� i�2;i�1+pi�1;k which
is the earliest �nish time of job k on machine Mi�1. Therefore, the earliest start time of k
on Mi is tij +max(pij + � i;i+1 + � i+1;i�1; pi�1;k + � i;i�2 + � i�2;i�1) + � i�1;i. Thus, the result
follows.
Now, de�ne �ij = min

k 6=j
fsijkg; 8i = 2; :::;m; j = 1; :::; n (� minimum elapsed time after

completion of j on Mi), �
i
[k] = k

th smallest value of �ij (j = 1; :::; n): Then we get the lower
bound

LB2 = max
2�i�m

f min
1�j�n

rij +

nX
j=1

pij +

n�1X
k=1

�i[k] + min
1�j�n

qijg (6)

LB2 can be computed in O(mn2) time.
Moreover, a valid relaxation is a one-machine problem with heads, tails, and setup times

1 j rj; qj; sjk j Cmax. A relaxation of this problem is a 1 j rj; qj j Cmax obtained by setting
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r0j = rij; p
0
j = pj + �ij; and q

0
j = qij � �ij for j = 1; :::; n. Hence, a third lower bound is

obtained by allowing preemptive schedules. An optimal preemptive schedule is obtained in
O(n log n) time by using the list schedule associated with the longest tail priority dispatching
rule. To build it, we schedule at each time t the available operation with maximal tail. For
each machine Mi (i = 1; :::;m); let LB3i denote the makespan of the corresponding optimal
preemptive schedule. Then a valid O(mn2)-time lower bound is

LB3 = max
2�i�m

LB3i (7)

A further relaxation of 1 j rj; qj; sjk j Cmax is obtained by setting all heads and tails
to min

j2J
frjg and min

j2J
fqjg, respectively. The resulting relaxation is equivalent to �nding a

shortest Hamiltonian path in a directed complete graph, where the nodes represent the
jobs and the distance matrix is (sijk). We can transform this problem into an equivalent
asymmetric traveling salesman problem (ATSP) by adding to the graph a dummy node 0
and dummy zero-cost arcs (j; 0) and (0; j), for j = 1; :::; n. For a given machine Mi; let
ziATSP denote the value of the shortest cycle. Since solving this relaxed problem is NP-hard,
we compute a lower bound on ziATSP . In our implementation, we derive a tight lower bound
LBiATSP by solving the linear relaxation of a polynomial-size mixed-integer programming
formulation that is de�ned as follows.
De�ne, the underlying complete digraph ~G = (~V ; ~A) where the node set ~V � J [ f0g

and the cost of arc (j; k) 2 ~A is sijk. The decision variables are

� xjk = 1 if node k is visited immediately after node j; and 0 otherwise, 8(j; k) 2 ~A,

� uj : position in which node j is visited, j = 1; :::; n.

The formulation is

Minimize
P

(j;k)2 ~A
sijkxjk (8)

subject to:

nX
k=0; k 6=j

xjk = 1; j = 0; :::; n; (9)

nX
j=0; k 6=j

xjk = 1; k = 0; :::; n; (10)

nxjk + (n� 2)xkj + uj � uk � n� 1; 8j; k � 1 j 6= k; (11)

1 + (1� x0j) + (n� 2)xj0 � uj � n� (n� 2)x0j � (1� xj0); 8j � 1; (12)

uj � 0; 8 j = 1:::n; (13)

xjk 2 f0; 1g; 8j; k � 1 j 6= k: (14)
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The objective function (8) minimizes the total distance (or, setup times). Constraints
(9) and (10) require that each node has exactly one successor and predecessor, respectively.
Constraints (11)-(13) are the subtour elimination constraints. These constraints are often
referred to as lifted Miller-Tucker-Zemlin subtour elimination constraints. Finally, Con-
straints (14) enforce binary restrictions on the x-variables. Model (8)-(14) includes O(n2)
constraints, O(n2) binary variables, and O(n) continuous variables. This polynomial-size
ATSP formulation has been proposed by Desrochers and Laporte (1991) and is an enhanced
version of a simpler formulation that was �rst derived by Miller et al. (1960).
Let LBiATSP denote the value of the linear relaxation of Model (8)-(14). We obtain a

fourth lower bound

LB4 = max
2�i�m

f min
1�j�n

rij + LB
i
ATSP + min

1�j�n
qijg (15)

In order to speed-up LB4; we can reduce the LP size by relaxing the subtour elimination
constraints (11)-(13). Hence, the resulting relaxation is a linear assignment problem. We
denote by LB4� the value of the corresponding bound. Since, the linear assignment problem
can be solved using the Hungarian algorithm in O(n3) time, then LB4� can be computed in
O(mn3) time.

