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Abstract

This paper introduces an artificial bee colony Fetiar for solving the capacitated vehicle routing
problem. The artificial bee colony heuristic isveasm-based heuristic, which mimics the foraging
behavior of a honey bee swarm. An enhanced versfidhe artificial bee colony heuristic is also
proposed to improve the solution quality of thegoral version. The performance of the enhanced
heuristic is evaluated on two sets of standard trmack instances, and compared with the original
artificial bee colony heuristic. The computationasults show that the enhanced heuristic
outperforms the original one, and can produce gamdtions when compared with the existing
heuristics. These results seem to indicate thaettanced heuristic is an alternative to solve the
capacitated vehicle routing problem.
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1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) (i.e., the classical vehicle routing praob)eis

defined on a complete undirected grapl (V,E), whereV ={0,1,...,n} is the vertex set and
E={(i, j):i, jOV,i< ]} is the edge set. Verticds..,n represent customers; each customir
associated with a nonnegative demaddand a nonnegative service tirge Vertex O represents
the depot at which a fleet oh homogeneous vehicles of capadyis based. The fleet size is
treated as a decision variable. Each e@gp is associated a nonnegative traveling cost oretrav
time ¢;. The CVRP is to determinen vehicle routes such that (a) every route startisesnls at the

depot; (b) every customer is visited exactly or{cgthe total demand of any vehicle route does not

exceedQ; and (d) the total cost of all vehicle routes imimized. In some cases, the CVRP also

imposes duration constraints where the duraticamgfvehicle route must not exceed a given bound
L . Mathematical formulations of the CVRP can be bunmToth and Vigo (2002).

As the CVRP is a NP-hard problem, only instancesnadll sizes can be solved to optimality using
exact solution methods (e.g., Toth and Vigo, 2@Xdacci et al., 2010), and this might not even be
possible if it is required to use limited amountammputing time. As a result of this, heuristic
methods are used to find good, but not necessguidyanteed optimal solutions using reasonable
amount of computing time. During the past two desadn increasing number of publications on
heuristic approaches have been developed to tHdokl€VRP. The work can be categorized into
evolutionary algorithms (Baker and Ayechew, 200&rd&r and Barkaoui, 2003; Prins, 2004,
Mester and Braysy, 2007; Prins, 2009; Nagata andy®t 2009), ant colony optimization
(Bullnheimer et al., 1999; Reimann et al., 2004;eYal., 2009), simulated annealing (Osman, 1993;
Lin et al., 2009), tabu search (Taillard, 1993; Geau et al., 1994; Rego and Roucairol, 1996;
Rego, 1998; Cordeau et al., 2001; Toth and Vig®32M@erigs and Kaiser, 2007), path-relinking
(Ho and Gendreau, 2006), adaptive memory procedt®eshat and Taillard, 1995; Tarantilis and
Kiranoudis, 2002; Tarantilis, 2005), large neightmwd search (Ergun et al., 2006; Pisinger and
Ropke, 2007), variable neighborhood search (Kyitgdlal., 2007; Chen et al., 2010), deterministic
annealing (Golden et al., 1998; Li et al., 200%)néy-bees mating optimization (Marinakis et al.,
2010), particle swarm optimization (Ai and Kachitwyanukul, 2009) and hybrid Clarke and
Wright's savings heuristic (Juan et al., 2010).

Some of the above CVRP heuristics are based onopisdy developed heuristics. In the following

we will mention some of the relationships. Rochad araillard’s (1995) adaptive memory
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procedure used the idea of genetic algorithms ofloing solutions to construct new solutions and
employed the tabu search of Taillard (1993) asngmravement procedure. Tarantilis (2005) had a
similar framework as Tarantilis and Kiranoudis (2pQwhich is a variant of the idea proposed by
Rochat and Taillard), but is different in that be$ not rely on probability as in Tarantilis and
Kiranoudis (2002) and also uses a more sophisticam@rovement procedure. Thénified tabu
search (Cordeau et al., 2001) and the tabu search usétbland Gendreau (2006) contain some of
the features found iffaburoute (Gendreau et al.,, 1994); infeasible solutions @esidered by
extending the objective function with a penaltydtion and the use of continuous diversification.
Granular tabu search (Toth and Vigo, 2003) restricts the neighborhoa 9y removing edges
from the graph that are unlikely to appear in atinogl solution. Later, other researchers have also
applied this idea on their CVRP heuristics (e.g.etLal., 2005; Mester and Braysy, 2007; Chen et
al., 2010). For extensive surveys on VRP metahiesjsthe reader is referred to Gendreau et al.
(2002), Cordeau et al. (2005) and Gendreau e2@08).

