
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detecting relevant variables and interactions in supervised
classification

Citation for published version:
Carrizosa, E, Martín-Barragán, B & Morales, DR 2011, 'Detecting relevant variables and interactions in
supervised classification', European Journal of Operational Research, vol. 213, no. 1, pp. 260-269.
https://doi.org/10.1016/j.ejor.2010.03.020

Digital Object Identifier (DOI):
10.1016/j.ejor.2010.03.020

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
European Journal of Operational Research

Publisher Rights Statement:
© Carrizosa, E., Martín-Barragán, B., & Morales, D. R. (2011). Detecting relevant variables and interactions in
supervised classification. European Journal of Operational Research, 213(1), 260-269.
10.1016/j.ejor.2010.03.020

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1016/j.ejor.2010.03.020
https://doi.org/10.1016/j.ejor.2010.03.020
https://www.research.ed.ac.uk/en/publications/9291e997-9e0a-4df9-a986-79a7cdb81944


Detecting relevant variables and interactions for classification in

Support Vector Machines

Emilio Carrizosa

Universidad de Sevilla (Spain). ecarrizosa@us.es

Belén Mart́ın-Barragán

Universidad de Sevilla (Spain). belmart@us.es

Dolores Romero Morales

University of Oxford (United Kingdom). dolores.romero-morales@sbs.ox.ac.uk

April 12, 2006

Abstract

The widely used Support Vector Machine (SVM) method has shown to yield good results in Super-

vised Classification problems. The Binarized SVM (BSVM) is a variant which is able to automatically

detect which variables are, by themselves, most relevant for the classifier. In this work, we extend

the BSVM introduced by the authors to a method that, apart from detecting the relevant variables,

also detects the most relevant interactions between them. The classification ability of the proposed

method is comparable to standard SVM for different kernels and clearly better than Classification

Trees. Our method involves the optimization of a Linear Programming problem with a large number

of decision variables, for which we use the well-known Column Generation technique.

Keywords: Data Mining, Supervised Classification, Column Generation, Support Vector Machines,

Interactions Detection.
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1 Introduction and literature review

Classifying objects or individuals into different classes or groups is one of the aims of Data Mining, [6].

This topic has been addressed in different areas such as Statistics, Operations Research and Artificial

Intelligence. We focus on the well-known so-called Supervised Classification problem, usually referred as

Discriminant Analysis by statisticians.

We have a set of objects Ω, partitioned into a set of classes C. The aim is to build a classification

rule which predicts the class membership cu ∈ C of an object u ∈ Ω, by means of its predictor vector xu.

The predictor vector xu takes values in a set X which is usually assumed to be a subset of IRp, and the

components x`, ` = 1, 2, . . . , p, of the predictor vector x are called predictor variables.

Not all the information about the objects in Ω is available, but only in a subset I, called the train-

ing sample, where both predictor vector and class-membership of the objects are known. With this

information, the classification rule must be built.

A popular and powerful tool for Supervised Classification are the so-called Support Vector Machines

(SVM) [3], which consist in finding the hyperplane with maximal margin, i.e., the one furthest from the

closest object. The most popular versions of SVM embed, via a so-called kernel function, the original

predictor variables into a higher (possibly infinite) dimensional space, [8]. In this way one obtains

classifiers with good generalization properties. However, it is hard to find out, in the obtained rules,

which variables are more relevant for the classification and how interactions between them affect the

classifier.

In [2], the authors have introduced the so-called Binarized Support Vector Machine (BSVM) method:

each variable is replaced by a set of binary variables obtained by queries of the following type:

is predictor variable ` greater than or equal to b? (1)

The classification rules obtained this way have a classification behavior comparable to the standard

linear SVM and clearly better than Classification Trees, [2]. Although BSVM gives a powerful tool for

detecting which are the most relevant variables, interactions between them are not taken into account. In
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this paper we extend the BSVM in order to get classifiers that detect the interactions between variables

which are useful to improve the classification performance. We call the proposed extension Non-linear

Binarized Support Vector Machine (NBSVM).

In addition to considering queries of type (1), for all possible cutoffs b, NBSVM also considers the

simultaneous positive answer to two or more of such queries, i.e.,

Is predictor variable `1 greater than or equal to b1,

and predictor variable `2 greater than or equal to b2,

...

and predictor variable `g greater than or equal to bg?

(2)

Special attention will be paid to the case g = 2, in which the pairwise interaction is explored by

queries of type

Is predictor variable `1 greater than or equal to b1,

and predictor variable `2 greater than or equal to b2?
(3)

For this particular case, it is easy to measure how the classifier is affected by the interaction of each pair

of variables, as shown in Section 2.

We restrict ourselves to the case in which two classes exist, C = {−1, 1}. The multiclass case can be

reduced to a series of two-class problems, as has been suggested e.g. in [7, 8, 16].

Numerical results show that the NBSVM gives a classifier that behaves comparable to standard SVM

for different choices of the kernels, and clearly better than Classification Trees. Moreover, the tradeoff

between interpretability and classification ability can be controlled via an upper bound on the number

of features allowed. At the same time, the method provides a very powerful tool for detecting which

interactions are relevant for classication.

The remainder of the paper is organized as follows: NBSVM is described in Section 2. Since the

number of features to be considered may be huge, the NBSVM method yields an optimization problem

with a large number of decision variables, in general, of order (](I)p)g, where ](·) denotes the cardinality
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of a set. The classifier uses the weighted sum of features defined from queries of type (2) and an

independent term. In Section 3, a mathematical program for the choice of the weights is formulated and

the Column-Generation-based algorithm proposed in [2] is extended in order to solve such a program

when interactions between predictor variables are considered. Numerical results are shown in Section 4,

whereas conclusions and some lines for future research are discussed in Section 5.

2 Binarizing the variables and their interactions

In practical applications, classification accuracy of the obtained classifier is not the only concern, but

other characteristics of the classifier are also taken into account. For instance, in microarray analysis,

interpretability is one of the issues that influences the choice of a prediction method, [13], where easily

interpretable models, which might help to provide new medical insights, are sometimes preferred. In

some fields, as diverse as cancer diagnosis and credit scoring, doctors or lenders might find important to

easily explain the classification rule and detecting which combinations of variables are critical to predict

class membership.

In practical Data Mining applications, quantitative variables usually appear together with the quali-

tative ones. In order to deal with continuous variables in the form of the presence or absence of certain

symptom, rules of type (1) are used, where the cutoff value b needs to be chosen. For example, a doctor

would say that having high blood pressure is a symptom of disease. Choosing the threshold b from which

a specific blood pressure would be considered high is not usually an easy task.

