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Abstract. The Stochastic Eulerian Tour Problem (SETP) seeks the Eulerian tour of 

minimum expected length on an undirected Eulerian graph, when demand on the arcs that 

have to be serviced is probabilistic.  In an earlier paper, we have shown that the SETP is 

NP-hard and derived several properties of the optimal tour.  In this paper, we develop 

three constructive heuristics for the SETP. The first two are greedy tour construction 

heuristics while the third is a sub-tour concatenation heuristic.  We tested the performance 

of the three heuristics and a post-optimization procedure on grid networks and on 

Euclidean graphs.  Our results indicate that the sub-tour construction heuristic performs 

well when the probability of occurrence of each edge in the graph, p > 0.1 for the grid 

networks.  For the Euclidean networks, as the number of edges increases, the second 

heuristic performs the best among the three, though the margin of improvement is small.   
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1. Introduction 

This paper presents three heuristic procedures for the Stochastic Eulerian Tour Problem (SETP).  We 

defined the SETP in a companion paper as follows. We are given an undirected Eulerian graph 

( )G V E= , , a set ( )n  R ,ER R =⊆  of edges that require service, and a distance ( )ji vvd ,  between 

every pair of directly connected nodes iv  and jv .  On any instance of the problem, only a subset of the n 

service edges is present, and hence, requires a visit.  The number of present edges follows a specified 

probability distribution.  The objective is to determine an a priori Eulerian tour that visits all the n edges 

and minimizes the expected length of the tour.  On any given instance, one visits and services the present 

edges in the same order as in the a priori tour, while skipping the ones that are absent.  

 Since we have shown that the SETP belongs to a class of hard problems, we concentrate on 

developing heuristic algorithms that would provide good solutions.  In this paper, we present three 

different tour construction heuristics for the SETP.  The first heuristic is a simple greedy heuristic that 

determines the next service edge to add to the tour as the one that results in the least increase in the 

expected length when appended at the end of the tour.  The second heuristic also greedily selects the next 

edge of the tour.  However, this heuristic selects the next service edge from the set of edges incident to the 

current node rather than from the set of all available service edges.  The third heuristic constructs several 

small sub-tours and then concatenates these sub-tours by considering the expected savings in 

concatenating them.  We have also incorporated an adaptation of a post-optimization procedure 

introduced by Gendreau, Hertz, and Laporte (1992) for the TSP.  Hertz, Laporte, and Nanchen (1999) call 

this adaptation as DROP-ADD and have used it for the undirected Rural Postman Problem.  

Our heuristics are partly based on the heuristics for the stochastic node routing problem first 

introduced by Jaillet (1985) as the Probabilistic Traveling Salesman Problem (PTSP).  He has proposed a 

number of heuristics by suitably modifying several well-known TSP heuristics such as the Clarke-Wright 

algorithm and nearest neighbor algorithm. Rossi and Gavioli (1988) present computational results after 

testing three of Jaillet’s heuristics.  Their computational results indicate that the probabilistic Clarke-
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Wright algorithm produces TSP tours with lower expected lengths than the corresponding deterministic 

TSP heuristics when the probabilities are low (between 0 and 0.6).  We first present the theoretical 

preliminaries that we use to design our heuristics in Section 2.  Section 3 presents detailed descriptions of 

the three tour construction heuristics and the post optimization procedure for the SETP.  We present 

detailed computational results in Section 4 and provide the conclusion and directions for future research 

in Section 5. 

 

2. Theoretical Preliminaries 

The given undirected graph G  has a designated depot where the Eulerian tour starts and ends.  In order to 

facilitate the representation and analysis, we duplicate the depot and represent the duplicated node as v0 , 

which now serves as the depot and is connected to the original depot by two edges of length 0, one of 

which is a service edge.   

 Given an Eulerian tour t  for the graph G , we have an ordering of the nodes and edges, and thus, 

a direction of traversal (and service) for each of the n  service edges.  If we traverse edge ei  from node 

vk  to vl , we define vk  as the in-node for edge ei ( )in
iv  and vl  as the out-node for edge ei ( )out

iv .  Thus, 

given the in-node and the out-node for each edge in R , we represent an Eulerian tour t  as 

( )02221110 ,,,,,,,,,,, vvevvevvevvt out
nn

in
n

outinoutin K= , where the edges e e en1 2, , ,L  are numbered in 

their order of appearance in tour t .  When the number of present service edges follows a binomial 

distribution with parameter p , the expected length of a given tour t  is  
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Note that if nodes iv  and jv  are not directly connected, then ( )ji vvd ,  is the shortest distance between 

vi and v j . 

 

2.1. Addition of a Service Edge to a Path 

Consider a path P  starting at the depot 0v  and servicing ( )ni i <  service edges.  Let us now add service 

edge 1+ie  to the path.  We can calculate the expected increase in the length of the path by adding edge 

1+ie  by considering the following two cases: 

(i) the service edges ie,,e,e K21  already in the path are not present; and 

(ii) k  of the i  service edges in the path are not present. 

The expected increase in the length of path P  by adding service edge 1+ie  can now be expressed as  

( )[ ] ( ) ( ) ( ) ( ) ( )1

1

0
1

2
101     1     1    +

−

=
+−++ +−+−= ∑ i

i

k

in
i

out
ki

kin
i

i
iP elpv,vdppv,vdppe,LIE       (2) 

The first term of expression (2) corresponds to the situation where edge 1+ie  is the first edge present on 

the tour and the previous i edges are absent.  Hence, we need to consider the direct distance between the 

depot and the in-node of edge 1+ie .  The probability associated with this event is ( ) 11 −− ipp .  Similarly, 

the second term corresponds to the scenario where exactly k edges ( )1210 −= i,,,,k K  are absent before 

edge 1+ie .  In this case, edges kie −  and 1+ie  are present and edges 1+−kie  through ie  are absent.  Hence, 

we need to consider the distance between the out-node of edge kie −  and the in-node of edge 1+ie , and the 
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associated probability is ( )kpp −12 .  The last term corresponds to the probability that edge 1+ie  is 

present. 

