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Abstract

This paper considers the subexponential asymptotics of thestationary distributions of

GI/G/1-type Markov chains in two cases: (i) the phase transition matrix in non-boundary

levels is stochastic; and (ii) it is strictly substochastic. For the case (i), we present a

weaker sufficient condition for the subexponential asymptotics than those given in the

literature. As for the case (ii), the subexponential asymptotics has not been studied, as

far as we know. We show that the subexponential asymptotics in the case (ii) is different

from that in the case (i). We also study the locally subexponential asymptotics of the

stationary distributions in both cases (i) and (ii).

Keywords: GI/G/1-type Markov chain; (Locally) subexponential; Markov additive process

(MAdP); Stationary distribution.
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1 Introduction

This paper studies the subexponential asymptotics of the stationary distribution of an irre-

ducible and positive recurrent Markov chain of GI/G/1 type [10]. The GI/G/1-type Markov

chain includes M/G/1- and GI/M/1-type ones as special casesand plays an important role in

studying the stationary queue-length and/or waiting-timedistributions in various Markovian

queues such as continuous-time BMAP/GI/1, BMAP/D/c, SMAP/MSP/c queues, and discrete-

time SMAP/GI/1 queues, where BMAP, SMAP and MSP represent batch Markovian arrival

process, semi-Markovian arrival process and Markovian service process, respectively.

∗This is a revised version of the paper published in Stochastic Models vol. 29, no. 2, pp. 190–293, 2013.

In the revised version, some editorial errors are correctedand supplements are added.
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Let {(Xn, Sn);n = 0, 1, . . . } denote a GI/G/1-type Markov chain such thatXn ∈ Z+ :=

{0, 1, 2, . . .} and
Sn ∈ M0 := {1, 2, . . . ,M0}, if Xn = 0,

Sn ∈ M := {1, 2, . . . ,M}, otherwise,

whereM0 andM are positive integers. The state space of{(Xn, Sn)} is given byS = ({0} ×
M0) ∪ (N ×M), whereN = {1, 2, 3, . . . }. Further, the sub-state spaces{(0, j); j ∈ M0} and

{(k, j); j ∈ M} (k ∈ N) are called level 0 and levelk, respectively.

LetT denote the transition probability matrix of the GI/G/1-type Markov chain{(Xn, Sn)},

which can be partitioned as follows [10]:

T =




lev. 0 1 2 3 · · ·
lev. 0 B(0) B(1) B(2) B(3) · · ·

1 B(−1) A(0) A(1) A(2) · · ·
2 B(−2) A(−1) A(0) A(1) · · ·
3 B(−3) A(−2) A(−1) A(0) · · ·
...

...
...

...
...

. . .



,

whereA(k) (k ∈ Z := {0,±1,±2, . . . }) is anM × M matrix,B(0) is anM0 × M0 matrix,

B(k) (k ∈ N) is anM0×M matrix, andB(k) (k ∈ Z \Z+) is anM ×M0 matrix. Throughout

the paper, we assume the following, unless otherwise stated.

Assumption 1 (a)T is an irreducible and positive-recurrent stochastic matrix; (b)A :=
∑∞

k=−∞A(k)

is irreducible.

Under Assumption 1,T has a unique and positive stationary distribution (see, e.g., [6,

Chapter 3, Theorem 3.1]), which is denoted byx = (xj(k))(k,j)∈S. For later use, we define

x(0) = (xj(0))j∈M0 andx(k) = (xj(k))j∈M for k ∈ N. Further, letx(k) =
∑∞

l=k+1 x(l) for

k ∈ Z+.

Some researchers have studied the subexponential asymptotics of the stationary distribution

x = (x(0),x(1),x(2), . . . ) of the GI/G/1-type Markov chain (including the M/G/1-type one).

The previous studies assume thatA is stochastic, thoughA is not stochastic in general. In fact,

lim
k→∞

B(−k) 6= O if and only ifAe 6= e,

wheree denotes a column vector of ones with an appropriate dimension according to the con-

text.

We briefly review the literature related to this paper. For this purpose, letY denote a random

variable inZ+, and for a while, assume that

lim
k→∞

∑∞
l=k+1A(l)

P(Y > k)
= C1 ≥ O, lim

k→∞

∑∞
l=k+1B(l)

P(Y > k)
= C2 ≥ O,
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with C1 6= O or C2 6= O. Asmussen and Møller [2] consider two cases: (a)Y is regularly

varying; and (b)Y belongs to both the subexponential classS (see Definition A.1.2) and the

maximum domain of attraction of the Gumbel distribution (see, e.g., [9, Section 3.3]). For the

two cases, they show that under some additional conditions,

lim
k→∞

x(k)

P(Ye > k)
= c1 > 0, Ye ∈ S, (1.1)

whereYe denotes the discrete equilibrium random variable ofY , distributed withP(Ye = k) =

P(Y > k)/E[Y ] (k ∈ Z+). Note here thatY ∈ S does not necessarily implyYe ∈ S and vice

versa (see [21, Remark 3.5]).

Li and Zhao [17] show the subexponential tail asymptotics (1.1) under the condition that

C2 = O andY belongs to a subclassS∗ of S (see Definition A.1.3). Note here thatY ∈ S∗

impliesY ∈ S andYe ∈ S (see Proposition A.2 in [19]). Although Li and Zhao [17] derive

some other asymptotic formulae for{x(k)}, those formulae are incorrect due to “the inverse of

a singular matrix” (for details, see [19]).

Takine [22] proves that the subexponential tail asymptotics (1.1) holds for an M/G/1-type

Markov chain, assuming thatYe ∈ S but not necessarilyY ∈ S. Thus Takine’s result shows

that Y ∈ S is not a necessary condition for the subexponential decay of{x(k)}. However,

Masuyama [19] points out that Takine’s proof needs an additional condition that theG-matrix

is aperiodic. Further, Masuyama [19] presents a weaker sufficient condition for (1.1) than those

presented in the literature [2, 17, 22], though his result islimited to the M/G/1-type Markov

chain. Recently, Kim and Kim [13] improve Masuyama [19]’s sufficient condition in the case

where theG-matrix is periodic.

In this paper, we study the subexponential decay of the tail probabilities{x(k)} in two

cases: (i)A is stochastic (i.e.,Ae = e); and (ii)A is strictly substochastic (i.e.,Ae ≤ e, 6= e).

For the case (i), we generalize Masuyama [19]’s and Kim and Kim [13]’s results to the GI/G/1-

type Markov chain. The obtained sufficient condition for thesubexponential tail asymptotics

(1.1) is weaker than those presented in Asmussen and Møller [2] and Li and Zhao [17]. As for

the case (ii), we present a subexponential asymptotic formula such that

lim
k→∞

x(k)

P(Y > k)
= c2 > 0, Y ∈ S.

It should be noted that the embedded queue length process of aBMAP/GI/1 queue with disasters

falls into the case (ii) (see, e.g., [24]). As far as we know, the subexponential asymptotics in

the case (ii) has not been studied in the literature. Therefore, this paper is the first report on the

subexponential asymptotics in the case (ii).

We also study the locally subexponential asymptotics of thestationary probabilities{x(k)}.

In the case (i) (i.e.,A is stochastic), we prove the following formula under some technical
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conditions:

lim
k→∞

x(k)

P(Ye = k)
= c3 > 0, Y ∈ S∗.

Further, in the case (ii) (i.e.,A is strictly substochastic), we assume thatY is locally subexpo-

nential with span one(i.e.,Y ∈ Sloc(1); see Definition A.2.2). We then show that

lim
k→∞

x(k)

P(Y = k)
= c4 > 0, Y ∈ Sloc(1),

with some technical conditions. For the reader’s convenience, Appendix C presents simple

examples of the case where the stationary distribution is locally subexponential.

The rest of this paper is divided into three sections. Section 2 describes some basic results

on the GI/G/1-type Markov chain and its related Markov additive process (MAdP). In Sections

3 and 4, we studied the subexponential tail asymptotics and locally subexponential asymptotics,

respectively, of the stationary distribution.

2 The GI/G/1-Type Markov Chain and Its Related Markov

Additive Process

Throughout this paper, we use the following conventions. Let I denote the identity matrix with

an appropriate dimension. For any matrixM , [M ]i,j represents the(i, j)th element ofM . For

any matrix sequence{M(k); k ∈ Z+}, letM (k) =
∑∞

l=k+1M(l) (k ∈ Z+). For any two

matrix sequences{M(k); k ∈ Z+} and{N(k); k ∈ Z+} such that their products are well-

defined, letM ∗N(k) =
∑k

l=0M(k − l)N (l) for k ∈ Z+. Further, for any square matrix

sequence{M(k); k ∈ Z+}, let {M ∗n(k); k ∈ Z+} denote then-fold convolution of{M(k)}
with itself, i.e.,M ∗n(k) =

∑k
l=0M

∗(n−1)(k − l)M (l), whereM ∗0(0) = I andM ∗0(k) = O

for k ∈ N. The conventions for matrices are also used for vectors and scalars in an appropriate

manner. Finally, the superscript “t” represents the transpose operator for vectors and matrices.

2.1 R- andG-matrices

In this subsection, we assume thatT is irreducible and stochastic, but do not necessarily assume

the recurrence ofT .

We consider a censored Markov chain obtained by observing{(Xn, Sn)} only when it is

in levels 0 throughk (k ∈ Z+). Let T [k] (k ∈ Z+) denote the transition probability matrix of

the censored Markov chain, which is irreducible due to the irreducibility of the original chain.

Let T [k]
ν,η (ν, η ∈ {0, 1, . . . , k}) denote a submatrix ofT [k] such that[T [k]

ν,η]i,j represents the

probability that the censored Markov chain moves from state(ν, i) ∈ S to (η, j) ∈ S in one

step.
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From the block Toeplitz-like structure ofT , we see thatT [k]
k−l,k andT [k]

k,k−l are independent

of k if l ∈ {0, 1, . . . , k − 1} andk ∈ N. We thus defineΦ(l) (l ∈ Z) as

Φ(l) = T
[k]
k−l,k, l ∈ {0, 1, . . . , k − 1}, k ∈ N,

Φ(−l) = T
[k]
k,k−l, l ∈ {0, 1, . . . , k − 1}, k ∈ N. (2.1)

Note here that for any fixedν ∈ N, [Φ(0)]i,j represents the probability of hitting state(ν, j) for

the first time before entering the levels0, 1, . . . , ν − 1, given that it starts with state(ν, i), i.e.,

[Φ(0)]i,j = P(ST↓ν
= j | X0 = ν, S0 = i),

whereT↓l = inf{n ∈ N;Xn = l < Xm (m = 1, 2, . . . , n − 1)}. Thus
∑∞

n=0(Φ(0))n =

(I −Φ(0))−1 exists becauseT [k] is irreducible.

Proposition 2.1.1 (Theorem 1 in [10]){Φ(k); k ∈ Z} is the minimal nonnegative solution of

the following equations.

Φ(k) = A(k) +

∞∑

m=1

Φ(k +m)(I −Φ(0))−1
Φ(−m), k ∈ Z+,

Φ(−k) = A(−k) +
∞∑

m=1

Φ(m)(I −Φ(0))−1
Φ(−k −m), k ∈ Z+.

Remark 2.1.1 The proof of Theorem 1 in [10] is based on induction and probabilistic interpre-

tation, which are valid without the recurrence ofT .

LetG andG(k) (k ∈ N) denote

G =

∞∑

k=1

G(k), G(k) = (I −Φ(0))−1
Φ(−k), k ∈ N, (2.2)

respectively. Note that for any fixedν ∈ N, [G(k)]i,j represents the probability of hitting state

(ν, j) when the Markov chain{(Xn, Sn)} enters the levels0, 1, . . . , ν + k− 1 for the first time,

given that it starts with state(ν + k, i), i.e.,

[G(k)]i,j = P(XT<k+ν
= ν, ST<k+ν

= j | X0 = k + ν, S0 = i), k ∈ N,

whereT<l = inf{n ∈ N;Xn < l ≤ Xm (m = 1, 2, . . . , n− 1)}.

LetL(k) (k ∈ N) denote

L(k) =

k∑

i=1

∑

(n1,n2,...,ni)∈Ni

n1+n2+···+ni=k

G(n1)G(n2) · · ·G(ni), k ∈ N. (2.3)
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For any fixedν ∈ N, [L(k)]i,j represents the probability of hitting state(ν, j) when the Markov

chain{(Xn, Sn)} enters the levels0, 1, . . . , ν for the first time, given that it starts with state

(ν + k, i), i.e.,

[L(k)]i,j = P(ST↓ν
= j | X0 = k + ν, S0 = i).

