
Lower Bounds for the ITC-2007

Curriculum-Based Course Timetabling

Problem

Jin-Kao Hao and Una Benlic

LERIA, Université d’Angers

2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

To appear in European Journal of Operational Research
Doi:10.1016/j.ejor.2011.02.019

Abstract

This paper describes an approach for generating lower bounds for the Curriculum-
based course timetabling problem, which was presented at the International Timetabling
Competition (ITC-2007, Track 3). So far, several methods based on integer linear
programming have been proposed for computing lower bounds of this minimization
problem. We present a new partition-based approach that is based on the “divide
and conquer” principle. The proposed approach uses Iterative Tabu Search to par-
tition the initial problem into sub-problems which are solved with an ILP solver.
Computational outcomes show that this approach is able to improve on the current
best lower bounds for 12 out of the 21 benchmark instances, and to prove optimal-
ity for 6 of them. These new lower bounds are useful to estimate the quality of the
upper bounds obtained with various heuristic approaches.

Keywords: bounds, partitioning, tabu search, timetabling.

1 Introduction

The Curriculum-based course timetabling (CBCT) problem is a multiple con-
straint scheduling problem which arises regularly at every university. It con-
sists of assigning a number of tuples, each comprising a class of students, a

Email addresses: hao@info.univ-angers.fr (Jin-Kao Hao),
benlic@info.univ-angers.fr (Una Benlic).

Preprint submitted to Elsevier 19 February 2011

teacher, a course and a room, to a limited number of periods. These tuples
may be scheduled provided that a set of constraints is satisfied. Constraints
are generally classified as hard or soft. Hard constraints cannot be violated
under any condition. If at least one of these constraints is violated, the so-
lution is infeasible. Soft constraints are used to define the objective function
to be minimized. Examples of recent studies on university timetabling can be
found in [1,2,4,5,6,10,12,14,16,18].

The CBCT problem considered in this paper constitutes the topic of Track 3
[7] of the International Timetabling Competition (ITC-2007) [15]. The ITC-
2007 has led to the development of many heuristic solution approaches. The
five top performing approaches (finalists) of the ITC-2007 include a hybrid ap-
proach [16], a tabu search [14], a general CSP solver [2,17], a threshold accept-
ing approach [10], and a repair-based heuristic approach [6]. These heuristic
approaches produce only upper bounds to this minimization problem. Lower
bounds are needed to assess the quality of these solutions.

Until now, only a few studies have been devoted to determining lower bounds
for the CBCT problem. In [12], Lach and Lübbecke proposed an integer pro-
gramming formulation that gives satisfactory lower and upper bounds in rea-
sonable computational time without particular tuning. Solving their model
using CPLEX11 on a 3.4GHz Linux PC with 1GB memory within a time
limit of about 4 hours, they obtain lower bounds with an average gap to the
best existing upper bounds of 32.63% over the first 14 benchmark instances.
In [4], Burke et al. devised a problem specific branch-and-cut procedure using
CPLEX11 that reaches globally better bounds (average gap of 26.65%) within
a time limit of 8 hours on an Intel Pentium 4 processor clocked at 3.20GHz
with 4GB of RAM.

In this paper, we develop a partition-based approach, inspired by the work
of Vasquez and Hao [19], which follows the well-known “divide and conquer”
principle. We divide the initial (large) timetabling problem into a number of
smaller sub-problems. Then, we formulate these sub-problems as integer linear
programs, and solve them via an ILP solver (in our case, the non-commercial
COIN-OR Cbc–2.2.2 solver is used). The sum of lower bounds of the sub-
problems corresponds then to a lower bound of the initial problem. For each
sub-problem, we adopt the Lach and Lübbecke’s IP formulation [12]. To be
effective, this partition-based approach needs to optimize the way the initial
problem is divided. For this purpose, we devise an effective Iterated Tabu
Search procedure which seeks the best partition possible.

The proposed approach is assessed on the set of benchmark instances from
the ITC-2007. The computational outcomes show that this approach is able
to improve on the current best lower bounds for 12 out of 21 benchmark
instances and to prove optimality for 6 of them (with new optimality for 1

2

instance), reducing the average gap to the best-known upper bounds from
35.03% to 22.37%.

The paper is organized as follows. The CBCT problem description is intro-
duced in Section 2, together with the ITC–2007 benchmark instances and the
best known bounds. In Section 3, we briefly introduce the IP model presented
in [12], which we used in our partition-based approach. The partition-based
approach is described in Section 4. Finally in Section 5, we present the im-
proved lower bounds obtained with the proposed method.

2 Problem Description of the ITC-2007 Track 3

2.1 Constraints

The CBCT problem from the ITC–2007 [7] consists in weekly scheduling a set
of m courses C = {c1, c2, ..., cm}, within a set of n rooms R = {r1, r2, ..., rn}
and a set of h periods P = {p1, p2, ..., ph}, in accordance with a given set
of constraints. Each course c consists of a given number of lectures li and is
associated to a teacher. A period p is a pair composed of a day and a timeslot.
Thus, the total number of scheduling periods is the product of the number
of days and the number of timeslots per day. In addition, there is a set of q
curricula CU = {cu1, cu2, ..., cuq} where each curriculum cui corresponds to a
group of courses such that any pair of courses in the group have students in
common.

A timetabling solution is feasible if all lectures are scheduled such that no
hard constraint of types H1 − H4, given below, is violated.

H1 Lectures: All lectures of a course must be scheduled in distinct periods.

H2 Room Occupancy: Two lectures cannot be assigned in the same room
at the same time.

H3 Conflict: All lectures belonging to the same curriculum or taught by
the same teacher must be scheduled in distinct periods.

H4 Availability: If a teacher is not available to give a lecture at a certain
time, then the lecture has to be scheduled in another period.