3.1.2 A two-machine based lower bound

First, we consider the special case wherem = 2:We shall prove that the problem is solvable
in polynomial time. Given a permutation � of the n jobs together with the associated starting
times ti;�(j) (i = 1; 2 and j = 1; :::; n). We denote by Cmax the corresponding makespan. The
time interval [0; Cmax] can be partitioned into 2n + 1 sub-intervals I1; J1; I2; J2;..., In; Jn;
In+1 where

� I1 = [0; t2;�(1) � � 12],

� Ij = [t2;�(j�1); t2;�(j) � � 12] for j = 2; :::; n,

� In+1 = [t2;�(n); Cmax],

� Jj = [t2;�(j) � � 12; t2;�(j)] for j = 1; :::; n.

Figure 1 depicts the partition of [0; Cmax] for a 4-job schedule.

Insert Figure 1 here

We observe that:

� During each interval Jj = [t2;�(j) � � 12; t2;�(j)] (j = 1; :::; n) both machines are idle
during � 12 units of time
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� Before starting processing job �(j) (j = 2; :::; n); machine M1 remains idle during at
least (� 20 + � 01) units of time. Also, M1 remains idle during � 01 units of time before
processing job �(1)

� After �nishing processing job �(j) (j = 1; :::; n � 1); machine M2 remains idle during
at least (� 23 + � 31) units of time. Also, M2 remains idle during � 23 units of time after
processing job �(n)

Based on these observations, we may include the transportation times into the processing
times by letting

p01j = p1j + � 20 + � 01 for j = 1; :::; n (16)

p02j = p1j + � 23 + � 31 for j = 1; :::; n (17)

and adding to the resulting makespan the constant n� 12�� 20�� 31. Moreover, we observe
that M1 remains blocked until M2 becomes available for processing. Hence, it is instructive
to see the two-machine relaxation in another way: as a two-machine �ow shop problem (with
modi�ed processing times) and blocking. Actually, this latter problem is equivalent to the
no-wait two-machine �ow shop problem (it is easily realized that both problems have the
same makespan for the same job sequence). Hence, the two-machine �ow shop problem with
blocking could be restated as a traveling salesman problem (see for example Pinedo (2008),
p. 180) and solved in O(n log n)-time (Vairaktarakis, 2003).
Consequently, if m > 2; then we can consider a pair of consecutive machines (Mi;Mi+1)

(i = 1; :::;m � 1) and we relax the capacities of all the other machines. The resulting
relaxation is a two-machine permutation �ow shop with blocking and transportation problem
subject to heads and tails, where for each job j is de�ned

� a head ~rij =
i�1P
k=1

pkj +
i�2P
k=0

� k;k+1 if i > 1 and ~r1j = 0;

� a tail ~qij =
mP

k=i+2

pkj +
mP

k=i+2

� k;k+1 if i < m� 1 and ~qm�1;j = 0:

Let LBi5 denote the optimal makespan. Then a valid lower bound is

LB5 = max
1�i�m�1

f min
1�j�n

~rij + LB
i
5 + min

1�j�n
~qi;jg (18)

LB5 can be computed in O(mn2) time.
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3.2 An exact branch-and-bound algorithm

With each node N at level l � 1 of the search tree we associate a subsequence �(N) rep-
resented by an ordered list of l jobs scheduled on the top of the global sequence. The root
node corresponds to an empty list. With each node N is associated the following data:
J(N): Set of unscheduled jobs,
Ci� : Completion time of � on machine Mi (i = 1; ::::; m);
j(�) : index of the last scheduled job,
C�max : The current best upper bound on the optimal makespan. In our implementation,

the value of C�max at the root node is provided by the genetic algorithm that is described in
Section 5.
LB(N) : A lower bound on the optimal makespan of a sequence where the jobs of subset

