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Abstract

This paper derives a model for the profitability of credit cards, which allow lenders to

find the optimal dynamic credit limit policy. The model is a Markov decision process,

where the states of the system are based on the borrower’s behavioural score and

the decisions are what credit limit to give the borrower each period. In determining

the Markov chain which best describes the borrower’s performance second order as

well as first order Markov chains are considered and estimation procedures that deal

with the low default levels that may exist in the data are considered. A case study

is used to show how the optimal credit limit can be derived.
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1 Introduction

Since the advents of credit cards in the 1960s, lenders have used credit scoring,

both application and behavioural scoring to monitor and control default risk.

However in the last decade their objective has changed from minimising default

rates to maximising profit. Lenders have recognized that operating decisions

are crucial in determining how much profit is achieved from a card. This

paper focuses on the most important decision in an operating policy: the

management of credit limit. Soman and Cheema (2002) conducted a study on

the use of credit limit policies in encouraging spending and found that the

availability of additional credit does promote card usage in some consumers.

Consumers assumed lenders have some sophisticated models, which was used

to determine appropriate credit limits, but that is not the case in reality.

So how do lenders currently decide on what credit limit to offer a credit card

customer? Most use subjective policies based on a risk/return matrix, i.e.

they agree credit limits for each combination of risk band and average bal-

ance, which is considered a surrogate for the return to the lender from that

customer. This approach is static in that it does not consider whether or how

the customers default risk and profitability to the lender will change over time.

Nor is there any model to guide what are the optimal credit limits to choose.

We therefore propose using Markov Decision Processes (MDP) to improve

the credit limit decision. A MDP model provides a way of making sequential

decision by considering the evolution of a customer’s behaviour over time. It

also allows one to calculate the profitability of a credit card customer under

the optimal dynamic credit limit policy. Lenders keep a wealth of historical

credit card data, in particular the monthly values of a customer’s behavioural

score which is their way of assessing the default risk of the customer in the

next year. Building the Markov decision process model on behavioural scores

has the advantage that most lenders have been keeping this data on customers
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for a number of years. With the advent of the Basel Accord in 2008, lenders

are required to keep such data for five years and are encouraged to keep it

through a whole economic cycle.

MDPs have been used in a number of different contexts (Heyman and Sobel,

1982; Ross, 1983; White, 1985, 1988, 1993; Kijma, 1997). The first applica-

tion of MDPs in consumer credit was by Bierman and Hausman (1970) who

looked at the repayment of a loan where no further borrowing was allowed.

The model assumed the repayment of the customer followed a prior probabil-

ity distribution. Using a Bayesian approach, the model revised the probability

of repayment in the light of the collection history. Modifications of the ba-

sic model were made both in the accounting rules (Dirickx and Wakeman,

1976) and in the form of the Markov chain (Frydman et al., 1985) followed.

The use of MDP models to manage the characteristics of consumer lifetime

value can be found in Trench et al. (2003) where MDP models were used with

the objective of adjusting a consumer’s credit card limit or annual percentage

rate (APR). The objectives in that paper are similar to the one in this paper.

However their state space did not involve behavioural scores nor were they

concerned with the problems that occur in estimating the transition probabil-

ities if there are low default rates. Instead they used a six dimensional state

space each dimension having only two or three categories describing the re-

cency and frequency of purchases and payments. They developed mechanisms

for reducing the size of the transition matrix through merging states. Ching

et al. (2004) used MDPs to manage the customer lifetime value generated from

telecommunication customers. The state space in that study again used mar-

keting measures not risk measures and the decision was whether to implement

promotions.

This paper is the first to use behavioural score bands as the basis for MDP

models. The advantage of basing the model on behavioural score are consider-

able. Almost all lenders calculate such scores every month for every individual
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both as a basis for their Basel Accord probability of default calculations, and

as a way of segmenting the population on risk - see our previous discussion on

risk/reward matrices.

When modelling real problems using Markov Decision Processes, the curse of

dimensionality (Puterman, 1994) can mean the state space is very large and

that one would need a large amount of data to obtain robust estimates of the

transition probabilities. Using behavioural scores helps to overcomes this first

difficulty because it itself is a ”sufficient statistic” of the risk of the account

and already contains information from a number of different characteristics.

Also by aggregating states one can obtain a simple but meaningful state space.

In our case we make part of each state an interval of behavioural scores and

similarly combine possible credit limits into bands, to make up the other part

of the state. We also take each of these credit limit bands to be one of the

possible actions that can be chosen.

The difficulty with the quantity of data needed to calculate robust estimators

of the transition probabilities is less severe in the consumer credit context

because of the size of the data sets available to lenders. The only problem

is that with some portfolios of loans, the number of movements directly into

default from some states is so low (quite possibly zero) that the resultant esti-

mates of zero transition probability of default may affect the structure of the

Markov chain, making it non-robust. This problem of estimating default prob-

abilities in low default portfolios also occurs in the Basel Accord mentioned

earlier. We therefore use an approach suggested in that context by Pluto and

Tasche (2006) and extended by Benjamin et al. (2006) which ensures the re-

sulting Markov chain model is robust and conservative. The conservativeness

is reasonable as one would prefer the model to underestimate rather than over

estimate the profitability of a credit card account.

