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Abstract

This paper considers the subexponential asymptotics otitéonary distributions of
Gl/G/1-type Markov chains in two cases: (i) the phase ttasimatrix in non-boundary
levels is stochastic; and (ii) it is strictly substochasti€or the case (i), we present a
weaker sufficient condition for the subexponential asyitiggathan those given in the
literature. As for the case (ii), the subexponential asyrigg has not been studied, as
far as we know. We show that the subexponential asymptatidsei case (ii) is different
from that in the case (i). We also study the locally subexptiakasymptotics of the
stationary distributions in both cases (i) and (ii).
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1 Introduction

This paper studies the subexponential asymptotics of tgosary distribution of an irre-
ducible and positive recurrent Markov chain of GI/G/1 tyd€][ The GI/G/1-type Markov
chain includes M/G/1- and GI/M/1-type ones as special casésplays an important role in
studying the stationary queue-length and/or waiting-tohsributions in various Markovian
gueues such as continuous-time BMAP/GI/1, BMAR/LIBMAP/MSP{ queues, and discrete-
time SMAP/GI/1 queues, where BMAP, SMAP and MSP represetahbilarkovian arrival
process, semi-Markovian arrival process and Markoviavieeprocess, respectively.

*This is a revised version of the paper published in Stoahd&tidels vol. 29, no. 2, pp. 190-293, 2013.
In the revised version, some editorial errors are correatetlsupplements are added.
T Address correspondence to Tatsuaki Kimura (kimura.tat@kab.ntt.co.jp)
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Let {(X,,S.);n = 0,1,...} denote a GI/G/1-type Markov chain such ttt € Z, =
{0,1,2,...}and
Sn € My :={1,2,..., My}, if X, =0,
S, e M :={1,2,...,M}, otherwise
where M, and M are positive integers. The state spacé ©0f,,, S,,)} is given byS = ({0} x
M) U (N x M), whereN = {1,2,3,...}. Further, the sub-state spadés, j); j € My} and
{(k,j);7 € M} (k € N) are called level 0 and levél respectively.
Let T denote the transition probability matrix of the GI/G/1-@fdarkov chain{ (X,,, S,)},
which can be partitioned as follows [10]:

lev. 0 1 2 3
lev.0 [ B(0) B(1) B(2) B(3) -
1| B(-1) A  Aq) A@) -
T- 2| B(-2) A(-1) A(0) AQ1) - ,
(=2) A(-1) A(0) -

3| B(-3) A

whereA(k) (k € Z := {0,£1,42,...})isanM x M matrix, B(0) is an M, x M, matrix,
B(k) (k € N)isanM, x M matrix, andB (k) (k € Z\ Z.) is anM x M, matrix. Throughout
the paper, we assume the following, unless otherwise stated

Assumption 1 (a)T is an irreducible and positive-recurrent stochastic mato) A := 5"~ A(k)
is irreducible.

Under Assumptio]1T has a unique and positive stationary distribution (see, ¢6g
Chapter 3, Theorem 3.1]), which is denoteddy= (z;(k))x  )es. For later use, we define
x(0) = (24(0))jem, andx(k) = (z;(k));jem for k € N. Further, letx(k) = >°°, ., =(l) for
keZ,.

Some researchers have studied the subexponential asjeaaticthe stationary distribution
x = (x(0),z(1),x(2),...) of the GI/G/1-type Markov chain (including the M/G/1-typee).
The previous studies assume thats stochastic, though is not stochastic in general. In fact,

lim B(—k) # O ifand only if Ae # e,

k—o0

wheree denotes a column vector of ones with an appropriate dimaraioording to the con-
text.
We briefly review the literature related to this paper. F@8 fflurpose, let” denote a random
variable inZ, , and for a while, assume that
2k A 2k B()

lim == 0 >0, lim 250 0, >0
ke P(Y > k) t=% BN TPY > k) 2=
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with C; # O or Cy, # O. Asmussen and Mgller [2] consider two cases: Yais regularly
varying; and (b)Y" belongs to both the subexponential cl&sésee Definition A.1.R) and the
maximum domain of attraction of the Gumbel distributiong(se.g., [9, Section 3.3]). For the
two cases, they show that under some additional conditions,

lim (k)

— = Y 11
k—>ooP()/;>k‘) Cl>0, 6687 ( )

whereY, denotes the discrete equilibrium random variabl& ptlistributed withP (Y, = k) =
P(Y > k)/E[Y] (k € Z.). Note here that” € S does not necessarily imply. € S and vice
versa (see [21, Remark 3.5]).

Li and Zhao [17] show the subexponential tail asymptofic§)(Linder the condition that
C, = O andY belongs to a subclas$® of S (see Definitiod A.1.3). Note here that ¢ S*
impliesY € S andY, € S (see Proposition A.2 in [19]). Although Li and Zh&o [17] dei
some other asymptotic formulae foE(k)}, those formulae are incorrect due to “the inverse of
a singular matrix” (for details, see [19]).

Takine [22] proves that the subexponential tail asympsaoficl) holds for an M/G/1-type
Markov chain, assuming thaf. € S but not necessarily” € S§. Thus Takine’s result shows
thatY € S is not a necessary condition for the subexponential decgy(t)}. However,
Masuyama![19] points out that Takine’s proof needs an amithli condition that thé&-matrix
is aperiodic. Further, Masuyama [19] presents a weakecgrificondition for[(1.11) than those
presented in the literaturel[2,117,122], though his resulimsted to the M/G/1-type Markov
chain. Recently, Kim and Kim_[13] improve Masuyamal[19]'df®ient condition in the case
where thez-matrix is periodic.

In this paper, we study the subexponential decay of the tatbabilities{z(k)} in two
cases: (i)A is stochastic (i.e.Ae = €); and (ii) A is strictly substochastic (i.ede < e, # e).
For the case (i), we generalize Masuyaima [19]'s and Kim amd [i3]'s results to the GI/G/1-
type Markov chain. The obtained sufficient condition for gubexponential tail asymptotics
(@.1) is weaker than those presented in Asmussen and M2]lanfl Li and Zhao [17]. As for
the case (ii), we present a subexponential asymptotic flarsuch that

lim (k)

B _¢,>0, Yes.
My @0 Yes

It should be noted that the embedded queue length proce&\WAR/GI/1 queue with disasters
falls into the case (ii) (see, e.d., [24]). As far as we kndve subexponential asymptotics in
the case (ii) has not been studied in the literature. Thezethis paper is the first report on the
subexponential asymptotics in the case (ii).

We also study the locally subexponential asymptotics o§tagonary probabilitie§x (&)} .
In the case (i) (i.e. A is stochastic), we prove the following formula under sonwhtecal
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conditions:
lim =)
k—o0 P(Y; = ]{2)
Further, in the case (ii) (i.eA is strictly substochastic), we assume tais locally subexpo-
nential with span onéi.e.,Y € S..(1); see Definition A.2.2). We then show that

=c3>0 YeSs§.

/}EEO % =c; >0, Y €S (1),
with some technical conditions. For the reader’'s convardgeppendiX_C presents simple
examples of the case where the stationary distributiorcialliyp subexponential.

The rest of this paper is divided into three sections. Se@idescribes some basic results
on the GI/G/1-type Markov chain and its related Markov adiprocess (MAdP). In Sections
and 4, we studied the subexponential tail asymptotics@rallly subexponential asymptotics,
respectively, of the stationary distribution.

2 The GI/G/1-Type Markov Chain and Its Related Markov
Additive Process

Throughout this paper, we use the following conventions.lLéenote the identity matrix with
an appropriate dimension. For any mathiX, [M|; ; represents thé, j)th element ofM. For
any matrix sequencéM (k); k € Z,}, let M (k) = Y72, ., M(l) (k € Zy). For any two
matrix sequence$M (k); k € Z,} and{N(k);k € Z.} such that their products are well-
defined, letM « N (k) = Zf”zo Mk —I)N(l) for k € Z,. Further, for any square matrix
sequencé M (k);k € Z. }, let {M™(k); k € Z. } denote the:-fold convolution of{ M (k)}
with itself, i.e., M (k) = Y27, M*" "V (k — )M (1), whereM*°(0) = T andM*°(k) = O

for k € N. The conventions for matrices are also used for vectors ealdrs in an appropriate
manner. Finally, the superscript“represents the transpose operator for vectors and msitrice

2.1 R-and G-matrices

In this subsection, we assume tfais irreducible and stochastic, but do not necessarily assum
the recurrence dI'.

We consider a censored Markov chain obtained by obsefMig, S,,)} only when it is
in levels 0 throughk (k € Z.). LetT™ (k e Z,) denote the transition probability matrix of
the censored Markov chain, which is irreducible due to theducibility of the original chain.
Let T (v,n € {0,1,...,k}) denote a submatrix d'* such that{T¥!]; ; represents the
probability that the censored Markov chain moves from staté) € S to (,5) € S in one

step.
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From the block Toeplitz-like structure @, we see that’,”, , andT'}_, are independent
of kif l € {0,1,...,k— 1} andk € N. We thus defingb(]) (I € Z) as

®() =T, 1€{01,....,k—1}, k€N,
o(-) =T,  1e{01,... . k—1}, keN 2.1)

Note here that for any fixed € N, [®(0)]; ; represents the probability of hitting stéte ;) for
the first time before entering the levélsl, . .., v — 1, given that it starts with state, i), i.e.,

[@(0)];,; = P(S1,, = j | Xo =v,5 =1),

whereT, = inf{n € N; X, =1 < X,, (m = 1,2,...,n — 1)}. Thus) ° (®(0))" =
(I — ®(0))"! exists becaus®'™ is irreducible.

Proposition 2.1.1 (Theorem 1 in[[10]){®(k); k € Z} is the minimal nonnegative solution of
the following equations.