While the above heuristics have been widely useblsaiccessfully applied to solve the CVRP for
several years, Artificial Bee Colony (ABC) is arfginew approach introduced just a few years ago
by Karaboga (2005), but has not yet been appliesotee the CVRP. However, ABC has been
applied to solve other problems with great sucdBsg/kasgly et al., 2007; Kang et al., 2009;
Karaboga, 2009; Karaboga and Basturk, 2007, 20@8atkoga and Ozturk, 2009; Singh, 2009). It
is worthwhile to evaluate the performance of theCA&gorithm for solving the CVRP.

In this paper, we evaluate the performance of tBE Aeuristic using classical benchmark instances.
An enhanced version of ABC heuristic is also pra&gbot improve the performance of the basic
ABC heuiristic for solving the CVRP. Computationasults show that the enhanced ABC heuristic
can produce much better solutions than the base¢ and the computation time of the enhanced
ABC has slightly increased. The results obtained thy enhanced ABC heuristic are also
competitive to those obtained from other metah&osis The paper is organized as follows. In
Section 2, we give a review of the basic ABC alpon. Refinements of the basic ABC algorithm
and how they are applied to the CVRP are present8dction 3. Experimental results showing the
improvements in the performance of the enhanced ABforithm are presented in Section 4.
Finally, Section 5 concludes the paper.



2. Artificial bee colony algorithm

The ABC algorithm belongs to a class of evolutigralgorithms that are inspired by the intelligent
behavior of the honey bees in finding nectar saisreund their hives. This class of metaheuristics
has only started to receive attention recentlyfelDgint variations of bee algorithms under various
names have been proposed to solve combinatoridlgms. But in all of them, some common
search strategies are applied; that is, complefgadrial solutions are considered as food sources
and the groups of bees try to exploit the food sesiin the hope of finding good quality nectar. (i.e
high quality solutions) for the hive. In additidnees communicate between themselves about the

search space and the food sources by performiregglerdance.

In the ABC algorithm, the bees are divided inteethtypes; employed bees, onlookers and scouts.
Employed bees are responsible for exploiting akbglafood sources and gathering required
information. They also share the information witle bnlookers, and the onlookers select existing
food sources to be further explored. When the feaarce is abandoned by its employed bee, the
employed bee becomes a scout and starts to searaméw food source in the vicinity of the hive.
The abandonment happens when the quality of the $oarce is not improved after performing a

maximum allowable number of iterations.

The ABC algorithm is an iterative algorithm, andstarts by generating random solutions as the
food sources and assigning each employed bee dodasource. Then during each iteration, each
employed bee finds a new food source near its railyi assigned (or old) food source (using a
neighborhood operator). The nectar amount (fitnes#)e new food source is then evaluated. If the
new food source has more nectar than the old dwe®, the old one is replaced by the new one.
After all employed bees have finished with the abexploitation process, they share the nectar
information of the food sources with the onlookersen, each onlooker selects a food source
according to the traditional roulette wheel setattmethod. After that, each onlooker finds a food
source near its selected food source (using a bergbod operator) and calculates the nectar
amount of the neighbor food source. Then, for eddtood source, the best food source among all
the food sources near the old food source is datednThe employed bee associated with the old
food source is assigned to the best food sourceabaddons the old one if the best food source is
better than the old food source. A food sourcdss abandoned by an employed bee if the quality
of the food source has not been improvedliort (a predetermined number) successive iterations.
That employed bee then becomes a scout, and sedmheew food source randomly. After the

scout finds a new food source, the scout becomesmtoyed bee again. After each employed bee
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is assigned to a food source, another iteratioh®fABC algorithm begins. The whole process is
repeated until a stopping condition is met.

The steps of the ABC algorithm are summarized bews:
1. Randomly generate a set of solutions as initiaflfeourcesx , i =1,...,7 . Assign each

employed bee to a food source.

