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European Union financial subsidies in the agrarian sector are directly related to maintaining a sustainable
farm income, so its determination using, for example, the farm gross margin is a basic element in agrarian
programs for sustainable development. Using this tool, it is possible the identification of the agrarian
structures that need financial support and to what extent it is needed. However, the process of farm gross
margin determination is complicated and expensive because it is necessary to find the value of all the
inputs consumed and outputs produced. Considering the circumstances mentioned, the objectives of this
research were to: (1) select a representative and reduced set of easy-to-collect descriptive variables to
estimate the gross margin of a group of olive-tree farms in Andalusia; (2) investigate if artificial neural
network models (ANN) with two different types of basis functions (sigmoidal and product-units) could
effectively predict the gross margin of olive-tree farms; (3) compare the effectiveness of multiple linear,
quadratic and robust regression models versus ANN; and (4) validate the best mathematical model
obtained for gross margin prediction by analysing realistic farm and farmer scenarios. Results from
ANN models, specially the product-unit ones, have provided the most accurate gross margin predictions.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Since the 1990s, the quest for sustainability in the rural envi-
ronment has been one of the greatest problems in the European
Union (EU) (European Commission, 1999). The EU agrarian sector
has critical budget concerns because, although economically it is
the least important sector, it does, however, keep a very great por-
tion of the territory stable by avoiding risks of a desertification that
could be brought about by a lack of rural population or the aban-
donment of agrarian activities. The relevance of the agrarian sector
in the EU budget requires that financial support be socially justified
in terms of environmental maintenance (management of rural
areas that includes, for example, avoiding erosion and losses in ge-
netic variability), food quality, efficiency, best practices and so on
(Lütz and Bastian, 2002; Amores and Contreras, 2009). Therefore,
agrarian income determination (estimated by the farm gross mar-
gin) is essential in order to estimate the real financial situation of
the agrarian sector, thus enabling the design of the financial sup-
port system needed to maintain rural population, that is, to achieve
medium-long term sustainability (Pacini et al., 2003).

The problem is that it can be quite complicated to calculate this
farm gross margin, basically due to: the existence of mixed farms,
extreme variations in the natural environment, sanitary incidences
ll rights reserved.
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(Sadras et al., 2003), administrative issues, market adjustments
and many other reasons. In this complex environment, it is more
appropriate to study productive structures or strategic agrarian
groups rather than individual cases (farms), even though it is diffi-
cult to obtain the data series needed for each type. The strategic
group studied here is Andalusian olive-tree farms in dry farming;
this group is very important in Andalusia (MAPA, 2003) due to
its relevance socially (employment level), economically (Andalusia
is the main olive-producing region in Spain, yielding more than
70% of the total production while the other regions produce less
than 10% each) and environmentally (IEA, 2000).

The evolution of the gross margin in a strategic agrarian group
can be analysed through periodical surveys, by designing a farm-
panel or by analysing data from accounting nets (Pacini et al.,
2003). All of these methods are expensive and complicated to man-
age if a representative sample of real farms is required, because
hundreds of variables are needed to determine the farm gross mar-
gin depending on the number of agrarian activities, the size and its
productive structure. It is necessary to determine the value in
monetary terms of all the inputs consumed and outputs produced,
as well as the value of their structural costs and revenues, financial
costs, taxes, insurance costs and so on. The use of all these vari-
ables as predictors for estimating the margin would imply a high
cost in the acquisition and later computational treatment of the
information. Moreover, using all the predictors in the model often
results in strong over-fitting and very poor predictions (Meiri and
Zahavi, 2006).
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The first objective of this research was to select a representative
and reduced set of easy-to-collect descriptive variables from the
larger set of original variables, in order to estimate the gross margin
of the farms analysed. According to Liu and Motoda (1998), using
this procedure would achieve a better understanding of the final
prediction model. Keeping these premises in mind, the prediction
models used to estimate gross margin incorporate different tech-
niques for selecting the set of the best predictor variables (effi-
ciency and efficacy) for each case. Of the two possible
methodological approaches that have been developed to solve
selection problems for descriptive (Sebestyen, 1962), we have ap-
plied heuristic techniques because optimal or exact techniques
are known to guarantee an optimal solution, though they are only
applicable to small-sized sets since they investigate all possible fea-
ture subsets under some criteria to look for the best possible config-
uration (Gatu and Kontoghiorghes, 2006). Moreover, heuristic
techniques are able to find good solutions (although unable to guar-
antee the optimum) in a reasonable amount of time (Kohavi and
Sommerfield, 1995). These heuristic techniques include filter meth-
ods, the wrapper approach and the non-deterministic search (Liu
and Motoda, 2002). The drawback of these heuristic techniques is
that the quality of their solutions varies greatly depending on the
methods used. As found in other optimization problems, metaheu-
ristic techniques have proved to be efficient alternatives in different
domains (Pacheco et al., 2009). Specifically, the application of ge-
netic algorithms for the selection of variables has provided better
results than other techniques in many studies (Inza et al., 2001;
Wong and Nandi, 2004).

The selection process applied, as a first step, a filter method,
using the linear correlations between explicative variables and
the gross margin, in order to select those variables that were most
closely related to the dependent variable. After that, a process for
selecting variables was reapplied in each predicting model, that
is: in regression models, a backward step process was applied
and for neural network models, we propose a heuristic and non-
deterministic method for selecting features from the neural net-
work. This last method includes an evolutive algorithm that mod-
ifies the number of connections between the nodes between the
intermediate and the input layers through a structural mutation
operator. It also uses a selection process that keeps the best solu-
tions – elitism – which facilitates convergence to the global opti-
mum (Rudolph, 1994).

Another objective of this research was to analyse the applica-
tion of new methodologies like artificial neural networks (ANN)
and evolutive algorithms (EA) to solve a real problem in the agrar-
ian sector: the estimation of the gross margin of a selected group of
agricultural enterprises. These new techniques have been used in
the agrarian sector basically only in production prediction (Torres
et al., 2005), cultivation practice planning (Srinivasa et al., 2006) or
crop yield prediction (Kaul et al., 2005). We were specifically inter-
ested in analyzing the response of these techniques in predicting
the gross margin in agrarian farms because there is not much liter-
ature available on this subject except for those using standard
mathematical programming methods (Recio et al., 2003). For that
reason, this research aims to ascertain if ANN models could effec-
tively predict olive-tree farm gross margin using the above men-
tioned set of easy-to-collect descriptive variables, thus improving
the performance of standard regression models.