The main contribution of this paper is to show how one can use Markov
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decision process models based on states consisting of behavioural score bands

- scores which most lenders calculate on a monthly basis - to determine optimal

credit limit policies in terms of profitability. The rest of the paper is organized

as follows: Section 2 describes the MDP model formulation. Section 3 discusses

the estimation of the transition probabilities including the probabilities of

defaulting immediately. Section 4 presents the practical issues in applying the

MDP model to the real credit card data and the results of the case study. The

final section draws some conclusion on the model and the resultant case study.

2 The MDP model

Consider a discrete state, discrete time discounted Markov Decision Process

with decision epochs T (indexed by t = 1, 2, . . . , T ) based on a state space S.

Each state in the state space consists of two parts- which behavioural score

band the borrower is in and what is the borrower’s current credit limit band.

The state space thus consists of the current credit limit band represent by L

(indexed by l = 0, 1, . . . , L) and the current behavioural score band I (indexed

by i = 0, 1, . . . , I). In our model the actions are limited to keeping the credit

limit as is this period or raising it to a higher limit band. This policy of not

decreasing credit limits is used by many lenders but the methodology we will

describe will not change if this restriction is dropped. Thus with this limitation

the action set is defined as Al = {l′ : l ≤ l′}.

Two further elements need to be defined to complete the Markov decision

process model. Let p(i′|l, i) be the probability that if l is the current customer’s

credit limit band and the customer is in behavioural score band i, then the

next period the customer will be in behavioural score band i′. Secondly let

r(l, i) be the profit obtained in the current period from a customer with credit

limit l who is in behavioural score band i.
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The objective is to maximise the discounted profit obtained from the customer

over the next t periods where the discount factor λ describes the time value

of money. This leads to the following optimality equation for Vt(l, i), the max-

imum expected profit over the next t periods that can be obtained from an

account which is currently in behaviour score band i, and with a credit limit

of l:

Vt(l, i) = max
l′∈L
{r(l, i) +

∑
i′
p(i′|l, i)λVt−1(l′, i′)]} (1)

The right-hand-side of (1) corresponds to the profit over the next t periods

if we change the credit limit to l′ from l at the end of the current period

for an account with behavioural score state i. We assume it takes one time

period for the borrower to become aware of a change in the credit limit as this

is usually included in the monthly balance statement sent to the customer.

Removing this delay makes no difference to the methodology though of course

the optimality equation will be slightly different. The profit to the lender

from the credit card at the end of the current period is r(l, i). The p(i′|l, i)

is the probability that the behavioural score changes to band i′. In that case,

the profit on the remaining t − 1 period is Vt−1(l′, i′). The discount factor λ

is introduced because the subsequent profits in the remaining t − 1 periods

actually occur one period after those used in calculating Vt−1(l′, i′), since that

assumes the t− 1 periods start now.

The optimality principle says that the optimal decision l′, is the one that

maximizes this sum of the future profit, where credit limits can only remain

the same or be increased.

3 Estimating the probability of Default

Maximum likelihood estimators are usually used to estimate the transition

probabilities of a Markov chain. In the Markov chain described in Section 2,
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let nt(l, i) be the number of accounts in state (l, i) at time t and let njt(l, i) of

them move to behavioural score state j at time t + 1. Assuming the Markov

chain is stationary means the maximum likelihood estimate p̃(j|l, i) for the

probability p(j|l, i) is ∑T−1
t=1 n

j
t(l, i)∑T−1

t=1 nt(l, i)

In reality, moving directly to the default state is a rare event, particularly for

high value (low risk) behavioural scores. There may be no examples in the

data of transaction from certain states (l, i) to the default state D. Thus it is

possible that p(D|l, i) may be very small or even equal to zero. Putting such

estimates into the MDP model leads to apparent ”structural zeros” which

change the connectedness of the dynamics in the state space. If the probabil-

ity of defaulting from a given state is zero this can lead to unusual optimal

policies because the system wants to move to those apparently ”safe” states.

For example, suppose there are only three behavioural states: Excellent, Good

and Bad where Bad is the default state. If there are two credit limit states,

10000 and 50000.

[Figure 1 insert about here]

Provided the discount value λ is close to 1 and t is very large, the optimal

policy will have a credit limit of 10, 000 in state 1 and 2 even though the profit

per period r(l, i) is much higher when the credit limit is 50, 000 than when it

is l = 10, 000. This is because there is apparently no chance of default if the

credit limit is 10, 000 while there is a very small chance of default when the

credit limit is l = 50, 000. This anomaly arises because there have only been

800 cases when the credit limit is 10,000, but 8,000 cases when the credit limit

is 50,000. Let the maximum likelihood estimates are p(D|10000, L) = 0 and

p(D|50000, i) ≥ 0.