It follows from (2.3) that

L̂(z) :=
∞∑

k=1

z−kL(k) = (I − Ĝ(z))−1Ĝ(z), (2.4)

whereĜ(z) =
∑∞

k=1 z
−kG(k).

LetR0(k) andR(k) (k ∈ Z+) denoteM0 × M andM × M matrices, respectively, such

that

R0(0) = O, R(0) = O,

R0(k) = T
[k]
0,k(I −Φ(0))−1, R(k) = Φ(k)(I −Φ(0))−1, k ∈ N. (2.5)

For any fixedν ∈ N, [R(k)]i,j (k ∈ N) represents the expected number of visits to state(ν+k, j)

before entering the levels0, 1, . . . , ν+k−1, given that the Markov chain{(Xn, Sn)} starts with

state(ν, i). Further,R0(k) (k ∈ N) can be interpreted in the same way thoughν ∈ N is replaced

by zero. Formally, fork ∈ N,

[R0(k)]i,j = E

[
T<k∑

n=1

11(Xn = k, Sn = j)

∣∣∣∣∣X0 = 0, S0 = i

]
,

[R(k)]i,j = E

[
T<k+ν∑

n=1

11(Xn = k + ν, Sn = j)

∣∣∣∣∣X0 = ν ∈ N, S0 = i

]
,

where11(χ) denotes the indicator function of an eventχ. It follows from the definitions of

R0(k),R(k),L(k) andΦ(0) that

R0(k) =

[
B(k) +

∞∑

m=1

B(k +m)L(m)

]
(I −Φ(0))−1, k ∈ N, (2.6)

R(k) =

[
A(k) +

∞∑

m=1

A(k +m)L(m)

]
(I −Φ(0))−1, k ∈ N, (2.7)

which hold without the recurrence ofT .

We now definêR0(z), R̂(z) andB̂(z) as

R̂0(z) =

∞∑

k=1

zkR0(k), R̂(z) =

∞∑

k=1

zkR(k), B̂(z) =

∞∑

k=1

zkB(k),

respectively. We then have the following result.
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Proposition 2.1.2 (Theorem 1 and Lemma 3 in [18])LetrR0 , rR, rG, rA+ , rA−
andrB denote

the convergence radii of̂R0(z), R̂(z), Ĝ(1/z) =
∑∞

k=1 z
kG(k),

∑∞
k=1 z

kA(k),
∑∞

k=1 z
kA(−k)

andB̂(z), respectively. ThenrR0 = rB ≥ 1, rR = rA+ ≥ 1 andrG = rA−
≥ 1.

Proposition 2.1.3 (Theorem 14 in [27])Let Â(z) =
∑

k∈Z z
kA(k). We then have

I − Â(z) = (I − R̂(z))(I −Φ(0))(I − Ĝ(z)), |z| ∈ IA, (2.8)

whereIA = (1/rA−
, rA+) ∪ {1}.

Remark 2.1.2 Although Theorem 14 in [27] assume thatA is irreducible and stochastic, these

conditions are not necessarily required by the algebraic proof of the theorem.

Proposition 2.1.4 LetR =
∑∞

k=1R(k). If A is irreducible and strictly substochastic, then (i)

sp(G) < 1; (ii) sp(R) < 1; and (iii) sp(
∑∞

l=0Φ(−l)) < 1, wheresp( · ) denotes the spectral

radius of a matrix in parentheses.

Proof. See Appendix B.1. ✷

2.2 Sufficient conditions for positive recurrence

In this subsection, we provide two sets of sufficient conditions for Assumption 1. For later

use, letπ > 0 denote a left eigenvector ofA such thatπA = sp(A)π andπe = 1 (see

Theorem 8.4.4 in [11]). Letσ denote

σ = π
∑

k∈Z

kA(k)e. (2.9)

If A is stochastic, thenπ is the unique invariant probability vector ofA andσ is the conditional

mean drift of the level process{Xn;n ∈ Z+} with Xn ≥ 1.

Proposition 2.2.1 (Proposition 3.1 in Chapter XI of [3]) SupposeT andA are irreducible

and stochastic. ThenT is positive recurrent if and only ifσ < 0 and
∑∞

k=1 kB(k)e < ∞.

Proposition 2.2.2 SupposeT is irreducible and stochastic. Then ifA is irreducible and strictly

substochastic,T is positive recurrent.
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Proof. Proposition 2.1.4 implies thatlimk→∞R
k = O and(I − G)−1 exists. Further from

(2.6), we have

R0 :=

∞∑

k=1

R0(k)

=

[
∞∑

k=1

B(k) +

∞∑

m=1

(
∞∑

k=1

B(k +m)

)
L(m)

]
(I −Φ(0))−1

≤
∞∑

k=1

B(k)

[
I +

∞∑

m=1

L(m)

]
(I −Φ(0))−1

=

∞∑

k=1

B(k)(I −G)−1(I −Φ(0))−1 < ∞,

where the last equality follows from (2.4). As a result, it follows from Theorem 3.4 in [25] that

T is positive recurrent. ✷

2.3 Matrix-product form of the stationary distribution

This subsection discusses the stationary distribution{x(k)} under Assumption 1. It is easy to

see that(x(0),x(1), . . . ,x(k)) is an invariant measure vector of the censored transition proba-

bility matrix T [k], i.e.,

(x(0),x(1), . . . ,x(k))T [k] = (x(0),x(1), . . . ,x(k)),

which leads to

x(k) =

[
x(0)T

[k]
0,k +

k−1∑

l=1

x(l)T
[k]
l,k

]
(I − T [k]

k,k)
−1, k ∈ N. (2.10)

In terms ofR(k) andR0(k), we can rewrite (2.10) as

x(k) = x(0)R0(k) +
k∑

l=1

x(l)R(k − l), k ∈ N, (2.11)

where we useR(0) = O. It then follows from (2.11) that

x(k) = x(0)R0 ∗ F (k), k ∈ N, (2.12)

whereF (k) (k ∈ Z+) is given by

F (k) =

∞∑

n=0

R∗n(k). (2.13)
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Thus we have

x(k) = x(0)R0 ∗ F (k), k ∈ Z+. (2.14)

Further letx̂(z) =
∑∞

k=1 z
kx(k). We then have

x̂(z) = x(0)R̂0(z)(I − R̂(z))−1. (2.15)

Lettingz = 1 in (2.15) yields

x(0) = x(0)R0(I −R)−1, (2.16)

whereR0 =
∑∞

k=1R0(k).

2.4 Period of the related Markov additive process

We consider a MAdP{(X̆n, S̆n);n ∈ Z+} with state spaceZ × M and kernel{A(k); k ∈
Z}. The stochastic behavior of the MAdP{(X̆n, S̆n)} is equivalent to that of the GI/GI/1-type

Markov chain{(Xn, Sn)} while the latter is being in non-boundary levels, i.e., for any i, j ∈ M,

P(X̆n+1 = k, S̆n+1 = j | X̆n = l, S̆n = i)

= P(Xn+1 = k, Sn+1 = j | Xn = l, Sn = i), k, l ∈ N. (2.17)

The period of the MAdP{(X̆n, S̆n)}, denoted byτ , is the largest positive integer such that

[A(k)]i,j > 0 only if k ≡ p(j)− p(i) (mod τ), (2.18)

wherep is some functionp fromM to {0, 1, . . . , τ − 1} (see Appendix B in [14] and its revised

version [15]).

Remark 2.4.1 Lemma B.2 in [14] states that functionp satisfying (2.18) isinjective, which is

not true in general. This error is corrected in the revised version [15].

Remark 2.4.2 If the Markov chain{(Xn, Sn)} is of M/G/1 type, the periodτ is less than or

equal toM (see, e.g., Proposition 2.9 in [14]).

Remark 2.4.3 We suppose

A(0) = O, A(1) =




0 0
1

6

0 0
1

6
1

6

1

6
0




,

A(−2) =




1

3

1

3
0

1

3

1

3
0

0 0
1

3




, A(−1) =




0 0
1

6

0 0
1

6
1

6

1

6
0




.
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Let p(0) = p(1) = 1 andp(2) = 0. It then follows that

[A(k)]i,j > 0 only if k ≡ p(j)− p(i) (mod2),

and thus the period of MAdP with kernel{A(k)} is equal to two.

We now introduce the following notation.

Definition 2.4.1 For any finite square matrixX with possibly complex elements, letδ(X)

denote an eigenvalue ofX, which satisfiesδ(X) = sp(X)eιξ and

ξ = inf{0 ≤ x < 2π; det(sp(X)eιxI −X) = 0},

whereι denotes the imaginary unit, i.e.,ι =
√
−1.

Remark 2.4.4 SupposeX is nonnegative. We then haveδ(X) = sp(X) (see Theorem 8.3.1

in [11]). Further, ifX is irreducible,δ(X) is the Perron-Frobenius eigenvalue ofX (see

Theorem 8.4.4 in [11]).

Let µ(z) andv(z) denote the left- and right-eigenvectors ofÂ(z) corresponding to the

eigenvalueδ(Â(z)), normalized such that

µ(z)∆M(z/|z|)e = 1, µ(z)v(z) = 1,

where∆M(z) denotes anM ×M diagonal matrix as follows:

∆M(z) =




z−p(1)

z−p(2)

. . .

z−p(M)




.

Note thatµ(1) = π andv(1) = e. Further, letω denote an arbitrary complex number such that

|ω| = 1. We then have the following results.

Proposition 2.4.1 (Lemma B.3 in [14])Suppose Assumption 1 holds and letωx = exp(2πι/x)

for x ≥ 1. Then the following are true for ally ∈ IA andν = 0, 1, . . . , τ − 1.

(i) δ(Â(yων
τ )) = δ(Â(y)), both of which are simple eigenvalues; and

(ii) µ(yων
τ ) = µ(y)∆M(ων

τ )
−1 andv(yων

τ ) = ∆M(ων
τ )v(y).

Proposition 2.4.2 (Theorem B.1 in [14])Suppose Assumption 1 holds andδ(Â(y)) = 1 for

somey ∈ IA. Thenδ(Â(yω)) = 1 if and only ifωτ = 1. Therefore

τ = max{n ∈ N; δ(Â(yωn)) = 1}.

Further if δ(Â(yω)) = 1, the eigenvalue is simple.
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2.5 Spectral analysis ofG-matrices from stochasticA

In this subsection, we assume that Assumption 1 holds andA is stochastic. Under the assump-

tions,G is stochastic, i.e.,δ(G) = 1 (see Theorem 3.4 in [25]).

We first provide a basic result on the structure ofG.

Proposition 2.5.1 Suppose Assumption 1 holds andA is stochastic. ThenG has an exactly

one irreducible class, denoted byM• ⊆ M. Thus,G is irreducible, or after some permutations

it takes a form such that

(M• MT

M• G• O

MT G◦ GT

)
, MT := M \M•,

whereG• is irreducible,GT is strictly lower triangular andG◦ does not have, in general, a

special structure.

Proof. See Appendix B.2. ✷

Remark 2.5.1‡1 The proof of Proposition 2.5.1 relies only on the facts that (i) A is irreducible;

and (ii)G is not a nilpotent matrix. Thus, the irreducibility ofA andsp(G) > 0 imply that

Proposition 2.5.1 holds. On the other hand, Proposition 2.1.3 yields

det(I −A) = det(I −R) det(I −Φ(0)) det(I −G).

Note here that ifT is positive recurrent thendet(I − R) 6= 0 (see the proof of Theorem 3.4

of [25]). Therefore, if the conditions of Proposition 2.5.1are satisfied, thendet(I −A) = 0,

det(I − Φ(0)) 6= 0 anddet(I − R) 6= 0 and thusdet(I − G) = 0, which implies that

sp(G) = 1.

Let G•(k) (k ∈ N) denote the square submatrix ofG(k) (k ∈ N) corresponding to the

irreducible classM• ⊆ M, i.e.,G• =
∑∞

k=1G•(k). Further letĜ•(z) =
∑∞

k=1 z
−kG•(k). It

then follows from Proposition 2.5.1 that

δ(Ĝ(z)) = δ(Ĝ•(z)), (2.19)

becauseGT (if any) is a nilpotent matrix.

