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Abstract

Given n points in the plane with nonnegative weights, the inverse
Fermat-Weber problem consists in changing the weights at minimum
cost such that a prespecified point in the plane becomes the Euclidean
1-median. The cost is proportional to the increase or decrease of the
corresponding weight. In case that the prespecified point does not coin-
cide with one of the given n points, the inverse Fermat-Weber problem
can be formulated as linear program. We derive a purely combina-
torial algorithm which solves the inverse Fermat-Weber problem with
unit cost in O(n log n) time. If the prespecified point coincides with
one of the given n points, it is shown that the corresponding inverse
problem can be written as convex problem and hence is solvable in
polynomial time to any fixed precision.

1 Inverse and reverse location problems

In recent years inverse and reverse optimization problems found an increased
interest. In a reverse optimization problem, we are given a budget for modify-
ing parameters of the problem. The goal is to modify parameters of the prob-
lem such that an objective function attains its best possible value subject
to the given budget. The inverse optimization problem consists in changing
parameters of the problem at minimum cost such that a prespecified solu-
tion becomes optimal. In one of the first papers on this subject, Burton and
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Toint [6] considered the inverse shortest path problem with an interesting
application to geological sciences. For a network, they changed the edge
lengths as little as possible such that a given path becomes a shortest path.
A survey on inverse optimization has been compiled by Heuberger [13].

In the context of location problems Berman, Ingco and Odoni [1] stud-
ied the reverse 1-median problem in a network. Zhang, Liu and Ma [24]
considered the reverse center location problem on a tree where all vertices
have equal weight. For trees with n vertices they derived an algorithm
with O(n log n) time complexity. On the other hand, Burkard, Gassner and
Hatzl [2] proved that the reverse 1-median problem is NP-hard on general
graphs but can be solved in linear time on a cycle. In [3] the same authors
suggest an O(n log n) time algorithm for the reverse 2-median problem on
trees and the reverse 1-median problem on unicycle graphs.

Cai, Yang and Zhang [7] considered an inverse center location problem in
networks where the weights of the vertices should be changed within given
bounds such that a given vertex becomes the 1-center. They showed that
even though the 1-center problem in networks is polynomially solvable, the
inverse 1-center problem is NP-hard. Recently, inverse p-median problem
has been investigated by Burkard, Pleschiutschnig and Zhang [4, 5]. They
showed that the discrete inverse p-median problem with real weights can be
solved in polynomial time provided p is fixed and not an input parameter.
They developed a greedy-like algorithm for the inverse 1-median problem
in trees with positive weights with O(n log n) time complexity. They also
presented a greedy-like O(n log n) time algorithm for the inverse 1-median
problem in the plane provided the distances between the points are measured
in the Manhattan or maximum metric. For the inverse 1-median problem on
a cycle they observed that the problem can be formulated as a linear program
with bounded variables and a special structure of the constraint matrix: the
columns of the constraint matrix in the linear program can be partitioned
into two classes in which they are monotonically decreasing. This allows to
solve the problem in O(n2) time. The inverse 1-maxian problem on a tree
with variable edge lengths was solved by Gassner [10].

In this paper we investigate the inverse Euclidean 1-median problem in
the plane. The paper is organized as follows: In Section 2 we recall basic
properties of the classical Fermat-Weber problem and we state the inverse
Fermat-Weber problem. In Section 3 we derive an optimality condition for
the case that P0 is different from the given points Pj, j = 1, 2, ..., n. The
main result is a purely combinatorial algorithm for unit cost coefficients.
The algorithm is developed in Subsection 3.1, numerical example is given in
Subsection 3.2 and in Subsection 3.3 we show that our algorithm does not
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work for general cost coefficients. Finally, in Section 4 we consider the inverse
Fermat-Weber problem if the prespecified point coincides with a given point.
We show that in case of unit costs the inverse Fermat-Weber problem can
be written as convex problem and hence is solvable in polynomial time to
any precision.