J are scheduled after the completion of subsequence �(N).
Given a node N , a child node N+ is created by sequencing an unscheduled job k 2 J(N)

at the last position of �(N) (thus, �(N+) = �(N)k). For computing a lower bound LB(N+)
we can use any of the previously described lower bounding procedures. However, we should
take into account the partial schedule corresponding to the sequence �. For the one-machine
based bounds L1; :::; L4 the required modi�cations are straightforward. We describe how to
modify LB5 in order to account for the partial sequence �. The basic idea for computing
LBi5(N) (i = 1; :::;m� 1) is the following. Firstly, in order to account for the availability of
machine Mi+1 we append to the set of unscheduled jobs a dummy job 0 such that pi0 = 0
and pi+1;0 = pi+1;j(�). In so doing and if job 0 is scheduled at the �rst position, then machine
Mi+1 would be unavailable during the time interval [Ci+1� � pi+1;j(�); Ci+1� ]. Since, the robot
requires (� i�1;i + � i;i+1) units of time for transferring the dummy job from Mi�1 to Mi+1;
then a lower bound on the starting time ai of the robot moves is given by (see Figure 2)

ai = C
i+1
� � pi+1;j(�) � � i;i+1 � � i�1;i; i = 1; :::;m� 1: (19)

Finally, we compute LBi5(N) for the subset J(N) [ f0g and we set

LB5(N) = max
1�i�m�1

fai + LBi5(N) + min
j2J(N)

~qi;jg: (20)

Insert Figure 2 here

For selecting the node to be branched, we select the node which has the smallest lower
bound among the most recently created nodes.

3.2.1 Exploiting the problem symmetry

Given an instance I of F jBlocking; tkjCmax, we de�ne the corresponding symmetric instance
I�1, the instance that is obtained by reversing the machine ordering. That is, each job j 2 J
must be picked up from Mm+1; and �rst processed on Mm; then on Mm�1;..., M1, in that
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order, and ultimately transferred to M0. Let � = (�(1); :::; �(n)) denote a permutation of
the n jobs, we de�ne the associated reverse permutation ��1 = (�(n); :::; �(1)). Moreover,
we denote the makespan of the solution of instance I that corresponds to � by Cmax(I; �).

Proposition 1 Given an instance I satisfying the following properties:

(P1) � i;i+1 = � k;k+1 8 i; k = 0; :::m and � i;i+2 = � k;k+2 8 i; k = 0; :::m� 1
(P2) � i;i+1 = � i+1;i 8 i = 0; :::m
Then, we have Cmax(I; �) = Cmax(I�1; ��1) for all �:

Proof. First, we shall prove that the makespan under a given permutation schedule can
be obtained through computing a critical path in a digraph. Consider the instance I and a
permutation � of the n jobs: Recall that ti;�(j) denotes the starting time of job �(j) on Mi

(i = 1; :::;m+ 1). Therefore, Cmax(I; �) = tm+1;�(n):
We construct an associated acyclic digraph G(I; �) = (V;A) as follows. The node set is

V = f(i; �(j) : i = 1; :::;m+ 1; j = 1; :::; ng. The arc set includes two types of arcs:

� Type 1: There is an arc (i+ 1; �(j � 1))! (i; �(j)) for i = 1; :::;m; j = 2; :::; n

� Type 2: There is an arc (i; �(j))! (i+ 1; �(j)) for i = 1; :::;m; j = 1; :::; n:

The arcs are assigned the following weights:

� An arc (i+ 1; �(j � 1))! (i; �(j)) of Type 1 has a weight � i+1;i�1 + � i�1;i

� An arc (i; �(j)) ! (i + 1; �(j)) of Type 2 has a weight pi;�(j) + � i;i+1. However, there
is one exception: the weight of arc (1; �(1))! (2; �(1)) is p1;�(1) + � 01 + � 12