B (k) :A(k;)+§:¢(k+m)(1—¢(0))—1q>(—m), ke,
(k) = A(—k) + 3 ®(m)(I — ®(0))"'®(—k — m), ke,

Remark 2.1.1 The proof of Theorem 1 in [10] is based on induction and prdisaie interpre-
tation, which are valid without the recurrence’Bf

Let G andG (k) (k € N) denote

G=)> G(k), G(k) = (I — ®(0))'®(—k), k€N, (2.2)

k=1
respectively. Note that for any fixede N, [G(k)|; ; represents the probability of hitting state
(v, 7) when the Markov chaif(X,, S,,)} enters the levelg, 1, ..., v + k — 1 for the first time,

given that it starts with state’ + &, ), i.e.,
G(k)lij =P(Xr.,,, =51, =7 | Xo=k+v,5 =1), k€N,
whereT, =inf{fn e N; X,, <1< X,, (m=1,2,...,n—1)}.

Let L(k) (k € N) denote

k
Lk)=> Y  Gm)G(ny)---Gn), keN (2.3)

i=1 (ny,n2,...,n;)EN?
n1+ng+-+n;=k
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For any fixedv € N, [L(k)]; ; represents the probability of hitting stdte j) when the Markov
chain{(X,,S,)} enters the level§, 1, ..., v for the first time, given that it starts with state
(v+k,i),i.e.,

[L(k)lij = P(St, =Jj | Xo=Fk+v,5 =1).

It follows from (2.3) that
L(z) =Y *L(k) = (I-G(2))'G(2), (2.4)
k=1
whereG(z) = 322°, 7 *G(k).
Let Ry(k) andR(k) (k € Z.) denoteM, x M andM x M matrices, respectively, such
that

Ro(k) = Ty (I — ®(0)7", R(k) = ®(k)(I — ®(0))"", keN. (2.5)

Foranyfixedr € N, [R(k)]; ; (k € N) represents the expected number of visits to Siatet, j)
before entering the levels 1, . . ., v+ k —1, given that the Markov chaif( X ,,, S,,)} starts with
state(v, 7). Further,Ry(k) (k € N) can be interpreted in the same way though N is replaced
by zero. Formally, fok € N,

[ T<k
[Ro(k)]ij =E | Y 1(Xn =k, S, =) Xo:o,sozz'],
Ln=1
_T<k+u
[R(k:)]%]:E Zﬂ(Xn:k+V75n:]) XOZVENy’SO:i )
L n=1

where1(x) denotes the indicator function of an event It follows from the definitions of
Ry(k), R(k), L(k) and®(0) that

Ry(k) = -B(k;) + f: B(k+m)L(m)| (I—®(0)", keN, (2.6)
R(k) = :A(k:) + f: A(k+m)L(m)| (I —®(0))"", keN, 2.7)
which hold without the_reEurre:c:el ar.
We now defineR,(z), R(z) andB(z) as
Ry(z) = g Ro(k), R(z)= g ZR(k), B(z) = g 2 B(k),

respectively. We then have the following result.
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Proposition 2.1.2 (Theorem 1 and Lemma 3 in[18])Letrg,, 7, 7¢, 74, , 74_ @ndrp denote
the convergence radii dy(z), R(z), G(1/z) = 2%, 28 G(k), 320, 2K A(k), 0, X A(—k)
andf?(z), respectively. Thenp, =rp > 1,rg =74, > landrg =74 > 1.

Proposition 2.1.3 (Theorem 14 in[[27])Let A(z) = > wez ¥ A(k). We then have
I-A(z)=(I-R()I-®0)I-G(2), |z|€l (2.8)

wherely = (1/ra_,7a,)U{1}.

Remark 2.1.2 Although Theorem 14 ir [27] assume thdtis irreducible and stochastic, these
conditions are not necessarily required by the algebraioff the theorem.

Proposition 2.1.4Let R = ) .- | R(k). If A isirreducible and strictly substochastic, then (i)
sp(G) < 1; (i) sp(R) < 1; and (iii) sp(>_,°, ®(—1)) < 1, wheresp( - ) denotes the spectral
radius of a matrix in parentheses.

Proof. See Appendik Bl1. O

2.2 Sufficient conditions for positive recurrence

In this subsection, we provide two sets of sufficient coodisi for Assumptionll. For later
use, letwr > 0 denote a left eigenvector A such thatr A = sp(A)w andwe = 1 (See
Theorem 8.4.4 in[11]). Let denote

o=mn) kA(ke. (2.9)

keZ

If A is stochastic, them is the unique invariant probability vector & ando is the conditional
mean drift of the level procedsX,,;n € Z, } with X,, > 1.

Proposition 2.2.1 (Proposition 3.1 in Chapter XI of [3]) Supposel’ and A are irreducible
and stochastic. The®' is positive recurrent if and only if < 0 and) ;- kB(k)e < .

Proposition 2.2.2 Supposé’ is irreducible and stochastic. Then& is irreducible and strictly
substochasticT is positive recurrent.
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Proof. Propositior{ 2.1}4 implies thaim,_,.. R* = O and(I — G)~' exists. Further from
(2.8), we have

Ry:=> Rq(k)
_ [Z B+ (Z B(k + m>> L(m) | (I - ®(0))
<> B(k) [T+ L(m)| (I-&(0)"

where the last equality follows frorh (2.4). As a result, itdavs from Theorem 3.4 in [25] that
T is positive recurrent. O

2.3 Matrix-product form of the stationary distribution

This subsection discusses the stationary distribuiofk)} under Assumptiohl1. It is easy to
see thatx(0),x(1),...,x(k)) is an invariant measure vector of the censored transitiobgr
bility matrix 7™ i.e.,

(2(0), 2(1),...,z(k))T™ = (x(0),2(1),...,z(k)),

which leads to

k-1

a(k) = |z(0)Th, + Y )T | I -TF)™, kel (2.10)

=1

In terms of R(k) and Ry (k), we can rewrite[(2.10) as

z(k) = x(0)Ro(k) + > a()R(k—1), k€N, (2.11)

=1

where we usér(0) = O. It then follows from [2.11) that
x(k) = x(0)Ry x F(k), ke N, (2.12)

whereF (k) (k € Z,) is given by

F(k) = f: R (k). (2.13)
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Thus we have

zk)=x(0Ryx F(k), keZ,. (2.14)
Further letz(z) = >, , 2"z (k). We then have
#(2) = x(0)Ro(2)(I — R(2))"". (2.15)

Letting z = 1 in (2.13) yields
z(0) =z(0)Ry(I — R) ™, (2.16)
whereR, = >/~ Ro(k).

2.4 Period of the related Markov additive process

We consider a MAdR(X,,, S,);n € Z,} with state spac& x M and kerne{ A(k): k €
Z}. The stochastic behavior of the MAdRX,,, S,,)} is equivalent to that of the GI/Gl/1-type
Markov chain{ (X, S,)} while the latter is being in non-boundary levels, i.e., foy&a j € M,

P(Xpnp1 =k, Spsr=j | Xn=1, S, =)
=P(Xp1=k, Spn1=Jj|Xu=1 S,=1), kileN (2.17)
The period of the MAdR (X, 5,,)}, denoted byr, is the largest positive integer such that
[A(k)];; > 0onlyif £ = p(j) — p(i) (mod 7), (2.18)
wherep is some functiop fromMto {0, 1,...,7 — 1} (see Appendix B in[14] and its revised

version [15]).

Remark 2.4.1 Lemma B.2 in[[14] states that functignsatisfying [2.1B) isnjective which is
not true in general. This error is corrected in the revisadioa [15].

Remark 2.4.2 If the Markov chain{(X,, S,)} is of M/G/1 type, the period is less than or
equal toM (see, e.g., Proposition 2.9 in [14]).

Remark 2.4.3 We suppose

0 0%
A0 =0, AW =] 0 o % ,
1 1
1 1 66 O 1
i g 0 0 0 ;
A2=| 1 (1) A1) = S S :
0 O 3 6 6 0
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Let p(0) = p(1) = 1 andp(2) = 0. It then follows that
[A(K)),; > 0 onlyif k = p(j) — p(i) (mod2),
and thus the period of MAdP with kern€A (k)} is equal to two.

We now introduce the following notation.

Definition 2.4.1 For any finite square matriX with possibly complex elements, lé{X)
denote an eigenvalue &, which satisfie$(X ) = sp(X )e* and

¢ =inf{0 <z < 27m;det(sp(X)e*I — X) = 0},
where. denotes the imaginary unit, i.e.= v/—1.

Remark 2.4.4 SupposeX is nonnegative. We then havéX ) = sp(X) (see Theorem 8.3.1
in [11]). Further, if X is irreducible,é(X) is the Perron-Frobenius eigenvalue Xf (see
Theorem 8.4.4 in[11]).

Let pu(z) andw(z) denote the left- and right-eigenvectors A{z) corresponding to the

-~

eigenvalued( A(z)), normalized such that

p() A/ le =1, pw() =1,
whereA ,(z) denotes al/ x M diagonal matrix as follows:

Ap(z) =
»—P(M)

Note thatu(1) = w andwv(1) = e. Further, letv denote an arbitrary complex number such that
lw| = 1. We then have the following results.

Proposition 2.4.1 (Lemma B.3 in[[14]) Suppose Assumptibh 1 holds anddgt= exp(27¢/z)
for z > 1. Then the following are true forall € I, andv =0,1,...,7 — 1.

(i) 6(A(yw”)) = 6(A(y)), both of which are simple eigenvalues; and
(i) p(ywy) = p(y)An(wy)™t ando(ywy) = Ay (wy)v(y).

Proposition 2.4.2 (Theorem B.1 in[[14]) Suppose Assumptidh 1 holds ai(di(y)) = 1 for

~

somey € I4. Thené(A(yw)) = 1ifand only ifw™ = 1. Therefore

~

7 =max{n € N;§(A(yw,)) = 1}.