We now consider a MAdP{(X̆(G)
n , S̆

(G)
n );n ∈ Z+} with state spaceZ × M• and kernel

{Γ (G)(k); k ∈ Z}, where

Γ (G)(k) =

{
O, k ∈ Z+,

G•(k), k ∈ Z\Z+.
(2.20)

‡1This remark is added in the revised version.
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Equation (2.20) and the irreducibility of
∑

k∈Z Γ
(G)(k) = G• imply that the period of the

MAdP {(X̆(G)
n , S̆

(G)
n )} is well-defined (see Definition B.1 in [14]) and denoted byτG. Combin-

ing (2.19), (2.20) and Theorem B.1 in [14], we obtain

τG = max{n ∈ N; δ(Ĝ(ωn)) = 1}. (2.21)

Proposition 2.5.2 Suppose Assumption 1 holds andA is stochastic. Then the following are

true.

(i) τG = τ ;

(ii) δ(Ĝ(ω)) = 1 if and only ifωτ = 1;

(iii) if δ(Ĝ(ω)) = 1, the eigenvalue is simple; and

(iv) for y > 1/rA−
,

δ(Ĝ(yων
τ )) = δ(Ĝ(y)), ν = 0, 1, . . . , τ − 1,

which are simple eigenvalues ofĜ(yων
τ ) andĜ(y), respectively.

Proof. See Appendix B.3. ✷

We defineλ(G)
i (z)’s (i = 2, 3, . . . ,M) as the eigenvalues of̂G(z) such thatδ(Ĝ(z)) ≥

|λ(G)
i (z)| (see Definition 2.4.1). We then have

det(I − Ĝ(z)) = (1− δ(Ĝ(z)))
M∏

i=2

(1− λ
(G)
i (z)). (2.22)

Proposition 2.5.3 Suppose Assumption 1 holds andA is stochastic. Let

ψ(ων
τ ) =

π(I −R)(I −Φ(0))

π(I −R)(I −Φ(0))e
∆M(ων

τ )
−1, ν = 0, 1, . . . , τ − 1, (2.23)

y(ων
τ ) = ∆M(ων

τ )e, ν = 0, 1, . . . , τ − 1. (2.24)

Then the following hold forν = 0, 1, . . . , τ − 1: (i) ψ(ων
τ ) andy(ων

τ ) are the left- and right-

eigenvectors of̂G(ων
τ ) corresponding to the eigenvalueδ(Ĝ(ων

τ )) = 1; and (ii)

adj(I − Ĝ(ων
τ )) =

M∏

i=2

(1− λ
(G)
i (ων

τ ))y(ω
ν
τ )ψ(ω

ν
τ ),

whereadj(Y ) denotes the adjugate matrix of a square matrixY .

Proof. See Appendix B.4. ✷
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3 Subexponential Tail Asymptotics

This section studies the subexponential decay of the tail probabilities{x(k)}, under the follow-

ing assumption.

Assumption 2 Either of (I) and (II) is satisfied:

(I) Assumption 1 holds,A is stochastic, and
∑

k∈Z |k|A(k) < ∞; or

(II) Assumption 1 holds andA is strictly substochastic.

Assumption 2 (I) and (II) are considered in subsections 3.1 and 3.2, respectively.

3.1 Case of stochasticA

Lemma 3.1.1 Under Assumption 2 (I),

σ = −π(I −R)(I −Φ(0))

∞∑

k=1

kG(k)e ∈ (−∞, 0), (3.1)

whereσ is defined in (2.9).

Proof. We have−∞ < σ < 0 due to (2.9), Proposition 2.2.1 and the third condition of As-

sumption 2 (I). Further sinceσ = π(d/dz)Â(z)|z=1e and(d/dz)Ĝ(z)|z=1 = −∑∞
k=1 kG(k),

we obtain (3.1) by differentiating (2.8) with respect toz, pre-multiplying byπ, post-multiplying

by e and lettingz = 1. ✷

Using Lemma 3.1.1, Propositions 2.5.2 and 2.5.3, we obtain the following result.

Lemma 3.1.2 If Assumption 2 (I) holds, then forl = 0, 1, . . . , τ − 1,

lim
n→∞

L(nτ + l) =
τ−1∑

ν=0

1

(ων
τ )

l
∆M(ω−ν

τ )eψ∆M(ω−ν
τ )−1, (3.2)

where

ψ = π(I −R)(I −Φ(0))/(−σ). (3.3)

Proof. See Appendix B.5. ✷

For l = 0, 1, . . . , τ − 1, let M(l) = {j ∈ M; p(j) = l} and |M(l)| denote the cardinality

of M(l). Further, letψ(l) denote a subvector ofψ corresponding toM(l), ande(l) denote an

|M(l)| × 1 vector of ones. Note here that
∑τ−1

ν=0(ω
m
τ )

ν = 0 for all m = 1, 2, . . . , τ − 1 be-

causeωτ , ω
2
τ , . . . , ω

τ−1
τ are the solutions of the equation

∑τ−1
ν=0 z

ν = 0. It then follows from
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Lemma 3.1.2 that

lim
n→∞

[L(nτ + l)]i,j = [ψ]j

τ−1∑

ν=0

(ω−ν
τ )l−p(i)+p(j)

=

{
τ [ψ]j, if p(i) ≡ p(j) + l (mod τ),

0, otherwise.

This equation can be rewritten as

lim
n→∞

L(nτ + l) = τEH l, (3.4)

where

E =




M
(0) e(0) 0 · · · 0 0

M(1)
0 e(1) · · · 0 0

...
...

...
. . .

...
...

M(τ−2)
0 0 · · · e(τ−2)

0

M(τ−1)
0 0 · · · 0 e(τ−1)



, (3.5)

and

H l =




M(0) M(1) · · · M(τ−l−1) M(τ−l) M(τ−l+1) · · · M(τ−1)

0 0 · · · 0 ψ(τ−l)
0 · · · 0

0 0 · · · 0 0 ψ(τ−l+1) · · · 0
...

...
. ..

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · ψ(τ−1)

ψ(0)
0 · · · 0 0 0 · · · 0

0 ψ(1) · · · 0 0 0 · · · 0
...

...
. ..

...
...

...
. . .

...

0 0 · · · ψ(τ−l−1)
0 0 · · · 0




.

Remark 3.1.1 Suppose the Markov chain{(Xn, Sn)} is of M/G/1-type. It then follows that

L(n) = Gn for n = 1, 2, . . . . Further it is easy to see thatψ is a stationary probability vector

of G and therefore[ψ]j = 0 for all j ∈ MT (see Proposition 2.5.1). We now defineψ(l)
•

(l = 0, 1, . . . , τ − 1) as a subvector ofψ corresponding toM(l)
• := {j ∈ M• ∩ M

(l)}. As a
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result, (3.4) yields

lim
n→∞

1

τ
Gnτ =




M
(0)
• M

(1)
• · · · M

(τ−1)
• MT

M
(0)
• eψ(0)

• O · · · O O

M
(1)
• O eψ(1)

• · · · O O
...

...
...

. . .
...

...

M
(τ−1)
• O O · · · eψ(τ−1)

• O

M
(0)
T eψ(0)

• O · · · O O

M
(1)
T O eψ(1)

• · · · O O
...

...
...

. . .
...

...

M
(τ−1)
T O O · · · eψ(τ−1)

• O




, (3.6)

whereM(l)
T = M

(l) \ M
(l)
• (l = 0, 1, . . . , τ − 1). Note here thatψ(l)

• e = 1/τ for all l =

0, 1, . . . , τ − 1 because(1/τ)Gnτe = e/τ for all n = 1, 2, . . . . As a result, the limit (3.6)

is consistent with the equation (14) in [19], where
∑τ

ν=1 f ν = e and each element off ν

(ν = 1, 2, . . . , τ ) is equal to one or zero.

Lemma 3.1.3 If Assumption 2 (I) holds, then

lim
n→∞

τ−1∑

l=0

L(nτ + l) = τeψ. (3.7)

Proof. We obtain (3.7) by combining (3.4) and
τ−1∑

l=0

H l = eψ. (3.8)

✷

We now make the following assumption.

Assumption 3 There exists some random variableY in Z+ with positive finite mean such that

lim
k→∞

A(k)e

P(Y > k)
=

cA

E[Y ]
, lim

k→∞

B(k)e

P(Y > k)
=

cB

E[Y ]
, (3.9)

wherecA andcB are nonnegativeM × 1 andM0 × 1 vectors, respectively, satisfyingcA 6= 0 or

cB 6= 0.

Lemma 3.1.4 Suppose Assumptions 2 (I) and 3 hold. IfYe is long-tailed (i.e.,Ye ∈ L; see

Definition A.1.1). We then have

lim
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
=
cAπ(I −R)(I −Φ(0))

−σ
, (3.10)

lim
k→∞

∞∑

m=1

B(k +m)L(m)

P(Ye > k)
=
cBπ(I −R)(I −Φ(0))

−σ
. (3.11)
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Proof. See Appendix B.6. ✷

Lemma 3.1.5 Suppose Assumptions 2 (I) and 3 hold. IfYe ∈ L, then

lim
k→∞

R(k)

P(Ye > k)
=
cAπ(I −R)

−σ
, (3.12)

lim
k→∞

R0(k)

P(Ye > k)
=
cBπ(I −R)

−σ
. (3.13)

Proof. It follows from (2.7) that

R(k) =

[
A(k) +

∞∑

m=1

A(k +m)L(m)

]
(I −Φ(0))−1. (3.14)

Note that Corollary 3.3 in [21] and (3.9) yield

lim sup
k→∞

A(k)

P(Ye > k)
≤ lim sup

k→∞

A(k)eet

P(Y > k)
lim sup
k→∞

P(Y > k)

P(Ye > k)
= O.

Thus from (3.14), we have

lim
k→∞

R(k)

P(Ye > k)
= lim

k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
(I −Φ(0))−1. (3.15)

Substituting (3.10) into (3.15), we obtain (3.12). Similarly, we can prove (3.13). ✷

The following theorem presents a subexponential asymptotic formula for{x(k)}.

Theorem 3.1.1 Suppose Assumptions 2 (I) and 3 hold. IfYe ∈ S, then

lim
k→∞

x(k)

P(Ye > k)
=
x(0)cB + x(0)cA

−σ
· π (3.16)

Proof. It follows from (2.13) that

∞∑

k=0

F (k) = (I −R)−1. (3.17)

Thus using (3.17) and Lemma 6 in [12], we have

lim
k→∞

F (k)

P(Ye > k)
= lim

k→∞

∞∑

n=0

R∗n(k)

P(Ye > k)

= (I −R)−1 lim
k→∞

R(k)

P(Ye > k)
(I −R)−1.

Substituting (3.12) into the above equation yields

lim
k→∞

F (k)

P(Ye > k)
=

(I −R)−1cAπ

−σ
. (3.18)
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Finally, applying Proposition A.3 in [19] to (2.14) and using (3.13) and (3.18) lead to

lim
k→∞

x(k)

P(Ye > k)
=
x(0)

−σ

[
cBπ +R0(I −R)−1cAπ

]
,

from which and (2.16) we have (3.16). ✷

Remark 3.1.2 Theorem 3.1.1 is a generalization of Theorem 1 in [13] to the GI/G/1-type

Markov chain. In fact, the latter extends the corollary of Theorem 3.1 in [19] (Corollary 3.1

therein) to the case where theG-matrix is periodic.

3.2 Case of strictly substochasticA

In this subsection, we make the following assumption in addition to Assumption 2 (II):

Assumption 4 There exists some random variableY in Z+ such that

lim
k→∞

A(k)

P(Y > k)
= CA, lim

k→∞

B(k)

P(Y > k)
= CB, (3.19)

whereCA andCB are nonnegativeM × M andM0 × M matrices, respectively, satisfying

CA 6= O orCB 6= O.