For the sake of clarity, Figure 3a displays the graph that is associated with a 3-job 3-
machine instance and � = (1; 2; 3), and where � ij = � ji� jj for i; j = 0; :::;m+1: Moreover,
Figure 3b displays the graph that is associated with the reverse instance and the permutation
��1 = (3; 2; 1). We de�ne �G(I; �) the graph that is obtained from G(I; �) by deleting
arcs (1; �(1)) ! (2; �(1)) and (m;�(n)) ! (m + 1; �(n)) as well as nodes (1; �(1)) and
(m + 1; �(n)). We observe, that �G(I�1; ��1) can be derived from �G(I; �) by reversing all
the arcs in �G(I; �). Consequently, the value of the longest path from node (2; �(1)) to node
(m;�(n)) in �G(I; �) (and therefore in G(I; �)) is equal to the value of the longest path from
node (m;�(n)) to node (2; �(1)) in �G(I�1; ��1) (and therefore in G(I�1; ��1)):
De�ne, L(�; �) as the value of the longest path in the graph between nodes � and �:

One could readily check the following simple facts.

F1 The value of the makespan is equal to the value of the longest path in G(I; �) between
nodes (1; �(1)) and (m + 1; �(n)). This fact stems from Equations (1) and the graph
structure. Hence, Cmax(I; �) = L((1; �(1)); (m+ 1; �(n))):
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F2 We see that L((1; �(1)); (m + 1; �(n))) = p1;�(1) + � 01 + � 12 + L((2; �(1)); (m;�(n))) +
pm;�(n) + �m;m+1. This stems from the fact that nodes (2; �(1)) and (m;�(n)) have
exactly one predecessor and one successor, respectively.

Consequently, since I satis�es (P1) and (P2), then Cmax(I; �) = Cmax(I�1; ��1)

Corollary 2 If I satis�es (P1) and (P2) and if � is an optimal permutation for instance I;
then ��1 is an optimal permutation for I�1:

Consequently, if I satis�es (P1) and (P2) and if the branch-and-bound algorithm fails in
�nding an optimal solution within a given time limit then we take advantage of the symmetry
of F jBlocking; tkjCmax by solving the symmetric problem (that is obtained by reversing the
machine ordering).

4 Scheduling of the robot moves

In this section, we are concerned with scheduling the robot moves provided that the process-
ing order of the jobs on the m machines is given. For the sake of alleviating the notation we
shall assume that the jobs are indexed according to their processing order.
It is interesting to view the robot sequencing problem as a single machine scheduling

problem with side constraints, where the machine represents the robot and the operations
correspond to the robot loaded moves, respectively. More precisely, we assume that we have
a set of operations � = fOij : i = 0; :::;m, j = 1; :::; ng to be processed nonpreemptively
on a single machine. An operation Oij 2 � corresponds to a transfer of job j from Mi to
Mi+1: The processing time of Oij is � i;i+1: In addition, there are two types of precedence
constraints:

� Type 1: Because of the �ow shop constraints, we have Oi�1;j � Oi;j for i = 1; :::;m and
j = 1; :::; n (where the notation �u � v�means that operation u precedes operation v).
This constraint expresses that a job j cannot be transferred to machine Mi+1 before
being transferred to machine Mi:

� Type 2: Because of the blocking constraints, we have Oij � Oi�1;j+1 for i = 1; :::;m
and j = 1; :::; n � 1. This constraint enforces that job j + 1 cannot be transferred to
machine Mi before transferring job j from Mi to Mi+1:

Moreover, there is a minimal time lag li�1;j � pij between the completion time of opera-
tion Oi�1;j and the start time of operation Oij (i = 1; :::;m and j = 1; :::; n): This time lag
corresponds to the processing time of job j on machine Mi+1 (i = 0; :::;m). Finally, if two
operations Oi�1;j and Ohk are processed consecutively (with j 6= k) then there is a nonneg-
ative setup time 
ih � � ih between these two operations. This setup time corresponds to an
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empty positioning move from Mi to Mh. Thus, optimizing the robot moves requires mini-
mizing the makespan on a single machine with precedence constraints, time-lags, and setup
times. Hurink and Knust (2002) investigated this problem in the case where the precedence
constraints stem from a job shop environment. They proved that the problem is NP-hard
and proposed a tabu search algorithm. However, the complexity of the problem when the
precedence constraints stem from a �ow shop environment remains an open question. In the
sequel, we describe an exact branch-and-bound algorithm for solving this latter problem.