2. Evaluate the fitness$ (x) of each of the food sources, i =1,...,7.
3. Setv=0 andl, =I,=...=I_=0.
4. Repeat

a.For each food source

i. Apply a neighborhood operator og - X.

i. If f(X)>f(x),then replaceq with X and |, =0, elsel, =, +1.
b.SetG =0, i=1...,r, whereG is the set of neighbor solutions of food source

c. For each onlooker

I. Select a food sourcg using the fitness-based roulette wheel selection

method.

ii. Apply a neighborhood operator on - X.
i. G=G0O{%
d.For each food source andG, #[J
i. Set xOarg max f(o .
i. If f(x)<f(X),thenreplaces with X andl, =0, elsel, =1, +1.
e.For each food source

i. If I, =limit, then replacex with a randomly generated solution.
f.v=v+l

5. Until (v=Maxlterations)

3. Application to the CVRP

In this section, different components of the altjon are first explained, and then how they are
woven together and applied to the CVRP is described



3.1 Solution representation

In order to maintain the simplicity of the ABC atghm, a rather straightforward solution
representation scheme is adopted. Supposristomers are visited by vehicle routes. The

representation has the form of a vector of leng@thm). In the vector, there are integers

between 1 anch inclusively representing customers’ identity. Tdnerre alsan Os in the vector
representing the start of each vehicle route froendepot. The sequence between two Os is the
sequence of customers to be visited by a vehictur€ 1 illustrates a representation of a CVRP
instance withn=7 andm=3. As shown in Figure 1, customers 4 and 1 are asdigo the same

vehicle route and the vehicle visits customer dt@metustomer 1.

Figure 1. Solution representation

3.2 Search space and cost functions

The search may become restrictive if only the fdagpart of the solution space is explored. Hence,
we also allow the search to be conducted in theasible part of the solution space, so that the
search can oscillate between feasible and infeagibits of the solution spacé. Each solution
xO X consists ofm vehicle routes where each one of them starts add at the depot, and every
customer is visited exactly once. Thusmay be infeasible with regard to the capacity and/
duration constraints. For a solution let c(x) denote its travel cost, and lgfx) andt(x) denote
the total violation of the capacity and duratiomsiaints respectively. The routing cost of a viehic

k corresponds to the sum of the costsassociated with the edgés ) traversed by this vehicle.

The total violation of the capacity and duratiomsipaints is computed on a route basis with respect

to Q and L . Each solutionx found in the search is evaluated by a cost functio
z(x) =c(x) +aq(x)+ Bt(x) that includes the considerations mentioned abkie.coefficientsa

and S are self-adjusting positive parameters that ardifieal at every iteration. The parameter

is adjusted as follows: If the number of solutiamsh no violation of the capacity constraints is
greater tharr / 2, the value ofa is divided by ¥ J, otherwise it is multiplied by4J. The same

rule also applies tg with respect to the duration constraints.



3.3 Initial solution

An initial solution is constructed by assigning ansstomer at a time to one of the vehicle routes.
The selection of the customer is randomly made. clisgomer is then assigned to the location that
minimizes the cost of assigning this customer dher current set of vehicle routes. The above
procedure is repeated until all customers are coute

A total of 7 initial solutions are generated by the above praooe

3.4 Neighborhood operators

A neighborhood operator is used to obtain a newtwwn X from the current solutiox in Step 4

of the ABC heuristic. A number of neighborhood @ters (among those listed below) are chosen in
advance. Any combinations of the listed operatoespmssible, even one. Then, whenever a new
solution X is needed, a neighborhood operator is randomlgemdrom the set of pre-selected
neighborhood operators and appl@te (i.e., no local search is performed) to the sohutx. The

set of pre-selected operators is determined byrewpatal testing discussed in Section 4.1. The

possible operators include:

1. Random swaps

This operator randomly selects positions (in thkitsm vector)i and j with i # j and

swaps the customers located in positiorad j . See Figure 2, where=3 and j =7.

Swap point Swap point
v v
Before: 0O|4(1|0(2|7|5|0]|3|6

After: 1 0|4 |5|0|2|7[12]|0|3]|6

Figure2. Random swaps

2. Random swaps of subsequences
This operator is an extension of the previous areere two subsequences of customers and
depot of random lengths are selected and swappedxample is shown in Figure 3.



Beforee |0 (4 |1|0|2|7|5|0|3]|6

After: 1 0|4 |5]|0(3|2|7]|1([0]6

Figure 3. Random swaps of subsequences

3. Random insertions
This operator consists of randomly selecting posgi and j with i # j and relocating the

customer from positiom to position j. See Figure 4, where customer 5 is relocated from

position 7 to position 3.

Insert position Insert point

v v

Before | 0|4 |1|0|2|7|5|0]|3]|6

After: | 0|4 |5|1|0|2|7]|0|3]|6

Figure4. Random insertions

4. Random insertions of subsequences
This operator is an extension of the operator nflom insertions where a subsequence of

customers and depot of random length starting fpasitioni is relocated to position.