The quality of a feasible solution depends on the satisfaction of four types
of soft constraints. If a soft constraint is violated by a solution, a penalty β
(a positive integer) is induced. These soft constraints S1 − S4, as well as the

3

associated penalties for violating these constraints are as follows:

S1 Room capacity: For every lecture, the number of students attending the
lecture should be less than or equal to the number of classroom seats. Then,
the penalty β1 for violating constraint S1 is the number of students left without
a seat at a lecture li, summed across every lecture li for each ci ∈ C when this
value is positive.

S2 Minimum Working Days: Lectures of a course should be spread over
a specified number of distinct working days. The penalty β2 for violating
constraint S2 sums the value of the specified number of distinct working days
dci, minus the actual number of distinct working days across each ci ∈ C where
this value is positive.

S3 Curriculum Compactness: Lectures belonging to the same curriculum
should be scheduled in consecutive periods. The penalty β3 for violating con-
straint S3 sums the number of isolated lectures li in each curriculum cui in
CU .

S4 Room Stability: All lectures of a course should take place in the same
classroom. The penalty β4 for violating constraint S4 sums over each ci ∈ C the
number of distinct course-room allocations above a single class-room allocation
per course.

2.2 Objective

The optimization objective of the CBCT problem is to find a feasible timetable
satisfying constraints H1 − H4 while minimizing a weighted sum of all the
penalties of the unsatisfied soft constraints S1 − S4.

More formally, let Ω be the set of all feasible solutions (timetables). For each
x ∈ Ω, its cost is defined by:

f(x) =
4∑

i=1

αi · βi(x)

where (α1, α2, α3, α4) = (1, 5, 2, 1) identifies the weights corresponding to soft
constraints S1 − S4. These α weights are part of the problem definition, and
imposed by the ITC-2007 competition organizers. They correspond to the
decision-maker’s preference.

Then the goal of the ITC-2007 CBCT problem is to find a feasible solution
x∗ ∈ Ω such that for all x ∈ Ω, f(x∗) ≤ f(x).

4

Table 1
Main characteristics of the 21 ITC–2007 CBCT problem instances together with
the best known bounds from [3].

Instance #Rooms #Periods #Courses #Events #Curricula Best UB Best LB

comp01 6 30 30 160 14 5 5∗

comp02 16 25 82 283 70 24 10

comp03 16 25 72 251 68 66 38

comp04 18 25 79 286 57 35 35

comp05 9 36 54 152 139 291 114∗

comp06 18 25 108 361 70 27 16∗

comp07 20 25 131 434 77 6 6

comp08 18 25 86 324 61 37 37

comp09 18 25 76 279 75 96 66∗

comp10 18 25 115 370 67 4 4

comp11 5 46 30 162 13 0 0

comp12 11 36 88 218 150 300 53

comp13 19 25 82 308 66 59 48

comp14 17 25 85 275 60 51 51

comp15 16 25 72 251 68 66 41

comp16 20 25 108 366 71 18 13

comp17 17 25 99 339 70 56 44

comp18 9 36 47 138 52 62 0

comp19 16 25 74 277 66 57 49

comp20 19 25 121 390 78 4 0

comp21 18 25 94 327 78 83 0

2.3 The Udine Benchmark Instances

The ITC–2007 presented a total of 21 benchmark instances. Seven of them
(comp01-07) were provided at the outset of the competition, seven more in-
stances (comp08-14) were made known just before the submission deadline
for participating in the competition. The last seven (comp15-21), also called
“hidden instances”, were known only by the competition organizers and were
used as additional instances to benchmark the competing algorithms.

Table 1 summarizes the main characteristics of these 21 benchmark instances.
The last two columns list the best known upper and lower bounds available
at the CBCT website [3], which is maintained by the ITC-2007 competition
organizers. The bounds from Table 1 are retrieved on November 2010 from
this website. In addition, the last column integrates 4 recently improved lower
bounds from [4] next to which we include a (*) symbol. The optimal solutions
(for a total of 7) are given in bold.

5

3 ITC-2007 Lower Bounds: State of the Art

To the best of our knowledge, only two recently published studies are devoted
to the calculation of lower bounds for the CBCT problem ([4],[12]). These
studies are based on different integer programming formulations. In [4], the
authors additionally propose, together with an IP formulation, a new problem
specific branch and cut procedure, where an exponential number of cuts has
to be considered to ensure optimality, but the separation can be achieved in
reasonable time. This approach has obtained very good lower bounds. We do
not provide details regarding this procedure since our partition-based approach
is not based on it.

In our work, instead of developing a new model, we decided to use the well
tested Lach & Lübbecke IP formulation [12]. This model is relatively simple
and gives satisfactory upper and lower bounds in reasonable time without
special tuning. In the next subsection, we briefly describe the underlying IP
formulation.

3.1 Lach and Lübbecke’s IP Model

In [12], Lach and Lübbecke reduce the problem in three dimensions (i.e. course,
period, room) to a problem in two dimensions. Instead of directly solving the
natural formulation with binary variables that indicate whether course c is
scheduled for period p in room r, they split the problem into two stages. In
the first stage they only match courses with periods. In the second stage rooms
are feasibly assigned to these course/period pairs. All constraints, except for
Room Stability (S4), are taken care of during the first stage of the algorithm.

Unfortunately, it is impossible to integrate the S4 constraints into the first
stage with the proposed formulation. Since the S4 constraints need to go in
the second stage, we might not obtain a globally optimal solution even when
both stages are solved to optimality. Therefore, in our approach, we only use
the formulation of the first stage to compute the lower bounds. Nevertheless,
the solution quality did not substantially decrease since the S4 constraints are
the least important soft constraints according to the the weight given to these
constraints.

We give below a brief explanation of the Lach and Lübbecke’s model. More
details can be found in [12].

6

3.1.1 IP Formulation of the First Stage [12]

The complete input of this formulation is captured by the following variables
and their mappings:

• C, CU , R, S, D, P , T are respectively the set of courses, curricula, rooms,
distinct room capacities, days, periods, and teachers.