One way to overcome this problem is to take a conservative estimate of the
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default probabilities, rather than the maximum likelihood estimate. This prob-

lem has been extensively discussed in the context of the Basel Accord where

again bank regulators and lenders have been considering the robustness of

estimates of default probabilities in low default portfolios.

We will follow the approach introduced by Pluto and Tasche (2006) and ex-

tended by Benjamin et al. (2006). Firstly we assume the transitions to default

are monotonically decreasing as the behavioural score increase and so if the

score bands are labelled with I being the highest quality, so

p(D|l, I) ≤ p(D|l, I − 1) ≤ . . . ≤ p(D|l, 2) ≤ p(D|l, 1) (2)

So a conservative assumption would be that

p(D|l, I) = p(D|l, I − 1) = . . . = p(D|l, 2) = p(D|l, 1) (3)

where 1 is the most risky of the low default portfolios. This means that to

estimate p(D|l, I) , we take a sample of N(l, I) =
∑T−1
t=1

∑I
i=1 nt(l, i) cases when

customers are in state I and D(l, I) =
∑T−1
t=1

∑I
i=1 n

D
t (l, i) of these customers

are defaulted in the next month.

The second conservative assumption in this approach is not to use the MLE

estimate of the default probability, but rather take the lower confidence limit

of the default probability. So as there are D(l, I) accounts defaulting in the

next period from the N(l, I) accounts under consideration. It is assumed this is

given by a Binomial distribution B(N(l, I), p). One choses p to be the highest

probability of default, so that the corresponding lower α-confidence limit is

exactly D(l, i), i.e. getting a lower number of default this D(l, i) has a no

more than 1 − α/2 probability of occurring, since the mean and variance of

the Binomial distribution is N(l, I)p and N(l, I)p(1− p). One choses p to be

the value where

N(l, I)p− Φ−1(1− α/2)
√
N(l, I)p(1− p) = D(l, I)
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where Φ−1(1− α/2) is the converse cumulative standard normal distribution,

i.e. how many standard deviations below the mean on a standard normal

distribution minus the chance of getting a lower value is 1− α/2.

One choses the estimate p̂D(l, I) in this way for these states (l, I) where the

number of actual defaults
T∑
t=1

nDt (l, I) is at or below same agreed value, - which

might be zero. One would like to use MLE to obtain the estimates of the other

transition probabilities p̂j(l, I) from state (l, I). However this would result in

the sum of the transition probabilities being greater than 1 and so instead one

defines there are α(l, I)p̂j(l, I) where

α(l, I) =
1− p̂D(l, I)∑
j 6=D p̂j(l, I)

For states (l, i) where the number of defaults
∑T
t=1 n

D
t (l, i) exceed the low

default bound, MLE are used to estimate all transition probabilities.

4 Apply MDP model to credit card data

4.1 Sampling and data preparation

The MDP model developed above was applied to credit card data from a

major Hong Kong bank. The dataset consisted of the credit card histories and

characteristics of over 1,400,000 credit accounts for each of 60 months. The

fields used in this study were account balance, account repayment, monthly

profit on that account, credit limit, account written-off record and behavioural

score.

In each monthly dataset, we extracted a random sample of 50,000 accounts.

We looked at how these accounts performed in the next month including the

change in behavioural score. There were 3,000,000 cases (50,000×60 months)

extracted from the dataset. We deleted accounts with ambiguous, missing or
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special data, which accounted for less than 0.2% of the sample and we used

2,994,602 transitions for the analysis.

One possible concern is whether the existing credit limit policy was affecting

the data. However, looking at the sample, only 8% of the 3 million transitions

had credit limit adjustment in the previous three months and most of these

were to Inactive accounts. Thus we felt the credit limit change due to the

existing card lender’s policy would not have a major impact on the data.

4.2 Special accounts

Each month an account is given a behavioural score or put in a special state,

such as closed, inactive, 3+Cycle or defaulted. A Closed account is one where

the credit card service terminated with zero account balance. A credit card

account which has never been activated or was newly opened in the last two

months before the sample point (and so does not have enough data to merit

a behavioural score) or has not been used in the last twelve months is called

Inactive. A 3+ Cycle account is one in which the account has been in arrear

for 3 or more months but the lender has not yet written the account off.

The most important special account states in the data are the defaulted or

written off account. There are four possible reasons to write-off an account,

bankruptcy, charge-off, revoked and 3+ cycle delinquent. Bankruptcy is when

the borrower is declared bankruptcy by a court; charge-off is when the lender

does not believe the debt can now be recovered by standard methods; and

revoked is when the credit card is stopped because of illegal behavioural by

the borrower, such as being over the credit limit persistently. Lenders pass

a written off account to the debt collection department to follow-up. Such

written-off account may repay all, part or none of the outstanding debt. Even

when the account makes full repayment, the time of the collection process is
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uncertain and could be several years. It is important to estimate the average

future repayment amount of different default accounts because it changes the

values of the profit function in (1). There is very little research (Matuszyk

et al., 2007) on estimating the loss given default of revolving credit products.