Standard regression methods are frequently used to resolve
prediction problems although there are several drawbacks in-
volved, among them the fact that the functional form needs to be
chosen ‘‘a priori”. Moreover, the variables have to comply with sev-
eral requirements (like normality, linearity, no multicollinearity,
etc.) which rarely occur in reality, as happens in our problem. Con-
sequently, more general basis functions, structured linearly with
their corresponding coefficients, are used to design the desired
function. Hence, when a function f is approximated to another
function g, the response yi can be written in the form yi ¼ gðxiÞ ¼Pp

j¼1bjBjðxiÞ þ ei, for i ¼ 1; . . . ;n; where b ¼ ðb1; . . . ; bkÞ
T is the

vector of coefficients corresponding to basis functions B ¼
ðB1; . . . ;BpÞT , which are nonlinear transformations of the data vec-
tor x, and, finally, ei is the error. Thus we extend the above defined
class of functions, and each basis function Bi defines a map from in-
put space v (a range of plausible predictor variables) to real space
R. ANN (Bishop, 1995; Haykin, 1999) are an example of basis func-
tion models which have received a great deal of attention in the
last two decades. The most popular model of ANN is the feed-for-
ward sigmoidal networks, where the activation function of the out-
put unit is its step function, while the activation function of every
other computation unit is the sigmoidal function. Research has
shown that feed-forward sigmoidal networks can approximate
any continuous function, like the gross margin, to an arbitrary de-
gree of accuracy, provided that the hidden layers contain a suffi-
cient number of hidden units. We have also applied another ANN
model to estimate the gross margin called the product unit neural
network which is based on the product unit function.

Product units, introduced by Durbin and Rumelhart (1989), are
artificial neurons, unlike more widely used ones because they mul-
tiply their inputs instead of adding them. Furthermore, their
weights operate as exponents and not as factors. Product units
were to allow neural networks to learn multiplicative interactions
to an arbitrary degree. For this to occur, there had to be both strong
relationships among predictive variables of the model and a large
enough space.

Product unit neural networks (PUNN) present an alternative to
compute the net input signal with the advantages of increased infor-
mation capacity and the ability to form higher-order combinations
of inputs. Consequently, the network architecture can be reduced
because, as has been demonstrated experimentally, PUNN needs a
more reduced number of base functions or connections to obtain
the same number or fewer errors than other artificial neural net-
works, including sigmoidal or radial function models (Martínez
et al., 2006; Gutiérrez et al., 2009). In order to train PUNN, a rich col-
lection of learning algorithms has been designed and analysed, rang-
ing from local ones, like gradient descent, to more global ones, such
as simulated annealing and genetic algorithms (Maniezzo, 1994;
Yao and Liu, 1997). On the other hand, while other studies have ap-
plied different optimization methods to train PUNN (Janson and
Frenzel, 1993; Ismail and Engelbrecht, 1999, 2000, 2002; García-
Alonso et al., 2009; Torres et al., 2009), this work proposes an evolu-
tive algorithm for both the architectural design and the estimation of
the real-parameters of the PUNN model. This evolutive algorithm
was also used for training an artificial neural network model based
on sigmoidal unit basis functions (MLPEA), thus comparing the
two net models (product units and sigmoidal basis functions) under
the same conditions. A traditional ANN model was also applied
based on sigmoidal basis functions trained with a back propagation
algorithm. The results obtained with all the different ANN models
applied were compared to those obtained with regression tech-
niques (linear, quadratic and robust models).

Therefore this paper is the first attempt to predict the gross
margin of a farm as a guide to both managerial decisions and policy
design through the use of artificial intelligence methodologies. It is
structured as follows: Section 2 describes the different prediction
methods applied; Section 3 briefly explains both the gross margin
calculation and experimental design to estimate the gross margin
for Andalusian olive-tree farms in dry farming; the best model ob-
tained in each generalized linear regression model is briefly de-
scribed statistically in Section 4; the most relevant findings
obtained using the PUNN model are described in Section 5 where
two representative scenarios are analysed and, finally, some illus-
trative conclusions are drawn in Section 6.



Fig. 1. Product unit neural networks (PUNN) diagram.
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2. Methodology

When there is no a-priori knowledge of the exact relationship
existing between the Y response variable and the set of predictive
non-random or deterministic p variables x ¼ ðx1; x2; . . . ; xpÞT , it is a
common practice, due to its simplicity, to design a relationship in
which the variable explained is related to explicative variables
through a determinist function f ðxÞ where some random error
component e is included.

The simplest form of function f ðxÞ is linear, but frequently this
model is not flexible enough to accurately model the dependent
variable in complex environments. That is why alternative models
are analysed where coefficients are nonlinear functions. These gen-
eralized linear models are structured by a linear combination of
nonlinear basis functions as follows:

y ¼ f ðx;bj;wÞ ¼
Xp

j¼0

bjBjðx;wjÞ x 2 D � Rk; ð1Þ

where b ¼ ðb0;b1; . . . ;bpÞ
T is the vector of coefficients,

B ¼ ½B0ðx;w1Þ; . . . ;Bpðx;wpÞ�T is the basis function vector and, finally,
wj are the coefficients associated with the basis functions to intro-
duce nonlinearity into the model, being B0ðx;w0 ¼ 1Þ ¼ 1. In gen-
eral, these basis functions are nonlinear transformations of the x
vector which is why the range of possible models widens consider-
ably. If we formulate the model proposed in (1) considering the set
of data DE ¼ fðxi; yiÞ; i ¼ 1; . . . ; kg , we see that:

yi ¼
Xp

j¼0

bjBjðxi;wjÞ þ ei i ¼ 1; . . . ; k: ð2Þ

This family of functions can be considered a generalization of re-
sponse surfaces (Myers and Montgomery, 2002). Thus, the relation
y ¼ f ðxÞ þ e materialises through f functions that can be, in general,
m order polynomial equations; finally other variability sources, not
included in f, are represented by e. The response surface of the level
two model y ¼ f ðx; bÞ þ e , ordered according to its Taylor series,
shows this structure (2nd order terms):

y ¼ b0 þ
Xk

j¼1

bjxj þ
Xk

j¼1

bjjx
2
j þ

X
j<l

Xk

l¼2

bjlxjxl þ e: ð3Þ

Researchers from different areas of study have suggested using arti-
ficial neural networks as an alternative to surface response models
(García et al., 2003; Grznar et al., 2007). Multilayer ANN with for-
ward activation (Haykin, 1999) can be considered predictive models
associated with multivariate statistical analysis when k inputs, x
variables and, usually, one dependent variable y are considered. In
this framework, different alternative basis functions and methods
have been proposed, such as: radial basis functions, projection pur-
suit learning, product unit neural networks and general regression
networks.