Note that in order to calculate ( )[ ]1 +ip e,LIE  using (2), we need to designate one of the ends of 

edge 1+ie  as the in-node, i.e., we need to fix in
iv 1+ .  If ( )lki v,ve   1 =+ , we calculate ( )[ ]1 +iP e,LIE  for both 

orientations of 1+ie , i.e., by fixing in
iv 1+  as kv  once and as lv  once, and pick the orientation with the 

minimum expected increase.   

 

2.2. Merging of Sub-tours 

The probabilistic Clarke-Wright algorithm proposed by Jaillet (1985) for the PTSP serves as a motivation 

for the results in this sub-section.  In our case, a sub-tour for the given graph G  starts at the depot, 

services ( )nii <  service edges, and returns to the depot.  Let us consider two sub-tours 1ST  and 2ST  

which do not service any common service edge.  Sub-tours 1ST  and 2ST  service 1n  and 2n  edges, 

respectively.   

( )011121212111111101 111
v,v,e,v,,v,e,v,v,e,v,vST out

n,n,
in

n,
out
,,

in
,

out
,,

in
, K=  

( )022222222212121202 222
v,v,e,v,,v,e,v,v,e,v,vST out

n,n,
in

n,
out
,,

in
,

out
,,

in
, K=  

Let [ ] [ ]
21

 and  STST LELE  be the expected length of the sub-tours 1ST  and 2ST .  When we merge 1ST  

and 2ST  by edges 121   and 
1 ,n, ee (i.e., in

,v 12  directly follows out
n,v

11  on the merged sub-tour), the expected 

length of the merged sub-tour could be less than or equal to the total expected lengths of 1ST  and 2ST .  

This expected savings in the length of the merged sub-tour could be calculated by considering the 

following events and the associated probabilities.   

• Edge ( )11 1 nie i, ≤≤  is the last present service edge on 1ST --  

probability: ( ) inpp −− 11  
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• Edge ( )22 1 nje j, ≤≤  is the first present service edge on 2ST -- 

probability: ( ) pp j 11 −−  

When i,e1  is the last present edge on 1ST  and j,e2 is the first present edge on 2ST , the savings incurred 

in the distance traversed is  

( ) ( ) ( ) ( )in
j,

out
i,

in
j,

out
i,j,i, v,vdv,vdv,vde,eS 21200121      −+=      (3) 

The expected savings when we merge 1ST  and 2ST  through edges 2,11 e and 
1n,e  can be represented as 

( )[ ] ( ) ij
i

n

j,i,,n, pe,eSe,e:ST,SE ∑∑
= =

=
1 2

1

n

1 1j
2112121          ST      (4) 

where,  ( )( ) ( )12 11 −+−−= jin
ij ppp   

and   ( )j,i, e,eS 21  is given by (3) 

Note that we have four different ways to merge 1ST  and 2ST .  We can merge the sub-tours 

through edges 121  and 
1 ,n, ee , or 

21 21  and n,n, ee , or 1211  and ,, ee , or 
2211  and n,, ee .  The best way to merge 

1ST  and 2ST  is through the edge concatenation that yields the maximum expected savings.  Thus, the 

expected savings from merging 1ST  and 2ST  is  

( )[ ] { } { } ( )[ ][ ]  :      
11

max
   ST 2121

21
21 k,h, e,eST,STSE

n,k,n,h
ST,SE

∈∈
=    (5) 

 

3. Heuristic Procedures 

In this section, we present detailed descriptions of the three heuristics that we have developed for the 

SETP.  All three are tour construction procedures.  The first and the second heuristics construct the tour 

by adding one service edge at a time, while the third heuristic constructs several small sub-tours and then 

concatenates these to form the Eulerian tour.  Finally, we also describe the post-optimization procedure 

DROP-ADD that is analogous to the US procedure (Gendreau et al., 1992) for the TSP. 
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3.1. Heuristic 1: Global Greedy 

This heuristic starts with an empty path and successively adds one edge at a time to the path.  The edge 

added to the path is the one that results in the least expected increase in the length of the resulting path.  

Once all the n  edges are added, we complete the tour by returning to the depot from the out-node of the 

last added service edge.   

 Two components contribute to the expected increase in the path length as computed by (2).  The 

first is the inter-edge traversal distances between the service edges on the path and the candidate edge, 

and the second is the length of the candidate edge.  Hence, the heuristic tends to select shorter edges 

closer to the out-node of the last edge in the path.  As a result, in certain situations, the tours produced by 

this heuristic could be longer than necessary when all the service edges are present.  For example, 

consider the graph in Figure 1 with 12 service edges.  Node 1 is the depot.  The length of all the edges on 

the three outer triangles is 5 and the length of the edges on the connecting inner triangle is 1.   

 

   Figure 1. Example graph for heuristic 1 

 

When each edge in the graph is present with a probability p = 1.0, the global greedy heuristic produces 

the tour (1-4-9-1-2-3-1-4-5-6-4-9-7-8-9-1) of length 51.  But, it is obvious that we can reduce the total 

length to 48 since the edges (1,4), (4,9), and (9,1) are traversed twice.  In this case, the expected length 

will also be reduced since p = 1.0.  Using this as a motivation, we apply the procedure SHORTEN (Hertz 

                                                                    

52 6

1

87

3

4

9

Heuristics for the Stochastic Eulerian Tour Problem

CIRRELT-2007-46 6



  

et al., 1999) to the tour produced by the global greedy heuristic.  Basically, this procedure starts with node 

r  (= 1), and moves all the service edges as far to the right as possible.  It then replaces the path from 

node r  to the in-node of the first service edge by the shortest chain.  If the length of the resulting tour is 

smaller, we renumber all the nodes on the new tour and start the procedure again at node r (= 1).  If not, 

we increment r  by 1 and continue until no more reduction in the tour length is possible.  