2 The Fermat-Weber problem and its inverse

Given n points Pi, i = 1, 2, ..., n, in the Euclidean space R
d, together with

nonnegative weights wi, i = 1, 2, ..., n, the classical Fermat-Weber problem
(Euclidean 1-median problem) asks for a point P0 in R

d that minimizes the
sum of the (weighted) Euclidean distances to Pi, i = 1, 2, ..., n:

min
P0

n
∑

i=1

wid(P0, Pi) (1)

Fermat noted on the margin of his treatise on maxima and minima the
question to find a point whose distance from three given points is mini-
mum. This Euclidean 1-median problem on three points in the plane was
first solved by Torricelli early in the 17th century. Other geometric solution
techniques were subsequently found by Cavalieri and Simpson. For a history
of this problem consult the nice paper of Krarup and Vajda [14]. At the
beginning of the 20th century the German economist Weber wrote a funda-
mental article Über den Standort von Industrien in which he introduced the
weighted version of Fermat’s problem for n points in the Euclidean plane.
For this reason the Euclidean 1-median problem in the plane is nowadays
called Fermat-Weber problem.

The problem is easy to solve on the real line in O(n) time. In two or
more dimensions, however, the exact location of the Euclidean 1-median is
difficult. Indeed, neither a polynomial-time algorithm is known, nor the
problem has been shown to be NP-hard [12]. The most common approach
for solving the Fermat-Weber problem in the plane is Weiszfeld’s fixed point
algorithm [22], an iterative procedure that converges under special assump-
tions to the Euclidean 1-median. As it turned out that Weiszfeld’s algorithm
does not yield in general the optimal solution, the method has been analyzed
by several authors including Miehle [18], Kuhn and Kuenne [15], Cooper [8],
Ostresh [19], and recently Rautenbach et al.[21]. An survey on the history
and solution approaches for the Euclidean 1-median problem can be found
in [9, 23].
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In the following we consider the weighted Fermat-Weber problem (1-
median problem) in R

2. Given distinct points Pi in R
2 with positive weights

wi we want to find a point P0 that minimizes the weighted sum of Euclidean
distances from P0 to the given points:

f(P0) =

n
∑

i=1

wid(P0, Pi).

The points are assumed to be not collinear. In order to state necessary and
sufficient conditions for a point P0 to be an optimal location we start with
the definition of the resultant force in P0.

Definition 2.1. If P0 6= Pi for all i = 1, 2, ..., n the resultant force R(P0) at
P0 is given by:

R(P0) :=
n
∑

i=1

wi

d(Pi, P0)
(Pi − P0);

If P0 = Pj for some j = 1, 2, ..., n, we have

R(P0) := max(||Rj || − wj, 0)
Rj

||Rj ||

where

Rj :=

n
∑

i=1
i6=j

wi

d(Pi, Pj)
(Pi − Pj).

Thus, for P0 = Pj , we have R(Pj) = 0, if wj ≥ ||Rj ||. Otherwise, there
is a resultant vector in the direction of Rj with length ||Rj || − wj . This
definition leads to the following optimality criterion

Theorem 2.2. The point P0 is a solution of the Fermat-Weber problem if
and only if

R(P0) = 0.

For a proof, see e.g., Kuhn [16]. As a consequence of this condition we
get

Theorem 2.3. If the point P0 is an optimal solution of the Fermat-Weber
problem, then P0 lies in the convex hull of the points Pi, i = 1, 2, ..., n.

Now we introduce the inverse Fermat-Weber problem in the plane. Let
n + 1 points Pi = (xi, yi), i = 0, 1, 2, ..., n, with some positive weight wi be
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given. We want to modify the vertex weights at minimum cost such that P0

becomes the Euclidean 1-median. Suppose that we incur the nonnegative
cost ci, if the weight wi is increased or decreased. In order to guarantee a
finite solution we assume that the changed vertex weights w∗ must obey the
bounds wi ≤ w∗

i ≤ wi for all i = 0, 1, 2, ..., n. Let pi denote the amount
by which the weight wi is increased. Similarly, let qi denote the amount by
which the weight wi is decreased. Thus the inverse Fermat-Weber problem
can be expressed as follows:

Find new vertex weights w∗
i , i = 0, 1, ..., n, such that the point P0 is a

Euclidean 1-median with respect to the new weights w∗
i , the new weights lie

within the given bounds wi ≤ w∗
i ≤ wi for all i = 0, 1, ..., n, and the total

cost
n
∑

i=1

ci(pi + qi)

for changing the weights becomes minimum.
If point P0 does not belong to the given set of weighted points in the

plane, then the task is to change the weights of P1, . . . , Pn at minimum
cost such that the weights satisfy the bound constraints and P0 becomes
1-median with respect to the new weights.