In this paper, both sigmoidal and product unit basis functions
were used to analyse which of these approaches best predicts gross
margin in dry farming olive-tree farms. In cases of both sigmoidal
and product unit typologies, the best models found were checked,
not only for their predictive accuracy but also for their capacity to
support real decisional situations.

Product-unit neural networks models (PUNN), introduced by
Durbin and Rumelhart (1989) and later developed by Ismail and
Engelbrecht (1999, 2000, 2002) and Schmitt (2002), are similar
to standard sigmoidal neural networks but are based on multipli-
cative nodes instead of additive ones. The nonlinear basis functions
of the model are constituted by the product of the variables ini-
tially included in the problem raised to arbitrary powers.
Given the data set DE, the regression model can be formulated
by a linear combination of product unit basis f function:
D � Rk ! R, so that:

y ¼ f ðxÞ ¼
Xp

j¼0

bj

Yk

i¼1

x
wji

i

 !
; ð4Þ

where bj 2 R and wji 2 R for j ¼ 0; . . . ;p and xi > 0 for i ¼ 1; . . . ; k. In
these models, basis functions are potential ones like:

Bjðx;wjÞ ¼
Yk

i¼1

x
wji

i : ð5Þ

In our case, the network has k inputs (independent variables) in the
input layer, m nodes in the hidden layer and one node in the output
layer (dependent variable: gross margin), Fig. 1. The activation func-
tion of the jth node in the hidden layer is given by (5) where wji is
the weight of the connection between the input node i and the hid-
den node j.

If the exponents in (5) are {0,1}, we obtain a higher-order unit
also known by the name of sigma–pi unit. Therefore, the product
units are a generalization of the sigma–pi neural nets which have
the capability of implementing higher-order functions and there-
fore can also implement polynomial functions in a specific instance
(Gurney, 1992).

In contrast to the sigma–pi units, the exponents in the product-
unit are not fixed and may even take real values. In this way we get
more flexible models and avoid the huge number of coefficients in-
volved in the polynomial model. To avoid the problem that could
result from networks containing product units that receive nega-
tive inputs and weights that are not integers, the values for the in-
put variables ðxiÞ are limited to positive ones (because, as we know,
a negative number raised to some non-integer power yields a com-
plex number).

Some advantages of PUNN are their increased information
capacity and the ability to form higher-order input combinations.
Durbin and Rumelhart (1989) determined empirically that the
information capacity of product units (measured by their capacity
for learning random Boolean patterns) is approximately 3N, com-
pared to 2N for a network with additive units for a single threshold
logic function, where N denotes the number of inputs to the net-
work. Moreover, it is possible to obtain the upper bounds of the
Vapnik–Chervonenkis dimension in product-unit neural networks
similar to those obtained in sigmoidal neural networks. The
Stone–Weierstrass theorem proved that product-unit neural net-
works are universal approximators (Schmitt, 2002). A disadvantage
of this type of nets with respect to standard sigmoidal ones is the
greater degree of difficulty for the corresponding training process
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since small changes in exponent values can provoke great changes
in the error surface. This type of net presents a greater number of
local minimums, thus increasing the possibility of getting trapped
in them. For this reason, a well known issue is that back-propaga-
tion is not efficient in training product units (Janson and Frenzel,
1993). To overcome this problem, we use an evolutionary algo-
rithm as part of the process for the estimation of parameters.

Evolutionary algorithms (EA) are a subset of evolutionary com-
putation, a generic population-based metaheuristic optimization
algorithm, which uses some mechanisms inspired by biological
evolution: reproduction, mutation, recombination, and selection
to solve problems that need artificial intelligence methods. Candi-
date solutions for the optimization problem play the role of indi-
viduals in a population and the fitness function determines the
environment within which the solutions ‘‘live”. The evolution of
the population then takes place after the repeated application of
the above operators. Artificial evolution describes a process involv-
ing individual evolutionary algorithms; EA are individual compo-
nents that participate in an artificial evolution process. They are
classified into categories depending on the way in which these
individuals are represented, the design of the operators of variation
and the selection or reproduction mechanism used. These catego-
ries are genetic algorithms (Goldberg et al., 1992), evolutionary
strategies (Schewefel, 1993) and evolutive programming (Fogel,
1991).

Evolutionary algorithms often approximate solutions to all types
of problems because they ideally do not make any assumption about
the underlying fitness framework; this generality is shown by their
success in fields as diverse as engineering, art, biology, economics,
marketing, genetics, operations research and so on.

Evolutionary computation has been widely used in recent years
to evolve neural-network architectures and weights. There have
been many applications for parametric learning (Van Rooij et al.,
1996) and for both parametric and structural learning (Maniezzo,
1994; Yao and Liu, 1997). On the other hand, different optimization
methods have been applied to train PUNN (Janson and Frenzel,
1993; Ismail and Engelbrecht, 1999, 2000, 2002).

In this study the exponents of the variables are estimated and
the optimum number of product units is determined in several
steps. An evolutionary algorithm was used here, which has points
in common with other EA in the bibliography that had previously
demonstrated accurate results (Angeline et al., 1994; Yao and Liu,
1997; García et al., 2002, 2003; Torres et al., 2009). The search be-
gins with an initial population, and each repetition updated the
population using a population-update algorithm. The population
undergoes replication and mutation operations. As Angeline sug-
gested (1994), crossover is not used in this work due to its poten-
tial disadvantages in evolving neural networks.

The EA begins by generating NR nets randomly. First, the total
number of hidden nodes is chosen from a uniform distribution in
the interval ð0;m� where m corresponds to the maximum number
of hidden nodes in each one of the population nets. The number of
connections between each node in the hidden layer and the nodes
in the input layer are also determined by a uniform distribution in
the ð0; p� interval, p being the number of independent variables.
Having defined the topology of the net, weights are assigned to
each connection, considering one uniform distribution ½�L; L� for
those between the input and the hidden layers, and another uni-
form distribution ½�U;U� for those between the hidden and the
output layers. After the random generation of the population in
NR nets, the EA takes place until the stopping criterion is fulfilled,
as seen in the following sequence:

a. The fitness of every individual in the population is
calculated.

b. Individuals are ranked with respect to their fitness.
c. The best individual is copied into the new population.
d. Ten percentage of the best individuals in the population are

replicated and substitute the worst 10% of individuals, so the
net number NR remains constant throughout its evolution.

e. Parametric mutation is applied to the best 10% of
individuals.

f. Structural mutation is applied to the remaining 90% of
individuals.