In [2], all the possible rules of type (1) are theoretically considered, mathematically formalized by the

function

φ`b(x) =


1 if x` ≥ b

0 otherwise
(4)

for b ∈ B` = {xu
` : u ∈ I} and ` = 1, 2, . . . , p.

The set of possible cutoff values b in (4) could be, in principle, IR. Thus the number of function of type

(4) would, in principle, be infinite. However, given a training sample I, many of those possible cutoffs
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will yield exactly the same classification in the objects in I, which are the objects whose information is

available. In this sense, for a certain predictor variable ` and a given training sample I, we can constrain

the choice of b ∈ IR to the finite set B`.

Note that binary 0-1 variables can be accommodated to this framework easily, by taking b = 1. It

might be less obvious for ordinal variables, i.e. qualitative variables whose values can be sorted according

to some meaningful order � . For instance, a variable ` taking the values {‘big’, ‘medium’, ‘small’}

yields the following queries of type (1): “Is x` � big?”, with affirmative answer for x` ∈ {‘big’}; “Is

x` � medium?”, with affirmative answer for x` ∈ {‘medium’, ‘small’}; and “Is x` � small?” always

affirmatively answered.

For nominal variables, where there exists no meaningful order for the k values they take, queries

of type (1) make no sense. In order to accommodate all types of variables to a common framework, a

preprocessing step is needed where every nominal variable ` is replaced by k new variables as follows: for

every possible value x̂ of the original nominal variable `, a new binary variable is built taking value one

when x` is equal to x̂ and zero otherwise. For instance, a variable ` taking values {‘red’,‘blue’,‘green’} is

replaced by three binary variables asking the questions ‘is x` = red?’, ‘is x` = blue?’ and ‘is x` = green?’.

Example 1 In the Credit Screening Database, from the UCI Machine Learning Repository [11], there

are 15 variables, six of which are continuous (c), four binary (b) and five are nominal (n). Since no

information about the meaning of the values is provided, we have considered that values cannot be sorted

according to a meaningful order, and have encoded them as explained above. After the encoding, the

original set of 15 variables, whose information about their names, types and the values they take, is given

in Table 1, is replaced by a set of 43 variables.

Example 2 In the Cylinder Bands Database, from the UCI Machine Learning Repository [11], there are

35 variables (excluding the first four attributes, which are for identification of the object), twenty of which

are considered to be continuous (c), five binaries (b), three are considered to be ordinal (o) and eight are

are considered to be nominal (n). All objects having at least one missing value have been removed from
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name type values

A1 b b, a
A2 c [13.75,76.75]
A3 c [0,28]
A4 n u, y, l, t
A5 n g, p, gg
A6 n c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
A7 n v, h, bb, j, n, z, dd, ff, o
A8 c [0,28.5]
A9 b t, f
A10 b t, f
A11 c [0,67]
A12 b t, f
A13 n g, p, s
A14 c [0,2000]
A15 c [0,100000]

Table 1: Types of variables in Credit Screening Database.

the database. After the encoding, the original set of 34 variables, whose information about its name, type

and values it takes is given in Table 2, is replaced by a set of 56 variables.

The family of functions trained with the encoding described above is given by

F̂ = {φ`b : b ∈ B`, ` = 1, 2, . . . , p},

and is used in BSVM, as described in [2]. In this paper we use a richer model, which takes into account

the interactions between variables.

We define F as the set of all products of degree up to g of functions of F̂ , i.e.,

F =

 ∏
φ∈F

φ : F ⊂ F̂ , ](F ) ≤ g

 . (5)

In what follows, each function of type φ ∈ F is called feature. Moreover, features in F̂ are called

features of degree one whereas a feature φ ∈ F , made up of the product of k features of degree one,

φ = φ`1,b1 · φ`2,b2 . . . φ`k,bk
with `i 6= `j∀i 6= j and b` 6= minu∈I xu

` , is said to be a feature of degree k, for

all k = 2, . . . , g.

The classification is performed as follows: each feature φ ∈ F has associated a weight ωφ, measuring

its contribution for the classification into the class −1 or 1; the weighted sum of those features and a
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name type values

grain screened b yes, no
ink color b key, type
proof on ctd ink b yes, no
blade mfg n benton, daetwyler, uddeholm
cylinder division n gallatin, warsaw, mattoon
paper type n uncoated, coated, super
ink type n uncoated, coated, cover
direct steam b yes, no
solvent type n xylol, lactol, naptha, line, other
type on cylinder b yes, no
press type n WoodHoe70, Motter70, Albert70, Motter94
press o 802, 813, 815, 816, 821, 824, 827, 828
unit number o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
cylinder size n catalog, spiegel, tabloid
paper mill location n northUS, southUS, canadian, scandanavian, mideuropean
plating tank b 1910, 1911
proof cut c [0,100]
viscosity c [0,100]
caliper c [0,1.0]
ink temperature c [5,30]
humifity c [5,120]
roughness c [0,2]
blade pressure c [10,75]
varnish pct c [0,100]
press speed c [0,4000]
ink pct c [0,100]
solvent pct c [0,100]
ESA Voltage c [0,16]
ESA Amperage c [0,10]
wax c [0,4.0]
hardener c [0,3.0]
roller durometer c [15,120]
current density c [20,50]
anode space ratio c [70,130]
chrome content c [80,120]

Table 2: Variables in Cylinder Bands Database.

threshold β constitute the score function f ,

f(x) = ω>Φ(x) + β =
∑
φ∈F

ωφφ(x) + β, (6)

where Φ(x) = (φ(x))φ∈F and ω>Φ(x) denotes the scalar product of vectors ω and Φ(x).

Objects will be allocated to class −1 if f(x) < 0, and to class 1 if f(x) > 0. In case of ties, i.e.

f(x) = 0, objects can be allocated randomly or by some predefined order. In this paper, following a

worst case approach, they will be considered as misclassified.

Special attention will be paid to the case g = 2. For each pair of variables (`1, `2) let φ`1,`2,b1,b2 =
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φ`1,b1 · φ`2,b2 . For simplicity in the notation, we denote ωφ`1,`2,b1,b2
and ωφ`,b

by ω`1,`2,b1,b2 and ω`,b,

respectively. With this notation, the score function (6) can be rephrased as

f(x) =
p∑

`=1

∑
b∈B`|x`≥b

ω`b +
p∑

`1=1

p∑
`2=1

∑
b2∈B`1 |x`1≥b1

∑
b2∈B`2 |x`2≥b2

ω`1,`2,b1,b2 + β. (7)

The weight ω`b associated to feature φ`b represents the amount with which the query ‘is x` ≥ b?’

contributes to the score function (7). For a certain pair of variables (`1, `2), the coefficient ω`1,`2,b1,b2

represents the amount with which the query ‘is x`1 ≥ b1 and simultaneously x`2 ≥ b2?’ contributes to

the score function (7). The role played in the score function (7) by the interaction between variables `1

and `2, is represented by the function ϕ`1,`2(s, t),

ϕ`1,`2(s, t) =
∑

b2∈B`1 |s≥b1

∑
b2∈B`2 |t≥b2

ω`1,`2,b1,b2 , ∀(s, t) ∈ IR2.