Lemma 3.2.1 Suppose Assumptions 2 (II) and 4 hold. IfY ∈ L, then

lim
k→∞

R(k)

P(Y > k)
= CA

(
I −

∞∑

l=0

Φ(−l)

)−1

, (3.20)

lim
k→∞

R0(k)

P(Y > k)
= CB

(
I −

∞∑

l=0

Φ(−l)

)−1

. (3.21)

Proof. From (2.7) and (3.19), we have

lim
k→∞

R(k)

P(Y > k)
=

[
CA + lim

k→∞

∞∑

m=1

A(k +m)

P(Y > k)
L(m)

]
(I −Φ(0))−1. (3.22)

Note here that under Assumption 2 (II),sp(G) < 1 (see Proposition 2.1.4) and thus (2.4) yields

∞∑

m=1

L(m) = (I −G)−1G < ∞, (3.23)

from which and (3.19) it follows that fork = 0, 1, . . . ,

∞∑

m=1

A(k +m)

P(Y > k)
L(m) ≤ sup

k∈Z+

A(k)

P(Y > k)

∞∑

m=1

L(m) < ∞.
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Therefore applying the dominated convergence theorem to (3.22) and using (3.19) andY ∈ L,

we obtain

lim
k→∞

R(k)

P(Y > k)

=

[
CA +

∞∑

m=1

lim
k→∞

A(k +m)

P(Y > k +m)

P(Y > k +m)

P(Y > k)
L(m)

]
(I −Φ(0))−1

= CA

[
I + (I −G)−1G

]
(I −Φ(0))−1

= CA(I −G)−1(I −Φ(0))−1. (3.24)

From (2.2), we have

(I −G)−1 =

[
I − (I −Φ(0))−1

∞∑

l=1

Φ(−l)

]−1

=

(
I −

∞∑

l=0

Φ(−l)

)−1

(I −Φ(0)). (3.25)

Finally, substituting (3.25) into (3.24) yields (3.20). Equation (3.21) can be proved in the same

way. ✷

Theorem 3.2.2 Suppose Assumptions 2 (II) and 4 hold. IfY ∈ S, then

lim
k→∞

x(k)

P(Y > k)
= [x(0)CB + x(0)CA](I −A)−1 > 0. (3.26)

Proof. Applying Proposition A.3 in [19] to (2.14) and using (3.17) and (3.21), we have

lim
k→∞

x(k)

P(Y > k)
= x(0)CB

(
I −

∞∑

l=0

Φ(−l)

)−1

(I −R)−1

+ x(0)R0 lim
k→∞

F (k)

P(Y > k)
, (3.27)

whereF (k) is given in (2.13). Further it follows from Lemma 6 in [12] and(3.20) that

lim
k→∞

F (k)

P(Y > k)
= (I −R)−1CA

(
I −

∞∑

l=0

Φ(−l)

)−1

(I −R)−1.

Substituting the above equation into (3.27) and using (2.16), we have

lim
k→∞

x(k)

P(Y > k)
= [x(0)CB + x(0)CA]

(
I −

∞∑

l=0

Φ(−l)

)−1

(I −R)−1. (3.28)
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Note here that (3.25) yields

(
I −

∞∑

l=0

Φ(−l)

)−1

(I −R)−1

= (I −G)−1 (I −Φ(0))−1(I −R)−1 = (I −A)−1, (3.29)

where the second equality follows from Proposition 2.1.3. As a result, we obtain (3.26) by

combining (3.28) with (3.29).

It is easy to show that the right hand side of (3.26) is positive. Indeed,(I −A)−1 > O due

to the irreducibility ofA. In addition,x(0)CB + x(0)CA ≥ 0, 6= 0 becausex(0) > 0 and

x(0) > 0; andCA 6= O orCB 6= O. Therefore,(x(0)CB + x(0)CA)(I −A)−1 > 0. ✷

4 Locally Subexponential Asymptotics

This section considers the locally subexponential asymptotics of the stationary distribution.

4.1 Case of stochasticA

In this subsection, we proceed under Assumption 2 (I) and thefollowing assumption:

Assumption 5 There exists some random variableY in Z+ with positive finite mean such that

lim
k→∞

A(k)E

P(Y = k)
=
CE

A

E[Y ]
, lim

k→∞

B(k)E

P(Y = k)
=
CE

B

E[Y ]
, (4.1)

whereE is given in (3.5), and whereCE
A andCE

B are nonnegativeM × τ andM0 × τ matrices,

respectively, satisfyingCE
A 6= O orCE

B 6= O.

Lemma 4.1.1 Suppose Assumptions 2 (I) and 5 hold. Further, suppose either of the following

is satisfied:Y is locally long-tailed with span one (i.e.,Y ∈ Lloc(1); see Definition A.2.1); or

Y ∈ L and{P(Y = k)} is eventually nonincreasing. Then

lim
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
= CE

Ae
π(I −R)(I −Φ(0))

−σ
, (4.2)

lim
k→∞

∞∑

m=1

B(k +m)L(m)

P(Ye = k)
= CE

Be
π(I −R)(I −Φ(0))

−σ
. (4.3)

Proof. See Appendix B.7. ✷

Remark 4.1.1 Lemma 4.1.1 is proved by using Proposition A.2.1, which requires either that

Y ∈ Lloc(1) or thatY ∈ L and{P(Y = k)} is eventually nonincreasing.
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Lemma 4.1.2 Under the same assumptions as in Lemma 4.1.1,

lim
k→∞

R(k)

P(Ye = k)
= CE

Ae
π(I −R)

−σ
, (4.4)

lim
k→∞

R0(k)

P(Ye = k)
= CE

Be
π(I −R)

−σ
. (4.5)

Proof. It follows fromEe = e, (4.1) andY ∈ L that

lim
k→∞

A(k)

P(Ye = k)
≤ E[Y ] lim

k→∞

A(k)Eeet

P(Y > k)

P(Y = k)

P(Y > k)
= O.

Thus from (2.7), we have

lim
k→∞

R(k)

P(Ye = k)
= lim

k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
(I −Φ(0))−1. (4.6)

Substituting (4.2) into (4.6) yields (4.4). Similarly, we can readily show (4.5). ✷

We now obtain a locally subexponential asymptotic formula for {x(k)}.

Theorem 4.1.1 Suppose Assumptions 2 (I) and 5 hold. Further, suppose (i)Ye is locally subex-

ponential with span one (i.e.,Ye ∈ Sloc(1); see Definition A.2.2); and (ii)Y ∈ Lloc(1) or

{P(Y = k)} is eventually nonincreasing. Then

lim
k→∞

x(k)

P(Ye = k)
=
x(0)CE

Be+ x(0)C
E
Ae

−σ
· π. (4.7)

Remark 4.1.2 According to Definition A.2.2 and Proposition A.2.2,Ye ∈ Sloc(1) is equivalent

to Y ∈ S∗. Thus sinceS∗ ⊂ S ⊂ L, the assumptions of Theorem 4.1.1 are sufficient for those

of Lemma 4.1.1.

Proof of Theorem 4.1.1. Proposition A.2.6 yields

lim
k→∞

F (k)

P(Ye = k)
= lim

k→∞

∞∑

n=0

R∗n(k)

P(Ye = k)

= (I −R)−1 lim
k→∞

R(k)

P(Ye = k)
(I −R)−1,

from which and (4.4) it follows that

lim
k→∞

F (k)

P(Ye = k)
=

(I −R)−1CE
Aeπ

−σ
. (4.8)

Further applying Proposition A.2.5 to (2.12) and using (4.5) and (4.8), we obtain

lim
k→∞

x(k)

P(Ye = k)
=
x(0)

−σ

[
CE

Beπ +R0(I −R)−1CE
Aeπ

]
.

Substituting (2.16) into the above equation yields (4.7). ✷

We present another asymptotic formula.
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Assumption 6 There exists some random variableY in Z+ with positive finite mean such that

lim
k→∞

A(k)e

P(Y = k)
=

cA

E[Y ]
, lim

k→∞

B(k)e

P(Y = k)
=

cB

E[Y ]
,

wherecA andcB are nonnegativeM × 1 andM0 × 1 vectors, respectively, satisfyingcA 6= 0 or

cB 6= 0.

Theorem 4.1.2 Suppose Assumptions 2 (I) and 6 hold. Further, suppose (i)Ye ∈ Sloc(1);

(ii) Y ∈ Lloc(1) or {P(Y = k)} is eventually nonincreasing; and (iii){A(k); k ∈ Z+} and

{B(k); k ∈ N} are eventually nonincreasing. Then

lim
k→∞

x(k)

P(Ye = k)
=
x(0)cB + x(0)cA

−σ
· π.

Proof. This theorem can be proved in a very similar way to Theorem 3.1.1. For doing this,

we require an additional condition that{A(k); k ∈ Z+} and{B(k); k ∈ N} are eventually

nonincreasing, i.e., there exists somek∗ ∈ N such thatA(k) ≥ A(k+1) andB(k) ≥ B(k+1)

for all k ≥ k∗. The details are omitted. ✷

Remark 4.1.3 SinceEe = e, Assumption 6 is sufficient for Assumption 5. Thus Theo-

rem 4.1.2 is not a collorary of Theorem 4.1.1.

4.2 Case of strictly substochasticA

In addition to Assumption 2 (II), we assume the following:

Assumption 7 There exists some random variableY in Z+ such that

lim
k→∞

A(k)

P(Y = k)
= CA, lim

k→∞

B(k)

P(Y = k)
= CB, (4.9)

whereCA andCB are nonnegativeM × M andM0 × M matrices, respectively, satisfying

CA 6= O orCB 6= O.

Lemma 4.2.1 Suppose Assumptions 2 (II) and 7 hold. IfY ∈ Lloc(1); andrA−
> 1 or {P(Y =

k)} is eventually nonincreasing, then

lim
k→∞

R(k)

P(Y = k)
= CA

(
I −

∞∑

l=0

Φ(−l)

)−1

, (4.10)

lim
k→∞

R0(k)

P(Y = k)
= CB

(
I −

∞∑

l=0

Φ(−l)

)−1

. (4.11)
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Proof. From (2.7) and (4.9), we have

lim
k→∞

R(k)

P(Y = k)
=

[
CA + lim

k→∞

∞∑

m=1

A(k +m)

P(Y = k)
L(m)

]
(I −Φ(0))−1. (4.12)

To apply the dominated convergence theorem to (4.12), we show that for all sufficiently large

k,
∞∑

m=1

A(k +m)

P(Y = k)
L(m) < ∞.

Suppose{P(Y = k)} is eventually nonincreasing. We then have for all sufficiently largek,

∞∑

m=1

A(k +m)

P(Y = k)
L(m) ≤ sup

m′∈N

A(k +m′)

P(Y = k +m′)

∞∑

m=1

L(m) < ∞,

where the last inequality is due to (3.23) and (4.9). On the other hand, supposerA−
> 1. It then

follows from Proposition 2.1.2 that{G(k)} is light-tailed, i.e.,

∞∑

k=1

rkG(k) < ∞ for all 1 < r < rA−
. (4.13)

Note here that̂G(1/z) =
∑∞

k=1 z
kG(k) and sp(Ĝ(1)) < 1 (see Proposition 2.1.4). Thus

according to Theorem 8.1.18 in [11],

sp(Ĝ(1/z)) = 1 only if 1 < z ≤ rA−
. (4.14)

The equations (2.4), (4.13) and (4.14) imply that there exists somer > 1 such that

∞∑

m=1

rmL(m) < ∞.

Further it follows from Assumption 7 andY ∈ Lloc(1) that for anyε > 0 there exists some

k0 ∈ Z+ such that for allk ≥ k0,

A(k +m)

P(Y = k)
≤ (CA + εeet)

P(Y = k +m)

P(Y = k)
≤ (1 + ε)m(CA + εeet), m ∈ Z+.

Therefore, for0 < ε ≤ r − 1 andk ≥ k0,

∞∑

m=1

A(k +m)

P(Y = k)
L(m) ≤ (CA + εeet)

∞∑

m=1

(1 + ε)mL(m) < ∞.

As a result, applying the dominated convergence theorem to (4.12) and following the proof

of Lemma 3.2.1, we can prove (4.10). Equation (4.11) can be proved in the same way. ✷

Using Lemma 4.2.1, we can readily prove the following theorem. The proof is very similar

to that of Theorem 3.2.2 and thus is omitted.



Subexponential Asymptotics of GI/G/1-Type Markov Chains 23

Theorem 4.2.1 Suppose Assumptions 2 (II) and 7 hold. IfY ∈ Sloc(1); and rA−
> 1 or

{P(Y = k)} is eventually nonincreasing, then

lim
k→∞

x(k)

P(Y = k)
= [x(0)CB + x(0)CA](I −A)−1 > 0.

5 Discussion on Assumptions

This section discusses the assumptions of the theorems presented in Sections 3 and 4.

We first consider the case of stochasticA, for which Theorems 3.1.1, 4.1.1 and 4.1.2 are

shown. The assumptions of these theorems are summarized in Table 1, where “eventually non-

increasing” is abbreviated as “ENI”. Note here that Assumption 5 implies Assumption 3 due

Table 1: The assumptions of the theorems in case of stochasticA
Theorem 3.1.1 Theorem 4.1.1 Theorem 4.1.2

Assumption 2 (I) Assumption 2 (I) Assumption 2 (I)

Assumption 3 Assumption 5 Assumption 6

Ye ∈ S Ye ∈ Sloc(1) Ye ∈ Sloc(1)

Y ∈ Lloc(1) or Y ∈ Lloc(1) or

{P(Y = k)} is ENI {P(Y = k)} is ENI

{A(k)} and{B(k)} are ENI

to Ee = e. Recall also that ifYe ∈ Sloc(1), thenYe ∈ S (see Remark A.2.2). Thus the as-

sumptions of Theorem 4.1.1 are more restrictive than those of Theorem 3.1.1. Similarly, we

can readily confirm that the assumptions of Theorem 4.1.2 imply those of Theorem 3.1.1. It

should be noted that Theorem 4.1.2 is not a corollary of Theorem 4.1.1 because Assumption 6

is weaker than Assumption 5.