Given an optimal permutation � = (1; :::; n) of the n jobs, we construct an associated
weighted digraph Ĝ = (V̂ ; Â) where each node u 2 V̂ corresponds to an operation Oij 2 �;
respectively. An arc (u; v) that connects node u � (�1; �1) 2 V̂ to node w � (�2; �2) 2 V̂ is
de�ned if and only if there is a precedence constraint O�1�1 � O�2�2 : That is,

(i) �1 = �2 � 1 and �1 = �2; the weight of this arc is c(u; v) = ��2�1;�2 + p�2�2 which
corresponds to the sum of the transfer time of job �2 from M�2�1 to M�2 and its
processing time on M�2

Or,

(ii) �1 = �2 + 1 and �1 = �2 � 1; the weight of this arc is c(u; v) = ��1 ;�1+1+��1+1;�1�1
which corresponds to the total duration of a loaded move from M�1 to M�1+1 and an
empty move from M�1+1 to M�1�1.

Fact 1 Let P = (u1; :::; up) be a path in Ĝ starting at node u1 � (�1; �1) and ending at
node up � (�p; �p) and having a total weight c(P). Then, c(P) is a lower bound on
the minimal time elapsed between the �nishing time of O�1�1and the starting time of
O�p�p .

Proof. This result follows from the fact that the weight of an arc (u; v) 2 Â (where
u � (�1; �1) and w � (�2; �2)) corresponds to the minimal time that elapses between the
�nishing time of operation O�1�1 and the starting time of operation O�2�2.

An immediate consequence is the following.

Fact 2 A valid lower bound on the total time that is required for completing all the jobs
upon processing operation O�1;�1is equal to the sum of the value of the longest path
in Ĝ between nodes u1 � (�1; �1) and u

� � (m;n) and the transfer time of the last
scheduled job to the output device (i.e. �m;m+1).

The main features of the branch-and-bound algorithm that we have implemented for
�nding an optimal sequence of the robot moves are the following.
- Root node: The root node N0 corresponds to a partial schedule s(N0) = (O01; O11)

(obviously these two operations are necessarily scheduled �rst).

13



- Branching strategy: Given a node N having a corresponding partial schedule s(N),
a child node N+ is created by selecting an unscheduled operation Oij whose immediate
predecessors Oi�1;j and Oi+1;j�1 have been already included in the partial schedule s(N):
The partial schedule associated with N+ is s(N+) = s(N)Oij.
- Lower bound: For each newly created node N , we compute the completion time of

the last scheduled operation and then we use Fact 2 for deriving a lower bound C(N) on the
minimum completion time.
- Upper bound: An upper bound UB is computed at the root node by approximately

solving the one-machine problem using a simple list scheduling algorithm: at each iteration
schedule a candidate operation Oij whose immediate predecessors have been already sched-
uled and whose starting time is minimal. Obviously, if for a node N we have C(N) � UB
then this node is pruned.
- Search strategy: We have implemented the following search strategy. We select

amongst the candidate nodes the one corresponding to appending an unscheduled operation
Oij having the smallest origin machine index.

5 A genetic algorithm

During the last two decades, metaheuristics have become powerful tools for the approx-
imate solution of intractable combinatorial optimization problems. In particular, genetic
algorithms have been implemented for providing high-quality solutions to a wide variety of
challenging �ow shop problems (see for example Ruiz et al. (2006) and Rajkumar et al.
(2009), to quote just a few). In this section, we investigate the ability of a genetic algorithm
(hereafter, referred to by GA1) to e¤ectively solve the robotic cell problem. Next, the per-
formance of GA1 will be compared against the performance of the proposed approximate
decomposition algorithm. The main features of GA1 are the following :

- Solution encoding : An ordered list (i.e. permutation) � = (�(1); :::; �(n)) of the n
jobs is used to represent a chromosome.

- Fitness computation : Given a chromosome � = (�(1); :::; �(n)), the �tness of the
corresponding solution is computed as follows. First, the m machines are sequenced accord-
ing the ordering that is speci�ed by the chromosome. Second, the sequence of the robot
moves is obtained using the afore-mentioned list scheduling algorithm: at each iteration,
we schedule the robot operation whose predecessors have been already scheduled and whose
starting time is minimal. In so doing, a feasible schedule is obtained. Clearly, we might use
a more sophisticated approach for scheduling the robot moves, but this would require longer
CPU times.