Further if6(21(yw)) = 1, the eigenvalue is simple.
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2.5 Spectral analysis ofz-matrices from stochasticA

In this subsection, we assume that Assumpgtion 1 holdsAmsistochastic. Under the assump-
tions, G is stochastic, i.e4(G) = 1 (see Theorem 3.4 in [25]).
We first provide a basic result on the structurdchf

Proposition 2.5.1 Suppose Assumptidh 1 holds aAdis stochastic. Thels has an exactly
one irreducible class, denoted B§, C M. Thus,G is irreducible, or after some permutations
it takes a form such that

M, Mr
M. G. O 7 MT — M \ M.7
Mr\ G, Gr

whereG, is irreducible, G is strictly lower triangular andG, does not have, in general, a
special structure.

Proof. See Appendik Bl2. O

Remark 2.5. The proof of Proposition 2.5.1 relies only on the facts tija#(is irreducible;
and (i) G is not a nilpotent matrix. Thus, the irreducibility ef andsp(G) > 0 imply that
Propositiori 2.5]1 holds. On the other hand, Propositior82itlds

det(I — A) = det(I — R)det(I — ®(0)) det(I — G).

Note here that ifl" is positive recurrent thedet(I — R) # 0 (see the proof of Theorem 3.4
of [25]). Therefore, if the conditions of Propositibn Z)%te satisfied, thedet(I — A) = 0,
det(I — ®(0)) # 0 anddet(I — R) # 0 and thusdet(I — G) = 0, which implies that
sp(G) = 1.

Let G.(k) (k € N) denote the square submatrix 6f(k) (k¢ € N) corresponding to the
irreducible clasM, C M, i.e.,G. = > ;- G.(k). Further letG.(z) = S 2 FGL (k). It
then follows from Proposition 2.5.1 that

6(G(2) = 6(Ga(2)), (2.19)
becausd&= (if any) is a nilpotent matrix.
We now consider a MAdR (X\?, 5{*): n € Z.} with state spac& x M, and kernel
{r'“(k);k € Z}, where

@1y 0, keZy,
(k) = { G.(k), keZ\Z,. (2.20)

HThis remark is added in the revised version.
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Equation [Z.20) and the irreducibility of, _, I''“)(k) = G, imply that the period of the
MAdP {(X?, ${*)} is well-defined (see Definition B.1 if [14]) and denotedray Combin-
ing (2.19), (2.2D) and Theorem B.1 in[14], we obtain

7¢ = max{n € N; §(G(w,)) = 1}. (2.21)

Proposition 2.5.2 Suppose Assumptidh 1 holds addis stochastic. Then the following are
true.

(i) ¢ =T;
(i) 6(G(w)) = 1ifand onlyifw™ = 1;
(iii) if 6(G(w)) = 1, the eigenvalue is simple; and

(iv) fory > 1/r4_,

J(Gyw?)) = 8(G(y)), v=0,1,....,7—1,

which are simple eigenvalues éf(ywz) and a(y), respectively.

Proof. See Appendik Bl3. O

We define)\gG)(z)’s (i = 2,3,...,M) as the eigenvalues @(z) such thats(G(z)) >
M9 (2)| (see Definitio 2.11). We then have

det(I — G(2)) = (1 — 6(G(2))) H(1 ~A9D2). (2.22)

(2

Proposition 2.5.3 Suppose Assumptibh 1 holds aAds stochastic. Let

s I = R)I - #(0)) vy-1 _
) = R B0 v=0,1,...,7—1, (2.23)
y(wl) = Ay (wh)e, v=0,1,...,7— L (2.24)

Then the following hold for = 0,1,...,7 — 1: (i) ¥(w?) andy(w?) are the left- and right-
eigenvectors ofx(w”) corresponding to the eigenvaldéG(w)) = 1; and (ii)

adj(I — G(w)) = H<1 Ny ()W),

whereadj(Y") denotes the adjugate matrix of a square makix

Proof. See Appendik Bl4. O
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3 Subexponential Tail Asymptotics

This section studies the subexponential decay of the taldgilities{Z (%)}, under the follow-
ing assumption.

Assumption 2 Either of (1) and (Il) is satisfied:
(I) Assumptioril holdsA is stochastic, and, _, |k|A(k) < oo; or
(I Assumptior’1 holds and\ is strictly substochastic.

Assumptior 2 (1) and (Il) are considered in subsectionk Bdl32, respectively.

3.1 Case of stochastid

Lemma 3.1.1 Under Assumptionl 2 (1),
o =—m(I— R)(I —®(0)) i kG(k)e € (—,0), (3.1)
k=1

whereo is defined in[(219).

Proof. We have—co < o < 0 due to [2.9), Propositiodn 2.2.1 and the third condition of As

sumptior 2 (I). Further since = m(d/dz)A(z)].—1e and(d/d2)G(2)|.=1 = — 3220, kG(k),
we obtain[(3.11) by differentiatin@ (2.8) with respecttgre-multiplying by, post-multiplying
by e and lettingz = 1. O

Using Lemma3.1]1, Propositions 215.2 and 2.5.3, we obkeiridllowing result.

Lemma 3.1.2 If Assumption 2 (1) holds, then fér=0,1,...,7 — 1,

—_

K

Tim Lin7 +1) = (wi),AMw;”)ewAM(w;”)-% (3.2)
v=0 T
where
Yp=n(I-R)I—-®(0))/(-0). (3.3)
Proof. See Appendik Bl5. O

Fori = 0,1,...,7 — 1, letM® = {j € M;p(j) = I} and|M©®| denote the cardinality
of M®. Further, lety)!) denote a subvector ap corresponding t&M), ande” denote an
IM®| x 1 vector of ones. Note here that’_} (w™)” = 0forallm = 1,2,...,7 — 1 be-

causew,,w?, ..., wI~! are the solutions of the equati@;é z¥ = 0. It then follows from
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Lemma3.1.R that
T—1
lim [L(nr + )iy = []; ) (w; ) P00
v=0
_ T[w]jv if p(Z) Ep(])+l (I'IlOd T)7
0, otherwise
This equation can be rewritten as
lim L(nt +1) =7EH,, (3.4)
n—oo
where
M ©) e® o ... 0 0
M® 0o em ... 0 0
E=: : : : : ; (3.5)
ME=2 | o 0O --- e™2 0
M-\ o o --- 0 el™1)
and
M©O© MO ... MDD pME-D o peE=HD Lo Me-D
0 0 . 0 ¢(T—l) 0 . 0
0 0 0 0 ¢(T—l+1) . 0
0 0 0 0 0 (r=1)
Hi= 1 o v
P 0 0 0 0 0
o W 0 0 0 0
0 0 - Uy 0 0 ce 0

Remark 3.1.1 Suppose the Markov chaif( X,,, S,)} is of M/G/1-type. It then follows that
L(n) =G"forn =1,2,.... Further it is easy to see thdtis a stationary probability vector
of G and thereford]; = 0 for all j € My (see Propositioh 2.5.1). We now defige”

(=01,...

,7 — 1) as a subvector oy corresponding to1{" := {j € M, N M®}. As a
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result, (3.4) yields

MO M o MUY Mg
MO [ep® O ... o o
ML) o ep) ... O O
1 MYl o o - ) O
hm —GnT = (0) (O) e¢. 9 (36)
n—oo T MT e¢. [0 . 0] O
M 0 ep) ... O o
M{ Y\ o O - ep"V O

whereM) = M®\ M{" (I = 0,1,...,7 — 1). Note here thatpe = 1/7 for all | =
0,1,...,7 — 1 becausd1/7)G""e = e/7 foralln = 1,2,.... As a result, the limit[(3]6)
is consistent with the equation (14) in [19], whe¥é _, f, = e and each element of,
(v=1,2,...,7)is equal to one or zero.

Lemma 3.1.3 If Assumptiof 2 (1) holds, then
T—1

lim Y " L(n7 +1) = rey. (3.7)

n—00
=0

Proof. We obtain[(3.)7) by combining (3.4) and

T—1
> H, =ep. (3.8)
=0

We now make the following assumption.

Assumption 3 There exists some random variablan Z . with positive finite mean such that

A(k)e ca . B(k)e cs
li = 1 = 3.9
boee P(Y > k) E[Y] kowP(Y > k) E[Y] (3:9)
wherec, andcg are nonnegativeé/ x 1 andM, x 1 vectors, respectively, satisfyirg =~ 0 or

CB%O.

Lemma 3.1.4 Suppose Assumptions 2 (1) dnd 3 hold.Ylfis long-tailed (i.e..Y, € L; see
Definition[A.1.1). We then have

: A(k+m)L(m) carm(I — R)(I — ®(0))

jim 37 A - eI R0, @10
. B(k+m)L(m) cpm(I — R)(I — ®(0))

i 32 P o - G4y
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Proof. See Appendik BI6.

Lemma 3.1.5 Suppose Assumptidns 2 (1) ddd 3 holdydfe £, then
R(k)  arn(I-R)

I RS B
am P(}}Ef(f)k) - CBW(fo—_ &
Proof. It follows from (2.7) that
R(k i A(k+m)L(m)| (I —®(0))"".
Note that Corollary 3.3 in [21] and (3.9) yield
lim sup Ak) < limsup A(k)ee’ lim supM =

k—o0 P(Yve > k) o k—o0 P(Y > k) k—o0 P(Y;: > k)
Thus from [(3.14), we have

R(k < A(k + m)L(m)

lim 7) = lim (I—@(0))"

koo P(Y, > k) k=02~ P(Y, > k)

Substituting[(3.10) intd (3.15), we obtaln (3.12). Sindijawe can prove(3.13).

Kimura et al.

(3.12)

(3.13)

(3.14)

(3.15)

The following theorem presents a subexponential asyngdfimtinula for{z(k)}.