Next we consider the case of substochasticA, for which Theorems 3.2.2 and 4.2.1 are

shown. It is easy to see that Assumption 7 implies Assumption4. Further ifY ∈ Sloc(1), then

Y ∈ S (see Remark A.2.2). Therefore the assumptions of Theorem 4.2.1 are more restrictive

than those of Theorem 3.2.2 (see Table 2).

A Subexponential Distributions

This section provides a brief overview of two classes of subexponential distributions onZ+.

One is the class of “ordinal” subexponential distributionsintroduced by Chistyakov [7], and the

other one is the class of “locally” subexponential distributions introduced by Chover et al. [8]

and generalized by Asmussen et al. [4].
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Table 2: The assumptions of the theorems in case of strictly substochasticA
Theorem 3.2.2 Theorem 4.2.1

Assumption 2 (II) Assumption 2 (II)

Assumption 4 Assumption 7

Y ∈ S Y ∈ Sloc(1)

rA−
> 1 or

{P(Y = k)} is ENI

In what follows, letU denote a random variable inZ+ andUj (j ∈ Z+) denote independent

copies ofU . Let Ue denote the discrete equilibrium random variable ofU , distributed with

P(Ue = k) = P(U > k)/E[U ] (k ∈ Z+). Further, for anyh ∈ N ∪ {∞}, let ∆h = (0, h] and

k +∆h = {x ≥ 0; k < x ≤ k + h} for k ∈ Z+.

A.1 Ordinal subexponential class

We begin with the definition of the long-tailed class, which covers the subexponential class.

Definition A.1.1 ([3, 9, 21]) A random variableU in Z+ and its distribution are said to be long-

tailed if P(U > k) > 0 for all k ∈ Z+ and

lim
k→∞

P(U > k + 1)

P(U > k)
= 1.

The class of long-tailed distributions is denoted byL.

The following result is used to derive some of the asymptoticresults presented in this paper.

Proposition A.1 (Proposition A.1 in [19]) If Ue ∈ L, then for anyh ∈ N, l0 ∈ Z+ andν =

0, 1, . . . , h− 1,
1

E[U ]
lim
k→∞

∑∞
l=l0

P(U > k + lh+ ν)

P(Ue > k)
=

1

h
.

We now introduce the definition of the subexponential class.

Definition A.1.2 ([7, 9, 21]) A random variableU and its distribution are said to be subexpo-

nential ifP(U > k) > 0 for all k ∈ Z+ and

lim
k→∞

P(U1 + U2 > k)

P(U > k)
= 2.

The class of subexponential distributions is denoted byS.
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Remark A.1.1 S ⊂ L (see, e.g., [21]), and there exists an example of not subexponential but

long-tailed distributions (see [20]).

The following is a discrete analog of classS∗ introduced by Klüppelberg [16].

Definition A.1.3 A random variableU and its distribution belong to classS∗ if P(U > k) > 0

for all k ∈ Z+ and

lim
k→∞

k∑

l=0

P(U > k − l)P(U > l)

P(U > k)
= 2E[U ] < ∞. (A.1)

Remark A.1.2 If U ∈ S∗, thenU ∈ S andUe ∈ S (see Proposition A.2 in [19]).

A.2 Locally subexponential class

We first introduce the locally long-tailed class, which is required by the definition of the locally

subexponential class.

Definition A.2.1 (Definition 1 in [4]) A random variableU and its distributionF are called

locally long-tailedwith spanh ∈ N ∪ {∞} if P(U ∈ k + ∆h) > 0 for all sufficiently largek

and

lim
k→∞

P(U ∈ k + 1 +∆h)

P(U ∈ k +∆h)
= 1.

We denote byLloc(h) the class of locally long-tailed distributions with spanh hereafter.

Remark A.2.1 By definition,Lloc(∞) = L. Further, ifU ∈ Lloc(1), thenU ∈ Lloc(n) for all

n = 2, 3, . . . andU ∈ L.

The following proposition is a locally asymptotic version of Proposition A.1.

Proposition A.2.1 Suppose (i)U ∈ Lloc(1); or (ii) U ∈ L and {P(U = k)} is eventually

nonincreasing. Then for anyh ∈ N, l0 ∈ Z+ andν = 0, 1, . . . , h− 1,

lim
k→∞

∑∞
l=l0

P(U = k + lh + ν)

P(U > k)
=

1

h
. (A.2)

Proof. See Appendix B.8. ✷

Definition A.2.2 (Definition 2 in [4]) A random variableU and its distributionF are called

locally subexponentialwith spanh ∈ N ∪ {∞} if U ∈ Lloc(h) and

lim
k→∞

P(U1 + U2 ∈ k +∆h)

P(U ∈ k +∆h)
= 2.
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We denote bySloc(h) the class of locally subexponential distributions with span h. Obvi-

ously,Sloc(∞) is equivalent to (ordinal) subexponential classS (see Definition A.1.2). Further,

Definition A.2.2 shows thatSloc(h) ⊂ Lloc(h).

Remark A.2.2 If U ∈ Sloc(h) for someh ∈ N, thenU ∈ Sloc(nh) for all n ∈ N andU ∈ S
(see Remark 2 in [4]).

Proposition A.2.2 U ∈ S∗ if and only ifUe ∈ Sloc(1).

Proof. The if-part is obvious. Indeed, sinceP(Ue = k) = P(U > k)/E[U ] for k ∈ Z+, it

follows that ifUe ∈ Sloc(1), then (A.1) holds, i.e.,U ∈ S∗.

On the other hand, suppose (A.1) holds forh = 1. We then have

lim
k→∞

k∑

l=0

P(Ue = k − l)P(Ue = l)

P(Ue = k)
= 2.

FurtherU ∈ S ⊂ L (see Proposition A.2 in [19]) and thus

lim
k→∞

P(U > k + 1)

P(U > k)
= lim

k→∞

P(Ue = k + 1)

P(Ue = k)
= 1.

As a result,Ue ∈ Sloc(1). ✷

Proposition A.2.3 (Proposition 3 in [4]) SupposeU ∈ Sloc(h) for someh ∈ N ∪ {∞} and let

U (j) (j ∈ N) denote independent random variables inZ+ such that

lim
k→∞

P(U (j) ∈ k +∆h)

P(U ∈ k +∆h)
= cj ∈ R+.

Then forn ∈ N,

lim
k→∞

P(U (1) + U (2) + · · ·+ U (n) ∈ k +∆h)

P(U ∈ k +∆h)
=

n∑

j=1

cj.

Further, if
∑n

j=1 cj > 0, thenU (1) + U (2) + · · ·+ U (n) ∈ Sloc(h).

Proposition A.2.4 Let {F (k); k ∈ Z+} and{Fj(k); k ∈ Z+} (j = 1, 2, . . . , m) denote proba-

bility mass functions. Suppose (i)F ∈ Sloc(1); and (ii) for j = 1, 2, . . . , m,

lim
k→∞

Fj(k)

F (k)
= cj ∈ R+. (A.3)

Then for anyε > 0 there exists someCε ∈ (0,∞) such that

F ∗n1
1 ∗ F ∗n2

2 ∗ · · · ∗ F ∗nm

m (k) ≤ Cε(1 + ε)n1+n2+···+nmF (k), (A.4)

for all k > sup{k ∈ Z+;F (k) = 0} andn1, n2, . . . , nm ∈ N.
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Proof. See Appendix B.9. ✷

Proposition A.2.5 For di ∈ N (i = 0, 1, 2), let {P (k); k ∈ Z+} and{Q(k); k ∈ Z+} denote

nonnegatived0 × d1 andd1 × d2 matrix sequences, respectively, such thatP :=
∑∞

k=0P (k)

andQ :=
∑∞

k=0Q(k) are finite. Suppose that for someU ∈ Sloc(1),

lim
k→∞

P (k)

P(U = k)
= P̃ ≥ O, lim

k→∞

Q(k)

P(U = k)
= Q̃ ≥ O.

We then have

lim
k→∞

P ∗Q(k)

P(U = k)
= P̃Q+ PQ̃.

Proof. This proposition can be proved in the same way as PropositionA.3 in [19], and thus the

proof is omitted. ✷

Proposition A.2.6 Let{W (k); k ∈ Z+} denote a sequence of (finite dimensional) nonnegative

square matrices such that
∑∞

n=0W
n = (I −W )−1 < ∞, whereW =

∑∞
k=0W (k). If there

exists someU ∈ Sloc(1) such that

lim
k→∞

W (k)

P(U = k)
= W̃ ≥ O,

then

lim
k→∞

∑∞
n=0W

∗n(k)

P(U = k)
= (I −W )−1W̃ (I −W )−1.

Proof. Using Proposition A.2.5, we can readily prove, by induction, that

lim
k→∞

W ∗n(k)

P(U = k)
=

n−1∑

l=0

W lW̃W n−l−1. (A.5)

Further it follows from Proposition A.2.4 that for anyε > 0 there exist somek0 ∈ Z+ and some

Cε ∈ (0,∞) such that for allk ≥ k0 andn ∈ N,

[W ∗n(k)]i,j
P(U = k)

≤ Cε(1 + ε)n[W n]i,j.

Note here thatsp(W ) < 1 and thus
∑∞

n=1(1 + ε)nW n < ∞ for any sufficiently smallε > 0.

As a result, using the dominated convergence theorem and (A.5), we obtain

lim
k→∞

∑∞
n=0W

∗n(k)

P(U = k)
= lim

k→∞

W ∗0(k)

P(U = k)
+

∞∑

n=1

lim
k→∞

W ∗n(k)

P(U = k)

=

∞∑

n=1

n−1∑

l=0

W lW̃W n−l−1

= (I −W )−1W̃ (I −W )−1.

✷
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B Proofs

B.1 Proof of Proposition 2.1.4

Equation (2.8) yields

det(I −A) = det(I −R) det(I −Φ(0)) det(I −G).

It thus follows fromsp(A) < 1 that

det(I −G) 6= 0, det(I −R) 6= 0. (B.1)

Note here that by definition,

N∑

k=1

∑

j∈M

[G(k)]i,j = P(T<N < ∞ | X0 = N, S0 = i), for all N ∈ N,

which shows thatGe ≤ e and thussp(G) ≤ 1 (see Theorem 8.1.22 in [11]). Further,

sp(R) ≤ 1 due to the duality of theR- andG-matrices (see [26]). Therefore, it follows from

Theorem 8.3.1 in [11] and (B.1) that (i)sp(G) < 1 and (ii) sp(R) < 1.

Finally, we prove (iii). From (2.1), we have

Φ(−k) ≥ O, 0 ≤
k−1∑

l=0

Φ(−l)e ≤ e, for all k ∈ N,

which implies thatsp(
∑∞

l=0Φ(−l)) ≤ 1 (see Theorem 8.1.22 in [11]). Thus it suffices to prove

that
∑∞

l=0Φ(−l) does not have the eigenvalueone. Indeed, (2.2) yields

(I −Φ(0))(I −G) = I −
∞∑

l=0

Φ(−l).

Therefore we havedet(I−
∑∞

l=0Φ(−l)) 6= 0 becauseI−Φ(0) is nonsingular andsp(G) < 1.

B.2 Proof of Proposition 2.5.1

We prove this proposition by reduction to absurdity. To do so, we suppose either (i)G is strictly

lower triangular, or (ii)G takes a form such that

G =




G1 O O

G2,1 G2 O

G3,1 G3,2 G3


 , (B.2)

whereGi (i = 1, 2) is irreducible andG2 can be equal toGT (in that case, the last block

row and column vanish). If (i) is true, thenG is a nilpotent matrix, which is inconsistent with

δ(G) = 1.
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In what follows, we consider case (ii). For simplicity, we partition the phase setM into

subsetsM1, M2 andM3 corresponding toG1, G2 andG3, respectively. Further we write

(k, i)
6=(0,∗)−→ (l, j) (k, l ∈ N; i, j ∈ M) when state(l, j) can be reached from state(k, i) avoiding

level zero.