Plotting φ`1,`2 gives a clear idea of how the interaction of `1 and `2 affects the classification.

Example 3 Taking the Credit Screening Database, as in Example 1, and for ω obtained by the method

explained in Section 3, function ϕA14,A3, is plotted in Figure 1, where, at each point (s, t) in the graphic,

the gray intensity represents the value of ϕA14,A3(s, t). The color in the down-left corner of the pictures

corresponds to the null value, whereas lighter levels of gray corresponds to negative values and darker ones

correspond to positive values.

The same information is given in Table 3. For instance, an object having xu
A3 = 3 and xu

A14 = 800,

would have ϕA14,A3(800, 3) = ωA14,A3,210,0.375 = 0.6422, represented by the darkest gray area in Figure

1, whereas an object having xu
A3 = 15 and xu

A14 = 500, would have ϕA14,A3(400, 15) = ωA14,A3,210,0.375 +

ωA14,A3,232,5.835 +ωA14,A3,70,9.5 = 0.6422− 0.2613− 1.0642 = −0.6833, represented by the light gray area

in the top-right corner of Figure 1.

The interaction of those pair of variables (`1, `2) having ω`1,`2,b1,b2 = 0 for all b1 ∈ B`1 and all b2 ∈ B`2 ,

has no effect in the classification based on score function (7). Moreover, the maximal absolute value that

function ϕ takes in IR× IR measures how important for the classification is the interaction of the pair of
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Figure 1: Role of the interaction in the score function. Database credit.
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values of A3 \ values of A14 [0, 70) [70, 210) [210, 232) [232, 2000]
[0.000, 0.375) 0 0 0 0
[0.375, 5.835) 0 0 0.6422 0.6422
[5.835, 9.500) 0 0 0.6422 −0.4220
[9.500, 28.000) 0 −0.2613 0.3809 −0.6833

Table 3: Role of the interaction in the score function.

variables (`1, `2). Such a measure, which we call interaction intensity, is defined, for a pair of variables

(`1, `2) with `1 6= `2, as follows

I(`1, `2) = max
s,t∈IR

∣∣∣∣∣∣
∑

b2∈B`1 |s≥b1

∑
b2∈B`2 |t≥b2

ω`1,`2,b1,b2

∣∣∣∣∣∣
= max

u∈Ω

∣∣∣∣∣∣
∑

b1∈B`1

∑
b2∈B`2

φ`1,`2,b1,b2(x
u)

∣∣∣∣∣∣ .

Following a similar discussion, the importance for the classification of a variable `, without taking

into account its interactions with other variables, is given by

I(`, `) = max
s∈IR

∣∣∣∣∣∣
∑

b∈B`|s≥b

ω`,b

∣∣∣∣∣∣
= max

u∈Ω

∣∣∣∣∣ ∑
b∈B`

φ`,b(xu)

∣∣∣∣∣ .

Example 4 For the Credit Screening Database, Figure 2 represents in a gray scale the different values

of I(`1, `2) for each pair of variables (`1, `2), for ω obtained by the method explained in Section 3. From

this picture, it is evident that in the classifier, the most relevant variable is the continuous variable A8

and the pairs with highest interaction intensity I are:

• nominal variable A5 taking the value ‘p’, and continuous variable A14

• continuous variable A2 and nominal variable A7 taking the value ‘v’, and

• continuous variables A2 and A3.

For many pairs of variables interactions are discarded by the classifier: for instance, the interaction

between continuous variables A2 and A11, or nominal variables A5 and A6.
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Figure 2: Interaction between pairs of variables. Database credit.
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Example 5 Taking the Cylinder Bands, whose variables are described in Example 2, Figure 4 represents,

in a gray scale the different values of I(`1, `2) for each pair of variables (`1, `2), obtained after applying

the method that will be explained in Section 3. For the nine pairs of variables `1 and `2 for which I(`1, `2)

is highest, function ϕ, is plotted in a gray scale in Figure 3. Black (respectively white) colors correspond

to the highest (respectively lowest) value of I(`1, `2) for any pair of variables.

For instance, looking at the graphic of variables humifity and hardener and going from the bottom-

left corner in the top-right direction, the gray intensity becomes lighter and lighter. This occurs because

features associated to those variables have negative weights. In the graphic of variables ink pct and

viscosity, two weights are positive and one negative.

3 Building the classifier

In order to choose ω and β in (6) we follow, a soft-margin SVM-based approach [3], which consists in

finding the hyperplane which maximizes the margin in the feature space, but allowing some objects to

be misclassified.

The reminder of this Section is as follows: We first derive the Mathematical Programming formu-

lation for the problem of maximizing the soft margin. Then, we describe in Sections 3.2 and 3.3 a

Column Generation approach to solve the problem. We finally summarize the procedure and give some

implementation details in Section 3.4.

3.1 Soft-margin mathematical formulations

The soft-margin maximization problem is formulated in this paper by

min ‖ω‖+ C
∑

u∈I ξu

s.t. : cu
(
ω>Φ(xu) + β

)
+ ξu ≥ 1 ∀u ∈ I

ξu ≥ 0 ∀u ∈ I

ω ∈ IRN , β ∈ IR,

(8)
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Figure 3: Role of the interaction in the score function. Database bands.
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Figure 4: Interaction between pairs of variables. Database bands.
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where the decision variables are the weight vector ω, the threshold value β and perturbations ξu associated

with the misclassification of object u ∈ I. ‖ · ‖ denotes the L1 norm, N = ](F) and C is a constant that

trades off the margin in the correctly classified objects and the perturbations ξu. An appropriate value

of C is usually chosen by crossvalidation techniques, see e.g. [9].

Whereas the distance between objects has usually been considered as the Euclidean between their

predictor vectors, yielding the margin to be measured by the Euclidean norm as well, other norms such

as the L1 norm and the L∞ norm have been considered, [10], and have been successfully applied, see for

instance [1, 14, 17].

Contrary to the Euclidean case, in which a maximal margin hyperplane can be found by solving a

quadratic program with linear constraints, in the L1 norm case, used in this paper, an optimal solution

can be found by solving a Linear Programming (LP) problem. In [12], empirical results show that ‘in

terms of separation performance, L1, L∞ and Euclidean norm-based SVM tend to be quite similar’.