Positionsi and j are randomly selected. Figure 5 gives an exanfgl@sooperator.

Insert position Insert section

v SE—
Before: |0 |4 |1|0|2|7[5[0([3]6

Ater: 1 0|4 |5]0([3|1|0|2]|7]|6

Figure5. Random insertions of subsequences

5. Reversing a subsequence
A subsequence of consecutive customers and depabhddbm length is selected and then the

order of the corresponding customers and depewversed, as shown in Figure 6.



Reverse section

Before: |0 |4 |10 |2|7[5|0|3 |6

After: |0 |4 |12|0|2|7|3|0|5]6

Figure 6. Reversing a subsequence

6. Random swaps of reversed subsequences
This operator is a combination of two previouslymi@ned operators. Two subsequences of
customers and depot of random lengths are chosksveapped. Then each of the swapped
subsequences may be reversed with a probabili§0&6. An example of this operator is
displayed in Figure 7.

Swap-reverse section  Swap-reverse section

Beforee |0 (4 |1]0|2|7|5|0|3]|6

Ater: 10 |4 3|05 ]|2|7|01|1]|686

Figure7. Random swaps of reversed subsequences

7. Random insertions of reversed subsequences
A subsequence of customers and depot of randomthlesigting from position is
relocated to positionj . Then the relocated subsequence has a 50% chibemg reversed.

Figure 8 shows an example of this operator wheré and j =3, and the subsequence is

reversed.

Insert position Insert-rever se section

v

Beforee (0 [4 |12 |02 |7 |50 (3|6

After: | 0|4 |3|0|5|1|0|2]|7]|6

Figure8. Random insertions of reversed subsequences



3.5 Selection of food sources

At each iteration of the algorithm, each onlookelests a food source randomly. In order to drive
the selection process towards better food soumediave implemented a roulette-wheel selection
method for randomly selecting a food source. Thdability of choosing the food sourog is then
f(x)
T )
DL fx)

1

defined as p(x) = 200

i =1,...,7 where f (x)=

3.6 An enhanced artificial bee colony algorithm

It is shown in the literature that the basic ABGaalthm is capable of solving certain problems with
great success. However, according to our computatiexperiments (see Section 4) this does not
apply to the CVRP. Therefore, in this section, wié propose an enhanced version of the ABC

algorithm to improve the performance of the badCAalgorithm for solving the CVRP.

Step 4d of the basic ABC algorithm states thataal feourcex, will only be replaced by a neighbor
solution X if X is of a better quality thar , whereX is the best neighbor solution found by the

onlookers in Step 4b. In the refined version, ttosdition is altered so that if the best neighbor
solution X found by all the onlookers associated with foodreei is better than the food source

%, thenx will replace the food source, that possesses the following two propertiesx 1has

not been improved for the largest number of iteretiamong all the existing food sources and 2)

X; is worse tharx. In this way, potential food sources (i.e., thedesources which can produce

better neighbor solutions) will be given opportigstto be further explored whereas non-potential
food sources (i.e., the food sources which havebeet improved for a relatively large number of

iterations and are worse than new neighbor solsfiare excluded.

Step 4e of the basic ABC algorithm states thabifmproving neighbor solutions of the food source

x have been identified during the las$mit successive iterations, thexq is replaced by a

randomly generated solution (using the proceduserdzed in Section 3.3). In the refined version,

this is modified so thak is replaced by a new neighbor solutigrof x . The quality ofX can be
worse or better tharx . This modification may be beneficial as it prewerie search from

searching in bad regions of the solution space matisontrol of the quality of the food sources.
The steps of the refined ABC algorithm are sumnearizelow:
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1. Randomly generate a set of solutions as initiaflfeaurcesx , i =1,...,7.
SetF =0_{x} , whereF is the set of food sources. Assign each emplogedd a food

source.