If we apply procedure SHORTEN to the above tour, we get the tour (1-2-3-1-4-5-6-4-9-7-8-9-1) 

of length 48.  For values of p  less than 1.0, the expected length of the shortened tour could be greater 

than the expected length of the original tour since the ordering and the orientations of the service edges 

could be changed during the SHORTEN procedure.  Hence, we calculate the expected length of the 

shortened tour and retain this tour as the final result only if its expected length is less than or equal to the 

expected length of the original tour.   

 

Algorithm GLOBAL GREEDY 

Step 0: Initialize ( )0  vP←  and EB   ← . 

Step 1: For every edge ie  in B , calculate ( )[ ]iP e,LIE  as described in Section 2.1. 

Step 2: Set ( )[ ]{ }  argmin   iP e,LIEk ← .  Append the tour segment ( )out
kk

in
k v,e,v  to P .   

Set { }ieBB  -   ← . 

Step 3: If ∅=  B , append the return path from the out-node of the last added service edge to the 

depot to P  to get tour t  and go to Step 4.  If not, go to Step 1. 

Step 4: Apply procedure SHORTEN to tour t  to obtain tour t ′ .  If [ ] [ ]tt LELE     ≤′ , t ′  is the final 

tour, else t  is the final tour.  
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3.2. Heuristic 2: Local Greedy 

This heuristic is a modification of the global greedy heuristic.  At each iteration, instead of selecting the 

next service edge from among all the available service edges, we choose from only among the service 

edges incident to the node we are at (current node).  Thus, this heuristic starts at the depot, adds the 

service edge with the least expected increase in length from among all the service edges incident to the 

depot, and repeats the process at the out-node of the added service edge.  If at any point, there are no 

service edges incident to the current node, there may be a matching edge incident to this node, that was 

added to the graph while solving the augmentation problem.  If this is the case, we traverse the matching 

edge and continue the process, until all service edges are added and we have a complete tour.   

 This heuristic ensures that when p = 1.0, the length of the tour generated using this heuristic is 

equal to the length of a random Eulerian tour.   

 

Algorithm LOCAL GREEDY 

Step 0: Initialize ( )0  vP←  and EB   ← . Calculate the degree of all the nodes in the graph.  Let 

current_node ←  0v . 

Step 1: Let W = set of service edges incident to current_node.  If ∅≠  W , calculate ( )[ ]iP e,LIE  as 

described in Section 2.1. for every edge ie  in W, and go to Step 2.  If ∅=  W , go to Step 3.  

Step 2: Set   ←k ( )[ ]{ }   argmin
  iPWe e,LIE

i ∈
.  Append the tour segment ( )out

kk
in
k v,e,v  to P .  Set 

{ }ieBB  -   ← .  Decrease degree of current_node and out
kv  by 1.  Set current_node ←  out

kv , 

and go to Step 4. 

Step 3: If degree[current_node] > 0, there is a matching edge incident to current_node.  Traverse this 

matching edge.  Decrease degree of current_node and the out-node of the matching edge by 

1.  Set current_node ←  out_node of the matching edge, and go to Step 4.   
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  If degree[current_node] = 0, backtrack on the partial tour just developed, to a node iv  with 

degree > 0.  Set current_node ←  iv , and go to step 4. 

Step 4: If ∅=  B , append the return path from the out-node of the last added service edge to the 

depot to P  to get tour t  and go to Step 5.  If not, go to Step 1. 

Step 5: Apply procedure SHORTEN to tour t  to obtain tour t ′ .  If [ ] [ ]tt LELE     ≤′ , t ′  is the final 

tour, else t  is the final tour.  

 

3.3. Heuristic 3: Sub-Tour Construction 

The third heuristic is also a tour construction heuristic, but is quite different from the global and local 

greedy heuristics.  This heuristic first constructs a single giant sub-tour using a set C of eligible edges, 

and another outer tour using the edges in E\C.  The sub-tour construction heuristic then breaks up the 

giant sub-tour into as many small separate sub-tours as possible.  Finally, the heuristic inserts these small 

sub-tours at appropriate insertion points on the outer tour to obtain the Eulerian tour.  We first describe 

each of the procedures of the algorithm and then provide a detailed description of the overall heuristic. 

 

Determination of the set of eligible edges 

This procedure forms a set C of the edges that can be used to form the giant sub-tour.  If the degree of a 

node is greater than 2, then this node occurs more than once in the final Eulerian tour, and hence there is a 

sub-tour out of this node.  This fact motivates the idea behind forming the set C.  In order to determine C, 

we need to consider only edges whose both end points are of degree greater than 2.   

 

Step 1: Set ∅←C .  Calculate the degree of all the nodes in the graph. 

Step 2: If the two end points of an edge Eei   ∈  are both of degree > 2, then add edge Eei   ∈  to the 

set C.  
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Breaking up a single sub-tour into smaller sub-tours 

This procedure breaks a sub-tour that starts at the in-node of a service edge in C and ends at the out-node 

of another service edge in C into as many small sub-tours as possible.  Given a giant sub-tour, we have an 

ordering of the nodes.  The procedure uses this ordering and results in more than one sub-tour if one or 

more nodes are visited more than once in the giant sub-tour.  Let the given sub-tour containing k nodes be 

represented as ( )ksss vvvST ,2,1, ,,,  K= .  Since the in-node of the first edge on a given sub-tour and the 

out-node of the last service edge are the same, we do not store the out-node of the last service edge in ST 

for notational simplicity.  However, when we merge a given sub-tour with another sub-tour or the outer 

tour, we always ensure that the last service edge on the given sub-tour is traversed, by visiting the out-

node of the last service edge.  We store the resulting smaller sub-tours in the array sub_tour. 