Moreover, polyhedral norms, as L1 norm, contribute to sparsity in the classifier, yielding ω with many

components equal to zero, see for instance [4]. The choice of L1 norm also allows us to include constraints

on the relative importance of the variables, as suggested for instance, in p.87 of [15].

Since we use the L1 norm, Problem (8) can be formulated as the following LP problem,

min
∑

φ∈F (ω+
φ + ω−φ ) + C

∑
u∈I ξu

s.t. :
∑

φ∈F (ω+
φ − ω−φ )cuφ(xu) + βcu + ξu ≥ 1 ∀u ∈ I

ω+
φ ≥ 0 φ ∈ F

ω−φ ≥ 0 φ ∈ F

ξu ≥ 0 ∀u ∈ I

β ∈ IR.

(9)

After finding the maximal margin hyperplane in the feature space defined by F , the score function

has the form described in (6).

For each feature φ, the absolute value |ωφ| = ω+
φ + ω−φ of its coefficient indicates the importance of

that feature for the classification. Using basic Linear Programming theory, we see that the number of
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features with non-zero coefficient is not larger than the number of objects in the database. However, this

number can still be too large for interpretability of the classifier.

3.2 Column Generation

In [2], for the particular case in which the set of features is just F̂ , the well-known Mathematical Pro-

gramming tool called Column Generation is proposed to solve Problem (9). Since it has a high number

of decision variables, instead of solving it directly, the Column Generation technique solves a series of

reduced problems where decision variables, corresponding to features in the set F̂ , are iteratively added

as needed. For the general case where interactions are taken into account, the same approach can be

applied, but a new algorithm is needed to generate features of degree greater than one, as it will be

proposed in Section 3.3.

For F ⊂ F , let Master Problem (9-F ) be Problem (9) with the family of features F. We start with

an initial set of features F. For example, we can get as an initial set of features, the features generated by

the BSVM Column Generation Algorithm (CG-BSVM) proposed by the authors in [2]. Other choices for

the initial set of features might be useful, for instance, randomly generate a set of features, or one feature

φ`b per variable `, with b equal to the median of variable x` in the objects of I. Once the initial set is

generated, we solve Problem (9-F ). The next step is to check whether the current solution is optimal for

Problem (9) or not, and, in the latter case, generate a new feature φ improving the objective value of

the current solution. The generated feature is added to the family of features F, and then Problem (9-F )

is solved again. This process is repeated until no other promising feature is found. A simple summary

scheme of the column generation algorithm can be seen below.

CG-summary: Summary of the column generation algorithm

Step 0. Get an initial set of features F.

Step 1. Generate one (or various) promising feature(s) φ.

16



Step 2. If no new promising features are found, then stop: we have found a good solution of Problem

(9). Otherwise, add it (them) to the set F, solve Problem (9-F ), and go to Step 1.

In order to generate new features, the Column Generation technique uses the dual formulation of

Problem (9),

max
∑

u∈I λu

s.t. : −1 ≤
∑

u∈I λucuφ(xu) ≤ 1 ∀φ ∈ F∑
u∈I λucu = 0

0 ≤ λu ≤ C ∀u ∈ I.

(10)

The dual formulation of the Master Problem (9-F ) only differs from this one in the first set of constraints,

which should be attained ∀φ ∈ F instead of ∀φ ∈ F .

Let (ω∗, β∗) be an optimal solution of Master Problem (9-F ), let (λ∗u)u∈I be the values of the corre-

sponding optimal dual solution, and let Γ(φ) =
∑

u∈I λ∗ucuφ(xu). If the optimal solution of the Master

Problem (9-F ) is also optimal for Problem (9), then, for every feature φ ∈ F the constraints of the Dual

Problem (10) will hold, i.e.

−1 ≤ Γ(φ) ≤ 1, ∀φ ∈ F . (11)

If (ω∗, β∗) is not optimal for Problem (9), then the most violated constraint gives us information about

which feature is promising and could be added to F, in such a way that adding such a feature to the set

F would yield, at that iteration, the highest improvement of the objective function. In this sense, the

most promising feature φ ∈ F to be added is that which maximizes |Γ(φ)|. Finding such a feature φ can

be reduced to solving two optimization problems:

max
φ∈F

Γ(φ), (12)

min
φ∈F

Γ(φ). (13)
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class x1 x2

c1 5 8
c2 9 3
c3 6 6
c4 3 10

Table 4: Simple example of database.

3.3 Generation of features

For the particular case in which just features of degree one are considered, an exact algorithm to find the

optimal values of (12) and (13) is proposed in [2], the so-called Algorithm 1-BSVM. In this algorithm, for

each predictor variable `, the possible cutoffs are sorted and the optimal value of (12) and (13) are found.

This exact algorithm cannot be directly extended for features of degrees greater than one. For instance,

when we want to generate a feature of degree 2, φ`1,`2,b1,b2 , four parameters are to be determined: two

predictor variables `1, `2, and two cutoffs b1, b2, one for each chosen predictor variable. If, as done in

[2], we first consider the predictor variables `1, `2 are fixed, then it is not possible to sort the objects

simultaneously according to two variables, so Algorithm 1-BSVM described in [2] does not apply. Now we

present a simple example where a local search heuristic procedure is used to generate promising features.

Example 6 In Table 4, a simple example with two predictor variables and four objects is presented, where

we generate all the possible features. At a certain step of the column generation algorithm, let λu be the

dual values of the optimal solution of the reduced problem. We face the problem of generating the most

promising feature. For predictor variable 1, the possible cutoffs are 5, 6 and 9 while the possible cutoffs for

predictor variable 2 are 6, 8 and 10. We also consider here the trivial cutoff 3 for each predictor variable,

which leads to a feature φ`,3(xu) = 1 for all objects u ∈ I. In Table 5, the values of Γ for different cutoffs

for predictor variable 1 (columns) and different cutoffs for predictor variable 2 (rows) are shown.

Since we are also considering the trivial cutoffs, we can find in Table 5 the features of degree 1,

represented in the first column and the first row of the table, along with the features of degree 2. Note

that, when we move along the positions in the table, right-to-left and up-to-down movements lead to either
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λ1c1 + λ2c2 + λ3c3 + λ4c4 λ1c1 + λ2c2 + λ3c3 λ2c2 + λ3c3 λ2c2

λ1c1 + λ3c3 + λ4c4 λ1c1 + λ3c3 λ3c3 -
λ1c1 + λ4c4 λ1c1 - -

λ4c4 - - -

Table 5: Generated features of degrees one and two.