LetG2(k) denote a submatrix ofG(k) such that
∑∞

k=1G2(k) = G2. The irreducibility of

G2 shows that
∑KG

k=1G2(k) is irreducible for someKG ∈ N. Thus for anyi2 ∈ M2, there exists

some(k′
2, i

′
2) ∈ N×M2 such that

(k′
2, i

′
2)

6=(0,∗)−→ (1, i2).

Similarly,
∑∞

k=−KA
A(k) is irreducible for someKA ∈ N due to the irreducibility ofA, and

thus there exists some(k1, i1) ∈ N×M1 such that

(k1, i1)
6=(0,∗)−→ (k′

2, i
′
2).

As a result,

(k1, i1)
6=(0,∗)−→ (k′

2, i
′
2)

6=(0,∗)−→ (1, i2), i1 ∈ M1, i2, i
′
2 ∈ M2,

which contradicts to the structure ofG shown in (B.2).

B.3 Proof of Proposition 2.5.2

From Theorem 8.1.18 in [11], we have

sp(R̂(ω)) ≤ δ(R̂(1)) < 1, (B.3)

where the second inequality is due to the positive-recurrence ofT (see Theorem 3.4 in [25]). It

follows from (2.8), (B.3) andsp(Φ(0)) < 1 that

det(I − Â(ω)) = 0 ⇐⇒ det(I − Ĝ(ω)) = 0.

Note here thatsp(Â(ω)) ≤ δ(Â(1)) = 1 andsp(Ĝ(ω)) ≤ δ(Ĝ(1)) = 1 (see Theorem 8.1.18

in [11]). Thus

det(I − Â(ω)) = 0 ⇐⇒ δ(Â(ω)) = 1,

det(I − Ĝ(ω)) = 0 ⇐⇒ δ(Ĝ(ω)) = 1.

As a result,δ(Ĝ(ω)) = 1 if and only if δ(Â(ω)) = 1. Finally, the statement (i) follows from

(2.21) and Proposition 2.4.2.

Since the statement (i) is proved, we readily obtain the statements (ii) and (iii) by applying

Theorem B.1 in [14] to the MAdP{(X̆(G)
n , S̆

(G)
n )} and using (2.19). Further, the statement (iv)

is an immediate consequence of (2.19) and Lemma B.3 in [14].
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B.4 Proof of Proposition 2.5.3

SinceA is stochastic, it follows from Propositions 2.4.1 and 2.5.2that forν = 0, 1, . . . , τ − 1,

δ(Â(ων
τ )) = δ(Â(1)) = 1, δ(Ĝ(ων

τ )) = δ(Ĝ(1)) = 1, (B.4)

µ(ων
τ ) = π∆M(ων

τ )
−1, v(ων

τ ) = ∆M(ων
τ )e, (B.5)

where we useµ(1) = π andv(1) = e. Therefore, (2.24) and the second equation in (B.5) yield

v(ων
τ ) = ∆M(ων

τ )e = y(ων
τ ).

We now definẽψ(ων
τ ) as

ψ̃(ων
τ ) =

µ(ων
τ )(I − R̂(ων

τ ))(I −Φ(0))

µ(ων
τ )(I − R̂(ων

τ ))(I −Φ(0))v(ων
τ )
, ν = 0, 1, . . . , τ − 1. (B.6)

It can be shown that̃ψ(ων
τ ) = ψ(ω

ν
τ ), whose proof is given later. From (2.8), we have

I −G(ων
τ ) = (I −Φ(0))−1(I − R̂(ων

τ ))
−1(I − Â(ων

τ )).

Pre-multiplying (resp. post-multiplying) the above equation by ψ̃(ων
τ ) (resp.v(ων

τ )) and us-

ing (B.4), we can readily verify that̃ψ(ων
τ ) (= ψ(ων

τ )) andv(ων
τ ) = y(ων

τ ) are the left- and

right-eigenvectors of̂G(ων
τ ) corresponding to the eigenvalueδ(Ĝ(ων

τ )) = 1. As a result, the

statement (i) holds.

As for the statement (ii), it follows from the second equation in (B.5) and (B.6) that

ψ̃(ων
τ )∆M(ων

τ )e = ψ̃(ων
τ )v(ω

ν
τ ) = 1.

Therefore the statement (ii) can be proved in the same way as the proof of Lemma 3.2 in [14].

In what follows, we provẽψ(ων
τ ) = ψ(ω

ν
τ ). For this purpose, we first show that

∞∑

l=0

(ων
τ )

l
Φ(l) = ∆M(ων

τ )
∞∑

l=0

Φ(l)∆M(ων
τ )

−1. (B.7)

The definition ofΦ(l) (l ∈ Z+) implies

[Φ(l)]i,j = P(XT↓l+1
= l + 1, ST↓l+1

= j | X0 = 1, S0 = i),

whereT↓l+1 = inf{n ∈ N;Xn = l+1 < Xm (m = 1, 2, . . . , n− 1)}. Further (2.17) and (2.18)

imply that for alln ∈ N, the following probability is positive only ifl ≡ p(j)− p(i) (mod τ):

P(Xn = l + 1, Sn = j,Xm ≥ 1 (m = 1, 2, . . . , n− 1) | X0 = 1, S0 = i).

Thus[Φ(l)]i,j > 0 only if l ≡ p(j)− p(i) (mod τ), which leads to

∞∑

l=0

zlΦ(l) = ∆M(z)ΛΦ(z
τ )∆M(z)−1, (B.8)
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whereΛΦ(z) denotes anM ×M matrix whose(i, j)th element is given by

[ΛΦ(z)]i,j =
∑

n∈Z+

nτ+p(j)−p(i)≥0

zn[Φ(nτ + p(j)− p(i))]i,j .

As a result, (B.8) yields (B.7) becauseΛΦ(1) =
∑∞

l=0Φ(l).

We now return to the proof of̃ψ(ων
τ ) = ψ(ων

τ ). From (2.5) and (B.7), we have forν =

0, 1, . . . , τ − 1,

(I − R̂(ων
τ ))(I −Φ(0))

= I −
∞∑

l=0

(ων
τ )

l
Φ(l)

= ∆M(ων
τ )

(
I −

∞∑

l=0

Φ(l)

)
∆M(ων

τ )
−1

= ∆M(ων
τ )(I −R)(I −Φ(0))∆M(ων

τ )
−1, (B.9)

where the last equality follows from the first equality withν = 0. Substituting (B.5) and (B.9)

into (B.6) yields

ψ̃(ων
τ ) =

π(I −R)(I −Φ(0))

π(I −R)(I −Φ(0))e
∆M(ων

τ )
−1 = ψ(ων

τ ).

B.5 Proof of Lemma 3.1.2

From (2.4), we have

L̂(1/z) =
adj(I − Ĝ(1/z))

det(I − Ĝ(1/z))
− I. (B.10)

Note here that

∣∣∣[Ĝ(1/z)]i,j

∣∣∣ =
∣∣∣∣∣

∞∑

k=1

zk[G(k)]i,j

∣∣∣∣∣ ≤ [G]i,j, i, j ∈ M, |z| ≤ 1,

sp(Ĝ(1/z)) < sp(G) = 1, |z| < 1.

It then follows from Proposition 2.5.2 that{ων
τ ; ν = 0, 1, . . . , τ − 1} are the simple minimum-

modulus poles of̂L(1/z). Therefore applying Theorem A.1 in [14] to (B.10), we obtain

L(k) =

τ−1∑

ν=0

1

(ων
τ )

k
lim
z→ων

τ

(
1− z

ων
τ

)
adj(I − Ĝ(1/z))

det(I − Ĝ(1/z))
+O((1 + ε0)

−k)ete, (B.11)
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for someε0 > 0, wheref(x) = O(g(x)) representslim supx→∞ |f(x)/g(x)| < ∞. Further it

follows from l’Hôpital’s rule and Proposition 2.5.3 that for ν = 0, 1, . . . , τ − 1,

lim
z→ων

τ

(
1− z

ων
τ

)
adj(I − Ĝ(1/z))

det(I − Ĝ(1/z))

= lim
z→ων

τ

1− z

ων
τ

1− δ(Ĝ(1/z))

adj(I − Ĝ(ω−ν
τ ))

M∏

i=2

(1− λ
(G)
i (ω−ν

τ ))

=
1

ων
τ · (d/dz)δ(Ĝ(1/z))|z=ων

τ

· y(ω−ν
τ )ψ(ω−ν

τ )

=
1

ων
τ · (d/dz)δ(Ĝ(1/z))|z=ων

τ

·∆M(ω−ν
τ )
eψ

ψe
∆M(ω−ν

τ )−1, (B.12)

where the last equality is due to (2.23), (2.24) and (3.3). Letting y = 1/z, we have

ων
τ

d

dz
δ(Ĝ(1/z))

∣∣∣∣
z=ων

τ

= − 1

ων
τ

d

dy
δ(Ĝ(y))

∣∣∣∣
y=1/ων

τ

= − d

dy
δ(Ĝ(y))

∣∣∣∣
y=1

,

(B.13)

where the second equality is due to Proposition 2.5.2 (iv). Applying (B.13) to (B.12) yields

lim
z→ων

τ

(
1− z

ων
τ

)
adj(I − Ĝ(1/z))

det(I − Ĝ(1/z))

=
−1

(d/dy)δ(Ĝ(y))|y=1

·∆M(ω−ν
τ )
eψ

ψe
∆M(ω−ν

τ )−1. (B.14)

In what follows, we calculate(d/dy)δ(Ĝ(y))|y=1. Taking the derivative of both sides of

(2.22) withz = y, lettingy = 1 and usingδ(Ĝ(1)) = 1, we have

d

dy
δ(Ĝ(y))

∣∣∣∣
y=1

= − 1
M∏

i=2

(1− λ
(G)
i (1))

· d

dy
det(I − Ĝ(y))

∣∣∣
y=1

. (B.15)

Similarly, fromdet(I − Ĝ(y)) = π · adj(I − Ĝ(y))(I − Ĝ(y)) · e, we obtain

d

dy
det(I − Ĝ(y))

∣∣∣
y=1

= π · adj(I −G)
∞∑

k=1

kG(k)e, (B.16)

where we useGe = e. Note here that Proposition 2.5.3 and (3.3) imply

adj(I −G) =
eψ

ψe
·

M∏

i=2

(1− λ
(G)
i (1)).
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It thus follows from (B.16) and Lemma 3.1.1 that

d

dy
det(I − Ĝ(y))

∣∣∣
y=1

=
ψ

ψe

∞∑

k=1

kG(k)e ·
M∏

i=2

(1− λ
(G)
i (1))

=
1

ψe
·

M∏

i=2

(1− λ
(G)
i (1)), (B.17)

where the second equality is due toψ
∑∞

k=1 kG(k)e = 1 (see (3.1) and (3.3)). Further substi-

tuting (B.17) into (B.15) yields

d

dy
δ(Ĝ(y))

∣∣∣∣
y=1

= − 1

ψe
,

from which and (B.14), we have

lim
z→ων

τ

(
1− z

ων
τ

)
adj(I − Ĝ(1/z))

det(I − Ĝ(1/z))
= ∆M(ω−ν

τ )eψ∆M(ω−ν
τ )−1. (B.18)

Finally, we have (3.2) by substituting (B.18) into (B.11) and lettingk = nτ + l.