Theorem 3.1.1 Suppose Assumptidnis 2 (1) ddd 3 holdylfe S, then

lim z(k)  x(0)cs +x(0)ca o
koo P(Y, > k) —0

Proof. It follows from (2.13) that

Y F(k)=T-R)™".

k=0

Thus using[(3.17) and Lemma 6 [n]12], we have

*TL

( o
li [ S
koo P(Yo > k) IHX,ZPY>1<:

— (I-R)" lim ﬂ([ _ R

Substituting[(3.12) into the above equation yields

Fnl -1
po_Fk) _(I-R)'er
hoo P(Yo > k) —

(3.16)

(3.17)

(3.18)
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Finally, applying Proposition A.3in [19] td (2.14) and ugi8.13) and(3.18) lead to

- =m(k) (0 -
1}1_{20 PY. > k) —o [esm + Ro(I — R) 'eam],
from which and[(2.16) we have (3]16). O

Remark 3.1.2 Theorem3.1]1 is a generalization of Theorem 1[in [13] to tH&A-type
Markov chain. In fact, the latter extends the corollary oedrem 3.1 in[[19] (Corollary 3.1
therein) to the case where thematrix is periodic.

3.2 Case of strictly substochastiA

In this subsection, we make the following assumption in toldito Assumption2 (11):

Assumption 4 There exists some random variablan Z_ such that

Ak B(k)
1 _ = _— = .
koo P(Y > k) Ca Jlim PY > k) Cs, (3.19)

whereC, and Cy are nonnegativd/ x M and M, x M matrices, respectively, satisfying
Cy,#0o0rCg+# 0.

Lemma 3.2.1 Suppose Assumptions 2 (Il) and 4 holdY'lE £, then

R(k) . B
lim e =C, <I — ; @(—l)) , (3.20)
I -1
Ry(k) >
lim i = Cj (I - ; <I>(—l)> . (3.21)
Proof. From (2.7) and((3.19), we have
. R(k) = Ak +m) _
B py s (Ol 2 s H | TR0 @22

Note here that under Assumptidn 2 (Hh(G) < 1 (see Proposition 2.1.4) and this (2.4) yields

i Lim)=(I—-G)"'G < o, (3.23)

m=1
from which and[(3.19) it follows that fok = 0,1, . . .,

= Ak
> A

<

kGZJr

\_/
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Therefore applying the dominated convergence theorem2@)and using (3.19) and € L,
we obtain

k—o0 P(Y > k‘)

A(k+m) PY >k+m)
CA+Z;}LIEOPY>k+m) PY > k)

—Cu[T+(I-G)'G] (I -®(0)"
_ CA(I . G)_l(I - ‘I’(O))_l (324)

L(m)| (I -@(0)""

From (2.2), we have

— <I _ i <1>(—1)> _ (I — &(0)). (3.25)

Finally, substituting[(3.25) intd (3.24) yields (3]20). idion [3.21) can be proved in the same
way. O

Theorem 3.2.2 Suppose Assumptianis 2 (Il) dnd 4 holdY'lE S, then

z(k)
lim — %)
Pl P(Y > k)

Proof. Applying Proposition A.3 in[[19] to[(2.14) and usirig (311 Ada(3.21), we have

= [2(0)Cp +Z(0)CA|(I — A)~" > 0. (3.26)

w(k) = B .
I s z(0)Cy (I 2 <I>(—l)> (I - R)
z(0) Ry kll_g)lo % (3.27)

whereF (k) is given in [2.1B). Further it follows from Lemma 6 in[12] a(@l20) that

lim % (I-R)'Cy (I -y <I>(—l)> (I-R)™*

=0

Substituting the above equation info (3.27) and uding §2\46é have

T(h) _ = B L
lim i [2(0)Cp + F(0)Cy] (I - ; <I>(—l)> (I-R)™". (3.28)
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Note here thaf(3.25) yields
(I — i <I>(—l)> _ (I-R)™*
= (I_— G 'I-®0) ' I-R)'=T-A", (3.29)

where the second equality follows from Proposition 2.1.3 aAresult, we obtain_(3.26) by
combining [(3.2B) with[(3.29).

It is easy to show that the right hand side[of(3.26) is pasithadeed(I — A)~! > O due
to the irreducibility of A. In addition,z(0)Cs + Z(0)C4 > 0,# 0 becauser(0) > 0 and
Z(0) > 0; andC # O or Cy # O. Therefore(x(0)Cp + Z(0)C,)(I — A)~! > 0. O

4 Locally Subexponential Asymptotics

This section considers the locally subexponential asytigstof the stationary distribution.

4.1 Case of stochastidd

In this subsection, we proceed under Assumgtion 2 (1) andil®ving assumption:

Assumption 5 There exists some random variablan Z . with positive finite mean such that

E E
L AKWE _C§ . BWE _ Cj

P P(Y = k) EY] iomP(Y =k)  EPY] (4.1)

wherekE is given in [3.5), and wher€’} andC} are nonnegativé/ x ~ andM, x T matrices,
respectively, satisfyin@’; # O or C; # O.

Lemma 4.1.1 Suppose Assumptionis 2 (I) ddd 5 hold. Further, supposer ifttke following
is satisfied:Y" is locally long-tailed with span one (i.€Y, € £,.(1); see Definitio A.Z]1); or
Y € Land{P(Y = k)} is eventually nonincreasing. Then

_ A(k+m)L(m) (I — R)(I — ®(0))
kll_)rilo 2 TRV, = k) = Cje — , 4.2)
,}i_{{}om_l B(k + o :)€§m) _ Cgeﬂ'(I— R)_(O{ — <I>(0)). 4.3)
Proof. See Appendik Bl7. O

Remark 4.1.1 Lemma4. 1.1l is proved by using Proposition Al2.1, which nexgueither that
Y € Li,.(1) orthaty € £ and{P(Y = k)} is eventually nonincreasing.
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Lemma 4.1.2 Under the same assumptions as in Lerhma#.1.1,

) R(k) w(I — R)

i ey =~ G (4.4)
: Ry(k) w(I — R)

M =g e @9

Proof. It follows from Ee = e, (41) andY” € L that

: A(k) . A(k)Eee'P(Y =k)
VI <« = 0.
i sy o SEYI I S = ry s €
Thus from [2.7), we have
. R(k) <~ A(k+m)L(m) =
by =g A2 Thy=p RO 48)
Substituting[(4.R) intd (416) yields (4.4). Similarly, warcreadily show (415). O

We now obtain a locally subexponential asymptotic formola{tc(%)}.

Theorem 4.1.1 Suppose Assumptidns 2 (I) ddd 5 hold. Further, supposé {$)locally subex-
ponential with span one (i.eY, € Si..(1); see Definitio"A.212); and (i)Y’ € L..(1) or
{P(Y = k)} is eventually nonincreasing. Then

: x(k) z(0)CEe +x(0)Cke
| = - T 4.7
koo P(Y, = k) gy ™ (4.7)
Remark 4.1.2 According to Definition A.2.2 and Propositibn A2 ¥%, € Si,.(1) is equivalent
toY € S*. Thus sinceS* C S C L, the assumptions of Theorém 4]1.1 are sufficient for those

of Lemmd4.11.

Proof of Theorerh 4.1.1Propositio A.2.6 yields

F(k) = R"(k
2 b= 1)

e

from which and[(4.1) it follows that
 P\-1E
lim F(k) _ (I - R) CAeﬂ"
koo P(Y, = k) —0
Further applying Propositidn A.2.5 to (2112) and using)(4u3d [4.8), we obtain
. z (k) _ z(0) 1 5 —1E
kll_{ilo PV —o [Ciem + Ry(I — R)"'Cler].

Substituting[(2.16) into the above equation yie[dsl(4.7). O

(4.8)

We present another asymptotic formula.
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Assumption 6 There exists some random variablan Z_ with positive finite mean such that

lim A(k)e _ G lim B(k)e _ B

k—o00 P(Y = ]{7) E[Y]’ k—00 P(Y = ]{2) E[Y]’

wherec, andcg are nonnegativeé/ x 1 andM, x 1 vectors, respectively, satisfyirg # 0 or
Cp # 0.

Theorem 4.1.2 Suppose Assumptiohs 2 (1) 6 hold. Further, supposk. (¥ Si..(1);
(i) Y € Lioc(1) or {P(Y = k)} is eventually nonincreasing; and (ii)A(k); k € Z,} and
{B(k); k € N} are eventually nonincreasing. Then

x(k) z(0)cg + ®(0) ey

lim = - TT.

k—oo P(Yve = k‘) —0

Proof. This theorem can be proved in a very similar way to Thedrenl3.For doing this,
we require an additional condition tha®(k); k € Z,} and{B(k);k € N} are eventually
nonincreasing, i.e., there exists solpe= N such thatAd(k) > A(k+1)andB(k) > B(k+1)
for all £ > k.. The details are omitted. O

Remark 4.1.3 Since Ee = e, Assumptior( b is sufficient for Assumption 5. Thus Theo-
rem[4.1.2 is not a collorary of Theorém 4]1.1.

4.2 Case of strictly substochastiA

In addition to Assumptiohl2 (II), we assume the following:

Assumption 7 There exists some random variablan Z_ such that

im =28 _ g, i B

k—oo P(Y = k) koo P(Y = k) =Cs, (4.9)

whereC, and Cy are nonnegativd/ x M and M, x M matrices, respectively, satisfying
Cy,#0o0rCg+# 0.

Lemma 4.2.1 Suppose Assumptidns 2 (Il) ddd 7 holdY'I1E £y,.(1); andrs_ > 1or {P(Y =
k)} is eventually nonincreasing, then

IJLH;% = C, <I > <I>(—l)> : (4.10)

o -1
JE&W — Cp <I - <I>(—l)> : (4.11)
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Proof. From (2.7) and[{419), we have

l};n;o% — |Cu+ klggo; %L(m) (I —®(0))"". (4.12)

To apply the dominated convergence theoreni fo {4.12), we sinat for all sufficiently large

k,

SupposgP(Y = k)} is eventually nonincreasing. We then have for all suffidielatrge &,

Z L) < swp S EEEI S pn) < o,

/
m/eN m—1

where the last inequality is due {0 (3123) and(4.9). On theohand, suppose,_ > 1. It then
follows from Propositiofn 2.1]2 thetG (k) } is light-tailed, i.e.,

ZrkG(k) <oo foralll<r<ra_. (4.13)
Note here thaG(1/z) = Y3, 2*G(k) andsp(G(1)) < 1 (see Propositioh 2.1.4). Thus
according to Theorem 8.1.18 in [11],

sp(G(1/2)) =1 onlyifl<z<r, . (4.14)

The equationd (214), (4.113) arid (4.14) imply that theretexdeme- > 1 such that

i r™L(m) < oo
m=1

Further it follows from Assumptiohl7 antl € L,.(1) that for anye > 0 there exists some
ko € Z, such that for alk > kq,

A(k+m) P =k+m)
Py =p = (e TR

Therefore, fol) < ¢ <r — 1 andk > kg,

< (1+e)"(Cy+cee'), mely.

k+m

“P(Y = k) (m) < (Cy + cee’) mZ:llJrsmL < 0.