 

Step 0: Set [ ] STtour_sub    1 ← .  For each node Vvi   ∈ , set [ ] 0   ←ivcount . 

Step 1: Set [ ] [ ] 1    +← i,si,s vcountvcount  for all ki ,1,  K= , num_tours ←  1, and 1  ←i . 

Step 2: If [ ] 1 , >isvcount , let j  be the position of node isv ,  the second time it occurs on the given 

sub-tour.  If not, set 1    +← ii , and go to Step 4. 

Step 3: Remove the sub-tour ( )1,1,, ,,, −+ jsisis vvv K  from ST.  For 1−= j,i,  l K , set 

[ ] [ ] 1  vcount  vcount l,sl,s −← .  Set num_tours←num_tours+1, and 

[ ] ( )11  −+← j,si,si,s v,,v,vtours_numtour_sub K . 

Step 4: If ki    < , go to Step 2.   

If not, if num_tours > 1, use this procedure to break up 

[ ] [ ]tours_numtour_subtour_sub    to2 .  If num_tours = 1, the given tour has no sub-

tours, STOP.   
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Inserting the sub-tours into the outer tour 

This procedure inserts the num_tours sub-tours into an outer tour.  Each sub-tour iST  is represented as 

( )
iiii ksssi vvvST ,2,1, ,,,  K= .  This procedure determines a common node between the outer tour and each 

one of the sub-tours, if one exists, and inserts the sub-tours starting at this common node.  Note that there 

is at least one sub-tour having a common node with the outer tour during the first iteration.  While 

inserting the sub-tours, we make sure that we insert the sub-tour directly into the outer tour and not into 

another sub-tour.  We repeat the procedure until all the sub-tours are inserted into the outer tour.  We 

present below a detailed description of the procedure.  Note that we store the position on the outer tour at 

which a common node exists between sub-tour iST  and the outer tour in [ ]iouter_pos  and the 

corresponding position on the sub-tour iST  in [ ]isubtour_pos .   

 

Step 0: Let outert  ←  outer tour, and A  ←  set containing the num_tours sub-tours.  Set 

[ ]iouter_pos  ←  0 for tours_num,,i K1= .   

Step 1: For tours_num,,i K1= , if a common node exists between the outer tour and sub-tour iST , 

determine its position on outert  and iST , and update [ ]iouter_pos  and [ ]isubtour_pos .   

Step 2: Let B  be the set of all sub-tours with [ ]iouter_pos  > 0.  Set Bm ←  and  1←j . 

Step 3: Let ( ){ }      argmax
  iouter_posk BSTi ∈

← .  Start sub-tour kST  at node [ ]ksubtour_pos  and insert 

it into the outer tour starting at [ ]kouter_pos .  Set 1    +← jj , [ ] 1-  ←kouter_pos . 

Step 4: If j  < m , go to step 3.  If not, go to Step 5. 

Step 5: If there is one or more sub-tour iST  with [ ]iouter_pos  = 0, go to Step 2.  If not, outert  

contains the final Eulerian tour, stop. 
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Algorithm SUB-TOUR CONSTRUCTION 

Step 1: Construct the set C of the eligible edges for sub-tour construction using the procedure 

described earlier. 

Step 2: For each edge Cei   ∈ , construct a sub-tour ( )00 ,,,,  vvevvST out
ii

in
ii = .  Let A ←  set of all 

sub-tours. 

Step 3: Calculate ( )[ ] ,  ji STSTSE  using (5) as described in Section 3.2. for every pair of sub-tours 

in A. 

Step 4: Let ( )[ ]{ }       ji ST,STSEmaxargk ←  and ji ′′  and  be the indices yielding k. 

Step 5: Concatenate sub-tours ji ′′  and  using the appropriate orientation of the sub-tours.  Add the 

concatenated tour to A.  Set { }ji ST,STAA ′′←  -   , and 1 -   AA ← . 

Step 6: If 1  =A , SHORTEN the giant sub-tour in set A and go to Step 7.  If not, go to Step 3. 

Step 7: Break up the giant sub-tour in set A into as many smaller sub-tours as possible using the 

procedure described earlier. 

Step 8: If ∅≠  \ CE , construct a tour outert  with the edges in CE \  using the global greedy 

heuristic and SHORTEN the tour.  If not, set outert  ←  { }0v . 

Step 9: Insert the smaller sub-tours from Step 7 into the outer tour from Step 8 using the procedure 

described above. 

 

3.4. Post-Optimization: DROP-ADD 

The post-optimization procedure that we use is an adaptation of the Unstringing-Stringing (US) procedure 

developed by Gendreau et al. (1992) for the TSP.  Hertz et al. (1996) refer to this adaptation as DROP-

ADD and use it for the undirected rural Postman Problem.  Given an Eulerian tour t  with expected length 

[ ]tLE , procedure DROP-ADD attempts to find a tour t ′  with [ ] [ ]tt LELE     ≤′  by successively removing 
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service edges from the solution and then adding them at the best possible position. This procedure uses 

the ADD procedure as described in Hertz et al. (1996) to insert edges into a tour. We provide a step-by-

step description of the DROP-ADD procedure below.   

 

Step 1: Let the given Eulerian tour be t  with expected length *z  = [ ]tLE .  The n  service edges of 

the tour are numbered in their order of appearance in the tour.  Let i  ←  1. 

Step 2: Remove edge ie  from the tour t  and SHORTEN the tour to obtain tour t~ . 

Step 3: Add edge ie  to tour t~  using procedure ADD as described in Hertz et al. (1996).  

Step 4: Set t ← t~ .  If [ ]tLE  < *z , set t ′ ← t , *z ← [ ]tLE , i ←1;  go to Step 2. 

Step 5: If i  = n , stop.  If not, set i ← i  + 1 and go to Step 2. 