Whereas the classical Fermat-Weber problem is computationally hard,
we shall show in the following that its inverse version is polynomially solv-
able.

3 The inverse Fermat-Weber problem for P0 6= Pj

In the following we assume that P0 lies in the interior of the convex hull of
the points Pi, i = 1, 2, ..., n, and P0 6= Pi for all i = 1, 2, ..., n. The case
that P0 lies on the boundary of the convex region and P0 6= Pi reduces to
an inverse 1-median problem on a line which can be solved by the method
developed in Burkard, Pleschiutschnig and Zhang [5]. The case that P0

coincides with a given point Pj will be treated in Section 4. Under the
assumptions above the optimality criterion of Theorem 2.2 states that the
weighted sum of directions from P0 to Pi must vanish. Thus we can reduce
the given problem to an inverse Fermat-Weber problem where all points Pi,
i = 1, 2, ..., n, lie on the unit circle with center P0 = (0, 0). We choose P0 as
origin of our coordinate system and we replace the coordinates (xi, yi) of a
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given point Pi by

x̂i :=
xi

d(Pi, P0)
and ŷi :=

yi

d(Pi, P0)
. (2)

Note that possibly two or more different points may coincide on the unit
cycle. By Theorem (2.2) point P0 = (0, 0) is a Euclidean 1-median for points
on the unit circle if and only if

Rx(w) :=

n
∑

i=1

wix̂i = 0, (3)

Ry(w) :=

n
∑

i=1

wiŷi = 0. (4)

Thus, the inverse Fermat-Weber problem can be stated as the following
linear program with 2n bounded variables and two equality constraints as
was already pointed out by Plastria [20]:

min
n
∑

i=1

ci(pi + qi)

s.t.

n
∑

i=1

(wi + (pi − qi))x̂i = 0

n
∑

i=1

(wi + (pi − qi))ŷi = 0

pi ≤ wi − wi for i = 1, 2, ..., n,

qi ≤ wi − wi for i = 1, 2, ..., n,

pi, qi ≥ 0 for i = 1, 2, ..., n.

Therefore it can be solved in linear time due to Megiddo and Tamir [17].
Moreover, the above formulation as a linear program shows immediately the
following Lemma.

Proposition 3.1. If P0 lies in the interior of the convex hull of the points Pi,
i = 1, 2, ..., n, and the given bounds of the weights allow a feasible solution,
then there exists always an optimal solution of the inverse Fermat-Weber
problem where at most two modified weights lie strictly between their lower
and their upper bound.
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Due to the positive cost coefficients ci, i = 1, 2, ..., n, we get for any
optimal solution (p∗, q∗) the orthogonality condition

p∗i q
∗
i = 0 for all i = 1, 2, ..., n. (5)

For the sake of a simple notation we shall call in the following the coor-
dinates of the points Pi on the unit cycle just (xi, yi).

Since the Euclidean distance is invariant with respect to rotation and
reflection, we can always assume that

Rx(w) = 0 and Ry(w) ≤ 0. (6)

If Ry(w) = 0, then the weights wi, i = 1, 2, ..., n, provide an optimal solu-
tion. Therefore we assume in the following Ry(w) < 0. We call |Ry(w)| the
optimality gap G(w). In the following section we derive a purely combinato-
rial greedy-type algorithm for the inverse Fermat-Weber problem with unit
cost which keeps in every step Rx(w) = 0 and reaches after at most n steps
an optimal solution, i.e., Ry(w) = 0, if the problem is feasible.