As a result, applying the dominated convergence theored.1@) and following the proof
of Lemmd33.211, we can provie (4]10). Equation (#.11) can beeutin the same way. O

Using Lemma 4.2]1, we can readily prove the following thear&he proof is very similar
to that of Theorerh 3.21.2 and thus is omitted.
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Theorem 4.2.1 Suppose Assumptiohs 2 (Il) ahd 7 hold. Yife S,.(1); andr,_ > 1 or
{P(Y = k)} is eventually nonincreasing, then

T

dn 57 =g = FOCs +T(O)CU(I - A4)7 > 0.

5 Discussion on Assumptions

This section discusses the assumptions of the theorenenpeesin Sectiors 3 amnd 4.

We first consider the case of stochas#i¢ for which Theorem§ 3.1.1, 4.1.1 ahd 4]1.2 are
shown. The assumptions of these theorems are summarizetliel I, where éventually non-
increasing is abbreviated as “ENI". Note here that Assumptidn 5 impleessumption 3 due

Table 1. The assumptions of the theorems in case of stochésti

Theoreni3.1]1 Theoreni 4.1]1 Theorem 4.1]2
Assumption 2 (I)|  Assumptiori® (I) Assumptior 2 (1)
Assumption B Assumption b Assumption b
Y.eS Ye € Sioe(1) Ye € Sioe(1)

Y € Ly(1) or Y € L(1) or

{P(Y =k)}is ENI {P(Y = k)} is ENI

{A(k)} and{B(k)} are ENI

to Ee = e. Recall also that if, € Si..(1), thenY, € S (see Remark’A.212). Thus the as-
sumptions of Theoreii 4.1.1 are more restrictive than théSéheorem 3. 111. Similarly, we
can readily confirm that the assumptions of Theorem 4.1.2yitwse of Theorern 3.1.1. It
should be noted that Theorém 4]1.2 is not a corollary of Témagf.1.1 because Assumptian 6
is weaker than Assumptidn 5.

Next we consider the case of substochasgticfor which Theorem$§ 3.2.2 arid 4..1 are
shown. It is easy to see that Assumpfion 7 implies Assumf@lidrurther ifY” € S..(1), then
Y € S (see Remark’A.212). Therefore the assumptions of Thebr2r 4re more restrictive
than those of Theorem 3.2.2 (see Tdble 2).

A Subexponential Distributions

This section provides a brief overview of two classes of gpbaential distributions ofZ, .
One is the class of “ordinal” subexponential distributiortsoduced by ChistyakoV [7], and the
other one is the class of “locally” subexponential disttibas introduced by Chover et al. [8]
and generalized by Asmussen et al. [4].
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Table 2: The assumptions of the theorems in case of strichgtechasticA
Theoreni 3.2]2 Theoreni 4.2]1

Assumptiod 2 (I)|| Assumptiori 2 (II)

Assumptioni 4 Assumption ¥
YeS§ Y e S]OC(l)
rq_ >1o0r

{P(Y = k)}is ENI

In what follows, letU denote a random variable iy andU;, (5 € Z.) denote independent
copies ofU. Let U, denote the discrete equilibrium random variablelgfdistributed with
P(U, = k) = P(U > k)/E[U] (k € Z,). Further, for anyh € NU {oco}, let A, = (0, k] and
k+Ap={x>0k<zx<k+h}forkeZ,.

A.1 Ordinal subexponential class

We begin with the definition of the long-tailed class, whidvers the subexponential class.

Definition A.1.1 ([3,[2,121]) Arandom variablé/ in Z, and its distribution are said to be long-
tailed if P(U > k) > 0 for all k € Z, and

P k+1
lim—(U> + ):

The class of long-tailed distributions is denotedy

The following result is used to derive some of the asympteisults presented in this paper.

Proposition A.1 (Proposition A.1in [19]) If U, € L, then for anyh € N, [, € Z, andv =

0,1,....h—1,
1 SR PU>k+lh+v) 1

E[U] k0 PU. > k) T
We now introduce the definition of the subexponential class.

Definition A.1.2 ([7,/9,21]) A random variabld/ and its distribution are said to be subexpo-
nential if P(U > k) > 0 for all k € Z, and
P(Ul + Uy > /{3)

lim =

The class of subexponential distributions is denote& by
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Remark A.1.1 S C L (see, e.g./[21]), and there exists an example of not sulmexp@l but
long-tailed distributions (see [20]).

The following is a discrete analog of claS$s introduced by Kluppelberg [16].

Definition A.1.3 A random variabld/ and its distribution belong to class if P(U > k) > 0
forallk € Z, and

= PU>k-1)PU>1)
lim
k—o0 =0 P(U > ]{7)

= 2E[U] < . (A.1)
Remark A.1.2 If U € §*, thenU € S andU, € S (see Proposition A.2 in [19]).

A.2 Locally subexponential class

We first introduce the locally long-tailed class, which igu&ed by the definition of the locally
subexponential class.

Definition A.2.1 (Definition 1 in [4]) A random variablel and its distributionF" are called
locally long-tailedwith spanh € N U {oo} if P(U € k + Ay) > 0 for all sufficiently largek
and

k—o00 P(U ek -+ Ah)

We denote by,,.(h) the class of locally long-tailed distributions with spahereafter.

=1

Remark A.2.1 By definition, £..(co) = L. Further, ifU € L,.(1), thenU € L,..(n) for all
n=2,3,...andU € L.

The following proposition is a locally asymptotic versiohRropositiorf A.1.

Proposition A.2.1 Suppose (iJ € Li(1); or (i) U € L and{P(U = k)} is eventually
nonincreasing. Then foranye N, [, € Z, andv =0,1,...,h — 1,

Y PU=k+1lh+v) 1
hm 0 —

fmsoc P(U > k) T h (A-2)

Proof. See Appendik Bl8. O

Definition A.2.2 (Definition 2 in [4]) A random variablel and its distributionF" are called
locally subexponentiakith spanh € NU {oo} if U € Ly,.(h) and

. P(U1—|—U2€/€+Ah)
lim

= 2.
k—o0 P(U ek -+ Ah)
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We denote byS,..(h) the class of locally subexponential distributions withrspa Obvi-
ously,Si,.(c0) is equivalent to (ordinal) subexponential clasésee Definitioh A.1R). Further,
Definition[A.2.2 shows tha$,,.(h) C Lic(h).

Remark A.2.2 If U € Si.c(h) for someh € N, thenU € Si.(nh) foralln € NandU € S
(see Remark 2 in [4]).

Proposition A.2.2 U € S* ifand only ifU, € Sjpc(1).

Proof. The if-part is obvious. Indeed, sinégU, = k) = P(U > k)/E[U] for k € Z,, it
follows that if U, € Si..(1), then[A.1) holds, i.el/ € S*.
On the other hand, suppose (A.1) holds/oe 1. We then have

FurtherU € S C L (see Proposition A.2 in [19]) and thus

LOPW k4D L PU=k+1)

7 =1.
k—oo  P(U > k) k—oo  P(U, = k)

As aresultl, € Sue(1). O

Proposition A.2.3 (Proposition 3 in [4]) Supposé/ € S,,.(h) for someh € NU {oco} and let
UY) (j € N) denote independent random variablein such that

P(UY € k+ Ay)
lim
k—00 P(U ck+ Ah)

:Cj €R+

Then forn € N,

 POUWHUD 4 UM e b+ A
lim = ch.
ko0 P(U € k+ Ap) ‘=

Further, if 37, ¢; > 0, thenUM + U®) + ... 4 U™ € S (h).

Proposition A.2.4 Let{F(k);k € Z,} and{F};(k);k € Z,} (j = 1,2,...,m) denote proba-
bility mass functions. Suppose fi)€ S..(1); and (ii) for j = 1,2, ..., m,

- Fy(k)
kll_g)lo Flk) c; € Ry (A.3)

Then for anye > 0 there exists somé. € (0, co) such that
Fl*nl * Fz*nz % ok F;an(k) < C€<1 + €)n1+n2+~~~+an(k)7 (A4)

forall k > sup{k € Z,; F(k) =0} andnq,ns,...,n, € N.
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Proof. See Appendik Bl9. O

Proposition A.2.5 Ford; € N (i = 0,1,2), let{P(k);k € Z,} and{Q(k); k € Z.} denote
nonnegativel, x d; andd; x d, matrix sequences, respectively, such tRat= Y,  P(k)
andQ :=> -, Q(k) are finite. Suppose that for sorflec S,.(1),

. Pk) o+ Q)
ey P20 e =Q=20
We then have p .
im 229 _ pg 4 po.

koo P(U = )
Proof. This proposition can be proved in the same way as Propo%iti®m [19], and thus the
proof is omitted. O

Proposition A.2.6 Let{W (k); k € Z. } denote a sequence of (finite dimensional) nonnegative
square matrices such that >, W" = (I — W)~ ! < oo, whereW = >"7° W (k). If there
exists somé&’ € Sj,.(1) such that

1 I S A >
Jim 3] B W >0,
then

. ZZO:O W*n(k) _ —1yx7 -1
JE&W = (I-W)'W({I-w)L.