• P (c) is the subset of periods P that are eligible for course c.
• C(t) is the subset of courses C taught by teacher t.
• C≥s is the subset of courses C that require more than s seats.
• R≥s is the subset of rooms R with capacity of more than s seats.
• l(c) is the number of lectures of course c.
• mnd(c) is the prescribed minimum number of different days during which

course c should be taught.
• x are binary decision variables indexed with courses and periods. For each

pair course/period, we include a variable x only if teacher is available to give
a lecture of course c at period p. In this way, we ensure that no Availability
(H4) constraint is violated. A course c should be taught at p only if xc,p is
set to one.

Apart from the “core” decision variables x, there is also a group of five depen-
dent variables y, z, w, r and v, whose values are derived from the value of x in
the solution process, which seeks to minimize the following linear combination
of penalty terms:

∑

p∈P,s∈S,c∈C≥s

objs,c,p · ys,c,p +
∑

c∈C

5 · wc +
∑

cu∈CU,p∈P

2 · vcu,p

The first term of the objective function (equivalent to penalty β1 of S1 defined
in Section 2.2) sums, over every lecture, the number of students left without
a seat. If the number of students attending a lecture of course c at period p is
greater than the capacity of the allocated room, the value objs,c,p is the differ-
ence between the number of students attending the lecture and the capacity
of the allocated room.

The second term 5 ·wc (equivalent to penalty β2 of S2 defined in Section 2.2)
sums over all courses the difference between the prescribed number of distinct
days of instruction and the actual number of distinct days of instruction if
this difference is positive. Coefficient 5 is the weight α2 (see Section 2.2) for
violating a minimum working day constraint.

The third term of the objective function (equivalent to penalty β3 of S3 defined
in Section 2.2) sums the number of isolated lectures of each curriculum, where
2 is the weight α3 (see Section 2.2) for violating a curriculum compactness
constraint.

7

min
∑

p∈P,s∈S,c∈C≥s

objs,c,p · ys,c,p +
∑

c∈C

5 · wc +
∑

cu∈CU,p∈P

2 · vcu,p

subject to

∑

p∈P

xc,p = l(c) ∀c ∈ C (1)

∑

c∈C

xc,p ≤ | R | ∀p ∈ P (2)

xc,p − ys,c,p ≥ 0 ∀s ∈ S, c ∈ C≥s, p ∈ P (3)

∑

c∈C≥s

xc,p − ys,c,p ≤ | R≥s | ∀s ∈ S, p ∈ P (4)

∑

p∈d

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D (5)

∑

d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C (6)

∑

c∈cu

xc,p − rcu,p = 0 ∀cu ∈ CU, p ∈ P (7)

− rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU, p ∈ P (8)

∑

c∈C(t)

xc,p ≤ 1 ∀t ∈ T , p ∈ P (9)

xcp ∈ {0, 1}

ys,c,p ∈ {0, 1}

zc,d ∈ {0, 1}

wc ∈ Z+

rcu,p ∈ {0, 1}

vcu,p ∈ {0, 1}

Fig. 1. IP formulation of the First Stage [12]

Figure 1 gives the complete formulation of the first stage. The equation (1) sat-
isfies the Lectures (H1) constraints, which require that the number of matched
course/period pairs of course c must be equal to the number of lectures of c.

The following three constraints (2–4) are related to the Room Capacity con-
straint. In addition, these constraints ensure that no Room Occupancy (H2)
constraint is ever violated. The first of these requires the number of courses
that can take place at p to be at most the number of available rooms. Con-
straints (3) and (4) take into consideration the different room capacities and

8

number of seats needed for each course. For each s ∈ S, except the smallest,
and for all c ∈ C≥s there is a binary variable ys,c,p which is set equal to 1 if
course c takes place in a room with less than s seats. Constraint (4) ensures
that this does not happen for more courses than the number of rooms that
have suitable capacity.

Constraints (5) and (6) are the Minimum Working Day (S2) constraints. For
every course and every feasible day of that course, we add a binary variable
zc,d which is set equal to 1 if course c takes place during some period of day
d. In addition, we add another integer variable wc which is set equal to 0 only
if course c is spread across more than mnd(c)–1 days.

The following constraints (7) and (8) are the Curriculum Compactness (S3)
constraints. Additionally, equation (7) directly implies the satisfaction of each
Conflict H3 constraint. For every period and every curriculum, we introduce a
binary variable rcu,p which takes on the value 1 if some course of curriculum cu
is scheduled for period p. In constraint (8), we omit the term rcu,p+1 if period
p is the last period of the day. In the same way, we omit rcu,p−1 if period p
is the first period of the day. A binary variable vcu,p is set equal to 1 only if
curriculum cu has an isolated lecture at period p.

Finally, the last constraint requires that the number of courses, which are
taught by teacher t at period p, must be at most 1. This implies the satisfaction
of the hard constraints H3.

3.2 Lower Bounds using Lach and Lübbecke’s Formulation

Table 2 lists the lower bounds obtained with Lach and Lübbecke’s first IP stage
for the first 14 instances. The bounds for the seven last instances (comp15–
comp21) are omitted since they are not reported in [12]. The upper bounds
are also included for information.

The results in Table 2 are generated with the commercial CPLEX11 solver,
as well as with the non-commercial COIN-OR Cbc–2.2.2 solver, within a time
limit set to 40 CPU units. One CPU unit, which depends on machine speed,
corresponds to the time allowed for one run at the ITC-2007 competition. The
bounds computed with CPLEX11, which are reported in Lach and Lübbecke’s
paper [12], are obtained within a time limit of 15,200 seconds (using a 3.4GHz
Linux PC with 1GB memory). The bounds generated with the COIN-OR
Cbc–2.2.2 are obtained on a Linux PC within a comparable time limit (12,000
seconds on a machine with 2.83GHz and 8GB memory).