- The crossover operator : We implemented a powerful crossover operator that was
recently introduced by Ruiz et al. (2006) for solving the (standard) permutation �ow shop
problem. This operator is called Similar Job Order Crossover (or, SJOX for short) and is
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described as follows. Given two parent chromosomes, a crossing point is randomly selected
along the length of the �rst parent, and an o¤spring is produced by copying the identical jobs
that are located at the same positions in both parents into the corresponding positions of it.
Then missing jobs before the crossing point are inherited from the �rst parent. Lastly, the
missing jobs are copied in the relative order of the second parent. Clearly, if no identical jobs
are at the same position in the parents, the crossover operator will behave like the one-point
crossover.

- The mutation operator: The performance of a GA might be signi�cantly improved
when it is hybridized with a local search procedure. In our GA, instead of using a classical
mutation operator, we implemented the following interchange procedure. First, a chromo-
some is chosen randomly and is mutated with a speci�ed probability. Then, we perform a
pairwise interchange of jobs (the interchanged jobs are not necessarily adjacent). Obviously,
if this interchange leads to a reduction of the makespan then the chromosome is replaced
with the improved one. The process is continued until no improvement could be achieved.

- Parameter setting: We performed preliminary experiments and found that a good
e¢ cacy is achieved by setting the parameters as follows:

� Population size = 300 (The set of initial chromosomes are randomly generated)

� Crossover probability = 0:9

� Mutation probability = 0:4

� Maximum number of generations = 1000

� Maximum number of consecutive non improving generations before stopping = 100:

Remark 2 In order to accelerate the convergence of the branch-and-bound algorithm that is
described in Section 3.2, we implemented an additional genetic algorithm GA2 that delivers
an upper bound for F jBlock; tkjCmax. GA2 is very similar to GA1. The only di¤erence lies
in the �tness computation. In GA2, the �tness of a chromosome � = (�(1); :::; �(n)) is set
equal to the makespan of the corresponding permutation.

6 Computational results

In order to assess the empirical performance of the proposed two-phase approach, we have
coded all the proposed procedures and carried out computational experiments on a set
of randomly generated RCP instances. The test-bed was generated in the following way.
The processing times are drawn from the discrete uniform distribution on [1; 100] and the
transportation time between a pair of machinesMi andMk is � i;k = 2�ji�kj. The proposed
algorithms were coded and compiled with Microsoft Visual Studio C++ (version 6.0). The
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linear programming relaxation that is used for computing LB4 has been solved using CPLEX
9.1. All the computational experiments were carried out on a Pentium IV 3.2 GHz, 1 Gbytes
RAM PC.

6.1 Performance of the lower bounds

In this section, we present an empirical analysis of the performance of the proposed lower
bounds for the �ow shop problem with blocking and transportation times that is solved in
Phase 1.
The number of jobs n is taken equal to n = 15, 20, 25, 30, 40, and 50. The number

of machines m is taken equal to 3, 4, and 5. For each (m;n) combination, 10 instances
were randomly generated. In Table 1, we report for each lower bound LBi (i = 1; :::; 5)
and MAX-LB � max

i
fLBig the average percentage deviation from the value UBGA2 of the

solution of GA2 (i.e. 100� (UBGA2 � LBi)=LBi).

Insert Table 1 here

We see from this table that LB4; LB4�; and LB5 exhibit the smallest percentage de-
viation. However, we observe that the performance of all the lower bounding strategies
deteriorates as the number of machines increases. Interestingly, we see that for m = 5; the
one-machine based lower bounds outperform the two-machine based lower bound LB5:
In addition, we found that LB1; LB2, LB3; LB4�; and LB5 are extremely fast since they

require negligible CPU times (< 0:001 sec). On the contrary, LB4 which requires invoking
an LP solver takes relatively longer CPU times.
In our experiments, we found that the equality LB4� = LB4 holds for almost all instances

(178 out of 180 instances). In Table 2, we report for each of these two bounds the mean
CPU time in seconds.

Insert Table 2 here

We see from this table, that although LB4 and LB4� exhibit a very similar performance,
the latter requires signi�cantly shorter CPU times.