So we use a simple approach to compare the debt repayment ratios. Define

R ≡ Bt+1−Bt+24

Bt+1
where Bt+1 is the current balance of an account at default

in month t. The repayment ratio R thus is defined as the proportion of the

debt repaid to the lender after two years. For confidentiality reason, we can

not show the exact repayment ratio, but the results showed one of the forms

of default had a high repayment ratio which was significantly different from

the others. We call this default account state, Bad2 and group the rest of the

three forms of written off together into one default state, called Bad1. So in

our cost function the loss generated by accounts in Bad1 is higher than those

of Bad2.

4.3 Coarse-classifying

Since behavioural score typically has several hundreds of values, it is sensible

to split it into a number of bands to reduce the size of the state space. We

aim to find suitable splits by trying to get the Markovian assumption to hold

as nearly as possible. To check whether the chain satisfies this assumption, for

every state, we investigated the hypothesis that the probability of moving from

st = (lt, it) to it+1 is independent of the state at t − 1, i.e. st−1 = (lt−1, it−1).

Define nt(lt−1, it−1; lt, it; it+1) to be the number of times that a credit account

was in state (lt−1, it−1) at time t − 1 followed by moving to (lt, it) at time t

and it+1 at time t+ 1. Similarly define nt(lt, it; it+1) to be the number of times

that a customer was in state (lt, it) at time t then moving to behaviour score

it+1 at time t + 1. We assume the chain is stationary, thus the estimator for

p(it+1|lt−1, it−1, lt, it) is:
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p̂(it+1|lt−1, it−1, lt, it) =

T−2∑
t=0

nt(lt−1, it−1; lt, it; it+1)

T−2∑
t=0

nt(lt−1, it−1; lt, it)
(4)

The Markovity of the chain corresponds to the hypothesis that p(it+1|1, 1, lt, it)

= p(it+1|2, 1, lt, it) = . . . = p(it+1|L, 1, lt, it) = p(it+1|1, 2, lt, it) = . . . =

p(it+1|L, I, lt, it) , for lt, it, it+1. To check on the Markovity of state (lt, it), we

use the chi-square test (Anderson and Goodman, 1957). Let

χ2
(lt,it)

=
∑

(lt−1,it−1)∈S

∑
it+1∈I

n∗(lt−1, it−1; lt, it)[p̂(it+1|lt−1, it−1, lt, it)− p̂(it+1|lt, it)]2

p̂(it+1|lt, it)
(5)

where

p̂(it+1|lt, it) =

T−1∑
t=1

nt(lt, it; it+1)

T−1∑
t=1

nt(lt, it)
(6)

and

n∗(lt−1, it−1; lt, it) =
T−1∑
t=1

nt(lt−1, it−1; lt, it) (7)

Anderson and Goodman (1957) showed that (5) has a chi-square distribution

with (I − 1)(L− 1)2 degree of freedom.

A traditional approach is to start with a fine classification i.e. with more bands

then one really wants and then check if one can combine adjacent bands.

Alternatively, one can use the classification tree approach of finding the best

split into two classes and then splitting one of these into two more until it

is not worth splitting further. That is the approach we use in the following

algorithm. We repeated the splitting process in both behavioural score and

credit limit then came up with 15 score bands, of which 10 were behavioural

score band and 5 were special states; we also ended up with 11 credit limit

bands as listed in Table 1 and 2 respectively. For confidential reason, we do
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not disclose the precise behavioural score bands. We use Score1 to Score10

to represent the credit score where Score1 are those with lowest behavioural

score and Score10 are those with highest. Similarly, we use Limit1 to Limit10

to represent the credit limit with Limit1 as the lowest credit limit band. Tables

1 and 2 give the distribution of the borrowers into the different behavioural

score bins and the various credit limit ranges in a typical month.

[Table 1 insert about here]

[Table 2 insert about here]

4.4 Choice of Order

A MDP is mth-order if these transition probabilities depend on which state

the system is currently in and was in for the previous m − 1 periods. For

a finite order Markov chain the transition probability depends only on the

current state where for a mth-order Markov chain the transition at time t

depends on the states (it, it−1, . . . , it+1−m) that it occupied for the last m time

periods. So, the number of states increase exponentially in m as there are |S|m

states in a mth-order MDP. To test whether a chain satisfies the mth-order

Markovity assumption, one can use the chi-square test which is also used to

check the homogeneity of a contingency table (Anderson and Goodman, 1957)