If we compare the lower bounds from Table 2, it is not surprising to see that
for eleven out of fourteen problem instances, CPLEX11 produces better lower

9

Table 2
Bounds using the first IP stage of Lach and Lübbecke’s IP model, solved by
CPLEX11 with COIN-OR Cbc–2.2.2, within a time limit set to 40 CPU units.
The current best upper and lower bounds are shown in Table 1.

CPLEX11 COIN-OR Cbc–2.2.2

Instance UB LB gap% UB LB gap%

comp01 4 4 0.00 4 4 0.00

comp02 45 11 77.04 67 6 91.04

comp03 66 25 62.12 94 25 73.62

comp04 35 28 21.61 39 27 30.89

comp05 365 108 70.43 614 58 90.66

comp06 37 10 72.97 74 12 83.78

comp07 6 6 0.00 6 4 47.23

comp08 37 37 0.00 39 24 39.80

comp09 99 46 53.65 127 47 63.66

comp10 4 4 0.00 6 4 33.33

comp11 0 0 0.00 0 0 0.00

comp12 546 53 90.34 723 57 92.12

comp13 61 41 33.72 75 34 54.98

comp14 51 46 9.92 72 40 44.44

Average gap 35.1 53.25

bounds than COIN-OR Cbc–2.2.2. The difference between the average gaps
of the results produced by the two solvers confirms that CPLEX11 is more
efficient than the non-commercial COIN-OR Cbc–2.2.2.

In the following sections, we show that better lower bounds can be obtained
by our partition-based method even with COIN-OR Cbc–2.2.2.

4 A Partition-based Approach for Improved Lower Bounds

4.1 Rationale

Our partition-based approach for calculating CBCT lower bounds is inspired
by the work of [19], which is based on the well-known “divide and conquer”
principle. The general idea of this approach is as follows.

10

Exact solvers may fail to solve some large size instances but are often able to
handle instances of reasonable size. Therefore, we can divide a large problem
into several smaller sub-problems which are solved separately. By doing this,
we ignore the constraints that link the sub-problems, and the set of the sub-
problems constitutes a relaxation of the initial problem. Finally, the sum of
the optimal values of the sub-problems or their lower bounds gives a lower
bound of the initial problem.

The rationale of our partition-based approach for calculating CBCT lower
bounds can be formally making use of the following notation and definitions.

• C denotes the set of all courses of a CBCT instance P.

• {Xp}1≤p≤k denotes a partition of C composed of p classes such that ∪k
p=1Xp =

X and ∀, i, j ∈ {1, . . . , k}, i 6= j, Xi ∩ Xj = ∅.

• {P (Xp)}1≤p≤k represents the set of k sub-problems induced by {Xp}1≤p≤k,
such that each P (Xp) is a sub-problem of P that is limited to the sole vari-
ables of Xp and the constraints involving only these variables.

The set of sub-problems {P (Xp)}1≤p≤k is a relaxation of the initial problem
P , where constraints linking the sub-problems are ignored.

• {LBp}1≤p≤k identifies the set of lower bounds of the k sub-problems {P (Xp)}1≤p≤k.

Then the following relation holds:

LB =
k∑

p=1

LBp ≤ f ∗,

i.e. LB gives us a lower bound of the initial problem P .

Now the general procedure of our partition-based approach can be summarized
as follows:

(1) Generate a partition {Xp}1≤p≤k of a course set C of an instance P.

(2) Solve each of the k sub-problems P (Xp), 1 ≤ p ≤ k, to obtain a set of
optimal values or lower bounds {LBp}1≤p≤k of these sub-problems.

(3) Sum up the values of the set {LBp}1≤p≤k to obtain the desired lower
bound LB of the instance P.

For step (1), we use an iterated Tabu Search algorithm to obtain optimized
partitioning (Sect. 4.4). For step (2), we formulate the k sub-problems using
the IP formulation given in Section 3.1 and solve them with the IP solver

11

Fig. 2. An example of a partition composed of three classes.

COIN-OR Cbc–2.2.2.

4.2 Partition and Relaxed Constraints: an Illustrative Example

When the initial problem is partitioned into k sub-problems, the constraints
linking the sub-problems are relaxed. Concretely, constraint relaxation con-
cerns the following constraints: Curriculum Compactness (S3), Room Occu-
pancy (H2) and Conflict (H3). To visually illustrate the idea, we focus on
the Curriculum Compactness constraints S3, and for this purpose introduce a
graph representation of S3.

Definition 1 (Graph of Constraints): Let C = {c1, c2, ..., cm} be the set of
m courses, and CU = {cu1, cu2, ..., cuq} be the set of q curricula. Then, graph
G = {V,E} consists of a set V of m nodes and a set of edges E between these
nodes. Each node v ∈ V corresponds to a course from the set C. For each
pair of courses u and v in C, {u, v} ∈ E if there exists at least one curriculum
cui ∈ CU such that u ∈ cui and v ∈ cui.

According to this definition, the courses of each curriculum cui ∈ CU are
pairwise connected and form a clique. A k-partition of the graph leads to
k distinct classes. If an edge joins two classes of the partition, this cutting
edge as well as the other edges of the underlying clique are removed (relaxed).
Therefore, a curriculum cui ∈ CU is either kept or removed completely, since a
reduced curriculum might lead to a higher compactness cost than the complete
curriculum.

In Figure 2, we show an example of a problem with 11 courses and 6 cur-

12

Table 3
Trivial partitions of the problem instance comp12.

k 2 3 4 5 6

#RC 101 139 141 142 146

rLB 54 25 25 25 12

ricula, which is partitioned into three classes: {c1, c3, c6, c9}, {c2, c5, c11} and
{c4, c7, c8, c10}. This partition leads to the removal of constraint {c2 − c6} of
curriculum q2. Since the courses c5, c10 and c11 of curriculum q5 form a clique,
we remove not only the two cutting edges {c10 − c5, c10 − c11}, but also the
other edge {c5 − c11} of the same clique.