Γ gaining one term of the form λucu or Γ remaining itself. This will be taken into account in order to

implement heuristics to find a promising feature φ to be added to F.

We now describe how to optimize Γ. Since the number of possible cutoffs is huge, we discard sing

a global optimization procedure, and a local search will be used instead. To do this, we wil determine

heuristically the cutoffs b1, b2, . . . , bg associated with variables `1, `2, . . . , `g.

Suppose we know the value of Γ for certain feature of degree two, φ = φ`1,`2,b1,b2 . In Example 6, this

corresponds to a position in Table 5. Once a predictor variable is fixed, for instance the predictor variable

`1, the objects of I can be sorted increasingly by their values in that predictor variable. Let u(i) the

object in the i-th position. We want to change the current cutoff b1 = x
u(i)
`1

in order to create a different

feature φ̂ = φ`1,`2,b̂1,b2
. When changing b1 to a different value b̂1 = x

u(j)
` , the values of φ change only in

the objects u(k) with i < k ≤ j if i < j (and, respectively j < k ≤ i if j < i). Taking this into account,

we know that, when moving backward, i.e. j < i, then the change in Γ is easily computed using that

Γ(φ̂) = Γ(φ)−
∑

k: φ(xu(k))=1, j<k≤i

λu(k)cu(k).

When moving forward, i.e. j > i, then, in order to know if the term λu(k)cu(k) must be added, we need to

check, for all objects u(k) with i < k ≤ j, whether x
u(k)
`1

is greater than or equal to the cutoff b̂1. When

dealing with features of degree greater than two, this last condition should be checked for all the other

variables used in the feature, but the rest remains analogous.

All the above comments are taken into account to implement a local search heuristic, for features

of degree up to g, that, in every step, moves forward or backward in the ordered set of possible cutoffs

for a randomly chosen variable. The algorithm stops when T movements are performed without any
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improvement in the value of Γ.

Algorithm 1-NBSVM: choosing g cutoffs.

Step 0. Initialization:

• ik ← 1, ∀k = 1, 2, . . . , g.

• bk ← x
u(ik)
`k

, ∀k = 1, 2, . . . , g.

• steps ← 0 and max← 0.

Step 1. Randomly choose a predictor variable `j ∈ {`1, `2, . . . , `g}.

Step 2. Randomly choose a type of movement: forward or backward.

Step 3. • If forward, then randomly choose h ∈ {ik, ik + 1, . . . , ](I)}.

• If backward, then randomly choose h ∈ {1, 2, . . . , ik}.

Step 4. Let b = x
u(h)
`j

, compute Γ(φ), for φ = φ`1,b1 . . . φ`j−1,bj−1 · φ`j ,b · φ`j+1,bj+1 . . . φ`g,bg
.

Step 5. If Γ(φ) > max then bj ← b, max← Γ(φ) and steps ← 0. Otherwise, steps ← steps+1.

Step 6. If steps <T, then go to Step 1. Otherwise, stop.

An analogous algorithm for minimizing Γ can be developed just changing Step 5 in the obvious way.

3.4 Implementation details

The column generation algorithm has been implemented as follows. First of all, the Algorithm CG-

BSVM, described in [2], is run. Algorithm CG-BSVM obtains a solution of Problem (9) for the set F̂ of

features of degree one, and, as a byproduct, it also provides us with a set of features F, that have been

generated during its application. We take such a set of features F, as an initial set F ⊂ F̂ ⊂ F in Step 0

of the scheme presented in (CG-summary). In a second step, features of degree up to g are generated. For

a given set of g variables {`1, `1, . . . , `g}, Algorithm 1-NBSVM described in Section 3.3 provides us with
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a local search heuristic to find the cutoffs {b1, b2, . . . , bg}, such that the feature φ = φ`1b1 ·φ`2b2 · . . . ·φ`gbg

is promising to solve Problem (9).

In our implementation, g predictor variables are randomly selected. Other ways of selecting the g

predictor variables might accelerate the optimization of Problem (9). We do not require the g predictor

variables to be different, allowing in this way features of degree lower than g. For instance if the feature

generated is φ = φ4,0.5φ7,7.3φ7,8.9, it can be simplified to φ = φ4,0.5φ7,8.9 which is a feature of degree

two. For such set of g predictor variables, the local search heuristic described in Algorithm 1-NBSVM

chooses their corresponding good cutoffs either by maximizing or minimizing Γ. We generate in this

way Q features by maximizing Γ with Algorithm 1-NBSVM for Q different random choices of the set of

predictor variables, and other Q features by minimizing Γ for other Q different random choices of the set

of predictor variables. Among the generated features, those φ with |Γ(φ)| > 1 are added to the set F and

the LP problem (9-F ) is solved. The whole algorithm of column generation stops when all of these 2Q

generated features satisfy |Γ(φ)| < 1. The current implementation of the column generation algorithm is

as follows:

Column Generation Algorithm

Step 0. Run Algorithm CG-BSVM to build an initial set F with features of degree one.

Step 1. Repeat Q times:

Step 1.1. Randomly choose a set of g predictor variables `1, `2, . . . , `g and select b1, b2, . . . , bg

by maximizing Γ using Algorithm 1-NBSVM.

Step 1.2. If Γ(φ) > 1, then F ← F ∪ {φ}.

Step 2. Repeat Q times:

Step 2.1. Randomly choose a set of g predictor variables `1, `2, . . . , `g and use Algorithm

1-NBSVM for minimizing Γ, to choose b1, b2, . . . , bg.

Step 2.2. If Γ(φ) < −1, then F ← F ∪ {φ}.
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Step 3. If F has not been modified in Steps 1 or 2, then stop: we have found a good solution of

Problem (9). Otherwise, solve Problem (9-F ) and go to Step 1.

4 Numerical results

First we are going to analyze the classification ability of the set of features proposed in the paper. With

this aim, a series of numerical experiments have been performed using databases publicly available from

the UCI Machine Learning Repository [11]. A summary of the characteristics of the databases used in the

experiment is shown in Table 6. Five different databases were used, namely, the Cylinder Bands Database,

called here bands; the Credit Screening Databases, called here credit; the Ionosphere Database, called

here ionosphere; the Sonar Database, called here sonar; and the New Diagnostic Database, contained

in the Wisconsin Breast Cancer Databases, called here wdbc.

For each database, the name of the file (as called in the database), the number of predictor variables

(after codding nominal variables as explained in Section 2) p, and the total number of objects ](Ω), are

given in Table 6. In case of existence of missing values, as occurs in bands and credit, objects with

missing values have been removed from the database.

name filename p ](Ω)
bands bands.data 56 365

credit crx.data 43 666
ionosphere ionosphere.data 34 351

sonar sonar.all-data 60 208
wdbc wdbc.data 30 569

Table 6: Information about the databases.