(as will be shown in the next section). Test results indicated the Markov chains

are not first order. In reality, almost all applications fail to satisfy the first-

order Markovity assumption. This is because with so much data, one usually

can improve the fit beyond what are the narrow significance limits. What

is more important is whether there is a significant improvement in the fit,

when one uses second or third order Markov chains. So, we tested whether the

process is second-order Markov i.e. we redefined the state so that it carried

the history of t− 2 and t− 1. Although there was an improvement on the chi-

13



square values, the hypothesis that the chain was a second-order MDP was also

not justified in Anderson’s Goodness-of-fit test. Using an even higher order

Markov chain increases the size of the state space exponentially and so will

affect the robustness of the model. So it is a trade off between improvements

of fit and increase in size of model. Like many authors (White, 1993) We

found the improvement when going to second order or higher order chains

is not sufficient to warrant the loss in robustness and simplicity. Therefore,

we chose to use first-order to simplify the state space as well as reducing the

computational time.

4.5 Transition matrices and profit function

Table 3 and 4 show the transition matrices in the dataset. Each entry repre-

sents the transition percentage from the state of the account at time t to the

state of the account at time t + 1. ”-” represents there was no observation in

the sampling period; ”0” that the transition probability was less than 0.0005.

The numbers of account in the different states at t are given in the last column

of the table. As the transition matrix is enormous, we only presented those of

Limit1 and Limit10 for illustration. Also, we show the results by splitting the

states into two groups- ordinary states are those with Score2 or above; Closed,

Bad1, Bad2, 3+ cycle, Inactive and Score1 are classified as special states.

[Table 3 insert about here]

[Table 4 insert about here]

Table 3 shows the transition of moving to ordinary states. The matrix is dom-

inated by the diagonal entries as one expects. The volatility of score transition

decreases as credit limit increase. 88.6% of accounts with Score10 and Limit10,

remains in the same state after one month whereas it is only 75.2% of accounts

in Score 10 but with Limit1 who stay in Score 10 band. This is repeated in
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most high behavioural score groups where for low score group, the account

movement are much more similar for different credit limits.

[Table 4 insert about here]

Table 4 shows the transitions of moving to special accounts. For Limit10, there

is no example of an account with Score6 or above moving to the Bad1 state.

However 52.8% of those in Score1, with Limit10, move to Bad1 status the

next month, which is a much higher percentage then there with credit limits

in Limit1. This may be due to the higher balance that such borrowers are

carrying. On the other hand, as Table 3 shows 48.4% of these in Score1 and

Limit1 improve their scores to Score2 in the next month.

4.6 Transition of LDP

[Table 5 insert about here]

[Table 6 insert about here]

To prevent introducing invalid structural zeros into the transition matrix, we

adjust the transition matrix on a low default portfolio by the method presented

in Section 3. It is important to determine when such an adjustment needs to be

made. Benjamin et al. (2006) tested several approaches to determining when

this adjustment is useful. They concluded that there is no ideal method but a

simple approach of using it when band has below 20 cases of moving directly

to default in the whole sample in which the model is built. We found there is

a threshold between Score3 and Score4 in the dataset where, in most of the

credit limit bands, the number of defaults in Score4 or higher score bands is

below 20. We thus defined the accounts with Score4 to Score10 as the low

default portfolios and the corresponding adjusted transition probabilities are

presented in Table 5 and 6.
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4.7 Profit Function

[Table 7 insert about here]

Table 7 shows the profit function used in the MDP model which was estimated

by using the monthly profit field. For each state (l, i), the average monthly

profit of the borrowers was taken over the cases when the borrower is in

behavioural state i with credit limit l being applied. The profit is decreasing

with behavioural score because a borrower with high behavioural score is more

likely to make full repayments. Thus the lenders can only gain the merchant

fee from them (the fee on each credit card purchase which is paid by the

retailer to the credit card company). On the other hand, the low behavioural

score accounts are more likely to accumulate debt in their accounts. Thus

these borrowers generated both interest and interchange fees for the lenders.

A second observation from Table 7 is that profit increases with credit limit.

This is expected as the current purchased goes up is the credit limit goes up

and hence so does the merchant fee.

4.8 Optimal Policy

We implemented the value iteration algorithm (Puterman, 1994) to obtain

the optimal policies, and we used λ = 0.995 (a rough estimate of 6% yearly

inflation rate) as our monthly discount value.

[Table 8 insert about here]

[Table 9 insert about here]

Table 8 and 9 show the optimal policies/values of using simple PDs and those

of using adjusted PDs on the LDPs respectively. For example, in Table 8, the

cell in row 4 and column 5 corresponds to accounts with Score2 and Limit4.
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The optimal policy is to increase their credit limit to Limit5 and if so, in long

run, the optimal gained from them is HK$32,781.