Room Occupancy and Conflict constraints (H2 and H3) linking sub-problems
of a partition are relaxed in a similar way.

We insist that within each sub-problem, hard constraints H1 to H4 are always
maintained, as well as soft constraints S1 − S3. Since the Room Stability
constraints (S4) are excluded from the Lach and Lübbecke’s formulation of the
first stage (see Section 3.1), our partition-based approach completely neglects
S4.

4.3 Influence of the Partition and Criterion for Optimized k-Partitioning

In order to see the influence of the partition on lower bounds, let us first take
a look at a trivial partition. Given a fixed number k, we divide the problem
with m courses into k classes of equal size m/k. The first m/k courses go to
class X1, the second m/k courses go to class X2, and so on.

Table 3 shows the results of this trivial partitioning on the problem instance
“comp12” when k is varied from 2 to 6. The second row #RC indicates the
number of relaxed S3 constraints between the sub-problems. We observe that
as expected, different k values lead to different lower bounds.

It should be clear that even for a given k, there are many possibilities to make
this k-partition, leading to different lower bounds. To determine the “best”
k-partition, it is necessary to have an optimization criterion. Since the number
of relaxed constraints within a partition conditions directly the quality of the
lower bounds, an optimized partition will minimize the number of relaxed

constraints S3 resulted by the partition.

Since this problem is a generalization of the NP-hard graph partitioning prob-
lem [9], we turn to a heuristic method as described in the following section.

13

We focus on optimizing the k-partition for a fixed k. To determine the best
partition, we vary k from 2 to kmax (in this work, kmax = 6).

4.4 An Iterative Tabu Search Algorithm for k-Partitioning

For the partitioning task, we devise an Iterative Tabu Search procedure that
combines a TS algorithm [11] with a critical element-guided perturbation
(CEGP) strategy [13].

Given a set of courses C and a fixed number k, the TS algorithm determines
the partition {Xp}1≤p≤k of the set C into k classes by minimizing the number
of relaxed different curriculum compactness constraints (see Section 4.2) that
link any two courses in different classes of the partition.

When this TS phase reaches its best local optimum, a perturbation phase
using the CEGP strategy is applied to the best partition found to generate
a perturbed new solution, from which a new round of Tabu Search starts.
This TS↔Perturbation process repeats until a predetermined stop condition
is verified. We next illustrate the TS procedure and the CEGP operator.

4.4.1 Tabu Search

To describe the TS components, we first define some terms used for the purpose
of this discussion.

Definition 2. Unsatisfied curriculum (cuns): A curriculum is unsatisfied
by a partition if the courses of the curriculum belong to more than one class
of the partition. The unsatisfied curricula cuns form a subset CUns of CU ,
where CU is the set of all the curricula.

Definition 3. Unsatisfied course (cns): Given a subset of curricula CU(c)
containing course c, we say that c is unsatisfied by a partition if there is at least
one curriculum of the subset CU(c) which is left unsatisfied. The unsatisfied
courses cns form a subset Cns of C, where C is the set of all the courses.

Definition 4. Most unsatisfied course (cmns): The most unsatisfied course
cmns is a course that belongs to the largest number of unsatisfied curricula.

Configuration: Given a set of courses C and a fixed number k, a configura-
tion is any partition of C into k classes. Therefore, the search space consists
of all such partitions.

Evaluation function: Given two k-partitions, the evaluation function prefers

14

the partition that leads to a less relaxed set of Curriculum Compactness con-
straints (S3), i.e. unsatisfied curricula. Ties are broken by the number of
courses (a smaller value is better) implied in the unsatisfied (relaxed) cur-
ricula.

Neighborhood: Our TS procedure is based on four neighborhoods listed
below. Given a partition formed of k classes, the basic idea of these neighbor-
hoods is to generate a new partition by moving one or more courses from one
class to another, or by swapping courses of two different classes.

N1: Select the most unsatisfied course cmns, and select randomly another un-
satisifed course cns

i ∈ Cns in a different class that does not contain cmns.
Then, swap the two selected courses cmns and cns

i .

N2: Select the most unsatisfied course cmns, and an unsatisfied curriculum
cuns

i ∈ CUns in which appears cmns. Then, move cmns to another class
where there is at least one course belonging to the unsatisfied curriculum
cuns

i .

N3: Select an unsatisfied curriculum cuns
i ∈ CUns in one class of the parti-

tion, and an unsatisfied curriculum cuns
j ∈ CUns in another class of the

partition. Then, swap their courses. If the size of one curriculum is bigger
than the size of another curriculum, move the rest of the courses of the
bigger curriculum to the other class of the partition.

N4: Select an unsatisfied curriculum cuns
i ∈ CUns and move all its courses to

a class where there is at least one course belonging to curriculum cuns
i .

Only the first neighborhood relation is symmetric, meaning that the size of
each class of the partition is kept unchanged. The other three neighborhood
relations are not symmetric, and the size of the partition classes might vary
during the search. With these neighborhoods, we allow a course to be moved
from class Xs to class Xt only if |Xt| ≤ smax, where smax is the maximum
number of elements allowed in a class. In this study, smax is set to 1.2∗(|C|/k),
where |C| and k are the number of courses and classes respectively. This value
for smax was experimentally determined and proved to be suitable for almost
all the CBCT instances. Notice that fine tuning smax for each instance would
lead to improved results, though we have not undertaken to do this in the
present paper.

Our TS procedure uses neighborhood union of N1 and N2 (denoted by N1 ∪
N2) and neighborhood union N3∪N4 in a token-ring search [8]. A neighbor-
hood union includes all the moves of the neighborhood relations in the union.
In our token-ring search, TS applies N1∪N2 to reach its best local minimum,
switches to N3∪N4 to reach another local minimum, and then switches back

15

to N1∪N2. This process continues until no improvement is possible any more.