Proof. Using Propositiof A.2]5, we can readily prove, by inductithat

W (k n—1 .
(®) => wwwr (A.5)
=0

lim

ko0 P(U = k)

Further it follows from Proposition A.2.4 that for amy> 0 there exist som&, € Z, and some
C. € (0,00) such that for alk > ky, andn € N,

(W™ (k)i Sp—
PO S O+ W

Note here thatp(W) < 1 and thusy (1 +¢)"W" < oo for any sufficiently smalk > 0.
As a result, using the dominated convergence theorenl ai), (#e obtain

W) WR) s WT(R)
lim &= — lim = lim ———
S PU=F) o PU = k) i PU = k)

oo n—1
_ Z Wlen—l—l
n=1 =0

—(I-W)"'W{I-w)".
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B Proofs

B.1 Proof of Proposition[Z.1.4
Equation[(2.B) yields
det(I — A) = det(I — R) det(I — ®(0)) det(I — Q).
It thus follows fromsp(A) < 1 that
det(I — G) #0, det(I —R)#0. (B.1)
Note here that by definition,

N
> D IG(k))ij =P(Tey <00 | Xo =N, 8 =i), forall N eN,

k=1 jeM

which shows thatGe < e and thussp(G) < 1 (see Theorem 8.1.22 in_[11]). Further,
sp(R) < 1 due to the duality of thé?- and G-matrices (see [26]). Therefore, it follows from
Theorem 8.3.1in[11] and(B.1) that ¢p(G) < 1 and (ii)sp(R) < 1.

Finally, we prove (iii). From[(2]1), we have

o
—_

®(-k)>0, 0< ®(—-l)e<e, forallkeN,

l

which implies thatp(> ", ®(—1)) < 1 (see Theorem 8.1.22 in [11]). Thus it suffices to prove
that)",°, ®(—!) does not have the eigenvalaee Indeed,[(2.2) yields

Il
=)

I-®0)I-G)=T-) &(-I).

=0

Therefore we havéet(I —>",° ®(—1)) # 0 becausd — ®(0) is nonsingular anep(G) < 1.

B.2 Proof of Proposition[2.5.1

We prove this proposition by reduction to absurdity. To dos®suppose either ({r is strictly
lower triangular, or (ii)G takes a form such that

G, O O
G=| G G O |, (8.2)
G3,1 G3,2 G

whereG; (i = 1,2) is irreducible andG, can be equal t& 1 (in that case, the last block
row and column vanish). If (i) is true, tha® is a nilpotent matrix, which is inconsistent with
I(G) = 1.
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In what follows, we consider case (ii). For simplicity, werfiigon the phase s&¥l into
subsetdVl;, M, and M3 corresponding td&;, G, and G3, respectively. Further we write
(k1) 0y (I,7) (k,l € N;i,j € M) when statd/, j) can be reached from state, i) avoiding
level zero.

Let G (k) denote a submatrix a& (k) such tha) "> | G»(k) = G,. The irreducibility of
G5 shows thaE,fK:G1 G- (k) isirreducible for somél € N. Thus for anyi, € M, there exists

some(k}, i) € N x M such that

Similarly, 372, A(k) is irreducible for somé{, € N due to the irreducibility ofA, and
thus there exists sonié;, i;) € N x M such that

. J%) .
(k1,11) =3 (k‘éﬂé)
As a result,
.y #(0,%) 7y #(0,%) . . .
(k1si1) — (K5, d5) — (1,42), 41 € M, da,i5 € M,

which contradicts to the structure 6f shown in [B.2).

B.3 Proof of Proposition[2.5.2

From Theorem 8.1.18 in [11], we have

sp(R(w)) < 3(R(1)) <1, (B.3)
where the second inequality is due to the positive-receg@hT” (see Theorem 3.4 in [25]). It
follows from (2.8), [B.B) andp(®(0)) < 1 that

det(I — A(w)) =0 < det(I — G(w)) = 0.

Note here thatp(A(w)) < 6(A(1)) = 1 andsp(G(w)) < §(G(1)) = 1 (see Theorem 8.1.18
in [11]). Thus

As a results(G(w)) = 1 if and only if §(A(w)) = 1. Finally, the statement (i) follows from
(2.21) and Propositidn 2.4.2.

Since the statement (i) is proved, we readily obtain theestants (ii) and (iii) by applying
Theorem B.1 in[[14] to the MAdI?(X,SG), 5’,§G))} and using[(2.119). Further, the statement (iv)
is an immediate consequence(of (2.19) and Lemma B!3in [14].
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B.4 Proof of Proposition[2.5.3

SinceA is stochastic, it follows from Propositions 2.4.1 and 2t6& forv = 0,1,...,7 — 1,

S(A(wr)) = 5(A(1) =1, 3(G(w) =6(G(1)) =1, (B.4)
p(w?) = wAy (W) v(WwY) = Ay (wl)e, (B.5)
where we us@i(1) = 7 andv(1) = e. Therefore,[(2.24) and the second equatiof in|(B.5) yield
v(wt) = Aulete = y(w?).
We now definep(w”) as
) - P~ RE@))T — (0)
U w(w)(I = R(w))(I - @(0))v(wy)

: v=01,...,7—1. (B.6)

It can be shown thap (w”) = 1(w”), whose proof is given later. From (2.8), we have
I—GW) = (I-(0)'(I - Rw)™(I - A(wY)).

Pre-multiplying (resp. post-multiplying) the above edoatby v:/;(w;’) (resp.v(w?)) and us-
ing (B.4), we can readily verify thaf;(wi) (= Y(wY)) andv(w?) = y(wY) are the left- and
right-eigenvectors o&(w”) corresponding to the eigenvaldéG(w?)) = 1. As a result, the
statement (i) holds.

As for the statement (ii), it follows from the second equatiio (B.5) and[(B.6) that

P(w!) Ay (wh)e = p(w)v(w?) = 1.

Therefore the statement (ii) can be proved in the same wayegsroof of Lemma 3.2 in [14].
In what follows, we provep(w”) = t(w”). For this purpose, we first show that

D W' R(l) = Ay (W)Y BN AN(W) (B.7)

The definition of® (/) (I € Z.) implies
[‘I)(l)]w = P(XTUH =1+ L, STUH =] | Xo =1, So = i)?

whereT|;y =inf{n e N; X, =l+1< X,, (m=1,2,...,n—1)}. Further[(2.1l7) and(2.18)
imply that for alln € N, the following probability is positive only if = p(j) — p(i) (mod 7):

PX,=1+1,8,=jXn>1(m=1,2,....n—1)| Xo=1,5 = i).

Thus[®(1)];; > 0only if I = p(j) — p(i) (mod 7), which leads to

[e.e]

> A0() = Ay (2)Ae() A(2) (B.8)

=0
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whereAs(z) denotes ard/ x M matrix whos€(i, j)th element is given by

[As(2)]i; = > 2@+ p(j) — pli))]ig-
D) ()20

As aresult,[(B.B) yield§(BI7) becauda, (1) = >",°, ®(1).
We now return to the proof ofy(w?) = ¥ (w”). From [25) and[(BI7), we have for =

0,1,...,7—1,

— Ay ()T ~ R)(I — ®(0)An (), (B.9)

where the last equality follows from the first equality with= 0. Substituting[(B.b) and (Bl9)
into (B.6) yields

B.5 Proof of Lemmal3.1.2

From (2.4), we have

~ CadjI - G(1/2)
L(1/z) = dot(I @(1/2)) I (B.10)
Note here that
‘ 1/Z 4,7 i k [G]i,j> Za] € M> |Z| < 17
k=1
sp(G(1/2)) < sp(G) = 1, 2] < 1.

It then follows from Proposition 2.5.2 théw?; v = 0,1,...,7 — 1} are the simple minimum-
modulus poles of(l/z). Therefore applying Theorem A.1 in [14] fo (B]10), we obtain

5L (2 adid ~G(1/2) ete
L(k) = li (1 )det( a(l/z))+0((1+eo)) : (B.11)
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for somes, > 0, wheref(z) = O(g(x)) representdimsup,_, . |f(z)/g(z)| < oco. Further it
follows from I'Hopital’s rule and Proposition 2.5.3 thatrfv = 0,1,...,7 — 1,

(1 - 1) adj(I — G(1/2))
w? ) det(I — G(1/2))
T adid - G

lim A
=1 —60(G(1/2)) ﬁ(l N (wr"))

=2

lim
z—wY

1 —v w—l/
Wl (d/d2)8(G(1/2)) ] smue e
et

1
G A (W) = An(wr) 7 B.12
o (d)d2)5 (G (1)2)) e (Wr") gt (wr”) (B.12)

where the last equality is due {0 (2123), (2.24) dnd| (3.3)tihgy = 1/z, we have

RN

v d =
Wi 0(G(1/2))

— gV
z=wY T

(B.13)

where the second equality is due to Proposition 2.5.2 (ipphping (B.13) to [B.1R) yields

- (1 ) i) il — G(1/2)
Zwy w? ) det(I — G(1/z))
-1 _ev —y—1
= = ‘AJ\/] wT” —AM WTV . B.14
A @am 2rer et (B.14)

In what follows, we calculatéd/dy)é(@(y))\yzl. Taking the derivative of both sides of
(2.22) withz = y, lettingy = 1 and usingS(@'(l)) = 1, we have

1 d _
S gy QeI =G| (B.15)

SR | (CEP YY)

=2

d -~
d—y5(G(y))

Similarly, fromdet(I — G(y)) = = - adj(I — G(y))(I — G(y)) - e, we obtain

= -adi(I — G) i kG(k)e, (B.16)

—1
Y k=1

d .
m det(I — G(y))

where we usé&'e = e. Note here that Proposition 2.5.3 ahd {3.3) imply

adj(I - G) = w—‘/’ 0= A9,

=2
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It thus follows from [B.16) and Lemnia3.1.1 that

_ % i kG(k)e - TT1 = A1)

~

4 get(T — G(w))

dy y=1 =2
1 M
= v [T -9y, (B.17)
=2

where the second equality is dueitoy ;- , kG(k)e = 1 (see[(3.1) and(3.3)). Further substi-
tuting (B.17) into [B.Ib) yields

d  ~ 1
d—y5(G(y)) T e
from which and[(B.14), we have
(0 2\ adiI-G(/2) L, i
i, (1 )det T = Al ey An(er ) (B.18)

Finally, we havel(3)2) by substitutinig (BI18) info (Bl11)ddettingk = nr + I.