For 3+ Cycle accounts, the optimal policies are for their credit limit to be

unchanged. This follows because many of them move to default at t+ 1. Since

the expected loss generated from these accounts increases with credit limit, in

order to minimize the potential loss, the model chooses to keep their existing

credit limit unchanged. The model suggests increasing the credit limit of some

Inactive accounts to give encouragement to these borrowers to start using the

card. Since there is no history of repayment the optimal policy does not move

these inactive accounts to the highest credit limit band. The accounts in Score1

generate loss and are likely default in the next month. Therefore the best policy

is to keep their credit limit unchanged. The optimal policies suggest increasing

the credit limit of accounts in Score3 to Score5 to the highest credit limit band.

These accounts are less risky and very profitable. In this model the policy is

aggressive and encourages spending.

One surprise is that the optimal policies do not increase the credit limit of

the highest behavioural scores, i.e. those with behavioural Score7 or above.

Instead, the optimal policy is to keep their credit limit unchanged. This is

because they are less profitable then those with lower behavioural score. Also,

high credit limits have a relatively more severe impact on their chance of

moving to risky or even default states, than an account with lower behavioural

score.

5 Conclusion

This paper identifies the use of the MDP model to generate a dynamic credit

limit policy. It explains how one can link the profitability of a borrower to their

default risk by employing a risk estimate-the behavioural score-that is used by
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every lender. The paper has also considered a conservative alternative to using

MLE estimate for all transition probabilities which would avoid difficulties in

low default portfolios. The effectiveness of using this method has been shown

by a real credit card dataset.
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Fig. 1. An unexpected optimal policy

Index Definition Percentage
0 Closed 0.54%
1 Bad1 0.09%)
2 Bad2 0.05%
3 3+ Cycle Delinquent 0.02%
4 Inactive 6.16%
5 Score1 0.11%
6 Score2 1.68%
7 Score3 11.29%
8 Score4 19.30%
9 Score5 10.65%
10 Score6 5.32%
11 Score7 6.07%
12 Score8 11.20%
13 Score9 10.14%
14 Score10 17.39%

Table 1

Distribution of accounts’s current score states

Index Definition Percentage at t
0 Closed -
1 Limit1 7.21%
2 Limit2 10.58%
3 Limit3 11.67%
4 Limit4 10.55%
5 Limit5 9.35%
6 Limit6 10.46%
7 Limit7 10.02%
8 Limit8 10.21%
9 Limit9 9.36%
10 Limit10 10.60%

Table 2

Definition accounts’ current credit limit states
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Score2 Score3 Score4 Score5 Score6 Score7 Score8 Score9 Score10 Total
3+ Cycle 18.3 15.4 - - - - - - - 104
Inactive 0.1 0.5 3.5 2.4 1 0.6 0.9 0.3 3 44616
Score1 48.4 3.1 - - - - - - - 577
Score2 66.1 25.3 0.3 - - - - - - 8301
Score3 7.6 76.8 13.2 0.4 0.2 0 0 0 - 27953
Score4 0.3 7.7 77.1 8.9 1.4 1.5 1.3 0.1 0.1 42024
Score5 0.1 2.4 13.4 60.2 6.5 5.7 5.7 2.3 2.2 19650
Score6 0.1 1.8 7.3 15.5 48.7 6.8 12.7 2.2 3.3 9159
Score7 0 1.3 4.7 8.3 6 57 10 6.9 3.3 11846
Score8 0 0.6 3.1 2.9 6.9 9.4 57.3 9.3 9 18163
Score9 - 0.4 3.9 1.8 1.3 6.2 14.4 58 13 12255

Limit1

Score10 0 0.3 1.6 0.7 0.9 1.5 9.6 9.9 75.2 21328
3+ Cycle 13.3 13.3 - - - - - - - 15
Inactive - 0.2 2.1 2.5 1.1 0.7 1.5 0.8 2.2 25885
Score1 24.2 3.1 1.2 - - - - - - 161
Score2 58.8 27.7 1.6 0.2 - - - - - 1799
Score3 2.4 77.4 18.2 0.5 0.1 0 0 0 0 28656
Score4 0.1 8.1 78.5 8.8 1.4 0.9 1.3 0.2 0.1 59188
Score5 0 1.5 11.7 59.5 7.7 5.6 7.4 4.4 1.6 26563
Score6 0 0.7 4.7 10.4 58.9 8.2 9.1 3.3 3.3 14879
Score7 0 0.7 3.4 7 6.9 55.2 10.4 10.2 4.9 17050
Score8 0 0.5 2.4 3.7 4.4 6.3 62.2 9.7 10.1 32561
Score9 0 0.3 1.1 1.5 0.9 4.5 7.3 73 10.9 37615

Limit10

Score10 - 0.1 0.9 0.3 0.4 0.5 4.4 4.7 88.6 72939

Table 3

Transition matrix - moving to ordinal accounts

Closed Bad1 Bad2 3+ Cycle Inactive Score1 Total
3+ Cycle 17.31 33.65 11.54 2.88 - 0.96 104
Inactive 0.79 0 0 - 86.96 - 44616
Score1 1.73 22.53 7.11 5.72 - 11.44 577
Score2 1.07 1.31 1.06 0.48 - 4.36 8301
Score3 0.97 0.16 0.18 0.03 0.12 0.34 27953
Score4 1.08 0.02 0.04 - 0.39 - 42024
Score5 1.1 - 0.04 - 0.34 - 19650
Score6 1.19 0.01 0.05 - 0.45 - 9159
Score7 1.18 0.01 0.03 - 1.17 - 11846
Score8 0.91 - 0.01 - 0.5 - 18163
Score9 0.72 - 0.01 - 0.23 - 12255