Tabu list management: Each time a move is performed, the reversing move
cannot be carried out for a certain number of iterations (tabu tenure). The
tabu tenure of a move is tuned adaptively according to the following formula
proposed in [19]:

date(mv) + freq(mv) ≤ iter

where date(mv) is the iteration number when move mv was selected, freq(mv)
the number of times mv was performed, iter the current number of iterations.

Aspiration criteria and stop condition: The tabu status of a move is
disabled if it leads to a solution which is better than the current best solution.
Our tabu search procedure ends when the best solution cannot be improved
any more within a certain number of moves.

4.4.2 Critical Element-Guided Perturbation (CEGP)

To diversify the search, we use the CEGP strategy to escape local optima [13].
Contrary to a random perturbation, CEGP takes into account the specific
problem structure and favours perturbation of some “critical” variables. Our
CEGP strategy consists of the following three steps:

(1) Scoring – giving each course a ranking score;
(2) Selection – choosing a certain number of courses according to their rank-

ing scores;
(3) Perturbing – randomly perturbing the chosen courses.

Scoring: The most important question that we need to answer for CEGP is
how to score each element (course). For each course c ∈ C we keep a list of
curricula Qc in which c occurs. We give a score Sqci

to each curriculum qci

from the curriculum list Qc. This score is obtained by subtracting the total
number of courses belonging to curriculum qci from the number of courses
of curriculum qci that are in the same class of the partition as course c. If
Sqci

= 0 then the curriculum qci is satisfied, e.g. all the courses of qci are in
the same partition. Otherwise, Sqci

< 0 which means that qci is unsatisfied.

The score Sc for course c is then obtained by summing the scores of all the n
curricula qci from the curriculum list Qc:

Sc =
n∑

i=1

Sqci

Selection: We randomly select a certain number γ (called perturbation strength)
of courses with Sc < 0. Throughout this paper, we experimentally set γ to 5

16

which proves to be a robust value allowing the search to escape most local
optima.

Perturbation: We apply the union of neighborhood relations N1 and N2
with the selected courses in order to obtain a perturbed solution from which
starts a new round of Tabu Search.

5 New Lower Bounds for the ITC2007 Instances

To estimate the efficiency of the proposed partition-based approach, we con-
duct experiments on the whole set of benchmark instances from the ITC-2007
except on instance comp11. Indeed, the upper bound of comp11 is 0 (see Table
1), so there was no need to search for the lower bound for this instance.

Our algorithm is programmed in C++, and compiled with GNU gcc on a
Xeon E5440 with 2.83 GHz and 8GB. As previously indicated, we use the
non-commercial IP solver COIN-OR Cbc–2.2.2 in the sub-problem resolution
phase.

5.1 Best Lower Bounds with the Partition-based Approach

The first comparison is with the best lower bounds reported at the Curriculum-
Based Course Timetabling website [3]. The solution quality is measured by the
gap between the best known upper bound bUB and the generated lower bound
LB, computed as (bUB−LB)/bUB, where bUB 6= 0. It should be mentioned
that the exact conditions used to obtain the best known bounds, such as
running time, are not available from the website. To obtain our lower bounds,
we set the time limit to 7 hours per sub-problem for COIN-OR Cbc-2.2.2,
and vary the number of classes k from 2 to 6. The computational time needed
in the partitioning phase with Tabu Search is at most 10 minutes, which is
negligible compared to the time spent in the sub-problem resolution phase.
Given the stochastic nature of our approach, we run the algorithm 5 times for
each value of k, and report the best lower bound achieved.

Table 4 shows the current best upper and lower bounds reported at the CBCT
website [3] (columns 2–3). Notice that the best lower bounds in column 3
also include 4 recently improved bounds from [4], indicated with an asterisk
symbol. The fourth column indicates the gap between the best bounds ever
obtained. The results of our partition-based approach are given in columns
5–8. Column 5 shows the value of k. As before, we give the number of relaxed
constraints #RC. Finally, the last column shows the gap between the best-

17

Table 4
A comparison between the best partition-based lower bounds, and the best know
bounds ever obtained from [3].

Best known bounds Best partition-based lower bounds

Inst. bUB bLB gap (%) k #RC LB gap (%)

comp01 5 5∗ 0.00 2 0 4 20.00

comp02 24 10 58.33 6 16 12 50.00

comp03 66 38 42.42 6 13 38 42.42

comp04 35 35 0.00 5 1 35 0.00

comp05 291 114∗ 60.82 4 70 183 37.11

comp06 27 16∗ 40.74 5 10 22 18.52

comp07 6 6 0.00 4 9 6 0.00

comp08 37 37 0.00 3 2 37 0.00

comp09 96 66∗ 31.25 6 7 72 25.00

comp10 4 4 0.00 6 16 4 0.00

comp11 0 0 0.00 4 0 0 0.00

comp12 300 53 82.33 5 44 109 63.67

comp13 59 48 18.64 4 1 59 0.00

comp14 51 51 0.00 3 6 51 0.00

comp15 66 41 37.88 5 8 38 42.42

comp16 18 13 27.78 4 8 16 11.11

comp17 56 44 21.43 5 14 48 20.00

comp18 62 0 100.00 4 19 24 63.08

comp19 57 49 14.03 3 2 56 0.02

comp20 4 0 100.00 5 12 2 50.00

comp21 83 0 100.00 5 17 61 26.51

Average gap 35.03 22.37

known bUB and our LB. Optimal solutions are given in bold.

Table 4 discloses that we were able to prove optimality for 6 instances. Among
these 6 instances, the optimality of instance comp13 is proven for the first
time. In addition, for all the instances except 2 cases (comp01 and comp15),
we managed to improve on or reach the current best lower bound. As the last
row of Table 4 shows, the partition-based approach reduced the average gap
to the best upper bounds from 35.03% to 22.37%.