3.1 A greedy algorithm for the inverse Fermat-Weber prob-

lem with unit cost

The greedy algorithm is based on a sequence of weight changes for points.
If by chance one of the given points coincides with A := (0, 1) or B :=
(0,−1), then we can decrease G(w) by changing the weight of this point
without violating Rx(w) = 0. If A is a given point, then the weight wA of
A is increased by min(wA − wA, G(w)). This yields a new optimality gap
G(w). Thereafter, if G(w) is still positive, the weight of B is decreased to
min(wB − wB, G(w)).

In the following we shall always assume that G(w) > 0 and that the
weights of A and B are on their upper and lower bound, provided these
points belong to the given points.

In order to reduce the optimality gap we simultaneously change the
weights of two points, say point Ps and point Pt. If we want to decrease
the optimality gap by δ, the weight change δs of point Ps and δt of point Pt

have to fulfill according to (3) and (4):

xsδs + xtδt = 0, (7)

ysδs + ytδt = δ. (8)

If ys

xs
= yt

xt
then the system (7) and (8) is only solvable for δ = 0, i. e., the

optimality gap can not be decreased by simultaneously changing the weights
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of Ps and Pt while the optimality condition in x-direction remains satisfied.
Thus, we assume ys

xs
6= yt

xt
. Then Cramer’s rule yields

δs = − xt

xsyt − xtys
δ, (9)

δt =
xs

xsyt − xtys
δ, (10)

δ is to be chosen as large as possible such that δ ≤ G(w) and the weight
bounds for ws and wt are fulfilled:

ws ≤ ws −
xt

xsyt − xtys
δ ≤ ws, (11)

wt ≤ wt +
xs

xsyt − xtys
δ ≤ wt. (12)

The maximal possible value of δ is called the augmentation value δst. If
δst > 0, we call (Ps, Pt) an augmenting pair. The cost of an augmentation δ

by the pair (Ps, Pt) is given by |δs| + |δt|. We can evaluate the efficiency of
the weight change incurred by the augmenting pair (Ps, Pt) by defining the
efficiency est as fraction of the gain in closing the optimality gap divided by
costs:

est :=
δ

|δs| + |δt|
.

A simple calculation yields

est =
|xsyt − xtys|
|xs| + |xt|

. (13)

The fact that a pair with ys

xs
= yt

xt
is not able to reduce the optimality

gap is reflected by est = 0 if ys

xs
= yt

xt
.

An augmenting pair with maximum efficiency is called maximal aug-
menting pair. For each point Pi = (xi, yi) let αi = yi

xi
denote the slope of Pi.

In the following lemma the efficiency is investigated in more detail.

Lemma 3.2. Let αk = yk

xk
for k = s, t. Then

est =

∣

∣

∣

∣

∣

αs − αt
√

1 + α2
s +

√

1 + α2
t

∣

∣

∣

∣

∣

. (14)

Proof. Since x2
k + y2

k = 1, we get |xk| = 1

1+α2

k

for k = s, t. This leads to the

formulation of est as stated in the lemma.
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Assume that αs ≥ αt and αt is fixed. Then est can be considered as
function of αs with derivative

(

1
√

1 + α2
s +

√

1 + α2
t

)2(

√

1 + α2
s +

√

1 + α2
t − (αs − αt)

αs
√

1 + α2
s

)

The fact that
√

1 + α2
s

√

1 + α2
t > |αsαt| holds implies that the derivative is

positive and hence est is monotonically increasing in αs if αt is fixed. Due to
symmetry it follows that est is monotonically decreasing in αt and hence est

gets larger for increasing αs − αt = |αs − αt|. An analogue argument leads
to the same result for αs ≤ αt. Hence, we immediately get the following
corollary:

Corollary 3.3. Let (Ps, Pt) be a maximal augmenting pair then

∣

∣

∣

∣

ys

xs
− yt

xt

∣

∣

∣

∣

≥
∣

∣

∣

∣

ys

xs
− yj

xj

∣

∣

∣

∣

holds for every point Pj .