Limit1

Score10 0.33 0 - - 0.06 - 21328
3+ Cycle 46.67 20 6.67 - - - 15
Inactive 0.89 - - - 88.02 - 25885
Score1 3.73 52.8 4.35 0.62 - 9.94 161
Score2 1.56 2.56 1.72 1.22 - 4.72 1799
Score3 0.42 0.19 0.39 0 0.1 0.23 28656
Score4 0.36 0.03 0.11 - 0.14 0 59188
Score5 0.38 0 0.03 - 0.28 - 26563
Score6 0.58 - 0.01 - 0.74 - 14879
Score7 0.57 - 0.01 - 0.66 - 17050
Score8 0.29 - 0.01 - 0.34 0 32561
Score9 0.3 - - - 0.22 - 37615

Limit10

Score10 0.15 - 0 - 0.03 - 72939

Table 4

Transition matrix - moving to special accounts
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Score2 Score3 Score4 Score5 Score6 Score7 Score8 Score9 Score10 Total
Score4 0.3 7.7 77.1 8.9 1.4 1.5 1.3 0.1 0.1 42024
Score5 0.1 2.4 13.4 60.2 6.5 5.7 5.7 2.3 2.2 19650
Score6 0.1 1.8 7.3 15.5 48.7 6.8 12.7 2.2 3.3 9159
Score7 0 1.3 4.7 8.3 6 57 10 6.9 3.3 11846
Score8 0 0.6 3.1 2.9 6.9 9.4 57.2 9.3 9 18163
Score9 - 0.4 3.9 1.8 1.3 6.2 14.4 58 13 12255

Limit1

Score10 0 0.3 1.6 0.7 0.9 1.5 9.6 9.9 75.1 21328
Score4 0.1 8.1 78.6 8.8 1.4 0.9 1.3 0.2 0.1 59188
Score5 0 1.5 11.7 59.5 7.7 5.6 7.4 4.4 1.6 26563
Score6 0 0.7 4.7 10.4 58.9 8.2 9.1 3.3 3.3 14879
Score7 0 0.7 3.4 7 6.9 55.2 10.4 10.2 4.9 17050
Score8 0 0.5 2.4 3.7 4.4 6.3 62.2 9.7 10.1 32561
Score9 0 0.3 1.1 1.5 0.9 4.5 7.3 73 10.9 37615

Limit10

Score10 - 0.1 0.9 0.3 0.4 0.5 4.4 4.7 88.6 72939

Table 5

Transition matrix of the adjusted PDs on LDPs - moving to ordinal accounts

Closed Bad1 Bad2 3+ Cycle Inactive Score1 Total
Score4 1.08 0.03 0.06 - 0.39 - 42024
Score5 1.1 0.02 0.06 - 0.34 - 19650
Score6 1.19 0.02 0.06 - 0.45 - 9159
Score7 1.18 0.02 0.05 - 1.17 - 11846
Score8 0.91 0.02 0.05 - 0.5 - 18163
Score9 0.72 0.02 0.04 - 0.23 - 12255

Limit1

Score10 0.33 0.01 0.04 - 0.06 - 21328
Score4 0.36 0.02 0.04 - 0.14 0 59188
Score5 0.38 0.01 0.03 - 0.28 - 26563
Score6 0.58 0.01 0.03 - 0.74 - 14879
Score7 0.57 0.01 0.02 - 0.66 - 17050
Score8 0.29 0.01 0.02 - 0.34 0 32561
Score9 0.3 0.01 0.02 - 0.22 - 37615

Limit10

Score10 0.15 0.01 0.01 - 0.03 - 72939

Table 6

Transition matrix of the adjusted PDs on LDPs - moving to special accounts

Value(Policy) Limit1 Limit2 Limit3 Limit4 Limit5 Limit6 Limit7 Limit8 Limit9 Limit10
Closed 8 25 49 95 12 41 108 33 69 302
Bad1 -4574 -8022 -11085 -16358 -17845 -25578 -34028 -41246 -47751 -88029
Bad2 193 62 286 -320 164 -355 -924 -440 -1070 -1387
3+ Cycle -621 -647 -1068 -1040 -891 -825 -1071 -1890 -642 -248
Inactive -8 -6 -6 -6 -2 -1 -1 -4 -6 -6
Score1 -706 -1131 -1581 -2067 -2047 -2576 -3316 -3845 -5461 -10209
Score2 202 255 367 489 555 697 894 1210 1351 2052
Score3 151 189 282 395 220 462 599 704 915 1674
Score4 33 42 80 132 77 170 235 296 429 1126
Score5 8 6 18 29 27 42 60 78 123 311
Score6 8 2 8 14 16 23 32 39 66 194
Score7 0 -2 3 5 14 16 24 36 61 142
Score8 -6 -6 -3 0 9 10 17 24 44 102
Score9 -7 -8 -5 -3 4 6 11 21 35 85
Score10 -9 -7 -6 -4 4 5 8 17 26 70