B.6 Proof of Lemma 3.1.4

Equations (3.7) and (3.9) show that for anyε > 0 there exists somem∗ := m∗(ε) ∈ N such that

for all m ≥ m∗ andl = 0, 1, . . . , τ − 1,

e(τψ − εet) ≤
τ−1∑

l=0

L(⌊m/τ⌋τ + l) ≤ e(τψ + εet), (B.19)

1

E[Y ]
(cA − εe) ≤ A(⌊m/τ⌋τ + l)e

P(Y > m)
≤ 1

E[Y ]
(cA + εe). (B.20)

Further sinceYe ∈ L andL(m) ≤ eet for all m = 1, 2, . . . , we have

lim sup
k→∞

m∗−1∑

m=1

A(k +m)L(m)

P(Ye > k)

≤
m∗−1∑

m=1

lim sup
k→∞

A(k +m)eet

P(Y > k +m)
lim sup
k→∞

P(Y > k +m)

P(Ye > k +m)

× lim sup
k→∞

P(Ye > k +m)

P(Ye > k)

= O, (B.21)

where the last equality follows from (3.9) and the fact thatYe ∈ L has a heavier tail thanY (see

Corollary 3.3 in [21]).
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On the other hand,

∞∑

m=m∗

A(k +m)L(m)

P(Ye > k)
≤

∞∑

m′=⌊m∗/τ⌋

τ−1∑

l=0

A(k +m′τ + l)L(m′τ + l)

P(Ye > k)

≤
∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)

P(Ye > k)

τ−1∑

l=0

L(m′τ + l)

≤
∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)e

P(Ye > k)
(τψ + εet), (B.22)

where the second inequality holds because{A(k); k ∈ Z+} is nonincreasing, and where the

last inequality is due to (B.19). Note here that (3.9) implies for all sufficiently largek,
∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)e

P(Ye > k)

≤ (cA + εe) · 1

E[Y ]

∞∑

m′=⌊m∗/τ⌋

P(Y > k +m′τ)

P(Ye > k)
,

from which and Proposition A.1 it follows that

lim sup
k→∞

∞∑

m′=⌊m∗/τ⌋

A(k +m′τ)e

P(Ye > k)
≤ cA + εe

τ
. (B.23)

Combining (B.22) and (B.23) and lettingε ↓ 0 yield

lim sup
k→∞

∞∑

m=m∗

A(k +m)L(m)

P(Ye > k)
≤ cAψ. (B.24)

As a result, from (B.21) and (B.24), we have

lim sup
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
≤ cAψ. (B.25)

Next we consider the lower limit. It follows from (B.19) and (B.20) that
∞∑

m=1

A(k +m)L(m)

P(Ye > k)
≥

∞∑

m=m∗

A(k +m)L(m)

P(Ye > k)

≥
∞∑

m′=⌊m∗/τ⌋+1

τ−1∑

l=0

A(k +m′τ + l)L(m′τ + l)

P(Ye > k)

≥
∞∑

m′=⌊m∗/τ⌋+1

A(k +m′τ + τ)

P(Ye > k)

τ−1∑

l=0

L(m′τ + l)

≥
∞∑

m′=⌊m∗/τ⌋+2

A(k +m′τ)e

P(Ye > k)
(τψ − εet), (B.26)
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where the third inequality requires the fact that{A(k)} is nonincreasing. Further the following

can be shown in a very similar way to (B.23):

lim inf
k→∞

∞∑

m′=⌊m∗/τ⌋+2

A(k +m′τ)e

P(Ye > k)
≥ cA − εe

τ
.

Combining this with (B.26) and lettingε ↓ 0 yield

lim inf
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye > k)
≥ cAψ. (B.27)

Finally, (3.10) follows from (B.25), (B.27) and (3.3). Equation (3.11) can be proved in the same

way, and thus the proof is omitted.

B.7 Proof of Lemma 4.1.1

We give the proof of (4.2) only. Equation (4.3) can be proved in the same way. It follows from

(3.4),Ee = e and (5) that forε > 0 there exists somem∗ := m∗(ε) ∈ N such that for all

m ≥ m∗ andl = 0, 1, . . . , τ − 1,

E(τH l − εeet) ≤ L(m) ≤ E(τH l + εeet), m ≡ l (modτ), (B.28)
1

E[Y ]
(CE

A − εeet) ≤ A(m)E

P(Y = m)
≤ 1

E[Y ]
(CE

A + εeet). (B.29)

Thus from (4.1),L(m) ≤ Eeet andY ∈ L (see Remark A.2.1), we have

lim
k→∞

m∗−1∑

m=1

A(k +m)L(m)

P(Ye = k)

≤ E[Y ]

m∗−1∑

m=1

lim
k→∞

A(k +m)Eeet

P(Y = k +m)

P(Y = k +m)

P(Y > k)
= O.

Using this and (B.28), we obtain

lim sup
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)

= lim sup
k→∞

∞∑

m=m∗

A(k +m)L(m)

P(Ye = k)

= lim sup
k→∞

τ−1∑

l=0

∑

m≥m∗

m≡l (mod τ)

A(k +m)L(m)

P(Ye = k)

≤
τ−1∑

l=0


lim sup

k→∞

∑

m≥m∗

m≡l (mod τ)

A(k +m)E

P(Ye = k)


 (τH l + εeet). (B.30)
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Further it follows from (B.29) and Proposition A.2.1 that

lim sup
k→∞

∑

m≥m∗

m≡l (mod τ)

A(k +m)E

P(Ye = k)

≤ CE
A + εeet

E[Y ]
lim sup
k→∞

∑

m≥m∗

m≡l (mod τ)

P(Y = k +m)

P(Ye = k)

=
CE

A + εeet

τ
. (B.31)

Substituting (B.31) into (B.30) and lettingε ↓ 0, we obtain

lim sup
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
≤ CE

A

τ−1∑

l=0

H l = C
E
Aeψ,

where we use (3.8) in the last equality. Similarly, we can show that

lim inf
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
≥ CE

Aeψ.

As a result,

lim
k→∞

∞∑

m=1

A(k +m)L(m)

P(Ye = k)
= CE

Aeψ,

from which and (3.3) we have (4.2).

B.8 Proof of Proposition A.2.1

We assume that condition (i) holds. It follows fromU ∈ Lloc(1) that for anyε > 0 there exists

k0 ∈ N such that for allk ≥ k0 andl ∈ Z+,

1− ε ≤ P(U = k + lh+ ν)

P(U = k + lh)
≤ 1 + ε, ν = 0, 1, . . . , h− 1.

Thus for allk ≥ k0, we have

1− ε ≤
∑∞

l=l0
P(U = k + lh+ ν)∑∞

l=l0
P(U = k + lh)

≤ 1 + ε, ν = 0, 1, . . . , h− 1,

which leads to

lim
k→∞

∑∞
l=l0

P(U = k + lh + ν)∑∞
l=l0

P(U = k + lh)
= 1, ν = 0, 1, . . . , h− 1. (B.32)
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Therefore (B.32) yields forν = 0, 1, . . . , h− 1,

lim
k→∞

∑∞
l=l0

P(U = k + lh + ν)

P(U > k + l0h− 1)

= lim
k→∞

∑∞
l=l0

P(U = k + lh+ ν)∑∞
m=l0h

P(U = k +m)

= lim
k→∞

∑∞
l=l0

P(U = k + lh)
∑h−1

j=0

∑∞
l=l0

P(U = k + lh+ j)

×
∑∞

l=l0
P(U = k + lh+ ν)∑∞

l=l0
P(U = k + lh)

=
1

h
. (B.33)

Note here that ifU ∈ Lloc(1), thenU ∈ L and thuslimk→∞ P(U > k+ l0h−1)/P(U > k) = 1.

As a result, (B.33) implies (A.2).

Next we assume that condition (ii) holds. It then follows that for all sufficiently largek,
∞∑

l=l0

P(U = k + lh) ≥
∞∑

l=l0

P(U = k + lh + j), j ∈ Z+. (B.34)

Thus for any fixed (possibly negative) integeri,

lim
k→∞

P(U = k + l0h+ i)

h
∑∞

l=l0
P(U = k + lh)

≤ lim
k→∞

P(U = k + l0h+ i)
∑h−1

j=0

∑∞
l=l0

P(U = k + lh + j)

= lim
k→∞

P(U > k + l0h+ i− 1)− P(U > k + l0h + i)

P(U > k + l0h− 1)
= 0,

which implies that

lim
k→∞

P(U = k + l0h+ i)∑∞
l=l0

P(U = k + lh)
= 0. (B.35)

Further (B.34) yields for all sufficiently largek,

1 ≥
∑∞

l=l0
P(U = k + lh+ ν)∑∞

l=l0
P(U = k + lh)

≥ 1− P(U = k + l0h)∑∞
l=l0

P(U = k + lh)
, ν = 0, 1, . . . , h− 1,

from which and (B.35) it follows that (B.32) holds forν = 0, 1, . . . , h − 1. Therefore we can

prove (A.2) in the same way as the case of condition (i).

B.9 Proof of Proposition A.2.4

The techniques for the proof are based on Lemma 4.2 in [1] and Lemma 10 in [12], though

some modifications are required. For the reader’s convenience, we provide a complete proof of

this proposition.
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We first prove the statement under an additional condition thatcj > 0 for all j = 1, 2, . . . , m,

and then remove the condition.

Let C = max{1, c1, . . . , cm}, d0 = 1 anddj = cj/C ≤ 1 for j = 1, 2, . . . , m. Let F0(k)

(k ∈ Z+) denote a probability mass function such thatF0(k) = CF (k) for all sufficiently large

k ≥ k0, wherek0 is a positive integer such thatF (k) > 0 for all k ≥ k0 (see Definitions A.2.1

and A.2.2).

From (A.3), we have

lim
k→∞

Fj(k)

F0(k)
= dj ≤ 1, j = 0, 1, . . . , m. (B.36)

Further sinceFj ∈ Sloc(1) ⊂ Lloc(1) (see Proposition A.2.3),

lim
n→∞

lim
k→∞

∑n
l=0 Fi(l)Fj(k − l)

Fj(k)
= lim

n→∞

n∑

l=0

Fi(l) = 1, (B.37)

lim
k→∞

Fi ∗ Fj(k)

F0(k)
= di + dj, (B.38)

for all i, j = 0, 1, . . . , m. Thus anyε > 0, there exist some positive integersk′ andk′′ such that

k′′ > 2k′ ≥ 2k0, F0(k) = CF (k) ≤ 1 for all k ≥ k′ and for alli, j = 0, 1, . . . , m,

F0(k + 1)

F0(k)
≥ 1− ε, ∀k ≥ k′, (B.39)

dj −
ε

8
≤ Fj(k)

F0(k)
≤ 1 +

ε

2
, ∀k ≥ k′, (B.40)

∑k′−1
l=0 Fi(l)Fj(k − l)

Fj(k)
≥ 1− ε

8dj
, ∀k ≥ k′′, (B.41)

Fi ∗ Fj(k) ≤ (di + dj + ε/4)F0(k), ∀k ≥ k′′. (B.42)

Note here that (B.39), (B.40), (B.41) and (B.42) follow fromF0 ∈ Lloc(1), (B.36), (B.37) and

(B.38), respectively.

We now show (A.4) for the convolution of two mass functionsFi andFj (i, j = 0, 1, . . . , m).

Note that

Fi ∗ Fj(k) =

k−k′∑

l=0

Fi(k − l)Fj(l) +

k′−1∑

l=0

Fi(l)Fj(k − l). (B.43)
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It then follows from (B.40), (B.41) and (B.42) that fork ≥ k′′ > 2k′,

k−k′∑

l=0

Fi(k − l)Fj(l) = Fi ∗ Fj(k)−
k′−1∑

l=0

Fi(l)Fj(k − l)

≤
(
di + dj +

ε

4

)
F0(k)−

(
1− ε

8dj

)
Fj(k)

≤
[(

di + dj +
ε

4

)
−
(
1− ε

8dj

)(
dj −

ε

8

)]
F0(k)

≤
(
di +

ε

2

)
F0(k) ≤

(
1 +

ε

2

)
CF (k), (B.44)

where the last inequality is due todj ≤ 1 andF0(k) = CF (k) for all k ≥ k′. Applying (B.44)

to (B.43), we have fork ≥ k′′ > 2k′,

Fi ∗ Fj(k) ≤
(
1 +

ε

2

)
CF (k) +

k′−1∑

l=0

Fi(l)Fj(k − l)

≤
(
1 +

ε

2

)
CF (k) + sup

k−k′+1≤l≤k
Fj(l). (B.45)

Further fork ≥ k′′ > 2k′, k − k′ + 1 > k′ + 1 and thus (B.39) and (B.40) yield

sup
k−k′+1≤l≤k

Fj(l) ≤
(
1 +

ε

2

)
sup

k−k′+1≤l≤k
F0(l)

=
(
1 +

ε

2

)
sup

k−k′+1≤l≤k

F0(l)

F0(k)
· CF (k)

≤
(
1 +

ε

2

) 1

(1− ε)k′−1
· CF (k)

=
(
1 +

ε

2

)
C ′

ε · CF (k), k ≥ k′′ > 2k′, (B.46)

whereC ′
ε = 1/(1− ε)k

′−1. Substituting (B.46) into (B.45), we obtain

Fi ∗ Fj(k) ≤
(
1 +

ε

2

)
(1 + C ′

ε)CF (k)

≤ (1 + ε) · 2C ′
εCF (k)

≤ 2C ′
ε · (1 + ε)2CF (k), k ≥ k′′, (B.47)

where we useC ′
ε ≥ 1. Note here thatFi ∗ Fj(k) ≤ 1 for all k ∈ Z+ and

sup
k0≤k≤k′′−1

F (k)/F (k′′) ∈ (0,∞).