The next lemma shows that as long as the weights are not optimal there
exists an augmenting pair.

Lemma 3.4. Let (p∗, q∗) be an optimal solution. Then (p∗, q∗) can be de-
composed into a sequence of augmenting pair transformations.

Proof Let (p∗, q∗) be an optimal solution. Since Rx(w) = 0 and

n
∑

i=1

xi(wi + p∗i − q∗i ) =

n
∑

i=1

xi(p
∗
i − q∗i ) = 0

there exist two points Ps and Pt with p∗k − q∗k 6= 0 for k = s, t and

sgn(xs(p
∗
s − q∗s)) 6= sgn(xt(p

∗
t − q∗t )).

Then there exist two values δs and δt such that

xsδs + xtδt = 0,

ysδs + ytδt = δ.

If p∗k > 0 then 0 < δk ≤ p∗k and if q∗k > 0 then −q∗k ≤ δk < 0 holds
for k = s, t. Now choose δs and δt such that |δ| is maximal and reduce
(p∗, q∗) by (δs, δt). The procedure described above can again be applied to
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the reduced solution. Hence, (p∗, q∗) can be reached by a finite sequence
(Pi1 , Pj1 , δ1), . . . , (Pir , Pjr

, δr) of modifications. Observe that if (p∗, q∗) is
feasible then

G(w∗) =
r
∑

k=1

δr = 0.

There exists at least one pair (Pik , Pjk
) with δk > 0 and hence it is an

augmenting pair. Moreover, if there exists a pair (Pik , Pjk
, δk) with δk < 0

then one may simultaneously reduce the modification of this pair and the
modification of an augmenting pair which yields a feasible solution with less
cost and hence leads to a contradiction to the optimality of (p∗, q∗). Hence,
every decomposition consists of only augmenting pairs. 2

We can always use a sequence of maximal augmenting pairs with maxi-
mal augmentation values in order to obtain an optimal solution due to the
following lemma.

Lemma 3.5. If the problem is feasible and (Ps, Pt) is a maximal augmenting
pair with maximal augmentation value δst > 0 then there exists an optimal
solution (p∗, q∗) that can be decomposed into a sequence of augmenting pair
modifications and (Ps, Pt, δ) is contained in this sequence with δst ≤ δ.

Proof Let (p∗, q∗) be an optimal solution with cost c∗ such that the value
of augmentation δ of (Ps, Pt) is maximal. Assume that 0 ≤ δ < δst. The
idea is to define a new optimal solution with higher augmentation value of
(Ps, Pt).

If in the optimal solution neither the optimal weight of Ps nor the optimal
weight of Pt attains one of its lower or upper bound, then a new solution is
obtained by choosing any arbitrary augmenting pair (Pi, Pj) of (p∗, q∗) and
increasing the augmentation of (Ps, Pt) and decreasing the augmentation of
(Pi, Pj) by ǫ > 0. Clearly, the new solution is again feasible. Since est ≥ eij

the new cost are smaller than c∗ in contradiction that c∗ is the minimum
cost.

If both weight w∗
s and w∗

t are equal to their lower or upper bound, then
δ = δst holds, which contradicts our assumption 0 ≤ δ < δst.

Hence, there exists at most one point, say Ps, whose optimal weight
is equal to its lower or upper bound. Since δ < δst there exists at least
one augmenting pair (Ps, Pj) with j 6= t. A new solution is obtained by
increasing the augmentation of (Ps, Pt) and decreasing the augmentation of
(Ps, Pj) by ǫ > 0. The bound constraints for Pt and Pj are satisfied because
wt < w∗

t < wt holds and the modification of Pj was decreased. It remains
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to show that the bound constraint of Ps is fulfilled. Recall that (Ps, Pt) is a
maximal augmenting pair and hence due to Corollary 3.3 we have

∣

∣

∣

∣

yt

xt

− ys

xs

∣

∣

∣

∣

≥
∣

∣

∣

∣

yjk

xjk

− ys

xs

∣

∣

∣

∣

.