 

4. Computational Results 

We coded all the heuristics and the post-optimization procedure in C and tested them on two classes on 

randomly generated problems.  The first class of problems consists of grid networks of varying sizes.  We 

generated grids of sizes 4x4, 5x5, 6x6, 7x7, 8x8, and 9x9 for our computations.  For each one of the 

problems the lengths of the horizontal edges was randomly selected in the interval [5,10] and the length of 

the vertical edges in the interval [4,8].  All the edges of the grid are service edges.  The location of the 

depot was randomly selected from all the vertices.  For each of the grid sizes, we generated 10 instances, 

thus generating 60 grid networks in all.  For all the instances, we solved a matching problem to make the 

given grid Eulerian. 

 For the second class of problems, we generated a specified number of vertices (8, 10, 15, and 20 

in our computations) in the [ ]2100  , square.  We generated a first set of edges by constructing a random 

Hamiltonian cycle on these vertices.  This ensures that the graph is connected.  We then added more 

edges to the graph randomly until a pre-specified graph density was reached.  For our computations, we 
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generated graphs of density 0.3, 0.5 and 0.7 for each value of the number of vertices.  We chose the depot 

as the median of all the vertices of the graph.  Finally, for each combination of number of vertices and 

graph density, we generated 10 problem instances, thus generating 120 Euclidean graph instances in all.  

Here again, we solved the matching problem of each instance to make it Eulerian. 

 The biggest of the grid networks contains 174 service edges and the biggest Euclidean network 

contains 153 service edges.  In a real world scenario, such as a mail delivery or a meter reading 

application, the SETP has to be solved for each mail carrier or meter reader separately.  Under this 

condition, we feel that the problem sizes that we have considered are quite realistic.  

 For all the 180 problem instances, we obtained Eulerian tours when the probability of occurrence 

of a service edge, p , ranges from 0.1 to 1.0 (in steps of 0.1).  For each instance, we also generated a 

random Eulerian tour, and calculated the expected length of this tour for the different values of p .  

Tables 1-6 present the results for the grid networks.  For the Euclidean networks, we have presented the 

results for the networks with 20 vertices in Tables 7-9.  Each cell in the tables contains two numbers.  The 

first number represents the average over 10 instances of the ratio of the expected length of the tour 

obtained using a particular heuristic and the expected length of the random Eulerian tour.  The second 

number gives the average over 10 instances of the time taken in seconds for that heuristic on a Sun Sparc 

work station.   

Each row of the tables presents the average results over 10 instances for a given probability, for 

all three heuristics with and without the post-optimization procedure.  The number in bold (for each row) 

indicates the heuristic with the best average result over 10 instances for that probability.  For example, in 

Table 1, for a probability of 0.1 the first heuristic along with the DROP-ADD procedure has the best 

average result over 10 instances.  The last row of the tables present the best result over all the 100 runs 

(10 instances X 10 probabilities of occurrence) for each heuristic. The following describes the contents of 

each column in the tables.  

Column 1:   Value of p  

Column 2:   Expected length of tour by global greedy heuristic/expected length  
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of random Eulerian tour 

Column 3: Expected length of tour by global greedy heuristic + DROP-ADD/ expected length 

of random Eulerian tour 

Column 4: Expected length of tour by local greedy heuristic/expected length of random Eulerian 

tour 

Column 5:  Expected length of tour by local greedy heuristic + DROP-ADD/ expected length of 

random Eulerian tour 

Column 6:   Expected length of tour by sub-tour construction heuristic / expected length of 

random Eulerian tour 

Column 7:  Expected length of tour by sub-tour construction heuristic + DROP-ADD / expected 

length of random Eulerian tour 

 

4.1. Effect of Procedure DROP-ADD 

Our computational results indicate that the post-optimization procedure DROP-ADD is quite effective in 

producing new Eulerian tours with lower expected lengths.  For the grid networks, the expected length of 

the tours produced by the global and local greedy heuristics drops by 2-4% on average (for the various 

values of p ) after using the DROP-ADD post-optimization procedure.  This decrease in the expected 

length is a little higher for the sub-tour construction heuristic.  On a tour produced by the sub-tour 

construction heuristic, when a service edge is removed from the tour and has to be re-inserted during the 

DROP-ADD phase, there is typically more options for points of insertion of this edge into the tour.  

Hence, the post-optimization procedure is more effective on tours produced by the third heuristic.  The 

improvement is the least on tours produced by the second heuristic.  For the Euclidean networks, the 

decrease in the expected length is between 1% and 3% for all three heuristics.  The tours produced by the 

three heuristics for the Euclidean networks are quite similar and hence the effect of DROP-ADD is 

similar too.   
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4.2. Performance of the Heuristics 

Our results indicate that when the probability of occurrence of the service edges is very low ( p = 0.1), the 

global greedy heuristic along with DROP-ADD seems to perform better than the other two heuristics.  For 

other values of p , the sub-tour construction heuristic along with DROP-ADD clearly seems to perform 

better than the other two heuristics for grid networks. For the Euclidean networks, as the number of edges 

increases, the local greedy heuristic along with DROP-ADD seems to perform the best among the three, 

though the margin of improvement is very small.  For problems with smaller number of service edges, the 

best results seem to be spread among the three heuristics for the various values of p .   

The results on our computational times indicate that all the three heuristics are quite fast.  For the 

largest problems (9x9 grid networks, and 20 node Euclidean networks; edge density of 0.7), all the 

heuristics generate tours in about a minute.  So we can generate tours using all the three heuristics and 

choose the tour with the best expected length.   

 

4.3. Comparison of Heuristic Tours with Random Tour 

We also compared the expected lengths of the tours produced by the three heuristics with the expected 

length of a random Eulerian tour.  Table 10 contains average results for the grid and Euclidean networks.  