5.2 Comparisons with the Results of Lach&Lübbecke [12] and Burke et al.[4]

We now turn our attention to comparing our approach and the two approaches
of [12] and [4]. Since the bounds for the last seven instances are not reported
in these studies, we carry out this experiment using only the first 14 instances.
For this experiment, a completely fair comparison is impossible since we have
a non-deterministic approach (i.e. our approach) on the one hand and two

18

deterministic approaches (i.e. [12] and [4]) on the other hand. In addition, the
use of two different solvers (i.e. commercial CPLEX11 and non-commercial
COIN-OR Cbc-2.2.2) constitutes another source of difficulty for a fair com-
parison. This comparison is thus presented only for indicative purposes and
should be interpreted with caution.

For this experiment, we fix k = 5 (except for the two small instances comp01
and comp11, k = 2) instead of varying it. To normalize the computing time
used by different approaches, we follow the ITC–2007 competition rule and use
a benchmarking program from the ITC-2007 website to determine the speed
of our computer. One CPU unit which is the time permitted for one run at
the ITC-2007 corresponds to 300 seconds on our machine. Similarly, one CPU
time unit is equivalent to 380 and 780 seconds on the machines used in [4]
and [12]. In these two studies, results are reported for 1 CPU, 10 CPU and 40
CPU units using CPLEX11. Though the same ILP model is used across all
the CPU units in [12], different models and parameters are employed in [4] for
the three CPU time units.

In this experiment, we apply our algorithm once to each problem instance
using 1 CPU, 10 CPU, and 40 CPU units as the total time allowed to solve
the k sub-problems of each instance. As in the first experiment, the time
needed in the partitioning phase is at most 10 minutes. Results are presented
in Table 5.

The outcome shown for each CBCT instance across each time unit makes it
clear that, except in rare cases, the bounds of the partition-based approach are
better than those reported in the first reference approach [12]. Comparing the
other reference approach [4] and the partition-based approach, the results show
that our approach remains competitive, leading to a slightly improved average
gap across each time unit. However, the lower bounds generated with the
proposed approach can be better appreciated if one takes into consideration
the fact that the approach of [4] is among the current best ones, and its
results for different CPU units are based on different models and parameters.
In addition, we suspect that better lower bounds could be achieved if the
more powerful CPLEX solver is used in solving of sub-problems within this
partition-based approach.

6 Conclusion

We have demonstrated the efficacy of a partition-based approach for comput-
ing lower bounds for the Curriculum-Based Course Timetabling problem from
the ITC-2007. Our approach, based on the “divide and conquer” principle,
consists of three stages. In the first stage, we partition courses into a fixed

19

Table 5. Following Burke et al. [4], comparison of lower bounds on the first 14 instances reported in [4] and [12], with the partition-based
bounds obtained in 1 CPU unit, 10 CPU units and 40 CPU units respectively.

Lach and Lübbecke [12] Burke et al. [4] Our approach

1 CPU 10 CPU 40 CPU 1 CPU 10 CPU 40 CPU 1 CPU 10 CPU 40 CPU

Instance LB gap% LB gap% LB gap% LB gap% LB gap% LB gap% LB gap% LB gap% LB gap %

comp01 4 20.00 4 20.00 4 20.00 0 100.00 4 20.00 5 0.00 4 20.00 4 20.00 4 20.00

comp02 0 100.00 8 66.66 11 54.17 0 100.00 0 100.00 1 95.83 10 58.33 12 50.00 12 50.00

comp03 0 100.00 0 100.00 25 62.12 25 62.12 33 50.00 33 50.00 26 60.60 34 48.48 36 45.45

comp04 22 37.14 28 20.00 28 20.00 35 0.00 35 0.00 35 0.00 35 0.00 35 0.00 35 0.00

comp05 92 68.38 103 64.60 108 62.89 119 59.11 111 61.86 114 60.82 19 93.47 69 76.29 80 72.51

comp06 7 74.07 10 62.96 10 62.96 13 51.85 15 44.44 16 40.74 12 55.55 12 55.55 16 40.74

comp07 0 100.00 2 66.66 6 0.00 6 0.00 6 0.00 6 0.00 5 16.67 6 0.00 6 0.00

comp08 30 18.92 34 8.12 37 0.00 37 0.00 37 0.00 37 0.00 37 0.00 37 0.00 37 0.00

comp09 37 61.46 41 57.29 46 52.08 68 29.17 65 32.29 66 31.25 39 59.38 67 30.21 67 30.21

comp10 2 50.00 4 0.00 4 0.00 3 25.00 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00

comp11 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

comp12 29 90.33 32 89.33 53 82.74 101 66.33 95 68.33 95 68.33 43 85.67 78 74.00 84 72.00

comp13 33 44.06 39 33.90 41 30.50 52 11.86 52 11.86 54 8.47 46 22.03 53 10.17 55 6.78

comp14 40 21.57 41 19.61 46 9.80 41 19.60 42 17.65 42 17.65 41 19.61 43 15.69 43 15.69

Average gap 56.13 43.51 32.63 37.50 29.03 26.65 35.09 27.17 25.24

20

number k of partitions with an iterative Tabu Search heuristic. In that way,
we obtain k sub-problems which are formulated as integer linear problems
using the formulation of Lach and Lübbecke [12]. In the third stage, these k
sub-problems are solved (exactly or approximatively) with an IP solver. The
sum of the solutions of these sub-problems leads to a lower bound of the initial
problem.

Applied to the whole set of 21 ITC-2007 benchmark instances, our partition-
based approach has improved on the current best lower bounds for 12 in-
stances, proved optimality for the first time for 1 instance and achieved the
previously known optimal bounds for 5 other instances. Only in two cases, our
bounds are slightly worse than the best known bounds from the literature. Our
new bounds have reduced the average gap to the best known upper bounds
from 35.03% to 22.37%.