Simple calculations yield

∣

∣

∣

∣

xt

xsyt − xtys

∣

∣

∣

∣

≤
∣

∣

∣

∣

xjk

xsyjk
− xjk

ys

∣

∣

∣

∣

.

Observe that the ǫ-modification increases the weight modification of Ps by

∣

∣

∣

∣

xt

xsyt − xtys
ǫ

∣

∣

∣

∣

and simultaneously decreases it by

∣

∣

∣

∣

xjk

xsyjk
− xjk

ys

ǫ

∣

∣

∣

∣

.

Thus, the new modified sequence leads to a feasible solution. Since the
efficiency of pair (Ps, Pt) is maximal, we get again a new solution with cost
at most c∗ but higher augmentation value of pair (Ps, Pt) in contradiction
to the maximality of (p∗, q∗). 2

For solving the inverse Fermat-Weber problem we shall apply now the
following Algorithm 1.

Theorem 3.6. If due to the weight bounds the inverse Fermat-Weber prob-
lem is solvable, then the above greedy algorithm determines an optimal so-
lution.

Proof According to Lemma 3.3 a pair has maximum efficiency if and only
if one point of the pair has a maximum slope and the other point has a
minimum slope. Hence, in each iteration the algorithm chooses a pair of
maximum efficiency and performs an augmentation of maximal value.

Let w be the current weight vector. Due to Lemma 3.5 there exists an
optimal solution that contains a maximal augmentation using a maximal
augmenting pair (Ps, Pt). If the weight of Ps or Pt reaches its upper or
lower bound then an optimal weight modification of this point is reached.
Therefore, it can be fixed and its weight is not changeable any more.

Let w̃ be the weight after changing the weights of Ps and Pt by δs and δt,
respectively. Let (p̃, q̃) be an optimal solution with respect to w̃. Since there

11



Algorithm 1 A greedy algorithm for solving the inverse Fermat-Weber
problem

Rotate the coordinate system such that Rx(w) = 0.
Label all points as free.

while G(w) > 0 do

Let Ps have maximal slope and Pt minimal slope among the free vertices.
(If the maximal (minimal) slope does not uniquely correspond to one
vertex then, if possible, choose that free point with maximal (minimal)
slope that has already been considered in the previous iteration.)
Compute the maximum value of δ according to (11), (12) and δ ≤ G(w),
change the weights of Ps and Pt according to (9) and (10) and update
the gap.
If a point reaches its upper or lower bound, label it as fixed.
If all points are fixed and G(w) > 0 then the problem is infeasible.

end while

exists an optimal solution with respect to the original weight that contains
a maximal augmentation using a maximal augmenting pair, (p̃, q̃) together
with δs and δt yields an optimal solution of the original instance. 2

Moreover, we get

Proposition 3.7. The algorithm terminates after at most n weight ex-
changes. It yields a solution where at most two of the changed weights lie
strictly between their lower and upper bound. The overall running time of
the algorithm is O(n log n).

Proof In each step of the algorithm at least one vertex reaches its upper
or lower bound and is then fixed and not considered any more. Therefore,
there are at most n weight exchanges.

If the weight of a vertex is changed then the point has maximum or min-
imum slope among the free vertices. If the weight is only partially changed
then this point is still free in the next iteration and hence has maximum
or minimum slope among the new set of free vertices. According to the
algorithm this point is part of the following augmentation. Hence, there are
at most two vertices (those in the last augmentation step) whose weight is
changed but lies strictly between lower and upper bound.

Since the vertices can be sorted according to their slopes and each of the
O(n) augmentation steps takes linear time, Algorithm 1 runs in O(n log n)
time. 2
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x

y

P0

P3

P4

P1

P2

Figure 1: Vertices for an instance of the inverse Fermat-Weber Problem.

i wi wi wi Pi = (xi, yi) slope si

1 50

7
5 8 P1 =

(

− 7

25
,−24

25

)

24

7

2 2
√

2 1 3 P2 =
(

1√
2
,− 1√

2

)

−1

3 4 3 5 P3 =
(

3

5
, 4

5

)

4

3

4 3 3 4 P4 =
(

−4

5
, 3

5

)

−3

4

Table 1: Parameter set of the considered instance.