B.6 Proof of Lemmal3.1.4

Equations[(3]7) and (3.9) show that for any 0 there exists some., := m.(¢) € N such that

forallm >m,andl =0,1,...,7 —1,
-1
e(typ —ee') Z (Im/7]T+1) < e(te) + ce'), (B.19)
1 _Z(Lm/TJT +1l)e 1
v (ca —ce) < POY > m) < E[V] (ca + ce). (B.20)

Further sinc&, € LandL(m) < ee*forallm =1,2,..., we have

m 1
. ' A(k +m)L(m)
1
lzasgp,; PV, > )

A(k+m)eet P(Y > k+m)
< S i
Z P PY Skt m) P P(Y. > k+m)

o T s P(Ye > k+m)

1 u

el P(Y. > k)

-0, (B.21)

m=1

where the last equality follows frorn (3.9) and the fact tHat £ has a heavier tail thar (see
Corollary 3.3 in[[21]).
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On the other hand,

oo

A(k+m)L(m) k+m7‘+l) (m/'T +1)
Z P(Ye > k) sz ZZ:: P(Y. > k)

f: Ak +m'T)

PY>k
m/=|m. /7]

= Ak
> %(T’I# + ee'), (B.22)
m/=|m./r] ¢

T7—1
Lm7‘+l
1=0

where the second inequality holds becafi#k); k € Z, } is nonincreasing, and where the
last inequality is due td (B.19). Note here tHat [3.9) impher all sufficiently largek,

f: A(k+m'T)e
P(Y.
m/=|ms« /7] ( e~ k)
1 = P >k+mT)
< R
>~ (CA + 56) E[Y] _LX:/TJ P(}/;: > kf) 9

from which and Propositiodn Al 1 it follows that

= A(k+m'T)e cGatfee

PY.>k) — 7 (823

lim sup
k—o00

m/={m. /7
Combining [B.22) and (B.23) and letting|. 0 yield

[e.e]

A(k+m)L(m)
li < ) B.24
1Zrisolip Z P> k) = cap ( )

As a result, from[(B.21) and(B.24), we have

lim su o~ Alk+ m)L(m)
k—)oopmzl P<Y;> > k)

Next we consider the lower limit. It follows fronh (B.119) arlf.20) that

= A(k +m)L(m) =\ A(k+m)L(m)
2. P(Y, > k) > P(Ye>k)

< ). (B.25)

m=1

- k+mr+lum%+0
>

m/={m./7]+1 1=0

0o — T—1

Ak+m/T+71)
2 P(Y. > )

v

L(m't +1)
1=0

m/=|my/7]+1

> Ak +m'r)e t
Z W(T’l/) —ce ), (826)
m/=|m« /7|42

v
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where the third inequality requires the fact that(k)} is nonincreasing. Further the following
can be shown in a very similar way {0 (BI23):

L > Z(k‘ +m'T)e _ ca—ce
lim inf Z P(Y. > ) > —

k—00
m/'=|my /7|42

Combining this with[(B.26) and letting | 0 yield

A(k+m) )
hrgg}f; PV = k > cqtp. (B.27)

Finally, (3.10) follows from[(B.2b)[(B.27) an@ (3.3). Ediem (3.11) can be proved in the same
way, and thus the proof is omitted.

B.7 Proof of Lemmal4.1.1

We give the proof ofi(4]2) only. Equation (#.3) can be provethe same way. It follows from
(3.4), Ee = e and [5) that for= > 0 there exists some:, := m.(¢) € N such that for all
m>m,andl=0,1,...,7— 1,

E(TH, —cee') < L(m) < E(TH,; + cee'), m =1 (modr), (B.28)

1 - . A(m)E 1 E ¢
77 (Ch —cee') < 5y < g (Ch + oee) (B.29)

Thus from [4.1),L(m) < Eee' andY € £ (see RemarkA.211), we have

S Ak +m)L(m)
m > e h

ms—1

A(k+m)Eee'P(Y =k +m)

<E[Y li = 0.
<EY] ) im Py —ktm) PV Sk 2
=1
Using this and[(B.28), we obtain
. . A(k +m)L(m)
lim su
. A(k+m)L(m)
=1
e 3 - gy
7—1
A(k+m)L(m)
= lim sup
k—o0 —0 m;u P(Yve = k)
m=l (mod 7)
T—1
: A(k+m)E
< 1 —_—— H 5. B.30
< 12n_>solip Z P(Y. = ) (TH, + cee’) ( )



36 Kimura et al.

Further it follows from[(B.2B) and Proposition A.2.1 that

: A(k+m)E
lim su S
P ;ﬂ P(Ye = k)
m=l (_modT)
C% +cee' P(Y =k+m)
——————limsu
=TEY] ey m;n P(Yo = k)
m=l (_modT)
_ C} +cee (B.31)
B :

Substituting[(B.311) intd(B.30) and letting|. 0, we obtain

—_

A+ mLOD) oS> g cEgy

l

IA

lim su
P Zl P(Ye = k)

m=

Il
=)

where we usé _(318) in the last equality. Similarly, we cannstiwat

>\ A(k 4+ m)L(m)

im i > CPeq).
hgggjfm_ P(Y. = ) > Cyey
As aresult,
= A(k+m)L(m) g
D Y 4

from which and[(3.8) we havé(4.2).

B.8 Proof of Proposition[A.2.1

We assume that condition (i) holds. It follows frdme £,..(1) that for any= > 0 there exists
ko € N such that for alk > kyandl € Z .,

P(U =k +1h +v)
1—e< <1 —0,1,....,h—1.
B () R

Thus for allk > k,, we have

- ZfilOP(U:k+lh+u)

1— <
- Z;’ilOP(U:th) -

l4+e, v=0,1,....h—1,

which leads to

S, PU=k+1h+v)
li —= =1 =0,1,...,h—1. B.32
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Therefore[(B.3R) yields for = 0,1,...,h — 1,
. Y, PU=k+1h+v)
k—oo  P(U >k +1lgh—1)
. Z;’;O PU=k+1h+v)
koo 3o 1w P(U =k +m)
b >, PU =k +1h)
koo 30 2o, P(U = K+ 1h + )
S PU=k+lh+v) 1
CLPU=k+in) A
Note here that it/ € £,,.(1), thenU € £ and thudimy_,. P(U > k+1loh—1)/P(U > k) = 1.
As aresult,[(B.3B) implies (Al2).

Next we assume that condition (ii) holds. It then followsttfwa all sufficiently largek,

(B.33)

S PWU=k+1h)>Y PU=k+lh+j), jeEZy (B.34)
I=lo I=lo

Thus for any fixed (possibly negative) integer

) P(U =k + lph +1)

lim —

k—oo h ) 0 P(U =k +1h)

P(U = h+i
< lim —— ((0]0 k¥ loh 1) :
koo 30 Dy, PU =k +1h +j)

— lim PU>k+Ilh+i—1)—PU > k+loph+1)
koo P(U > k+lph—1)

=0,

which implies that PU =k + Lo 1
: =k+lh+i
JﬁingwU:k+uo:0 (B.35)
Further [B.34) yields for all sufficiently large
- Yoo, PU=Fk+1h+v)
— YL, PU=Fk+1h)
S P(U =k + lyh)
- >, PU=Fk+1h)’
from which and[(B.3b) it follows that (B.32) holds for= 0,1,...,h — 1. Therefore we can
prove [A.2) in the same way as the case of condition (i).

v=0,1,...,h—1,

B.9 Proof of Proposition[A.2.4

The techniques for the proof are based on Lemma 4.2/in [1] amdrha 10 in[[12], though
some modifications are required. For the reader’s conveajewme provide a complete proof of
this proposition.
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We first prove the statement under an additional conditiateth> O forall j = 1,2, ..., m,
and then remove the condition.

Let C = max{l,ci,...,cn}, dp = landd; = ¢;/C < 1forj =1,2,...,m. Let Fy(k)
(k € Z.) denote a probability mass function such thgtk) = C F'(k) for all sufficiently large
k > ko, wherek, is a positive integer such that(k) > 0 for all & > k, (see Definition§ A.2]1
andA.2.2).

From [(A.3), we have

.

lim (k)

=d; < ) = . .
Jim d;<1, j=01,...m (B.36)

~—

Further since; € Si,c(1) C Lioc(1) (See Proposition A.2.3),

o S BOE(k-1) ¢ _
d Jim SSEG T m ) RO (837
. Fix Fi(k)
foralli,j =0,1,...,m. Thus any > 0, there exist some positive integérsandk” such that

K" > 2k > 2ko, Fo(k) = CF(k) < 1forallk > k' and for alli, = 0,1,...,m,

Fo(k+1) ,
>1—¢ Vi > K, B.39
Fy(k) ( )
e Fi(k) £
—— <2< - >k .
d, 8_F0(l<;)_1+2’ Yk > K, (B.40)
k' —1
RO (k- D) e
=0 J >1—-— k> k' B.41
IR el BA
Fyx Fy(k) < (d; + d; + £/4) Fy(k), VEk > kK. (B.42)

Note here tha{{B.39)[(B.40), (B41) and (B.42) follow frdfp € L1..(1), (B-38), [B.37) and
(B:38), respectively.