Therefore there exists someC ′′
ε > 0 such that

Fi ∗ Fj(k) ≤ C ′′
ε

F (k)

F (k′′)

≤ C ′′
ε

CF (k′′)
· (1 + ε)2CF (k), k0 ≤ k ≤ k′′ − 1. (B.48)
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We now defineKε as

Kε = max

(
2C ′

ε,
C ′′

ε

CF (k′′)
,

2 + ε

ε(1 + ε)2
C ′

ε

)
.

We then have the following inequality (which is used later).
(
1 +

ε

2

)
C ′

ε ≤ Kε(1 + ε)2
ε

2
. (B.49)

Further combining (B.47) and (B.48) leads to

Fi ∗ Fj(k) ≤ Kε(1 + ε)2CF (k), k ≥ k0. (B.50)

Next we show (A.4) for the convolution of three mass functions Fi, Fj andFν (i, j, ν =

0, 1, . . . , m). It follows from (B.50) andF0(k) = CF (k) for all k ≥ k′ that

Fi ∗ Fj(k) ≤ Kε(1 + ε)2F0(k), k ≥ k′.

From this and (B.46), we have fork ≥ k′′ > 2k′,

Fi ∗ Fj ∗ Fν(k)

=
k−k′∑

l=0

Fi ∗ Fj(k − l)Fν(l) +
k′−1∑

l=0

Fi ∗ Fj(l)Fν(k − l)

≤
k−k′∑

l=0

Fi ∗ Fj(k − l)Fν(l) + sup
k−k′+1≤l≤k

Fν(l)

≤ Kε(1 + ε)2
k−k′∑

l=0

F0(k − l)Fν(l) +
(
1 +

ε

2

)
C ′

εCF (k). (B.51)

Applying (B.44) and (B.49) to (B.51) yields fork ≥ k′′ > 2k′,

Fi ∗ Fj ∗ Fν(k)

≤ Kε(1 + ε)2
(
1 +

ε

2

)
CF (k) +Kε(1 + ε)2

ε

2
CF (k)

= Kε(1 + ε)2
(
1 +

ε

2
+

ε

2

)
CF (k)

= Kε(1 + ε)3CF (k).

Further usingC ′′
ε > 0 such that (B.48) holds, we obtain

Fi ∗ Fj ∗ Fν(k) ≤ C ′′
ε

F (k)

F (k′′)

≤ C ′′
ε

CF (k′′)
· (1 + ε)3CF (k), k0 ≤ k ≤ k′′ − 1.
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ThereforeFi ∗ Fj ∗ Fν(k) ≤ Kε(1 + ε)3CF (k) for k ≥ k0.

By repeating the above argument, we can prove that (A.4) holds under the additional condi-

tion thatcj > 0 for all j = 1, 2, . . . , m. In what follows, we remove this condition.

Without loss of generality, we assume thatcj = 0 for j = 1, 2, . . . , m′ (1 ≤ m′ ≤ m) and

cj > 0 for j = m′ + 1, m′ + 2, . . . , m. Then for anyδ > 0, there exists some positive integer

k∗ := k∗(δ) ≥ k0 such that for allk ≥ k∗,

Fj(k) ≤ δF (k), j = 1, 2, . . . , m′.

Let {F̃j(k); k ∈ Z+} (j = 1, 2, . . . , m′) denote a probability mass function such that

F̃j(k) =

{
Fj(k)/Θj , k < k∗,

δF (k)/Θj, k ≥ k∗,

whereΘj := Θj(δ) =
∑k∗−1

k=0 Fj(k) +
∑∞

k=k∗
δF (k). It then follows thatFj(k) ≤ ΘjF̃j(k) for

all k ∈ Z+ andj = 1, 2, . . . , m′. Thus we have

F ∗n1
1 ∗ F ∗n2

2 ∗ · · · ∗ F ∗nm

m (k)

≤
m′∏

j=1

Θ
nj

j · F̃ ∗n1
1 ∗ · · · ∗ F̃ ∗nm′

m′ ∗ F ∗nm′+1

m′+1 ∗ · · · ∗ F ∗nm

m (k). (B.52)

By definition,

lim
k→∞

F̃j(k)

F (k)
=

δ

Θj

> 0, j = 1, 2, . . . , m′.

Therefore for anyε > 0, there exists someCε > 0 such that

F̃ ∗n1
1 ∗ · · · ∗ F̃ ∗nm′

m′ ∗ F ∗nm′+1

m′+1 ∗ · · · ∗ F ∗nm

m (k)

≤ Cε(1 + ε)n1+n2+···+nmF (k). (B.53)

Note here thatlimδ↓0 Θj(δ) = 1 for all j = 1, 2, . . . , m′. Substituting (B.53) into (B.52) and

letting δ ↓ 0 yields (A.4).

C Examples

C.1 M/GI/1 queue with Pareto service-time distribution

We consider a stable M/GI/1 queue with a Pareto service-timedistribution. Letλ denote the

arrival rate of customers. LetH denote the service time distribution, which is given by

H(x) = 1− (x+ 1)−γ, x ≥ 0,
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with γ > 1 andγ 6∈ N. Note here that the mean service time is equal to1/(γ − 1) and thus the

traffic intensity, denoted byρ, is equal toλ/(γ − 1) < 1. Let H̃(s) denote the Laplace-Stieltjes

transform (LST) of the service time distributionH. It then follows from Theorem 8.1.6 in [5]

that

H̃(s) =

⌊γ⌋∑

j=0

hj
(−s)j

j!
− Γ(1− γ)sγ + o(sγ), (C.1)

wherehj =
∫∞

0
xjdH(x) (j = 1, 2, . . . ), f(x) = o(g(x)) representslimx→0 f(x)/g(x) = 0

andΓ denotes the Gamma function. Equation (C.1) yields

H̃(λ− λz) =

⌊γ⌋∑

j=0

hj
(−λ)j(1− z)j

j!
− Γ(1− γ)λγ(1− z)γ + o((1− z)γ). (C.2)

It is well-known that the stationary queue length distribution of the M/GI/1 queue, denoted by

{x(k); k ∈ Z+}, is identical with the stationary distribution of the following stochastic matrix:



α(0) α(1) α(2) α(3) · · ·
α(0) α(1) α(2) α(3) · · ·
0 α(0) α(1) α(2) · · ·
0 0 α(0) α(1) · · ·
...

...
...

...
. . .




,

where{α(k); k ∈ Z+} satisfies
∑∞

k=0 z
kα(k) = H̃(λ− λz) and thus

∑∞
k=1 kα(k) = ρ.

Let α(k) =
∑∞

l=k+1 αl for k ∈ Z+. From (C.2), we then have

∞∑

k=0

zkα(k) =
1− H̃(λ− λz)

1− z

= −
⌊γ⌋∑

j=1

hj
(−λ)j(1− z)j−1

j!

+ Γ(1− γ)λγ(1− z)γ−1 + o((1− z)γ−1). (C.3)

Applying Lemma 5.3.2 in [23] to (C.2) and (C.3) yields

α(k)
k∼ γλγk−γ−1, (C.4)

α(k)
k∼ λγk−γ, (C.5)

wheref(x)
x∼ g(x) representslimx→∞ f(x)/g(x) = 1. Note that (C.4) shows that the dis-

crete distribution{α(k); k ∈ Z+} is in the classLloc. In fact, as shown later,{α(k)} ∈ S∗,

i.e., {αe(k)} ∈ Sloc(1), whereαe(k) = α(k)/ρ for k = 0, 1, . . . . Therefore it follows from

Theorem 4.1.1 that

x(k)
k∼ ρ

1− ρ
· αe(k) =

ρ

1− ρ
· α(k)

ρ

k∼ λγ

1− ρ
k−γ.
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In what follows, we prove that{α(k)} ∈ S∗, i.e.,

k∑

l=0

α(l)α(k − l)
k∼ 2ρ · α(k).

Let ν := ν(k) denote an integer such thatk/3 ≤ ν(k) < k/2. Fork ∈ Z+, we have

k∑

l=0

α(l)α(k − l)

α(k)
= 2

ν−1∑

l=0

α(l)
α(k − l)

α(k)
+

k−ν∑

l=ν

α(l)
α(k − l)

α(k)
. (C.6)

From (C.5), we obtain

lim
k→∞

ν−1∑

l=0

α(l)
α(k − l)

α(k)
=

ν−1∑

l=0

α(l) lim
k→∞

α(k − l)

α(k)
=

ν−1∑

l=0

α(l). (C.7)

Further it follows from (C.5) that for anyε > 0 there exists somek∗ ∈ Z+ such that for all

k ≥ k∗/3,

1− ε <
α(k)

λγk−γ
< 1 + ε,

which implies that fork ≥ k∗ andk/3 ≤ ν < k/2,

k−ν∑

l=ν

α(l)
α(k − l)

α(k)
≤ (1 + ε)2

1− ε

k−ν∑

l=ν

λγl−γ

(
k − l

k

)−γ

≤ (1 + ε)2

1− ε
λγ(k − 2ν + 1)ν−γ

(ν
k

)−γ

≤ (1 + ε)2

1− ε
λγk

(
k

3

)−γ

3γ

≤ (1 + ε)2

1− ε
(9λ)γk−γ+1 → 0, ask → ∞. (C.8)

Finally, applying (C.7) and (C.8) to (C.6) and lettingν → ∞ yield

lim
k→∞

k∑

l=0

α(l)α(k − l)

α(k)
= 2

∞∑

l=0

α(l) = 2ρ.

C.2 Discrete-time queue with disasters and Pareto-distributed batch ar-

rivals

This subsection considers a discrete-time single-server queue with disasters and Pareto-distributed

batch arrivals. The time interval[n, n + 1) (n ∈ Z+) is called slotn. Customers and disasters

can arrive at the beginnings of respective slots, whereas departures of served customers can

occur at the ends of respective slots.
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We assume that the numbers of customer arrivals in respective slots are independent and

identically distributed (i.i.d.) with a discrete Pareto distribution,β(k) = 1/(k+1)γ−1/(k+2)γ

(k ∈ Z+), whereγ > 1. Service times are i.i.d. with a geometric distribution with mean

1/(1 − q) (0 < q < 1). We also assume that at most one disaster occurs at one slot with

probabilityφ (0 < φ < 1), which are independent of the arrival process of customers. If a

disaster occurs in a slot, then both customers arriving in the slot and all the ones in the system

are removed.

LetLn (n ∈ Z+) denote the number of customers at the middle of slotn. It then follows from

Proposition 2.2.2 that{Ln;n ∈ Z+} is an ergodic Markov chain whose transition probability

matrix is given by 


b(0) b(1) b(2) b(3) b(4) · · ·
φ+ a(0) a(1) a(2) a(3) a(4) · · ·

φ a(0) a(1) a(2) a(3) · · ·
φ 0 a(0) a(1) a(2) · · ·
φ 0 0 a(0) a(1)

. . .
...

...
...

...
. . . . . .




,

where

b(0) = φ+ (1− φ)β(0),

b(k) = (1− φ)β(k), k = 1, 2, . . . ,

a(0) = (1− φ)β(0)(1− q),

a(k) = (1− φ)[β(k − 1)q + β(k)(1− q)], k = 1, 2, . . . .

It is easy to see that
∑∞

k=0 a(k) = 1− φ < 1 and

lim
k→∞

a(k)

β(k)
= 1− φ, lim

k→∞

b(k)

β(k)
= 1− φ.

Note here that{β(k); k ∈ Z+} is decreasing and

β(k)
k∼ γk−γ−1.

Thus as in subsection C.1, we can show that{β(k); k ∈ Z+} ∈ Sloc(1). As a result, Theo-

rem 4.2.1 yields

lim
n→∞

P(Ln = k)
k∼ 1− φ

φ
β(k)

k∼ 1− φ

φ
γk−γ−1.
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[12] Jelenković, P.R.; Lazar, A.A. Subexponential asymptotics of a Markov-modulated random

walk with queueing applications. Journal of Applied Probability 1998, 35, 325–347.

[13] Kim, B.; Kim, J. A note on the subexponential asymptotics of the stationary distribution

of M/G/1 type Markov chains. European Journal of Operational Research2012, 220, 132–

134.



46 Kimura et al.

[14] Kimura, T.; Daikoku, K.; Masuyama, H.; Takahashi, Y. Light-tailed asymptotics of sta-

tionary tail probability vectors of Markov chains of M/G/1 type. Stochastic Models2010,

26, 505–548.

[15] Kimura, T.; Daikoku, K.; Masuyama, H.; Takahashi, Y. Light-tailed asymptotics of sta-

tionary tail probability vectors of Markov chains of M/G/1 type. A revised version of the

published paper [14], arXiv:1110.4457.
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