Parametric mutation affects net weights and consists of a local
search algorithm in the space of the weights, a simulated annealing
algorithm, where the severity of the mutation depends on the net
temperature TðRÞ defined by:

TðRÞ ¼ 1� AðRÞ 0 6 TðRÞ < 1; ð6Þ

where the aptitude AðRÞ of a net R is calculated as a decreasing func-
tion of the root of the mean squared error EðRÞ from the expression:

AðRÞ ¼ 1=½1þ EðRÞ� 0 < AðRÞ 6 1: ð7Þ

Parametric mutations consist of adding a Gaussian random variable
with mean 0 and standard deviation r1 � TðRÞ to each of the wki

coefficients, while in the rest of the coefficients the Gaussian ran-
dom variable has a mean 0 and a standard deviation r2 � TðRÞ,
where r1 � r2.

The structural mutation modifies both the number of hidden
nodes and the connections between the nodes in the intermediate
layer, and those in the input and output layers, producing a differ-
ent net topology (Martínez et al., 2006).

3. Farm gross margin calculation and experimental design

Letting n be the number of agrarian activities on a single farm,
its gross margin (GM) can be calculated by subtracting total farm
agrarian costs (variable production costs ðCOSTiÞ and structural
costs (STRU) from total revenues ðREViÞ).

GM ¼
Xn

i¼1

REVi � STRUþ
Xn

i¼1

COSTi

 !
: ð8Þ

REVi can be divided into product sales, diversification revenues,
subsidies and other revenues of any agrarian activity. On the other
hand, COSTi is structured by input costs, hand labour costs, machin-
ery costs, transformation costs, marketing costs, etc. Finally, the
STRU includes energy costs, insurance costs, taxes, infrastructure
maintenance, structural hand labour costs, etc. In the end, hundreds
of variables are needed, depending on the number of agrarian activ-
ities ði ¼ 1;2; . . . ;nÞ, the farm size and its productive structure.

To carry out the experiments, 208 olive-tree farms in dry farm-
ing were selected. This number allows a thorough study due to the
number of variables requested (over 150 costs, revenues, etc.). This
strategic group is very important in Andalusia due to its social
(employment level), economic (olive trees are the most important
crop in Andalusia) and environmental relevance (European Com-
mission, 1999; IEA, 2000; Fernández et al., 2004).

Before designing the PUNN model and in order to select an
appropriate set of variables for predicting gross margin, several
premises were established: all the variables selected had to be very
easy-to-collect, for example, through an uncomplicated and stan-
dard survey process; all the quantitative independent variables
had to have a significant relationship (sometimes based on expert
knowledge) with the dependent variable (GM); all of them had to
deliver quite an accurate description of the socio-economic struc-
ture of the farm and the farmer (decision maker) and, finally, some
of them had to be directly under the farmer’s control (decision ma-
ker dependent variables) in order to carry out a sensitivity analysis
using the resulting regression models. According to these premises,
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we applied a filter method to a first feature selection. From the to-
tal original set of descriptive farm variables, those continuous ones
that showed significant linear correlation with GM were selected
(Table 1): total cultivated area (CA, hectares); P (olive-tree produc-
tion: olives for producing olive oil, measured in tons); FF (family
hand labour – in working days – with respect to the total farm
hand labour, in percentages) and T (the number of farm tractors).
The mean altitude (meters) over sea level of the municipality (H)
was also included despite the fact that there was no significant lin-
ear correlation with gross margin because its agronomical rele-
vance in olive-tree production, as will be demonstrated in the
scenario analysis presented in Section 5.

Some input variables describing the farmer were also included
in the analysis because they could influence farm management
and therefore affect its financial outcome (gross margin). These
variables are related to the farmer’s experience and his knowledge
of modern cultivation processes: the farmer’s age (A: under 40
years old – 1, between 40 and 55 – 2, between 55 and 65 – 3 –
and over 65 years of age – 4. Mean: 2.17, standard deviation:
0.89), and the existence or non-existence of agrarian studies on
the part of the farmer (AS: yes – 1 – or no – 2. Mean: 1.75, standard
deviation: 0.43). Finally, independent variables related to farm
activity diversification and possible membership of the farmer in
a cooperative were also taken into consideration. Specifically, the
I variable denoted if the farmer and/or his family received non-
agrarian income from other economic sectors (I: yes – 1 – or no
– 2. Mean: 1.29, standard deviation: 0.46), and CP, which showed
if the farmer totally or partially handed over his production to a
cooperative (CP: yes – 1 – or no – 2. Mean: 1.19, standard devia-
tion: 0.39). Table 1 shows the quantitative variables used to de-
scribe the sample selected (208 olive-tree farms in dry farming)
and their basic descriptive statistics.

Observations were also identified at the Extremes of the statis-
tical Domain (called OED, considering the variable mean plus and
minus three standard deviations until no more OED were de-
tected). The variability in the sample is really relevant because in-
cludes both big and small farms and productive and unproductive
ones, as well as those with large or small gross margin, all coexis-
ting in the original set (Tables 1 and 2). After analysing these cases,
it was decided to include them in the sample after all because there
Table 1
Basic descriptive statistics of quantitative variables (surveyed olive-tree farms), 208
observations.

CA (ha) P (ton) FF (%) H (m) T (tractors)

Mean 18.35 36.40 43.25 540.38 0.77
Median 8.30 18.00 39.46 549.00 1.00
Standard deviation 28.53 52.50 39.92 202.08 0.97
Variation

coefficient (%)
155.48 144.23 92.30 37.39 125.97

Minimum 0.35 0.21 0.00 65.00 0.00
Maximum 240.00 373.93 100.00 1064.00 6.00
Linear correlation

with gross margin
(p-value)

0.354
(0.000)

0.502
(0.000)

�0.168
(0.015)

�0.082
(0.239)

0.247
(0.000)

Table 2
Farm gross margin (102 €) – real and estimated (best model PUNN, estimated gross
margin) – of surveyed olive-tree farms, 208 observations.

Real – surveyed Estimated – best model

Mean 176.40 168.32
Median 49.48 59.02
Standard deviation 569.64 527.05
Minimum �4649.80 �4747.48
Maximum 3139.45 2973.47
was nothing to prove that they were not representative of the set
of activities. For this reason, OED were randomly distributed
among training and generalization sets in the partitions designed.
In order to take into account extreme observations in the linear
regression model, robust regression was also applied because is
specially indicated when the errors do not satisfy conditions of
normality or when the data contain significant outliers (Yohai
and Zamar, 1997).