In order to compare the quality of the NBSVM classifier with the classification quality of other

classifiers, we have tested the performance of two very different benchmark methods: classification trees,

with and without pruning, and SVM with linear kernel, polynomial kernel for degrees between two and

five, and radial basis function kernel. The averaged percentages of correctly classified objects in both

the training sample (tr) and testing sample (test) are displayed in Table 7 for standard SVM and
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different values of the parameter C, which trades off the margin and the perturbations in formulation

(8). For classification trees, results are shown in Table 8. All results presented are obtained by 10-fold

crossvalidation, e.g. [9]. CPLEX 8.1.0 was used as the LP solver.

Results of NBSVM are shown, for different values of C and g, in Tables 9-13, where the averaged

percentages of correctly classified objects in training and testing samples are displayed along with the

number of generated features (] f) with non-zero coefficient in the classifier and the number of predictor

variable actually used by the classifier (] v). As NBSVM is an extension of BSVM, we have included the

results of BSVM, which coincides with NBSVM for g = 1, in the first group of rows in Tables 9-13.

In order to interpret the obtained classifier, the number of features cannot be high. It might be useful

to keep the number of features actually used by the classifier low. As in [2], it is also possible to reduce

the number of features by using a wrapper approach that recursively deletes features. For instance, [5]

proposes a procedure, successfully applied in standard linear SVM, where all the generated features with

zero coefficient in the classifier and the feature whose non-zero coefficient has smallest absolute value

are eliminated. Then, the coefficients are recomputed by the optimization of the LP Problem (9). This

elimination procedure is repeated until the number of features is below a desired threshold.

It is a well-known fact in SVM that, if the parameter C is chosen too close to zero, one may obtain as

optimal solution of Problem (9) a vector with ω = 0, from which a trivial classifier assigning all objects to

one class is obtained. This degenerate situation (indicated in Tables 9-13 as d.c.) is avoided by taking

a bigger C.

The results show that NBSVM behaves comparable to the standard SVM technique. Indeed the best

averaged percentage of correctly classified objects, for the best choice of C, of standard SVM is never

worse than NBSVM’s more than 0.86%.

Comparing NBSVM with its ancestor BSVM, we see that the consideration of interactions via the

introduction of features of degree greater than one leads to an improvement in the classification perfor-

mance, together with the added value of allowing us to measure interactions intensity, as illustrated in

Section 2.
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Moreover, comparing Table 8 with Tables 9-13, it turns out that, in terms of classification performance,

NBSVM generally behaves considerably better than classification trees. For instance, taking the database

bands, for any choice of C the prediction rate of NBSVM is nearly 5 points higher than Classification

Trees’. Classification trees are widely used in applied fields as diverse as Medicine (diagnosis), Computer

Science (data structures), Botany (classification), and Psychology (decision theory), mainly because they

are easy to interpret. We claim that the column generation approach proposed in this paper maintains

this property without losing the good classification ability of standard SVM.

If we want to keep low the number of features used, we can use the wrapped (instead of the crude)

version of NBSVM. From our computational experience it seems that the wrapping slightly worsens the

classification ability in most instances, though in some cases it deteriorates significantly. This is the case,

for instance, of sonar. However, even the wrapped version behaves better or equal than Classification

Trees (even 7 points above) for all values of the parameter C, as shown in Tables 8 and 12.

5 Conclusions and further research

In this paper an extension of BSVM for supervised classification, the NBSVM, has been proposed, where

the classifier gives insightful knowledge about the way the predictor variables and the interactions be-

tween them influence the classification. Indeed, the nonlinearity behavior of the data and interactions

between the different variables is modelled by the NBSVM classifier using simple queries, of type (2),

and combinations of them, easily interpretable by practitioners, for instance by representations similar

to Figure 1. Its classification behavior, which is between SVM and Classification Trees, makes NBSVM

an interesting tool when a good classification ability is required, but interpretability of the results is an

important issue.

Although in most instances the wrapping procedure leads to a very slight deterioration of the clas-

sification ability, in some cases the change is considerable. The design of more sophisticated wrapping

strategies deserves further study.
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bands

lineal degree 2 degree 3 degree 4 degree 5 rbf
C % tr % test % tr % test % tr % test % tr % test % tr % test % tr % test

0.01 64.44 64.44 80.74 74.44 97.24 78.15 100.00 75.56 100.00 75.56 64.44 64.44
0.10 74.57 65.93 90.45 75.93 100.00 75.93 100.00 75.56 100.00 75.56 64.44 64.44

1 80.16 71.85 99.14 77.41 100.00 75.93 100.00 75.56 100.00 75.56 95.43 73.33
10 81.65 72.96 100.00 73.33 100.00 75.93 100.00 75.56 100.00 75.56 100.00 72.96

100 82.18 72.22 100.00 73.33 100.00 75.93 100.00 75.56 100.00 75.56 100.00 72.96
1000 82.35 72.59 100.00 73.33 100.00 75.93 100.00 75.56 100.00 75.56 100.00 72.96

credit

lineal degree 2 degree 3 degree 4 degree 5 rbf
C % tr % test % tr % test % tr % test % tr % test % tr % test % tr % test

0.01 86.36 86.31 86.70 86.15 92.99 85.54 96.44 84.92 98.77 81.69 54.77 54.77
0.10 86.31 86.31 90.87 85.08 96.36 84.00 98.79 80.46 99.62 77.69 74.53 70.77

1 86.74 85.85 95.16 84.92 98.24 80.46 99.52 77.85 99.71 77.38 95.08 85.69
10 86.80 86.00 96.96 83.85 99.32 77.69 99.71 76.77 99.78 77.38 97.42 85.85

100 86.91 85.85 98.44 78.62 99.73 77.08 99.78 76.92 100.00 76.15 99.13 83.85
1000 87.09 85.54 99.62 78.15 99.78 76.31 100.00 75.38 100.00 76.15 99.71 82.77

ionosphere

lineal degree 2 degree 3 degree 4 degree 5 rbf
C % tr % test % tr % test % tr % test % tr % test % tr % test % tr % test

0.01 66.25 65.71 91.52 88.86 97.71 91.14 99.43 90.29 100.00 86.57 64.00 64.00
0.10 89.21 87.71 95.87 90.57 99.37 90.57 100.00 86.29 100.00 86.57 94.76 93.14

1 91.84 87.71 98.29 90.29 100.00 87.43 100.00 86.29 100.00 86.57 98.00 93.71
10 94.03 88.29 99.52 90.00 100.00 87.71 100.00 86.29 100.00 86.57 99.49 94.00