For a given probability, we pick the results produced by the heuristic with the best average result over 10 

instances for each problem size, and compute the overall average best result over all the problem sizes 

using these results.  Our results show that for the grid networks, the expected length of our overall 

average best solution is lower than the expected length of a random tour by 10% on average, for lower 

values of p .  As p increases to 1.0, this average reduces to 6% for p  = 0.5 and 1% for p  = 0.9. In one 

particular 9x9 instance, the expected length of the tour generated by the sub-tour construction heuristic is 

25% lower than the expected length of the random Eulerian tour.  For the Euclidean networks, the gaps 

are not as dramatic.  The expected length of our overall average best solution is lower than the expected 
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length of a random tour by 2% on average, for low values of p .  These results clearly show that it is 

advantageous to use heuristics designed specifically for the SETP rather than generate a random Eulerian 

tour.   

 

5. Conclusion 

In this paper, we have presented three different heuristics for the SETP and the DROP-ADD post-

optimization procedure.  We have tested the performance of the three heuristics on grid networks and on 

Euclidean graphs of various sizes.  Our results indicate that the sub-tour construction heuristic performs 

well when p  > 0.1 for the grid networks.  For the Euclidean networks, as the number of edges increases, 

the second heuristic performs the best among the three, though the margin of improvement is small.  

We also compared the expected lengths of the tours produced by the three heuristics with the 

expected length of a random Eulerian tour.  Our results show that for the grid networks, the expected 

length of our overall average best solution is lower than the expected length of a random tour by 10% on 

average, for lower values of p .  As p increases to 1.0, this average reduces to 6% for p  = 0.5 and 1% 

for p  = 0.9. For the Euclidean networks, the expected length of our overall average best solution is lower 

than the expected length of a random tour by 2% on average, for low values of p .  This paper serves as a 

good start to the methodological contribution to the SETP and the results can definitely be used as a 

starting point for the development of meta-heuristics for the SETP. 
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Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 1.0079 0.9799 1.0051 0.9917 1.0133 0.9868 
 0.01 0.24 0.00 0.08 0.01 0.12 

0.2 1.0128 0.9524 1.0108 0.9799 1.0200 0.9735 
 0.01 0.20 0.00 0.09 0.01 0.11 

0.3 1.0142 0.9543 1.0130 0.9725 1.0097 0.9707 
 0.01 0.15 0.00 0.08 0.01 0.10 

0.4 1.0039 0.9570 1.0133 0.9703 1.0055 0.9514 
 0.01 0.17 0.00 0.09 0.01 0.11 

0.5 1.0485 0.9768 1.0131 0.9673 1.0233 0.9676 
 0.01 0.13 0.00 0.08 0.01 0.09 

0.6 1.0761 0.9848 1.0123 0.9718 1.0282 0.9619 
 0.01 0.18 0.00 0.09 0.01 0.10 

0.7 1.0759 1.0014 1.0105 0.9779 1.0243 0.9690 
 0.01 0.13 0.00 0.09 0.01 0.10 

0.8 1.0831 1.0015 1.0077 0.9847 1.0200 0.9787 
 0.01 0.15 0.00 0.08 0.01 0.10 

0.9 1.0872 0.9935 1.0040 0.9921 1.0172 0.9878 
 0.01 0.12 0.00 0.08 0.01 0.10 

1.0 1.0722 1.0000 1.0000 1.0000 1.0058 1.0000 
 0.00 0.09 0.00 0.06 0.01 0.06 

       
Best 0.92 0.89 0.91 0.88 0.93 0.88 

 
Table 1.  Results for the 4x4 grid network 

 
 

Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 0.9506 0.9395 0.9836 0.9551 1.0045 0.9542 
 0.04 1.04 0.00 0.74 0.07 0.78 

0.2 0.9524 0.9117 0.9767 0.9341 0.9776 0.9074 
 0.03 0.81 0.00 0.77 0.08 0.79 

0.3 0.9916 0.9117 0.9793 0.9305 1.0123 0.8939 
 0.03 0.69 0.00 0.72 0.08 0.94 

0.4 1.0385 0.9412 0.9856 0.9419 0.9846 0.9280 
 0.04 0.75 0.00 0.70 0.08 0.89 

0.5 1.0383 0.9465 0.9922 0.9515 1.0150 0.9437 
 0.03 0.95 0.00 0.68 0.08 0.85 

0.6 1.0401 0.9565 0.9973 0.9600 1.0243 0.9466 
 0.03 0.78 0.00 0.68 0.08 0.93 

0.7 1.0458 0.9755 1.0004 0.9717 1.0315 0.9583 
 0.03 0.78 0.01 0.66 0.08 0.70 

0.8 1.0632 0.9832 1.0016 0.9804 1.0179 0.9657 
 0.03 0.75 0.00 0.74 0.10 0.79 

0.9 1.0635 0.9892 1.0012 0.9905 1.0075 0.9796 
 0.03 0.81 0.00 0.71 0.10 0.77 

1.0 1.0473 1.0000 1.0000 1.0000 1.0307 1.0000 
 0.02 0.40 0.00 0.26 0.06 0.41 

       
Best 0.91 0.85 0.84 0.77 0.84 0.77 

 
Table 2.  Results for the 5x5 grid network 
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Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 

       
0.1 0.9188 0.9165 0.9828 0.9712 1.0048 0.9500 

 0.11 3.91 0.01 0.77 0.33 2.62 
0.2 0.9329 0.9143 0.9680 0.9534 0.9918 0.9232 

 0.11 3.02 0.01 0.85 0.34 2.38 
0.3 1.0003 0.9283 0.9691 0.9546 0.9430 0.8852 

 0.11 3.23 0.00 0.88 0.37 2.51 
0.4 1.0106 0.9479 0.9776 0.9622 0.9796 0.9179 

 0.11 2.68 0.00 0.89 0.38 2.28 
0.5 1.0452 0.9667 0.9865 0.9720 1.0066 0.9441 

 0.11 2.29 0.00 0.89 0.39 1.98 
0.6 1.0545 0.9683 0.9931 0.9805 1.0251 0.9605 

 0.11 2.84 0.00 0.88 0.39 2.44 
0.7 1.0629 0.9809 0.9969 0.9869 1.0326 0.9787 

 0.11 3.05 0.00 0.89 0.40 2.01 
0.8 1.0607 0.9946 0.9986 0.9894 1.0311 0.9892 

 0.11 3.23 0.01 0.94 0.40 2.05 
0.9 1.0646 1.0022 0.9992 0.9945 1.0296 0.9952 

 0.11 3.09 0.01 0.96 0.41 1.54 
1.0 1.0646 1.0191 1.0000 1.0000 1.0084 1.0000 

 0.06 0.89 0.00 0.63 0.25 0.78 
       

Best 0.86 0.86 0.91 0.88 0.88 0.84 
 

Table 3.  Results for the 6x6 grid network 
 
 

Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 0.8778 0.8680 0.9543 0.9206 0.9746 0.9335 
 0.31 9.55 0.02 4.88 1.02 5.81 

0.2 0.9224 0.9043 0.9399 0.9056 0.9684 0.8956 
 0.31 8.43 0.02 4.91 1.10 7.93 

0.3 0.9907 0.9145 0.9492 0.9174 0.9760 0.8942 
 0.30 8.18 0.02 4.74 1.14 7.94 

0.4 0.9835 0.9388 0.9654 0.9351 0.9852 0.9027 
 0.30 6.53 0.02 5.29 1.17 9.69 

0.5 1.0172 0.9632 0.9805 0.9520 1.0095 0.9264 
 0.31 6.73 0.02 5.70 1.21 10.27 

0.6 1.0669 0.9750 0.9915 0.9674 1.0279 0.9558 
 0.30 7.84 0.02 6.21 1.24 9.64 

0.7 1.0517 0.9882 0.9982 0.9795 1.0462 0.9761 
 0.29 6.30 0.02 6.51 1.26 9.61 

0.8 1.0482 0.9853 1.0011 0.9891 1.0624 0.9788 
 0.29 8.16 0.02 5.97 1.29 9.04 

0.9 1.0530 0.9929 1.0013 0.9952 1.0354 0.9953 
 0.30 8.97 0.02 6.04 1.31 8.28 

1.0 1.0597 1.0053 1.0000 1.0000 1.0444 1.0004 
 0.16 3.37 0.02 1.73 0.78 3.36 

       
Best 0.79 0.79 0.88 0.83 0.86 0.79 

 
Table 4.  Results for the 7x7 grid network 
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Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 0.8801 0.8643 0.9337 0.9216 1.0118 0.9060 
 0.72 22.05 0.03 6.13 2.61 19.55 

0.2 0.9065 0.8945 0.9169 0.9045 0.9582 0.8839 
 0.71 16.15 0.03 6.24 2.94 18.17 

0.3 0.9395 0.9127 0.9336 0.9218 0.9716 0.8850 
 0.72 18.12 0.03 6.24 3.02 19.92 

0.4 1.0083 0.9462 0.9553 0.9433 0.9652 0.9133 
 0.71 12.12 0.03 6.31 3.12 15.49 

0.5 1.0246 0.9649 0.9733 0.9610 0.9989 0.9371 
 0.72 13.93 0.03 6.71 3.25 19.43 

0.6 1.0338 0.9759 0.9861 0.9756 1.0184 0.9609 
 0.69 16.07 0.03 6.76 3.26 19.51 

0.7 1.0510 0.9930 0.9940 0.9858 1.0264 0.9752 
 0.69 18.59 0.03 6.96 3.33 15.36 

0.8 1.0581 1.0018 0.9998 0.9922 1.0358 0.9921 
 0.69 16.35 0.03 6.99 3.43 18.38 

0.9 1.0484 1.0089 0.9995 0.9964 1.0507 1.0059 
 0.69 16.76 0.03 6.92 3.49 17.42 

1.0 1.0478 1.0212 1.0000 1.0000 1.0254 1.0048 
 0.35 5.21 0.02 3.47 1.95 4.56 

       
Best 0.85 0.84 0.85 0.84 0.84 0.79 

 
Table 5.  Results for the 8x8 grid network 

 
 

Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 0.8396 0.8387 0.8892 0.8581 0.9624 0.8637 
 1.50 47.98 0.05 35.00 6.37 69.63 

0.2 0.8620 0.8539 0.8809 0.8491 0.9534 0.8664 
 1.49 38.75 0.05 33.56 6.01 42.08 

0.3 0.9646 0.8956 0.9137 0.8780 0.9743 0.8832 
 1.51 38.91 0.04 35.44 7.02 54.01 

0.4 0.9957 0.9371 0.9476 0.9096 1.0194 0.9352 
 1.47 35.34 0.04 44.31 7.13 53.33 

0.5 1.0199 0.9560 0.9732 0.9393 1.0637 0.9628 
 1.51 32.68 0.04 47.02 7.55 57.29 

0.6 1.0393 0.9711 0.9901 0.9606 1.0688 0.9787 
 1.46 54.79 0.06 43.07 7.48 55.16 

0.7 1.0440 0.9824 0.9995 0.9766 1.0725 0.9816 
 1.46 39.21 0.04 57.72 7.67 46.09 

0.8 1.0674 0.9959 1.0025 0.9870 1.1342 1.0370 
 1.46 48.79 0.05 58.07 7.84 47.35 

0.9 1.0637 0.9979 1.0019 0.9940 1.1345 1.0224 
 1.46 49.89 0.05 38.67 8.05 62.26 

1.0 1.0675 1.0000 1.0000 1.0000 1.0945 1.0105 
 0.72 14.02 0.03 7.54 5.01 30.73 

       
Best 0.79 0.79 0.83 0.77 0.86 0.75 

 
Table 6.  Results for the 9x9 grid network 
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Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 0.9959 0.9676 0.9991 0.9691 0.9934 0.9699 
 0.09 2.30 0.00 2.04 0.63 3.08 