3.2 Numerical example

In this subsection Algorithm 1 is applied to the following example given
in Figure 1 and Table 1. Observe that Rx(w) = 0, Ry(w) = −27

7
and

G(w) = 27

7
.

• Ps = P1 and Pt = P2 because s1 = max{si | i = 1, . . . , 4} and s2 =
min{si | i = 1, . . . , 4}:

δ1 = −25

31
δ, δ2 = −7

√
2

31
δ

δ = min

{

31

25
(w1 − w1),

31

7
√

2
(w2 − w2), G(w)

}

=
93

35

The weight of P1 is decreased by 25

31
· 93

35
= 15

7
and the weight of P2 is
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decreased by 25

31
· 7

√
2

31
= 3

5

√
2. Hence, the new weights are of the form

w1 = 5, w2 =
7

5

√
2, w3 = 3, w4 = 3

with new gap G(w) = 6

5
. Vertex P1 is fixed because its weight reached

its lower bound.

• Ps = P3 and Pt = P2 because s3 = max{si | i = 2, 3, 4} and s2 =
min{si | i = 2, 3, 4} (moreover, P2 is partially modified):

δ2 = −3
√

2

7
δ, δ3 =

5

7
δ

δ = min

{

7

3
√

2
(w2 − w2),

7

5
(w3 − w4), G(w)

}

=
6

5

The weight of P2 is decreased by 6

5
· 3

√
2

7
= 18

35

√
2 and the weight of P3

is increased by 6

5
· 5

7
= 6

7
. Hence, the new weights are of the form

w1 = 5, w2 =
31

35

√
2, w3 =

34

7
, w4 = 3

with new gap G(w) = 0. Therefore, we have reached an optimal
solution.

Observe that there are two vertices, P1 and P4, whose weight is changed
but does not coincide with the upper or lower bound.

3.3 Remark on general cost coefficients

Algorithm 1 is developed for the unit cost model. By definition the efficiency
of a pair (Ps, Pt) is the fraction of the gain in closing the optimality gap
divided by the costs. In case of general cost coefficients this would imply

est :=
|xsyt − xtys|
ct|xs| + cs|xt|

.

However, the following example demonstrated that successively choosing
maximal augmenting pairs does in general not yield an optimal solution.

Consider the instance of the Inverse Fermat-Weber problem given in
Figure 2 and Table 2.

14



x

y

P0
P1

P2P3

P4

Figure 2: Vertices for an instance of the Inverse Fermat-Weber Problem.

i wi wi wi Pi = (xi, yi) ci

1 0 0 5 P1 = (1, 0)
√

2

2 0 0 5 P2 = ( 1√
2
, 1√

2
) 7

3 0 0 5 P3 = (− 1√
2
, 1√

2
) 1

4 10√
2

10√
2

10√
2

P4 = (0,−1) 0

Table 2: Parameter set for an example with general cost coefficient.
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Observe that the weight of P4 is not allowed to be changed. Therefore, we
are only interested in the efficiencies involving the vertices Pi for i = 1, 2, 3:

e1,2 =
1

8
√

2
, e1,3 =

1

2
√

2
, e2,3 =

1

4
√

2
.

The algorithm chooses the maximal augmenting pair (P1, P3) and in-
creases the weight of P1 by 5√

2
and increases the weight of P3 by 5. This

decision is irrevocable. However, it is easy to check that the unique optimal
solution of this instance is p∗1 = 0 and p∗2 = p∗3 = 5. Hence, there is no
optimal solution that contains the augmentation of a maximal augmenting
pair.

4 The inverse Fermat-Weber problem for P0 = Pj

In this section we discuss the special case of the inverse Fermat-Weber prob-
lem if the prespecified point coincides with one of the given vertices. Assume
that P0 is a vertex and should become 1-median. According to Theorem 2.2
vertex P0 is 1-median if and only if

R2
x(w) + R2

y(w) ≤ w2
0

holds, where Rx(w) =
∑n

i=1
wixi and Ry(w) =

∑n
i=1

wiyi. Hence, the
inverse Fermat-Weber problem can be written in the following form:

min
n
∑

i=1

ci(pi + qi) s.t.