According to a cross-validation procedure, 10 partitions of the
original sample (208 farms) were made in all cases designing the
training and generalization sets. Although the cases were selected
randomly, they did consider each of the major Andalusian olive-
tree regions separately to maintain the territorial representativity
of the sample. The training sets included approximately 70% of
the 208 farms analysed (147 farms), and the generalization sets
comprised the other 30% of the farms (61 farms).

Finally, nine independent variables were considered in the anal-
ysis and were initially introduced as predictor variables in all the
models applied. Later, in a second phase, a new selection was car-
ried out for each estimation model applied (see Sections 1 and 2 for
details), thus searching for the subset of explicative variables that
would offer the best predictions for gross margin in each case.
4. Results obtained in estimating gross margin

This section analyses the results obtained in estimating gross
margin using all the algorithms selected: linear regression (LR); ro-
bust regression (RR); quadratic regression (QR); MLP both with
back propagation (MLPBP) and with an evolutive algorithm
(MLPEA) and, finally, product-unit neural networks (PUNN).
4.1. Regression models

Standard linear regression was carried out using the selected
training sets. Previously a study on the normality of the continuous
independent variables had been carried out as well as another on
the linearity of the relation. The normality goodness-of-fit test
(Kolmogorov–Smirnov) showed that the null hypothesis should
be rejected (a = 0.01). On the other hand, by applying logarithm
transformations, the null hypothesis (normal distributions of the
transformed variables) could not be rejected even though the pre-
dictive capacity of the resulting models (using transformed vari-
ables) decreased. According to these results, the original variables
were finally included in linear models. As mentioned above, all
the quantitative variables selected, except H (height), showed a
significant linear correlation (p-value 0.05) with the dependent
variable gross margin (Table 1). In the first regression model all
the variables described in Section 4 (CA, P, FF, T, H, I, A, AS and
CP) were included. Later, progressively, variables whose coeffi-
cients surpassed a significance level of 5% were removed since
the predictive capacity of the model not only did not deteriorate,
but actually improved. Only four predictive variables (CA, P, I and
CP) were finally included in the linear regression models (Table 3
shows the best linear regression model obtained from the 10 par-
titions, in terms of learning and predicting capacity). In the inter-
pretation of linear regression coefficients, we must keep in mind
the scale used in the evaluation of binary variables: I and CP. Fol-
lowing the system of numerous binary variable evaluation in-
cluded in the UCI databases, the scale 1 = yes and 2 = no was
used. This scale allows more general models to be obtained than
the 0–1 scale, although the value of the coefficients cannot be
interpreted as a deviation of the comparison group with respect
to the variable criterion. The graph of the residues obtained with
linear regression showed the presence of heteroscedasticity in
the model and nonlinear patterns, which justifies the application



Table 3
Statistical results obtained from the best models of each methodology.

Method MSET R2
T

MSEG R2
G

Best models obtained in 10 partitions training/generalization sets

LR 131875 0.46 77988.5 0.50 EGM ¼ 393:84þ 4:84P þ 3:13CA� 170:10CP� 171:25I
QR 54775 0.82 122891.1 0.21 EGM ¼ 0:08ðCAÞ2 þ 20:34ðPÞ � 1:70ðCA:IÞ � 5:02ðP:CPÞ � 3:79ðP:RÞ

þ29:83ðT:AÞ � 0:10ðP:FFÞ þ 0:15ðCA:FFÞ � 6:43ðCA:ASÞ
RR 341332.3 0.49 33227.9 0.60 EGM ¼ �144:69þ 4:25P þ 0:14FF� 9:60T þ 62:89AE
MLPEA 23043.6 62249.3 EGM ¼ �3:02þ 0:01=½1þ exp�f1:88AS�g� þ 3:64=½1þ exp�f3:34

þ1:30CA� þ 4:31P� þ 0:65H� � 0:05CP�g� þ þ0:76=½1þ expf�0:20
þ1:37CA� þ 4:52P� � 24:69FF� � 2:88H� þ 0:38A� � 6:91CP�g� � 7:25=
½1þ expf�5:70þ 1:22A� þ 0:19AS� þ 9:42T� � 0:02I� � 17:93FF� � 22:14P�

þ5:79CA�g� þ 0:02=½1þ exp�f�225:54AS� þ 655:58T� � 381:99H� þ 56:81I� þ 356:15FF�

�1479:45P� þ 346:14CA�g�
PUNN 30013.2 47931.3 EGM ¼ 1:590þ 0:197ðCA�Þ�0:596ðP�Þ2:056 þ 14:186ðCA�Þ2:010ðP�Þ�1:253ðH�Þ1:803

ðT�Þ2:253ðA�Þ0:312 � 10:086ðCA�Þ2:432ðP�Þ0:256ðFF�Þ�2:345ðI�Þ0:017ðH�Þ3:432ðT�Þ2:516ðA�Þ0:277ðCP�Þ0:048

MSET : mean square error (training set). R2
T : adjusted R2 coefficient in training set. MSEG: mean square error (generalization set). R2

G: adjusted R2 coefficient in generalization
set. LR: linear regression. QR: quadratic regression. RR: robust regression. MLPEA: multilayer perceptron. PUNN: product unit neural networks.
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of nonlinear models to estimate the gross margin of the farms
analyzed.

As expected, the mean squared error is considerable in both the
training and generalization sets (MSET and MSEG). The adjusted R2

coefficient in the training sets was between 40% and 50% in most of
the 10 partitions analysed. In generalization sets, the percentage of
gross margin variability was also within 40–50% (50% in the best
model, Table 3) in the resulting models.

The second generalized linear model was based on quadratic
regression (response surface). Again, non-significant variables
were removed (significance level 5%). In addition to the variables
included in the best linear model, four independent variables ap-
peared through interactions: the farmer’s age (A), the existence
of agrarian studies (AS), the number of tractors (T), and the per-
centage of family hand labour (FF). These quadratic models showed
better statistical results than linear ones in training sets (lower
MSET and higher adjusted R2 coefficients, within 70–82% of de-
signed partitions), although the MSEGs obtained using generaliza-
tion sets, being under 22%, were higher than those obtained in
linear models and the adjusted R2 coefficients. It is evident that
the application of the quadratic model produces an over-fitting
process and denotes this model’s low predictive capacity compared
even to the standard linear one (Table 3 shows the best quadratic
model found in the 10 partitions). Precisely because of this, the
possibility of using surface models of generalized response, like
PUNN models, was considered as an alternative to quadratic or
polynomial models of any other m order.