2. Evaluate the fitnesd (x) of each of the food sources, i =1,...,7.
3. Setv=0 andl, =I,=...=I =0.
4. Repeat

a.For each food source

i. Apply a neighborhood operator ofi - X.

i. If f(X)>f(x),thenreplaces with X andl, =0, elsel, =1, +1.
b.SetG =0, i=1....

c. For each onlooker

i. Select a food source using the fitness-based roulette wheel selection

method.

ii. Apply a neighborhood operator og - X.
d. G =G 0O{%
e.For each food source andG, #[J
i. SetxOargmax. f & .
ii. If f(x)<f(X),then seleck OF with
jOargmax, o { If &)>f(x) andx OF , replacex, with X, and
[, =0, elsel, =1, +1.
f. For each food source
i. If . =limit, then apply a neighborhood operatorxon- X and replacex
with X.
g. v=v+1

5. Until (v=Maxlterations)

4. Computational experiments

We have tested both the original and the refinedCAlBeuristics on two standard benchmark
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instance sets. These include the fourteen claskigelidean VRP and distance-constrained VRP
instances described in Christofides and Eilon (J@6fl Christofides et al. (1979) and the twenty
large scale instances described in Golden et @88)L All experiments were performed on a 1.73

GHz computer, and the heuristics were coded inali€++ 2003.

The number of employed bees and the number of katscare set to be equal to the number of
food sources ), which is 25. This is based on Karaboga and Blk$#008), which set the number
of employed bees to be equal to the number of deisoto reduce the number of parameters, and
find that the colony size (i.e., the total numbeemployed bees and onlookers) of 50 can provide
an acceptable convergence speed for search.

To reduce the number of parameters tuned, wealet . We then evaluated the performance of

the heuristics using different values @fin the interval [0.0001, 1] and = 0.001. It is found that
the performance of the heuristics is insensitiverahis range for many test instances, and for a

majority of the test instances setting= £ to 0.1 seems to be the best choice. Based on these
values of a and £, we tested the best value &fover the range [0.0001, 1]. The results show that

the performance of the heuristics varies signifilgaim this interval for many test instances, and
good solutions are obtained with= 0.001. Therefore, we set = f=0.1andd = 0.001 for all

further experiments.

4.1 Comparison of neighborhood operators

In order to evaluate the effectiveness of each hiithood operator, we have first tested the
original ABC heuristic on instance vrpncl by comsidg each neighborhood operator at a time,
including: 1. random swapswap); 2. random swaps of subsequencestion _swap); 3. random
insertions insert); 4. random insertions of subsequencesction insert); 5. reversing a
subsequencedverse); 6. random swaps of reversed subsequersvep(reverse); and 7. random
insertions of reversed subsequencgase(t_reverse). The results are reported in Table 1. The best
known solution reported in the literature for tmstance is 524.61. Each of the seven variants was
run 20 times, and each time the algorithm was arril©0,000 iterations. From the table, one can
observe that the different neighborhood operatordribute differently. It can be seen that the ABC
heuristic with the operator of randomly swappingersed subsequences achieves the best average
objective value, while random insertions and randosertions of subsequences did not yield

promising results. Even though the variant of ipcoating the operator of randomly swapping
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reversed subsequences did not lead to the bestrksoltion, the average deviation from the best
known solution is less than 1.5%. Reversing a syesgce is another operator which also yields
good performance, and uses less computation tiarettte operator of randomly swapping reversed

subsequences.

Table1l. Experimental results by different operatorsifgtance vrpncl

Operator swap SECUON_ vt section_ | eree SWAD_ Insert_

) combined
swap insert reverse reverse

min® 576.47 550.94 758.12  623.79 528.56 527.82 534.526.97
max” 627.52 597.14 810.71 655.81 543.83 536.64 556.985.43

avg® 610.81 567.34 784.09 640.69 535.57 532.44 542.531.74
std.dev!  15.98 10.89 14.01 8.60 4.62 4.43 6.01 3.58
gap® 16.43% 8.15% 49.46% 22.13% 2.09% 1.49% 3.43% 1.36%
run time'  0.24 0.37 0.30 0.40 0.32 0.62 0.48 0.42

#Minimum objective value obtained in 20 runs

® Maximum objective value obtained in 20 runs

¢ Average objective value of 20 runs

dStandard deviation of objective values of 20 runs

° Average percentage deviation from the best knoviutisn

" Average CPU time in minutes for each run

The search using only the operator of randomly givep reversed subsequences may be too
diversified, and may not lead to promising regiohghe solution space. Thus, instead of using only
one operator we will use a combination of seveparators. A number of different combinations of
operators have been tried and experimented witb.cbmbination of the following operators seems
to yield the most promising results: random swap&y), reversing a subsequencevérse) and
random swaps of reversed subsequeneesp(reverse). This seems reasonable as two of the
operators were identified to yield the best restribsn Table 1, while the search using the third
operator (i.e., random swapping) is not as diviediis the searches using the two other operators.
Equal probabilities are associated with the opesabeing selected. Using this combination of
operators, the heuristic was run and obtained anage deviation of 1.36% from the best known
solution, as shown in the last colunuortibined) of Table 1. In addition, it is also faster thére t
variant using randomly swapping of reversed submecgs $vap reverse) as the neighborhood

operator.