0.2 0.9978 0.9664 0.9964 0.9603 0.9963 0.9635 
 0.09 2.67 0.01 2.29 0.66 2.64 

0.3 1.0032 0.9635 0.9931 0.9619 0.9973 0.9588 
 0.10 3.09 0.01 2.37 0.68 2.91 

0.4 1.0069 0.9766 0.9910 0.9664 0.9984 0.9734 
 0.09 2.52 0.01 2.82 0.69 2.48 

0.5 1.0079 0.9724 0.9905 0.9703 1.0014 0.9717 
 0.10 2.04 0.00 2.46 0.82 2.61 

0.6 1.0114 0.9788 0.9914 0.9733 1.0071 0.9782 
 0.08 2.20 0.01 2.31 0.78 2.13 

0.7 1.0083 0.9817 0.9932 0.9793 1.0068 0.9828 
 0.09 2.00 0.01 1.99 0.81 2.38 

0.8 1.0127 0.9867 0.9956 0.9851 1.0185 0.9881 
 0.10 2.49 0.00 1.76 0.84 2.43 

0.9 1.0161 0.9922 0.9980 0.9917 1.0166 0.9946 
 0.10 2.83 0.01 1.80 0.86 2.35 

1.0 1.0166 1.0000 1.0000 1.0000 1.0307 1.0006 
 0.05 1.06 0.00 0.72 0.39 1.12 

       
Best 0.97 0.94 0.98 0.94 0.97 0.92 

 
Table 7.  Results for 20 node Euclidean network (density – 0.3) 

 
 

Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 
       

0.1 1.0001 0.9788 1.0000 0.9746 0.9993 0.9796 
 0.40 11.02 0.04 14.16 2.90 13.55 

0.2 1.0013 0.9770 0.9980 0.9757 0.9962 0.9756 
 0.41 12.61 0.03 12.53 2.99 11.26 

0.3 1.0036 0.9762 0.9960 0.9739 1.0022 0.9749 
 0.43 14.81 0.03 16.43 3.14 14.34 

0.4 1.0001 0.9796 0.9948 0.9769 0.9967 0.9783 
 0.40 11.23 0.03 14.63 3.39 14.97 

0.5 1.0029 0.9833 0.9948 0.9818 1.0020 0.9847 
 0.41 11.20 0.04 10.19 3.86 12.31 

0.6 1.0038 0.9874 0.9956 0.9866 1.0036 0.9870 
 0.40 12.46 0.03 9.18 3.66 12.55 

0.7 1.0049 0.9914 0.9970 0.9881 1.0091 0.9911 
 0.41 10.07 0.04 9.85 3.83 11.95 

0.8 1.0047 0.9937 0.9986 0.9919 1.0095 0.9958 
 0.41 11.58 0.03 11.92 3.93 12.26 

0.9 1.0069 0.9963 0.9999 0.9960 1.0104 0.9986 
 0.41 13.91 0.04 11.83 4.02 11.15 

1.0 1.0061 1.0006 1.0000 1.0000 1.0176 1.0021 
 0.21 4.32 0.02 3.09 1.76 3.73 

       
Best 0.99 0.96 0.99 0.96 0.98 0.96 

 
Table 8.  Results for 20 node Euclidean network (density – 0.5) 
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Prob. Heur 1 H1+DA Heur 2 H2+DA Heur 3 H3+DA 

       
0.1 1.0008 0.9813 0.9917 0.9684 0.9923 0.9764 

 1.12 32.75 0.08 38.08 6.30 34.27 
0.2 1.0000 0.9761 0.9845 0.9665 0.9947 0.9720 

 1.12 35.44 0.08 29.97 6.31 43.79 
0.3 0.9936 0.9718 0.9810 0.9676 0.9962 0.9719 

 1.14 47.44 0.08 35.85 6.54 49.35 
0.4 0.9962 0.9771 0.9807 0.9697 0.9963 0.9782 

 1.12 36.66 0.08 32.38 6.68 33.26 
0.5 0.9969 0.9806 0.9826 0.9758 0.9953 0.9811 

 1.13 31.46 0.08 24.82 6.97 35.93 
0.6 0.9985 0.9877 0.9861 0.9804 0.9987 0.9854 

 1.12 26.96 0.08 29.14 7.66 34.41 
0.7 0.9996 0.9899 0.9906 0.9867 1.0054 0.9906 

 1.11 37.92 0.08 25.19 8.05 36.07 
0.8 1.0013 0.9941 0.9951 0.9920 1.0060 0.9951 

 1.12 25.96 0.08 29.53 8.46 27.70 
0.9 1.0032 0.9978 0.9988 0.9969 1.0126 0.9977 

 1.12 28.37 0.08 30.65 9.14 30.58 
1.0 1.0024 1.0000 1.0000 1.0000 1.0170 1.0004 

 0.56 9.89 0.04 7.64 4.80 10.93 
       

Best 0.98 0.96 0.97 0.95 0.98 0.96 
 
 

Table 9.  Results for 20 node Euclidean network (density – 0.7) 
 
 
 
 
 

Prob. Grid  Euclidean  
    0.3 0.5 0.7 
     

0.1 0.9013 0.9775 0.9797 0.9800 
0.2 0.9005 0.9706 0.9728 0.9742 
0.3 0.8984 0.9676 0.9712 0.9734 
0.4 0.9205 0.9701 0.9749 0.9753 
0.5 0.9430 0.9699 0.9775 0.9794 
0.6 0.9577 0.9731 0.9808 0.9819 
0.7 0.9723 0.9770 0.9839 0.9865 
0.8 0.9819 0.9842 0.9880 0.9909 
0.9 0.9913 0.9917 0.9933 0.9953 
1.0 1.0000 1.0000 1.0000 1.0000 

 
 

Table 10.  Overall average of best results for grid and Euclidean networks 
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