Due to the existence of extreme observations, the MM regres-
sion, a robust regression technique, was also used (Yohai et al.,
1991; Yohai and Zamar, 1997). The Wald test was applied to deter-
mine whether a regression coefficient was zero. On comparing the
results obtained with the other regression models applied (linear
and quadratic), we can see that although the best model of robust
regression offered the most reduced value in MSEG (Table 3), its
mean results were worse than those obtained by other regression
techniques. Robust regression results obtained in the 10 partitions
Table 4
MSEG descriptive statistics in 10 generalization partitions.

Model Mean SD Best Worst

PUNN 71624.70 15125.89 47931.30 93381.19
MLPEA 88263.37 23004.23 62249.30 102314.90
MLPBP 165357.78 71901.72 77734.40 229680.56
LR 170661.22 68577.21 77988.54 276342.85
QR 171384.93 31736.37 122891.10 222663.50
RR 149471.58 92182.03 33227.99 252349.84

SD: standard deviation.
of the sample (Table 4) showed greater standard deviations; prob-
ably the position of extreme observations in each sample design (in
training or generalization sets) was the cause of this variability.
4.2. Results for MLP and PUNN models

The input variables were scaled in the interval [0.1,0.9] and the
output variables in the interval [1,2] for PUNN models, while in
MLP models, it was at [0.1,0.9] for input and [0.1,0.9] for output
variables. The former case (also depending on the potential func-
tion shape) gave output values far from zero and, the latter the out-
put range avoids the saturation of output values due to the shape
of the sigmoidal functions. The new scaled variables are named
CA�; P�; FF�, etc., for the input variables, and estimated gross margin
(EGM) for the output variable.

The first model that was analyzed was a MLPBP. A weight elim-
ination process was applied (Williams, 1994) to decide how many
neurons should be included in the hidden layer. It was decided to
start out with a network of considerable size and gradually elimi-
nate nodes and unnecessary weights (pruning) until a network size
providing satisfactory results could be reached.

In order to test the predictive capability of both MLPEA and
PUNN in a high-dimensional space, an EA was used to determine
the architecture and to train the weights of the basis function mod-
els. Using the structural mutation operator, our EA can indirectly
prune input variables. By deleting connections, this operator can
remove any input variable.

The EA was run 30 times, for 200 generations, with the follow-
ing parameters: the exponents wji were begun in the interval
[�5,5] and the coefficients bj in [�5,5]. The size of the population
was NR ¼ 2000. The number of nodes that could be added or re-
moved in structural mutation was within the interval [1,2]. The
number of connections that could be added or removed in a struc-
tural mutation also fell within the interval [1,6].

For the MLP neural networks, the best model is obtained using
the EA (MLPEA, five nodes in the hidden layer with 34 coefficients;
MSEG ¼ 62249:3) and includes all the input variables. Applying
MLPBP, the best model obtained was not as good ðMSEG ¼
77734:4Þ. For PUNN, the best model is obtained using three nodes
in the hidden layer with 19 coefficients and has a MSEG ¼ 47931:3
(Table 3).

Results obtained in both training and generalization sets using
MLPEA were better than those obtained in previous analyses. If
we compare the best MLPEA and PUNN models (Table 3), results
in the training sets were very similar although somewhat higher
in the PUNN model (23043.6 quadratic units, cu, for MLPEA com-
pared to 30013.2 cu for PUNN); in generalization sets, PUNN mod-
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els were also found to be better (62249.3 cu, for MLPEA as com-
pared to 47931.3 cu for PUNN), taking into account that the inter-
actions among variables are very relevant (see Section 5).

Furthermore, taking into account the average results obtained
in the 10 generalization groups (Table 4), PUNN models were also
better than MLPEA, with fewer quadratic errors, and the variability
estimated by the MSE was higher when analysing MLPEA models
than when considering PUNN ones. The MLPBP model reached bet-
ter mean results than linear and quadratic regression models but
worse ones than evolutionary MLPEA and PUNN models. RR
reached the lowest inferior average quadratic error in its best mod-
el but its results also presented the greatest variability (with a var-
iation coefficient over 60%). On average, the RR was better than the
quadratic and linear regression models, and even the MLPBP mod-
el, but proved to be worse than the MLPEA and PUNN models.

A non-parametric Friedman test for k related samples was car-
ried out to analyse the significance of the differences between
MSEG means. The results showed the existence of significant differ-
ences (p-value = 0.000) and so PUNN models were those finally se-
lected to estimate gross margin since they could be considered to
be an appropriate alternative to analyze our complex system.

Table 2 shows the differences between both real and estimated
gross margin, considering the best PUNN model. Both the range and
the variation coefficient decrease slightly in the estimated gross mar-
gin series, but results do not differ significantly in the mean (t-test, p-
value = 0.402). From a decisional point of view, it is very important to
verify that the real variability of the sample remains practically con-
stant in the estimated gross margin range, so the PUNN model recog-
nizes the characteristics of the environment analysed.

The most relevant coefficient in estimated gross margin (PUNN)
determination is the constant, which can be considered an esti-
mated gross margin mean estimator. An exception to this profile
can be examined in both extremes of the gross margin range
(Fig. 2) where the 2ndðB2Þ � CA�; P�;H�; T� and A� – and the
3rdðB3Þ � CA�; P�;H�; T�;A�; I� and CP�-coefficients are dominant.
In the rest of the gross margin range 1stðB1Þ � CA� and P� – and
2ndðB2Þ coefficients are dominant but sometimes the third one
ðB3Þ is still important.
Fig. 2. Relative contributions (%) of different best model coefficients (PUNN) excluding
values [1,1.5975].
5. Relevant findings for decision makers

Once the accuracy of the PUNN algorithm was demonstrated
and in order to test the interpretability and the utility of the best
model obtained (PUNN, Table 3), two realistic farm and farmer pro-
files (scenarios) were developed, setting up different variable sets
and varying the values of the rest in order to obtain their respective
estimated gross margin curve families. These scenarios were devel-
oped based on cluster analysis (bottom-up hierarchical analysis
and k-means) according to previous analyses of the strategic
behaviour of Andalusian olive-tree farms (Fernández et al., 2004).