100 95.21 87.71 100.00 87.43 100.00 87.71 100.00 86.29 100.00 86.57 100.00 94.29
1000 95.65 86.29 100.00 87.43 100.00 87.71 100.00 86.29 100.00 86.57 100.00 94.29

sonar

lineal degree 2 degree 3 degree 4 degree 5 rbf
C % tr % test % tr % test % tr % test % tr % test % tr % test % tr % test

0.01 54.56 54.00 88.78 79.00 99.39 83.50 100.00 86.00 100.00 85.00 53.00 53.00
0.10 84.33 75.00 97.00 78.50 100.00 86.50 100.00 86.00 100.00 85.00 53.39 53.50

1 88.39 74.50 100.00 86.00 100.00 86.50 100.00 86.00 100.00 85.00 100.00 86.00
10 92.28 73.50 100.00 86.50 100.00 86.50 100.00 86.00 100.00 85.00 100.00 87.50

100 97.06 75.00 100.00 86.50 100.00 86.50 100.00 86.00 100.00 85.00 100.00 87.50
1000 100.00 73.50 100.00 86.50 100.00 86.50 100.00 86.00 100.00 85.00 100.00 87.50

wdbc

lineal degree 2 degree 3 degree 4 degree 5 rbf
C % tr % test % tr % test % tr % test % tr % test % tr % test % tr % test

0.01 87.16 86.79 95.36 95.18 96.37 96.25 98.06 97.86 98.31 97.68 76.35 76.25
0.10 95.95 95.71 97.80 97.14 98.25 98.21 98.65 97.50 99.19 96.96 95.54 95.36

1 98.27 98.04 98.39 97.68 98.97 97.68 99.44 96.79 99.92 96.61 98.35 97.86
10 98.45 97.68 99.25 97.86 99.66 96.96 100.00 96.43 100.00 96.07 99.13 98.21

100 99.11 96.96 99.98 96.43 100.00 96.25 100.00 96.43 100.00 96.07 100.00 96.96
1000 99.50 96.43 100.00 96.96 100.00 96.25 100.00 96.43 100.00 96.07 100.00 96.61

Table 7: Results for SVM.

bands credit ionosphere sonar wdbc

% tr % test % tr % test % tr % test % tr % test % tr % test

Pruned Tree 74.12 64.81 86.31 86.31 91.17 89.43 82.56 71.50 96.71 94.46
Crude Tree 92.43 66.67 95.15 81.69 98.03 87.71 97.56 77.00 99.31 93.75

Table 8: Results for Clasification Trees.
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Crude Wrapped

g C % tr % test ] f ] v % tr % test

1 0.01 d.c. d.c.
1 0.1 d.c. d.c.
1 1 98.85 73.33 121.1 28.0 92.14 72.22
1 10 100.00 72.59 128.8 28.3 94.81 66.30
1 100 100.00 72.22 128.5 28.3 95.47 66.30
1 1000 100.00 72.59 128.4 28.4 95.14 66.67

2 0.01 d.c. d.c.
2 0.1 d.c. d.c.
2 1 100.00 72.59 132.1 33.8 99.34 72.22
2 10 100.00 77.78 131.5 34.9 100.00 72.22
2 100 100.00 75.93 133.2 34.7 100.00 73.33
2 1000 100.00 75.56 134.2 34.6 100.00 75.56

3 0.01 d.c. d.c.
3 0.1 88.23 73.33 39.0 28.0 87.41 72.96
3 1 100.00 74.07 140.9 35.6 99.92 76.30
3 10 100.00 76.30 143.4 35.0 100.00 70.74
3 100 100.00 77.41 143.2 34.8 100.00 74.07
3 1000 100.00 78.15 141.6 35.6 100.00 72.96

4 0.01 d.c. d.c.
4 0.1 89.30 72.59 43.6 29.7 89.14 71.85
4 1 100.00 76.30 142.4 35.8 99.84 71.48
4 10 100.00 76.30 148.4 35.3 100.00 74.81
4 100 100.00 72.59 145.0 35.3 100.00 71.48
4 1000 100.00 78.52 147.4 35.0 100.00 73.33

5 0.01 d.c. d.c.
5 0.1 90.33 71.11 55.7 31.0 89.67 71.11
5 1 100.00 77.04 148.0 35.2 100.00 75.19
5 10 100.00 75.56 146.0 35.2 100.00 75.19
5 100 100.00 77.78 144.3 35.0 100.00 74.07
5 1000 100.00 77.78 148.2 35.3 100.00 73.33

Table 9: Classification behavior. Database bands.
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Crude Wrapped

g C % tr % test ] f ] v % tr % test

1 0.01 86.31 86.31 1.0 1.0 86.31 86.31
1 0.1 86.31 86.31 1.0 1.0 86.31 86.31
1 1 95.71 82.92 138.2 21.7 91.93 84.00
1 10 100.00 80.00 199.5 24.8 89.50 80.92
1 100 100.00 79.69 200.3 24.7 90.09 82.00
1 1000 100.00 80.31 200.5 24.8 91.42 80.77

2 0.01 86.31 86.31 1.0 1.0 86.31 86.31
2 0.1 86.31 86.31 1.0 1.0 86.31 86.31
2 1 99.56 83.85 169.2 30.7 95.35 84.15
2 10 100.00 82.92 180.1 31.2 95.06 83.38
2 100 100.00 82.15 182.7 30.8 94.97 83.85
2 1000 100.00 81.69 181.8 30.3 95.11 81.23

3 0.01 86.31 86.31 1.0 1.0 86.31 86.31
3 0.1 86.32 86.00 1.0 1.1 86.32 86.00
3 1 99.93 83.54 188.4 29.0 95.86 83.54
3 10 100.00 85.85 193.7 29.3 96.48 81.85
3 100 100.00 83.85 192.6 29.5 96.92 82.31
3 1000 100.00 84.15 190.3 29.1 96.44 80.92

4 0.01 86.31 86.31 1.0 1.0 86.31 86.31
4 0.1 86.32 86.00 1.0 1.1 86.32 86.00
4 1 99.97 84.31 204.2 29.3 96.50 82.92
4 10 100.00 84.31 206.1 29.4 97.01 81.23
4 100 100.00 85.69 199.9 28.6 97.38 81.69
4 1000 100.00 85.54 198.5 28.5 97.74 81.85

5 0.01 86.31 86.31 1.0 1.0 86.31 86.31
5 0.1 86.32 86.00 1.0 1.1 86.32 86.00
5 1 100.00 84.92 209.1 28.4 96.27 83.38
5 10 100.00 85.38 213.0 27.8 97.44 80.46
5 100 100.00 83.85 207.8 28.3 97.45 80.46
5 1000 100.00 85.08 209.5 28.2 98.10 82.15