Figure 9 shows the plot of the best objective smtutvalues found by the heuristics using the
operator of reversing a subsequenoavefse), the operator of randomly swapping of reversed
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subsequenceswap_reverse) and the combination of the operators for randoswapping two
positions, reversing a subsequence, and randomapEng reversed subsequencesniined)
during one run on instance vrpncl. It can be olegkefvom the figure that the variant using the
operator of reversing a subsequence converges fhste the other two. However, the solution
quality is not good as reflected by the objectiaue, which is the highest among the three
operators. The operator of randomly swapping rexessibsequences converges at a later stage but
achieves a better solution. The combined approzathsi to the best solution quality than the other
two, and the convergence rate is somewhere bettteenther two. This phenomenon was also
observed when the different variants of the hegrigstere experimented on the rest of the test
instances. For this reason, the combination ofthinee different operators will be adopted in the

heuristic to generate neighbor solutions.

4.2 Calibrating limit

As mentioned earlier, a food sourgewill be abandoned if no improving neighbor solasx can
be found in the neighborhood @f for consecutivdimit iterations. Karaboga (2009) has shown

that this parameter is important regarding the qgarhnce of the ABC algorithm on solving
function optimization problems. Hence, we will alstudy the effect of this parameter on the

performance of the ABC algorithm for solving the RN!

The value of the parametémit was determined by running every benchmark inst2fdemes for
each of the predetermined valuedliaofit. This calibrating process is important becaugeaffew
iterations are spent on exploring the neighborhaiod food source, the neighborhood may not be
fully explored and the search will be too divesifi On the contrary, if too many iterations are
spent on exploring the neighborhood, then the beailt tend to focus on a few portions of the
search space and will miss out other potentialoregiof the search space. Experiments on all the
test instances show that the most appropriate aluéhe parametelimit is proportional to the
number of customersn(), and this value is approximately equals@n. Due to space limitation,
we only show the average objective function valokesstance vrpncl with 50 customers for the

different values otimit in Figure 10. From this figure, we can easily tes limit = 2,500 yields

the best results. Thugmit =50n was used in all the experiments reported in tiheareder of this

section.
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Figure 10. Effect of the parametéimit

4.3 Original ABC vs. enhanced ABC

According to some preliminary tests (not shown harel the results shown in Table 1, the results
of the CVRP obtained from the basic ABC algorithra aot very close to the best known result on
average, even if we used many different combinatwioperators. Therefore, we aim to improve
the performance of the algorithm and propose ammedd version. This version has been depicted
in Section 3.6. The performance of this enhancedime was compared with that of the basic

version. Both versions were implemented by using tombination of the three previously
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described operators as well as setfimyt equal to50n, and assessed by the set of 14 classical
instances. Each test instance was run 20 timeg @sioh of the ABC heuristics. It was found that
the speed of convergence of the two heuristicsripenn. Moreover, it was found that setting
the termination conditionMaxlterations) to 200 iterations is sufficient for the two heuristics to
converge. The best results, the average resuitguwbrage CPU times obtained by the two versions
for each test instance are also reported in Tapleh2re the solution values recorded for both the
best and average results are rounded to the neategér. According to this table, the enhanced
version obtained better solutions than the origirsakion in all test instances in terms of both the
average and the best results in 20 runs. The meaemage improvement of the average (best)
results of all test instances is 4.16% (3.53%). [Engest percentage improvement of the average
(best) result is 12.29% (11.32%), indicating tHa tnhanced version can produce much better
solutions than the basic version. From the tabke,can observe that the enhanced ABC heuristic
requires more computational effort than the origugasion. This is due to the modification of step
4d of the enhanced heuristic.