From a decision maker’s point of view, it is more important to
predict an accurate gross margin range by using an easy-to-handle
methodology that gives interpretable estimated gross margins,
than to obtain a perfect mathematical estimated gross margin
adjustment to reality. To sum up, is the best PUNN model capable
of classifying real farms appropriately according to their gross mar-
gin? Or, is the best PUNN model capable of predicting the gross
margin correctly using only descriptive variables? If so, a new
and interesting tool could be systematically used to predict real
gross margin, minimizing periodical adjustments. Taking these
questions into account, our best PUNN model can be used:

(i) To determine the relevance of individual descriptive vari-
ables in the EGM.

(ii) To estimate farm membership within a gross margin inter-
val, rather than an exact gross margin, in order to determine
its relative financial situation. Frequency analysis (quintiles,
using real gross margin scores) has been used to check PUNN
best model capacity to locate the farm’s estimated gross
margin accurately.
5.1. Scenario 1: standard olive-tree farms in dry farming located at a
medium-low altitude (river valley), EGM ¼ f ðCA�; P�; FF�Þ

In this first scenario, a standard olive-tree farm and farmer are
considered as follows: the agrarian enterprise is located at med-
ium-low altitude over sea level ðH� ¼ 0:335;358:46 mÞ; it has
the constant, an example considering only the lower scale estimated gross margin*
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one tractor, ðT� ¼ 0:233Þ which is very common in the Andalusian
agrarian environment; the farmer is middle-aged to elderly
(A� ¼ 0:633, from 55 to 65 years old), also very normal in the target
rural environment; the farm receives non-agrarian income
ðI� ¼ 0:1Þ; and, finally, the farmer is a member of a cooperative
ðCP� ¼ 0:1Þ. Considering this agrarian profile, the independent vari-
ables considered were: cultivated area ðCA�Þ, olive tree production
ðP�Þ and the percentage of family hand labour ðFF�Þ. In order to
avoid undesirable results, a yield constraint (the maximum techni-
cal yield for standard olive-tree cultivation was 12 tons of olives
per hectare) was also included because a small farm cannot have
very large production.

As expected, when FF� was fixed at 0.1 (non-family hand labour
employed on the farm), in small-medium farms ðCA� 6 0:5Þ the
greater the production, the greater the EGM. Nevertheless, and sur-
prisingly, in medium-big farms (CA� P 0:6 approximately) with
low production ðP� 6 0:4Þ, EGM reaches a maximum (Fig. 3A).
This behaviour is a result of a strong interaction between EGM
and P� and CA� and is reasonable because the greater a farm is,
the greater its possibility of obtaining revenues from other agrarian
activities (mixed structure). Obviously, the estimated gross margin
is not completely due to olive tree production (very small in this
case); other crops and livestock as well as other complimentary
activities that provide non-agrarian revenues can make a
contribution.

As soon as the production grows (except in the very big farms
mentioned in the previous paragraph), the shape of the estimated
gross margin surfaces changes. All of them have a minimum that
identifies a critical CA�. Smaller sized farms with medium and high
production have a very stable financial situation. Medium sized
farms cannot maintain the same EGM level as those obtained by
the smaller ones because of higher structural and cultivation costs.
In bigger farms, due to scale economies and a greater capacity for
diversification, the estimated gross margin increases a bit at the
end of the CA� range (Fig. 3A). The EGM has a minimum that de-
pends on P� and is located in the smaller olive-tree farms.

Family hand labour has a very important and negative incidence
on EGM in medium-sized olive-tree farms (Fig. 3B). Increasing
family participation (valued at market price) in olive-tree farm cul-
tivation lowers EGM, which could jeopardise financial stability. The
decision maker does not usually calculate the worth of his family’s
and his own work in the agrarian enterprise so, for him, the EGM
Fig. 3. Estimated gross margin (102 €) evolution taking into consideration cultivated are
over total hand labour in the farm ðFF�Þ [0.1, 0.9] (to facilitate curve comprehension, the
(non-family hand labour employed on the farm). (B) CA� ¼ 0:5 (medium-size farms). H
I� ¼ 0:1 (does the farmer have non-agrarian income?: Yes) and CP� ¼ 0:1 (is he a coope
should show a more profitable situation. The inexistence of family
hand labour on the farm ðFF� ¼ 0:1Þ shows a more business-ori-
ented productive structure. Smaller sized farms have a chance to
survive due to favourable EGM expectations, which also occurs
when the family has other income sources.

5.2. Scenario 2: standard olive-tree farms in dry farming where family
hand labour is a relevant production factor (FF = 50%) and where the
income source and farmer cooperative affiliation are analysed,
EGM ¼ f ðCA�; P�; I�;CP�Þ

Most Andalusian olive-tree farms receive non-agrarian incomes
(I) coming from other economic sectors, and totally or partially
hand over their production to a cooperative (CP). In order to cali-
brate the impact of both variables in EGM evolution, a second
farmer and farm profile was designed as follows: family hand la-
bour ðFF� ¼ 0:5;50%Þ; average altitude ðH� ¼ 0:6;689:375 mÞ; one
tractor ðT� ¼ 0:233Þ; and, finally, the farmer is middle-aged to el-
derly (A� ¼ 0:633, 55–65 years old). Now the independent vari-
ables were: cultivated area (CA�; ½0:1; 0:9� <> [0.35 ha, 240 ha]),
production [P� ¼ 0:6 (233.785 ton) and P� ¼ 0:8 (327.215 ton)],
non-agrarian income [I� ¼ 0:1 (has non-agrarian income?: Yes)
and I� ¼ 0:9 (has non-agrarian income?: No)] and cooperative
membership [CP� ¼ 0:1 (is a cooperative member?: Yes) and
CP� ¼ 0:9 (is a cooperative member?: No)]. Both family curves
show (Fig. 4) that cooperative membership is a positive factor in
EGM which is more important than the reception of non-agrarian
revenues, also positive. These positive effects are more relevant
in medium-sized to bigger farms because both variables (I� and
CP�) appear only in the 3rdðB3Þ coefficient of the PUNN model.
The EGM in smaller to medium-sized farms (from CA� ¼ 0:1 to
CA� ¼ 0:5), considering the defined scenario, is not sensitive to I�

and CP� variation, but the farm needs non-agrarian revenues to
balance its financial situation because of farm size and also be-
cause cooperative membership solves both its transformation
and commercialisation problems.

5.3. Gross margin prediction and mixed farms

By dividing both the original gross margin and estimated gross
margin samples into quintiles (Table 5), the farms surveyed can be
classified into five intervals: farms with a very small gross margin
a ðCA�Þ [0.1,0.9], production ðP�Þ [0.1,0.9] and family hand labour (days worked, %)
scaling process of estimated gross margin – EGM – has been reversed). (A) FF� ¼ 0:1
� ¼ 0:335ð358:46 mÞ; T� ¼ 0:233 (1 tractor), A� ¼ 0:633 (3 <> 55 to 65 years old),

rative member?: Yes).