Table 7

Profit Function (in HK$)
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Value(Policy) Limit1 Limit2 Limit3 Limit4 Limit5 Limit6 Limit7 Limit8 Limit9 Limit10

3+ Cycle 10874(1) 9522(2) 5745(3) 8932(4) 5497(5) 10924(6) 12820(7) 14385(8) 3856(9) -8693(10)

Inactive 35889(2) 36042(2) 35810(3) 35723(4) 35280(6) 35477(6) 35015(7) 34887(8) 34000(10) 33977(10)

Score1 18726(1) 17209(2) 13135(3) 6775(4) 11809(5) 2383(6) -578(7) -8533(8) -16155(9) -54220(10)

Score2 34117(2) 34303(2) 34296(3) 32781(5) 32606(5) 32117(7) 32606(7) 32742(8) 30080(9) 24065(10)

Score3 41219(10) 41834(10) 42101(10) 42348(10) 42334(10) 42469(10) 42651(10) 42889(10) 43040(10) 43956(10)

Score4 41999(10) 42216(10) 42314(10) 42426(10) 41914(10) 42275(10) 42369(10) 42309(10) 42578(10) 43461(10)

Score5 38371(10) 38540(10) 38626(10) 38614(10) 38355(10) 38474(10) 38546(10) 38482(10) 38530(10) 38744(10)

Score6 37191(10) 37386(10) 37340(10) 37340(10) 37232(10) 37219(10) 37273(10) 37169(10) 37225(10) 37343(10)

Score7 36618(2) 36925(2) 36878(3) 36810(10) 36738(10) 36773(10) 36732(10) 36668(10) 36731(10) 36744(10)

Score8 36242(2) 36493(2) 36353(10) 36363(10) 36403(10) 36374(10) 36370(10) 36381(10) 36373(10) 36418(10)

Score9 36057(2) 36131(2) 36027(3) 35966(4) 35804(10) 35858(10) 35831(10) 35754(10) 35799(10) 35827(10)

Score10 35751(2) 35789(2) 35614(3) 35498(4) 35447(10) 35452(10) 35428(10) 35410(10) 35403(10) 35449(10)

Table 8

Optimal Policy (Using the transition matrix with no adjustment on PDs)

Value(Policy) Limit1 Limit2 Limit3 Limit4 Limit5 Limit6 Limit7 Limit8 Limit9 Limit10

3+ Cycle 10047(1) 8731(2) 5062(3) 8138(4) 4698(5) 9976(6) 11497(7) 12893(8) 2937(9) -9310(10)

Inactive 33154(2) 33296(2) 33017(3) 32896(4) 32379(6) 32567(6) 32110(7) 32008(8) 31192(10) 31170(10)

Score1 17411(1) 15891(2) 11957(3) 5753(4) 10550(5) 1325(6) -1615(7) -9507(8) -17071(9) -54888(10)

Score2 31961(2) 32139(2) 32134(3) 30681(5) 30519(5) 30032(7) 30512(7) 30607(8) 28026(9) 22077(10)

Score3 38614(10) 39202(10) 39462(10) 39704(10) 39666(10) 39820(10) 40000(10) 40230(10) 40384(10) 41290(10)

Score4 39038(10) 39249(10) 39347(10) 39459(10) 38932(10) 39304(10) 39396(10) 39326(10) 39595(10) 40480(10)

Score5 35227(10) 35394(10) 35473(10) 35457(10) 35201(10) 35316(10) 35373(10) 35301(10) 35354(10) 35543(10)

Score6 34151(2) 34336(2) 34159(10) 34149(10) 34045(10) 34047(10) 34079(10) 33974(10) 34022(10) 34116(10)

Score7 33719(2) 34004(2) 33877(3) 33728(4) 33562(10) 33587(10) 33543(10) 33470(10) 33538(10) 33529(10)

Score8 33357(2) 33598(2) 33292(3) 33205(4) 33207(10) 33175(10) 33166(10) 33178(10) 33175(10) 33195(10)

Score9 33197(2) 33270(2) 33059(3) 32928(4) 32671(6) 32724(6) 32623(10) 32551(10) 32587(10) 32604(10)

Score10 32909(2) 32954(2) 32666(3) 32488(4) 32276(6) 32276(6) 32229(10) 32209(10) 32202(10) 32239(10)

Table 9

Optimal Policy (Using the transition matrix with adjusted PDs on LDPs)
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