(

n
∑

i=1

(wi + (pi − qi))xi

)2

+

(

n
∑

i=1

(wi + (pi − qi))yi

)2

≤ (w0 + p0 − q0)
2

pi ≤ wi − wi for i = 1, 2, ..., n,

qi ≤ wi − wi for i = 1, 2, ..., n,

pi, qi ≥ 0 for i = 1, 2, ..., n.

Unfortunately, the problem above is in general not a convex problem
since the first constraint is in general a non-convex function. However, in
case of the unit-cost model it is possible to fix the decision variables (p0, q0)
in advance.

Lemma 4.1. There exists an optimal solution (p∗, q∗) with

p∗0 = min
{

w0 − w0,
√

R2
x(w) + R2

y(w) − w0

}

.

16



Proof If
√

R2
x(w) + R2

y(w) ≤ w0 then p0 =
√

R2
x(w) + R2

y(w)−w0, q0 = 0

and p∗i = q∗i = 0 for i = 1, . . . , n is a feasible solution. Therefore, p∗0 ≤
min{w0 − w0,

√

R2
x(w) + R2

y(w) − w0} holds for every optimal solution.

Assume that p0 < min{w0 −w0,
√

R2
x(w) + R2

y(w)−w0} and let (p∗, q∗)

be an optimal solution such that p∗0 is maximal.
Then there exists at least one point Pi with p∗i − q∗i 6= 0. Assume that

p∗i > 0 (the other case can be proved in an analoguous way). Define a new
solution (p̃, q̃) that is obtained from (p∗, q∗) by increasing p∗0 and decreasing
p∗i by ε > 0 such that (p̃, q̃) satisfied the bound constraints. Then Rx(w̃) =
Rx(w∗) − εxi and Ry(w̃) = Ry(w

∗) − εyi where w̃ = w + p̃ − q̃ and

R2
x(w̃) + R2

y(w̃) = R2
x(w∗) + R2

y(w
∗) − 2ε(Rx(w∗)xi + Ry(w

∗)yi) + ε2

≤ (w∗
0)

2 + 2ε|Rx(w∗)xi + Ry(w
∗)yi| + ε2

≤ (w∗
0)

2 + 2εw∗
0 + ε2 ≤ (w∗

0 + ε)2 = w̃2
0

In the above chain of inequalities we use the following facts: (p∗, q∗) is an
optimal solution and hence R2

x(w∗)+R2
y(w

∗) = (w∗
0)

2. Moreover, x2
i +y2

i = 1

implies |Rx(w∗)xi + Ry(w
∗)yi| ≤

√

R2
x(w∗) + R2

y(w
∗).

We have shown that (p̃, q̃) is feasible and optimal but p̃0 > p∗0 which
leads to a contradiction. 2

Lemma 4.1 implies that the weight of P0 can be fixed. After modifying
the weight of P0 according to Lemma 4.1 the remaining problem is convex.
Hence, by using e.g., the ellipsoid method the problem can be solved in
polynomial time to any fixed precision (e.g., see Grötschel et al. [11]).

Theorem 4.2. If the prespecified point is one of the given n points, then
an optimal solution (to any fixed precision) of the inverse Fermat-Weber
problem with unit cost can be computed in polynomial time.

5 Conclusion

This paper deals with an inverse approach to the classical Fermat-Weber
problem. While the complexity status of the Fermat-Weber problem is still
unclear, we show that its inverse can be solved in polynomial time. If the
prespecified point that should become 1-median does not coincide with the
given points (vertices) in the plane, then the inverse Fermat-Weber problem
can be written as linear programming problem which can in principle be
solved in linear time. We suggest a purely combinatorial and very simple

17



algorithm for the unit-cost model. In case that the prespecified point is a
vertex then the inverse Fermat-Weber problem can be written as convex
optimization problem.
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