Fig. 4. Estimated gross margin (102 €) evolution considering cultivated area ðCA�Þ [0.1, 0.9], production ðP�Þ � P� ¼ 0:6 and P� ¼ 0:8, does the farm receive non-agrarian
income? (Yes – I� ¼ 0:1- or No – I� ¼ 0:9) and does the farmer give its production – all or partially – to a cooperative? (Yes – CP� ¼ 0:1 – or No – CP� ¼ 0:9). The rest of the
variables were fixed as follows: FF� ¼ 0:5;H� ¼ 0:6; T� ¼ 0:233 and A� ¼ 0:633 (to facilitate curve comprehension, the scaling process of estimated gross margin has been
reversed). CA�: scaled cultivated area [0.1,0.9] <> 0.35 ha,240 ha]. P�: scaled production. P� ¼ 0:6 (233.785 ton) and P� ¼ 0:8 (327.215 ton). I� ¼ 0:1 (has the farmer non-
agrarian revenues?: Yes) and I� ¼ 0:9 (has he non-agrarian revenues?: No). CP� ¼ 0:1 (is he a cooperative member?: Yes) and CP� ¼ 0:9 (is he a cooperative member?: No).
FF� ¼ 0:5ð50%Þ;H� ¼ 0:6ð689:375 mÞ; T� ¼ 0:233 (1 tractor), A� ¼ 0:633 (3 <> 55–65 years old).

Table 5
Probability of both real and estimated gross margin – the PUNN best model-being in the same quintile and having the same probability of being shifted to another quintile.

Quintile defined by gross margin #Obs. Probability of being
in the same quintile

Probability of being shifted
to an adjacent quintile

Probability of being shifted
two or more quintiles

# of crops: mean and
(standard deviation)a

q1 41 0.4878 0.1951 0.3171 1.69 (1.11)
q2 42 0.3810 0.5476 (0.3810 to q.1) 0.0714 1.67 (1.15)
q3 42 0.4286 0.4524 (0.2857 to q.2) 0.1190 1.60 (0.89)
q4 42 0.4048 0.4524 (0.2619 to q.3) 0.1429 2.00 (2.00)
q5 41 0.6585 0.2195 0.1220 1.60 (1.34)

#Obs.: number of observations. #: number. q.: quintile, gross margin 102 € (q1: first quintile [�4649.8,7.036], q2: second quintile [7.036,29.728], q3 third quintile
[29.728,79.572], q4 fourth quintile [79.572,261.581] and q5 fifth quintile [261.581,3139.45]).

a Considering only the observations (farms) shifted two or more quintiles.
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(less than 7.04 � 102 €), farms with a small gross margin (from
7.04 � 102ł€ to 2.993 � 103 €), intermediate farms (gross margin
from 2.993 � 103 € to 7.957 � 103 €), farms with a large gross mar-
gin (from 7.957 � 103 € to 2.616 � 104 €) and farms with a very
large gross margin (over 2.616 � 104 €). These intervals shift a little
bit if the estimated gross margin is considered, but this displace-
ment is very small. Dividing both the gross margin and estimated
gross margin ranges according to these quintile limits, the proba-
bility that an observation – a farm – will shift more than one inter-
val (two or more quintiles) is low. Only farms with a very small
gross margin (first quintile, Q1) show a relatively high probability
of being misclassified (0.32). In the rest of the intervals, this prob-
ability is always under 0.15, therefore the best model’s (PUNN)
ability to predict gross margin as well as to classify the olive-tree
farms in terms of estimated gross margin is very good (Pearson’s
v2 p-value: 0.000). On average, the number of crops in misclassi-
fied farms is greater but not significantly different (one way ANO-
VA) than the original 1.35 crops per farm, so it is not possible to
state that the gross margins of mixed farms are more difficult to
predict.
6. Conclusions

The results (estimated gross margin) obtained from the best
model (PUNN, Table 3) can be considered to be very reasonable
from a technical and economic point of view. PUNN can be consid-
ered an alternative methodology along with MLP. In agrarian pro-
duction (olive-tree farms in dry farming), it is very complicated to
determine the exact income of rural families or farms except by
using very expensive and unwieldy methodologies. Based on neu-
ral networks, the model obtained (PUNN), using easy-to-collect
descriptive and structural variables, can determine an accurate
estimated gross margin of the farms and classify an agrarian enter-
prise according to its gross margin. This classification is essential in
sustainability studies. Obviously, the model obtained has to be ad-
justed periodically because of environmental evolution but this
process will still be cheaper and easier to manage than, for exam-
ple, a massive survey. From a mathematical point of view, the best
PUNN function selected can model unreal situations that need to
be constrained. It is very rare, for example, to obtain elevated pro-
duction levels in high mountain farms where olive trees cannot



easily survive. Likewise, it is also very unlikely to find high produc-
tion levels in small farms (except in high density plantations in irri-
gated farming). Therefore, the formula obtained (best model) must
be interpreted carefully and filtered by designing appropriate tech-
nical constraints.

In all of the farmer and farm profiles analysed, the estimated
gross margin evolution – curve families – could be explained from
a technical point of view. Except for AS (agrarian studies on the
part of the farmer), which was removed from the final model, all
independent descriptive and structural variables were included
in the best PUNN model obtained. Each one’s individual relevance
is different and must be analysed in detail according to realistic
scenarios based on expert knowledge.

The PUNN models always included CA (cultivated area) and P
(olive-tree production); CP (cooperative membership) and I (non-
agrarian incomes) were also considered very relevant and were
included, respectively, in nine and in eight of the 10 partitions
carried out. In spite of the variability of the sample that provides
different algebraic model structures, there is a basic nucleus of
independent variables (CA, P, CP, I and, maybe, A) that explain farm
gross margin in a very complex environment.

The best PUNN model obtained can be used to predict gross
margin and classify agrarian enterprises, and can also be a mathe-
matical function to be maximised in a multi-criteria nonlinear
model incorporating appropriate technical constraints.

PUNN models give the decision maker a relevant ranking of
independent variables and show the interactions among them. In
addition, PUNNs allow the most appropriate models to be selected
when a combination of specific independent variables must be
analyzed. Therefore, they offer different views of the same reality
(represented by different combinations of independent variables)
which can be consulted by decision makers who must depend on
real circumstances.
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