Table 2. Comparison of experimental results between tlggnal and enhanced ABC heuristics

Instance Original ABC Enhanced ABC Improvemerit
Best? Avg.’ CPU°® Best? Avg.’ CPU°®
vrp_ncl 526.97 531.74 0.42 524.61 526.23 0.65 1.04%
vrp_nc2 865.23 885.78 0.85 836.74 842.97 1.33 4.83%
vrp_nc3 842.47 850.20 0.94 831.16 834.61 1.68 1.83%
vrp_nc4 1065.71 1087.29 5.17 1031.69 1061.80 8.17 2.34%
vrp_nc5 1382.85 1398.04 584 1320.24 1331.24 9.72 4.78%
vrp_nc6 560.33 570.48 0.44 555.43 558.09 0.70 2.17%
vrp_nc7 945.56 958.87 1.86 909.68 916.58 2.35 4.41%
vrp_nc8 887.71 897.44 1.94 865.94 876.12 2.54 2.38%
vrp_nc9 1235.37 1265.80 488 1170.25 1192.64 6.93 5.78%
vrp_ncl0 1497.92 1517.24 8.59 1415.23 1434.05 12.83 5.48%
vrp_ncll 1183.92 1203.29 2.20 1049.91 1055.41 3.47 12.29%
vrp_ncl2 843.17 854.32 2.07 819.56 821.37 2.90 3.86%
vrp_ncl3 1592.88 1623.29 3.53 154598 1558.28 4.97 4.00%
vrp_ncl4 881.41 895.27 2.62 866.37 868.60 3.35 2.98%

@Best result obtained in 20 runs
b Average result obtained in 20 runs
¢ Average CPU run time in minutes in 20 runs

dPercentage improvement of the average result aitdig the enhanced ABC over the original ABC

To clearly illustrate the effect of the modificai® in steps 4d and 4e on the improvement of
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solution quality, we plot figures 11a and 11b. Fegila shows the plot of the best objective values
found by the original ABC heuristic, the semi-enteth ABC heuristic (where only step 4e is
enhanced) and the enhanced ABC heuristic (botlstéyes 4d and 4e are enhanced) during one run
on instance vrpncl. It can be observed from theréghat the original and semi-enhanced ABC
heuristics converge at the same rate, while the-eahranced version obtains a better solution. The
enhanced variant converges at an earlier stagea#ter solution than the other two variants.

Figure 11b shows the plot of the average objectalees of ther food sources obtained by the
original, semi-enhanced and enhanced ABC heuriatitse different iterations during one run. The
behaviors of the semi-enhanced and enhanced AB@sties are similar where the values are
gradually lowered. On the opposite, the averageative values of the original ABC heuristic do
not show this pattern and some fluctuations caoldserved. Around 10,000 iterations, the original
ABC heuristic has identified a minimum average otiye value. However, the algorithm has not
been able to improve this further but has givenesfioctuation results. This is due to step 4e where

a food sourcex will be replaced by a randomly generated solutfono improving neighbor

solutionsx have been encountered for conseculivet iterations. The effect is that after most

food sources have not been improved lfomt iterations, the original ABC heuristic randomly

generates new solutions in which most of the nelutisms have large objective values compared
with the minimum average objective value. The onteois that the average objective value
increases after reaching the minimum average. Megage objective value decreases slightly
afterwards because the heuristics finds most ofdbd sources near local minima. However, the
average value increases again later due to crea@my new food sources to avoid trapping in local
minima. This process is repeated and this is whyfltictuation can be observed. On the contrary,
the average objective values of the enhanced ABEidie are gradually lowered due to the fact
that a food source is replaced by a neighbor swluéind not by a randomly generated solution,
where the neighbor solutions have higher chancésve closer objective values to the minimum
average objective value especially if the locakcobye surface is not too mountainous.
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Figure 11. Converging processes of the basic ABC heurssittits variants

In order to evaluate the effect of the modificatraade in step 4d on the average performance, we
compared the average objective values of the sahareed ABC heuristic with those of the
enhanced one in figure 11b. It can be observed ttieataverage objective values of the semi-
enhanced variant are much worse than those of nhaneed variant, which indicates that the

modification made in step 4d significantly improvhe quality of the search.

4.4 Computational results

Table 3 lists the characteristics of the 14 cladsiostances. For each test instance, the table

indicates the number of customens)( the vehicle capacity@), the service time g) for each

customer, the route maximum length)(and the number of vehicle routes)( The table also gives

for each instance the best known solution so faaddition, the table provides information about
the average and best solutions obtained with tharesed ABC heuristic. It can be seen from the
table that the enhanced ABC heuristic has matchedfsthe 14 best known solutions, and the

average deviation from the best solutions is 0.46%.