Acknowledgment

This work was partially supported by the Region of “Pays de la Loire” within
Radapop and LigeRO projects. We would like to thank the anonymous referees
for their helpful comments and questions on the paper. We are also grateful to
the following people for their inputs and feedbacks: the ITC-2007 organizers
for providing the benckmark instances, the authors of [4], in particular Dr. J.
Marecek and Dr. A. J. Parkes for answering our requests on their work. We
are particularly grateful to Prof. F. Glover for his valuable help in preparing
the final version of the paper.

References

[1] S.M. Al-Yakoob and H.D. Sherali. A mixed-integer programming approach
to a class timetabling problem : A case study with gender policies and traffic
considerations. European Journal of Operational Research, 180(3): 1028–1044,
2007.

[2] M. Atsuta. General Purpose Approach to Various Types of Timetabling
Problems (in Japanese). Master thesis, Department of Informatics, Kwansei
Gakuin University, March 2009.

[3] A. Bonutti. Curriculum-based Course Timetabling. Retrieved November 2010,
from http://tabu.diegm.uniud.it/ctt/index.php.

[4] E.K. Burke, J. Marecek, A.J. Parkes, and H. Rudova. Decomposition,
Reformulation, and Diving in University Course Timetabling. Computers &

Operations Research, 37(3): 582–597, 2010.

21

http://tabu.diegm.uniud.it/ctt/index.php

[5] P. De Causmaecker, P. Demeester, and G. Vanden Berghe. A decomposed
metaheuristic approach for a real-world university timetabling problem.
European Journal of Operational Research, 195(1): 307–318, 2009.

[6] M. Clark, M. Henz and B. Love. QuikFix—A Repair-based Timetable Solver.
Proceedings of the Seventh International Conference on the Practice and Theory

of Automated Timetabling,
http://www.comp.nus.edu.sg/~henz/publications/ps/PATAT2008.pdf.

[7] L. Di Gaspero, B. McCollum, and A. Schaerf. The Second International
Timetabling Competition (ITC-2007): CBCT (Track 3). Technical
Report 2007/08/01, University of Udine DIEGM, Udine, Italy, 2007.
http://www.cs.qub.ac.uk/itc2007.

[8] L. Di Gaspero and A. Schaerf. Neighborhood Portfolio Approach for Local
Search Applied to Timetabling Problems. Journal of Mathematical Modeling

and Algorithms, 5(1): 65–89, 2006.

[9] M. Garey and D. Johnson. Computers & Intractability: A Guide to the Theory
of NP-Completeness. In W.H. Freeman and Company (Eds), 1979.

[10] M.J. Geiger. Applying the Threshold Accepting Metaheuristic to Curriculum
based Course Timetabling. To appear in Annals of Operations Research.
DOI:10.1007/s10479-010-0703-4.

[11] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.

[12] G. Lach and M.E. Lübbecke. Curriculum Based Course Timetabling: New
Solutions to Udine Benchmark Instances. Annals of Operations Research.
DOI:10.1007/s10479-010-0700-7.

[13] Z. Lü and J.K. Hao. A Critical Element-Guided Perturbation Strategy for
Iterated Local Search. In C. Cotta and P. Cowling. (Eds) EvoCOP-2009, LNCS
5482: 1–12, Springer, 2009.

[14] Z. Lü and J.K. Hao. Adaptive Tabu Search for Course Timetabling. European

Journal of Operational Research, 200(1): 235–244, 2010.

[15] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A.J. Parkes, L.
Di Gaspero, R. Qu, and E.K. Burke. Setting the Research Agenda in Automated
Timetabling: The Second International Timetabling Competition. INFORMS

Journal on Computing, 22(1): 120–130, 2010.

[16] T. Muller. ITC2007 Solver Description: A Hybrid Approach. Proceedings of

the 7th International Conference on the Practice and Theory of Automated

Timetabling,
http://www.asap.cs.nott.ac.uk/patat/patat08/patat08-full-papers.shtml.

[17] K. Nonobe and T. Ibaraki. An Improved Tabu Search Method for the Weighted
Constraint Satisfaction Problem. INFOR, 39(2): 131–151, 2001.

22

http://www.comp.nus.edu.sg/~henz/publications/ps/PATAT2008.pdf
http://www.cs.qub.ac.uk/itc2007
DOI: 10.1007/s10479-010-0703-4
DOI: 10.1007/s10479-010-0700-7
http://www.asap.cs.nott.ac.uk/patat/patat08/patat08-full-papers.shtml

[18] J. van den Broek, C. Hurkens and G. Woeginger. Timetabling problems at the
TU Eindhoven. European Journal of Operational Research, 196(3): 877–885,
2009.

[19] M. Vasquez and J.K. Hao. Upper Bounds for the SPOT 5 Daily Photograph
Scheduling Problem. Journal of Combinatorial Optimization, 7(1): 87–103,
2003.

23

	Introduction
	Problem Description of the ITC-2007 Track 3
	Constraints
	Objective
	The Udine Benchmark Instances

	ITC-2007 Lower Bounds: State of the Art
	Lach and Lübbecke's IP Model
	Lower Bounds using Lach and Lübbecke's Formulation

	A Partition-based Approach for Improved Lower Bounds
	Rationale
	Partition and Relaxed Constraints: an Illustrative Example
	Influence of the Partition and Criterion for Optimized k-Partitioning
	An Iterative Tabu Search Algorithm for k-Partitioning

	New Lower Bounds for the ITC2007 Instances
	Best Lower Bounds with the Partition-based Approach
	Comparisons with the Results of Lach&Lübbecke LachLubeckke2008 and Burke et al.BurkeAll2008

	Conclusion
	References