Table 10: Classification behavior. Database credit.
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Crude Wrapped

g C % tr % test ] f ] v % tr % test

1 0.01 d.c. d.c.
1 0.1 91.17 90.57 2.0 2.0 91.17 90.57
1 0.1 100.00 90.57 92.7 31.1 100.00 90.00
1 10 100.00 90.57 93.1 31.2 100.00 89.43
1 100 100.00 90.57 93.1 31.2 100.00 89.71
1 1000 100.00 90.57 93.4 31.1 100.00 89.43

2 0.01 d.c. d.c.
2 0.1 94.10 90.57 11.2 10.1 94.10 90.57
2 0.1 100.00 92.57 105.6 32.4 100.00 91.14
2 10 100.00 92.57 107.3 31.9 100.00 91.71
2 100 100.00 92.57 109.5 32.0 100.00 91.71
2 1000 100.00 92.00 108.1 32.1 100.00 91.71

3 0.01 d.c. d.c.
3 0.1 94.89 90.86 16.5 13.3 94.89 90.57
3 0.1 100.00 92.29 101.2 32.6 100.00 91.43
3 10 100.00 92.29 104.4 32.7 100.00 92.29
3 100 100.00 92.86 103.0 32.8 100.00 91.71
3 1000 100.00 92.00 104.5 32.6 100.00 90.29

4 0.01 d.c. d.c.
4 0.1 95.05 91.71 20.2 16.2 95.05 92.29
4 0.1 100.00 92.57 104.1 33.0 100.00 92.57
4 10 100.00 92.00 99.5 33.0 100.00 91.43
4 100 100.00 92.57 102.5 33.0 100.00 92.57
4 1000 100.00 92.29 102.4 33.0 100.00 93.14

5 0.01 d.c. d.c.
5 0.1 95.59 92.57 35.1 24.8 95.62 92.57
5 0.1 100.00 93.43 100.8 32.8 100.00 91.71
5 10 100.00 92.29 101.5 33.0 100.00 92.57
5 100 100.00 93.14 98.7 33.0 100.00 92.57
5 1000 100.00 93.43 101.9 33.0 100.00 93.14

Table 11: Classification behavior. Database ionosphere.
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Crude Wrapped

g C % tr % test ] f ] v % tr % test

1 0.01 d.c. d.c.
1 0.1 91.83 75.00 39.2 25.9 91.94 76.50
1 0.1 100.00 80.50 97.5 47.8 100.00 77.50
1 10 100.00 80.00 97.4 47.8 100.00 77.00
1 100 100.00 80.50 97.5 47.8 100.00 77.00
1 1000 100.00 80.50 97.5 47.8 100.00 77.00

2 0.01 d.c. d.c.
2 0.1 99.06 80.50 63.7 48.4 98.44 81.50
2 0.1 100.00 85.00 109.0 55.6 100.00 84.00
2 10 100.00 85.00 107.7 56.7 100.00 84.00
2 100 100.00 86.00 107.6 56.3 100.00 82.50
2 1000 100.00 86.00 107.6 56.3 100.00 82.50

3 0.01 d.c. d.c.
3 0.1 99.50 81.00 78.5 55.5 99.22 79.00
3 0.1 100.00 87.00 116.6 59.0 100.00 83.50
3 10 100.00 83.00 114.7 59.5 100.00 79.00
3 100 100.00 84.50 113.1 59.4 100.00 83.50
3 1000 100.00 84.50 113.1 59.4 100.00 83.50

4 0.01 d.c. d.c.
4 0.1 99.83 82.00 97.0 59.1 99.61 78.50
4 0.1 100.00 84.00 119.7 59.8 100.00 81.50
4 10 100.00 83.00 119.0 59.7 100.00 80.00
4 100 100.00 83.00 118.9 59.8 100.00 80.00
4 1000 100.00 83.00 118.9 59.8 100.00 80.00

5 0.01 d.c. d.c.
5 0.1 99.67 80.50 100.4 59.9 99.61 80.00
5 0.1 100.00 82.00 122.9 60.0 100.00 79.50
5 10 100.00 84.00 123.9 59.8 100.00 79.00
5 100 100.00 79.00 120.0 59.7 100.00 77.00
5 1000 100.00 79.00 120.0 59.7 100.00 77.00

Table 12: Classification behavior. Database sonar.
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Crude Wrapped

g C % tr % test ] f ] v % tr % test

1 0.01 92.60 90.54 1.0 1.0 92.60 90.54
1 0.1 97.74 96.07 21.1 9.0 97.74 95.89
1 0.1 100.00 95.71 68.4 24.8 100.00 95.71
1 10 100.00 96.25 68.2 25.0 100.00 96.07
1 100 100.00 95.89 67.6 25.0 100.00 96.07
1 1000 100.00 96.07 68.0 25.0 100.00 96.25

2 0.01 93.49 91.07 1.0 1.8 93.49 91.07
2 0.1 98.95 95.89 41.0 23.3 99.01 95.89
2 0.1 100.00 96.79 87.4 29.7 100.00 96.79
2 10 100.00 97.14 90.0 29.4 100.00 97.14
2 100 100.00 97.32 88.0 29.5 100.00 96.79
2 1000 100.00 96.61 89.9 29.5 100.00 96.61

3 0.01 93.67 91.07 1.0 2.6 93.67 91.07
3 0.1 98.95 95.00 42.6 25.5 98.95 95.36
3 0.1 100.00 96.61 103.0 29.7 100.00 95.89
3 10 100.00 97.14 99.9 30.0 100.00 96.25
3 100 100.00 97.50 103.3 30.0 100.00 96.61
3 1000 100.00 96.79 101.5 29.9 100.00 96.25

4 0.01 94.15 93.04 1.0 3.4 94.15 93.04
4 0.1 99.19 95.36 54.8 29.5 99.21 94.82
4 0.1 100.00 97.14 110.1 30.0 100.00 96.61
4 10 100.00 96.07 112.3 30.0 100.00 95.54
4 100 100.00 97.14 108.2 30.0 100.00 96.61
4 1000 100.00 97.50 112.1 30.0 100.00 96.61

5 0.01 94.15 91.79 1.0 4.0 94.15 91.79
5 0.1 99.23 95.54 54.2 27.8 99.19 95.89
5 0.1 100.00 95.89 114.4 30.0 100.00 95.18
5 10 100.00 96.25 110.8 30.0 100.00 96.43
5 100 100.00 96.43 113.3 30.0 100.00 96.07
5 1000 100.00 96.61 115.1 30.0 100.00 95.89

Table 13: Classification behavior. Database wdbc.
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