6.2 Performance of the two-phase approach

We have carried out extensive computational experiments in order to determine which lower
bound provides the best performance after being embedded within the branch-and-bound
algorithm of Phase 1. We found that a good trade-o¤ is achieved by using the following
hybrid strategy: if the level of the node is smaller than 2�n

3
then LB4� is invoked, otherwise

LB5 is used. Here again, for each combination (m;n) we randomly generated 10 instances.
Table 3 displays a summary of the computational results of the proposed two-phase

method. For each combination (m;n), we provide:
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� TNO : Total number of operations which is equal to 2nm+n (it includes nm machine
operations and n(m+ 1) robot operations

� US1 : number of instances for which optimality was not proved in Phase 1 after reaching
a 2-hour time limit

� Time 1 : mean CPU time of Phase 1

� US2 : number of instances for which optimality was not proved in Phase 2 after reaching
a 5-min time limit

� Time 2 : mean CPU time of Phase 2

� Time GA2 : mean CPU of GA2

� TT : mean total CPU time (viz. TT = Time 1 + Time 2 + Time GA2)

� Gap GA2: mean percentage deviation of the solution provided by GA2 with respect
to the optimal makespan that is computed in Phase 1

� Gap GA1: mean percentage deviation of the solution provided by GA1 with respect
to the optimal makespan that is computed in Phase 1

� Gap 2P : mean percentage deviation of the solution provided by the two-phase method
with respect to the optimal makespan that is computed in Phase 1.

Insert Table 3 here

Looking at Table 3, we see that the proposed approach exhibits a good overall perfor-
mance since it consistently delivers high-quality solutions. Indeed, the average gap over
the 210 instances is 0.85%. Moreover, we observe that for 96.7% of the instances, Phase 1
provided proven optimal solutions. However, the branch-and-bound algorithm in Phase 1
failed to deliver proven optimal solutions for one 4-machine and six 5-machine instances (out
of 210 instances). Nevertheless, this is a remarkable result since it is well-documented that
similar �ow shop problems with blocking are notoriously hard to solve to optimality. For
instance, Ronconi (2005) reported that her branch-and-bound algorithm failed to solve 9 out
of 10 F jBlockjCmax instances with 20 jobs and 4 machines. On the other hand, we found
that the branch-and-bound algorithm of Phase 2 failed to deliver proven optimal solutions
for 47 instances (out of 210) after reaching the 5-minute time limit. This provides a clear
evidence of the hardness of the one-machine problem that is solved in Phase 2. Interestingly,
we observe from Table 3 that the two-phase method consistently outperforms the genetic
algorithm for 17 problem size combinations (out of 21). More precisely, we found that the
two-phase method outperformed the genetic algorithm for 50% of the instances, and that it
produced inferior solutions for 28% of the instances. However, the genetic algorithm provides
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in most cases reasonably good solutions while requiring signi�cantly shorter CPU times. In-
deed, the largest instances often require about 1 minute CPU time only. Consequently,
while the two-phase approach constitutes an appealing method for e¢ ciently solving small
and medium-size RCP instances, the genetic algorithm proves much more appropriate for
addressing large-size instances.

7 Conclusion

In this paper, we have investigated the robotic cell problem. We have proposed an approx-
imate decomposition algorithm. To the best of our knowledge, this is the �rst attempt to
solve this complex scheduling problem. The proposed approach breaks the problem into two
scheduling problems: a �ow shop problem with blocking and transportation times and a
single machine problem with precedence constraints, time lags, and setup times. We have
proposed for each of these two problems an exact branch-and-bound algorithm. In order to
assess the performance of the proposed approach, we have proposed a genetic algorithm that
includes a powerful crossover operator as well as a local search-based mutation operator.
We reported the results of a computational study that provide evidence that the proposed
two-phase approach is robust, consistently delivers high-quality solutions, and outperforms
the genetic algorithm. However, we found that the genetic algorithm requires signi�cantly
shorter CPU times and proves useful for e¢ ciently solving large-scale instances.
Scheduling robotic cells constitute a challenging class of scheduling problems, and de-

spite its pertinence to the fast growing topic of FMSs, its in-depth investigation is still
in its infancy. We believe that the development of exact as well as tailored sophisticated
metaheuristics for this important problem class is a promising avenue for future research.
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