We now show[(A.4) for the convolution of two mass functidnandF; (i, j = 0,1, ..., m).
Note that

Fox Fy(k) = Fi(k=DF;() + ) Fi(DFj(k—1). (B.43)
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It then follows from [B.40),[(B.41) and (B.42) that fer> k" > 2K/,
k—k'

k-1
Y FEi(k—DF;(l) = F« F;(k) = > F()F;(k—1)
=0

=0

< <di +dj+ Z) Fo(k) — (1 — 8%}) F;(k)
< {(di +d; + Z) —(1- 8%3») <dj - %)} Fo(k)
< (di+5) Folk) < (1+5) CF(R), (B.44)

where the last inequality is due th < 1 andFy(k) = CF (k) for all k > k’. Applying (B.44)
to (B.43), we have fok > k" > 2k,

F Bk < (14 5) CF0) + 3 B (k1)

< (1 + %) CF(k)+ sup F;(1). (B.45)

k—k'+1<I<k

Further fork > k" > 2K/, k — k' +1 > k' + 1 and thus[(B.39) and (B.40) yield

sup  Fj(l) < <1 + E) sup  Fo(l)
=K/ 1<I<k 2/ h—w1<i<k

IS5 FO(Z)
(1. € CCF(k
( 2> bk ieick Fo(k) "

€ 1
< 2y - .
< (1+ 2) e CF )
— (1 + %) O CF(k), k=K' > 2k, (B.46)

whereC’ = 1/(1 — ¢)¥~1. Substituting[(B.46) intd (B.45), we obtain

i« Fi(k) < (1 + %) (14 C") CF(k)
< (1+¢)-2C'CF(k)
<200 (1+e)2CF(k), k> k' (B.47)

where we us€” > 1. Note here that’; « F;(k) < 1forall k € Z, and

sup  F(k)/F(K") € (0,00).

ko <k<k'—1

Therefore there exists som€ > 0 such that

» F'(F)
F,x F;(k) <
i ¥ ](k) — C& F(k//)
C//

SN STaCas ’ <k<K -1 .
—CF(k//) (1+8) CF(k)a kO_k_k 1 (B48)
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We now definek, as

C// 2_'_6
Kg — 2 /’ I3 , !
ma"( Ce CF(k") =(1+ )2 )

We then have the following inequality (which is used later).

&) ¢ 28
(1+ 2) CL< Ki(1+e). (B.49)
Further combining (B.47) and (B.48) leads to

Fix Fj(k) < K.(1+¢)’)CF(k), k> k. (B.50)

Next we show[(A.#) for the convolution of three mass funcsidf, £; and F,, (i,j,v =
0,1,...,m). It follows from (B.50) andFi,(k) = CF(k) for all k > £’ that

Fix Fi(k) < K.(1+¢)*Fy(k), k>K.
From this andl(B.46), we have fér> k" > 2K/,

k—k'

=Y ExF(k—DF,()+ kiF « Fy(D)F,(k —1)

k—k'
<Y FxFi(k—0)F,0)+ sup F()
=0

k—k/+1<I<k
k—k'

< K1+ Y Folk—0E,0) + (1+ %) C'OF(k). (B.51)
=0

Applying (B.44) and[(B.40) td (B.51) yields fdr > k" > 2k,
< K.(1+¢)? (1 + g) CF(k) + K.(1+ e)ngF(k)
= K.(1+e) (1+ =+ 2) CF(k)

2 2
= K.(1+¢)’CF(k).

Further using”” > 0 such that[(B.48) holds, we obtain

» (k)
F,« F; « F,(k) < C” F e
C//

< € . 3 < < //_ .
S GF (1+e)’CF(k), ko<k<Kk'-1
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ThereforeF; « F; x F,(k) < K.(1+ ¢)3CF(k) for k > k.

By repeating the above argument, we can prove (A.4xhatdder the additional condi-
tion thatc; > O forall j = 1,2, ..., m. In what follows, we remove this condition.

Without loss of generality, we assume theat= 0 for j = 1,2,...,m' (1 < m' < m) and
¢; >0forj=m'+1,m +2,...,m. Then for anyy > 0, there exists some positive integer
k. = k.(d) > ko such that for alk > k.,

F;(k) < 0F(k), j=1,2,....m.
Let {F;(k);k € Z,} (j = 1,2,...,m') denote a probability mass function such that

~ o Fj(l{i)/@], k < ki,
Filh) = { 5F(k)/©;, k> k.,

where®, := 0;(§) = ’,2;‘01 Fj(k) + > 52, 0F (k). It then follows thatF; (k) < 0, F;(k) for
allk e Z,andj =1,2,...,m'. Thus we have

By s By oo 3 (k)

!

<TI0 - Fmose s Eppm s Fp it s oo i (k). (B.52)

m/+1
j=1
By definition, .
F;(k) ) .
1 J = — =1,2,...,m.
kl—>noloF(k:) @j>0, J=L2,....m
Therefore for any > 0, there exists somé&. > 0 such that

F1%11 [T, M/ 41 *n
Fi™ sox Fm s F 0 - ox F ()

< CL(1 4 g)mtmttnm Py, (B.53)

Note here thatims,, ©,(6) = 1 forall j = 1,2,...,m’. Substituting[(B.53) into(B.52) and
letting d | 0 yields (A.4).

C Examples

C.1 M/GI/1 queue with Pareto service-time distribution

We consider a stable M/GI/1 queue with a Pareto service-tiisieibution. Let\ denote the
arrival rate of customers. Lé{ denote the service time distribution, which is given by

Hz)=1—-(z+1)77, x>0,
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with v > 1 and~y ¢ N. Note here that the mean service time is equdl/tey — 1) and thus the

traffic intensity, denoted by, is equal to\/(y — 1) < 1. Letf[(s) denote the Laplace-Stieltjes
transform (LST) of the service time distributidi. It then follows from Theorem 8.1.6 inl[5]
that

7)sT + o(s7), (C.1)

whereh; = [ 2/dH(z) (j = 1,2,...), f(z) = o(g(z)) representdim, .o f(z)/g(z) =
andI’ denotes the Gamma function. Equation {C.1) yields

[
H(\ - Az) Zh 1 _Z) T -V (1—2) +o((1—2)).  (C2)

It is well-known that the stationary queue length distribntof the M/GI/1 queue, denoted by
{z(k); k € Z, }, is identical with the stationary distribution of the foNlong stochastic matrix:

where{a(k); k € Z, } satisfiesy - , 2" a(k) = H(X—\z)and thusy "~ | ka(k) = p.
Leta(k) = > =, ., a;for k € Z,. From [C.2), we then have

(k) = 1 T_Az_ A2)
k=0
_ Z h, 1‘ — z)j‘l
+ F(l — PN (1= 2" 4+ o((1—2)7h). (C.3)

Applying Lemma 5.3.2 in[23] td(Cl2) and (C.3) yields

a(k) X N (C.4)
alk) X N, (C.5)

where f(z) ~ g(x) representsim,_,., f(x)/g(z) = 1. Note that[C}) shows that the dis-
crete distribution{a(k); k € Z.} is in the classCy,.. In fact, as shown latefa(k)} € S*,
i.e., {a.(k)} € Sie(l), wherea.(k) = @(k)/p for k = 0,1,.... Therefore it follows from
Theoreni4.1]1 that

a(k:) e A7

kP P _
kf\./—~ Ok: . ~/ kﬂy.
(k) k) =3— == ~7
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In what follows, we prove thafa(k)} € S*, i.e

Z k—1) ~2p a(k).

=0

Letv := v(k) denote an integer such that3 < v(k) < k/2. Fork € Z,, we have

k v—1 k—v
a(lya(k—1) _alk=1) _alk=1)
; SO 2 3 a(l) O 3 a(l) =0 (C.6)
From [C.5), we obtain
1/—1_ a(k . l) zx—l_ ' v—1
lim a(l)— = a(l) lim (C.7)
k=00 £— a(k) ; Pl e

Further it follows from [[C.b) that for any > 0 there exists somg&, € Z, such that for all
k> k./3,

a(k)
Mk
which implies that forx > k, andk/3 < v < k/2,

—v _ k—v —
Z a 1t622A75 ( ) v

l=v

1—e<

<l+e¢,

| /\

7(11+_&2 N(k—2+1r7 (7))

(1+¢)? AN
— XNk 37
1—¢ 3

(1+¢)?
1—¢

IA

| /\

< (ON)k T =0, ask — co. (C.8)

Finally, applying [C.V) and(Cl8) t6 (3.6) and letting— oo yield

C.2 Discrete-time queue with disasters and Pareto-distrilted batch ar-
rivals

This subsection considers a discrete-time single-seneurgwith disasters and Pareto-distributed
batch arrivals. The time intervak,n + 1) (n € Z.) is called slotn. Customers and disasters
can arrive at the beginnings of respective slots, wherepartiges of served customers can
occur at the ends of respective slots.
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We assume that the numbers of customer arrivals in respesitits are independent and
identically distributed (i.i.d.) with a discrete Paretstibution,5(k) = 1/(k+1)"—1/(k+2)"
(k € Zy), wherey > 1. Service times are i.i.d. with a geometric distributiontwihean
1/(1 —¢q) (0 < ¢ < 1). We also assume that at most one disaster occurs at oneigiot w
probability ¢ (0 < ¢ < 1), which are independent of the arrival process of customéra
disaster occurs in a slot, then both customers arrivingerstt and all the ones in the system
are removed.

Let L, (n € Z,) denote the number of customers at the middle ofisldtthen follows from
Propositiori 2.2]2 tha§L,.;n € Z, } is an ergodic Markov chain whose transition probability
matrix is given by

b(0)  b(1) b(2) b(3) b(4)
o+a(0) a(l) a(2) a(3) a(4)
¢ a(0) a(l) a(2) a(3)
¢ 0 a(0) a(1) a(2) ’
0 0 0 a(0) a(l)
where
b(0) = ¢+ (1 — ¢)5(0),
b(k) = (1 - 9)B(k), k=1,2,...,
a(0) = (1 = ¢)B(0)(1 —q),
a(k) = (1= ¢)[B(k —1)g+ B(F)(1 - q)], k=12,
It is easy to see thdt,- ja(k) =1— ¢ < 1and
L N () B
g ST imgay =1loe

Note here thaf3(k); k € Z, } is decreasing and
Bk) & k7,

Thus as in subsectidn C.1, we can show thatk); & € Z,} € Sic(1). As a result, Theo-

rem4.2.1 yields

lim P(L, = k) £ L= 250y &

n—o0 [0)

11—
—kT7
¢7
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