18



Table3. Enhanced ABC results for the classical instances

Instance n Q S L m Best known ABC ABC DFB'
solution averagé  best® (%)

vrpncl 50 160 0 o0 5 524.6f 526.23 524.61 0.00
vrpnc2 75 140 0 o0 10 835.26 842.97 836.74 0.18
vrpnc3 100 200 0 00 8 826.14 834.61 831.16 0.61
vrpnc4 150 200 0 o0 12 1028.42 1061.80 1031.69 0.32
vrpnc5 199 200 0 o0 17 1291.28 1331.24 1320.24  2.24
vrpnc6 50 160 10 200 6 555.43 558.09 555.43 0.00
vrpnc7 75 140 10 160 11 909.68 916.58 909.68 0.00
vrpnc8 100 200 10 230 9 865.94 876.12 865.94 0.00
vrpnc9 150 200 10 200 14 1162.58 1192.64 1170.25 0.66
vrpncl0 199 200 10 200 18 1395.85 1434.05 1415.23 1.39
vrpncll 120 200 0 0 7 1042.1% 1055.41 1049.91 0.75
vrpncl2 100 200 0 o0 10 819.56 821.37 819.56 0.00
vrpncl3 120 200 50 720 11 1541.14 1558.28 1545.98 0.31
vrpncl4 100 200 90 1040 11 866.37 868.60 866.37 0.00
Average 0.46

& Obtained from Taillard (1993)

P Obtained from Mester and Braysy (2007)

“Obtained from Rochat and Taillard (1995)

daverage solution obtained by enhanced ABC in 2@ run
Best solution obtained by enhanced ABC in 20 runs

"Deviation of ABC best from the best known solution

Table 4 provides a comparison on the results obthon the 14 classical instances by some of the
metaheuristics for the CVRP. It is clear that thBanced ABC heuristic performs better than some
of the well-known tabu search heuristics such asuii@ute (Gendreau et al., 1994), the ejection
chain method (Rego and Roucairol, 1996), the shbpptction chain method (Rego, 1998), the
granular tabu search (Toth and Vigo, 2003) anduihiéied Tabu Search (Cordeau et al., 2001). In
addition, the enhanced ABC heuristic outperforms simulated annealing heuristic by Osman
(1993), the saving-based ant system of Bullnheebat. (1999) and Reimann et al. (2004), and the
hybrid genetic algorithm of Berger and BarkaouiG2p Finally, the enhanced ABC heuristic also
surpasses the path relinking approach of Ho andl@an (2006), the particle swarm optimization
method by Ai and Kachitvichyanukul (2009) and thgoid eletromagnetism-like algorithm of
Yurtkuran and Emel (2010). Outstanding results warained by the adaptive memory procedure
of Rochat and Taillard (1995) and by the memetiariséic by Nagata and Braysy (2009). The
performances of the honey bees mating optimizagigorithm (Marinakis et al., 2010) and the
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AGES algorithm (Mester and Braysy, 2007) are alsxekent.

Table4. Comparison of computational results of differemdthods for the classical instances

Reference ADFB CPU time® Computer

Rochat and Taillard (1995) 0.00 N/A Silicon Graphics 100 MHz
Nagata and Braysy (2009) 0.00 13.80 Opteron 2.4 GHz

Mester and Braysy (2007) 0.03 2.80 Pentium IV 2.8 GHz
Marinakis et al. (2010) 0.03 0.80 Pentium M750 1.86 GHz
Taillard (1993) 0.05 N/A Silicon Graphics 100 MHz
Prins (2009) 0.07 0.27 Pentium IV 2.8 GHz
Pisenger and Ropke (2007) 0.11 17.50 Pentium IV 3 GHz

Chen et al. (2010) 0.13 10.90 Pentium IV 2.93 GHz

Yu et al. (2009) 0.14 2.91 Pentium 1000 MHz
Tarantilis (2005) 0.20 5.63 Pentium 400 MHz
Derigs and Kaiser (2007) 0.21 5.84 Celeron 2.4 GHz
Tarantilis and Kiranoudis (2002) 0.23 5.22 Pentium 2 400 MHz
Ergun et al. (2006) 0.23 28.91 Pentium 733 MHz

Prins (2004) 0.24 5.19 Pentium 1 GHz

Lin et al. (2009) 0.35 8.21 Pentium IV 2.8 GHz
Szeto et al. 0.46 4.40 Pentium 1.73 GHz
Reimann et al. (2004) 0.48 3.63 Pentium 900 MHz
Berger and Barkaoui (2003) 0.49 21.25 Pentium 400 MHz

Ho and Gendreau (2006) 0.54 4.13 Pentium 2.53 GHz

Rego and Roucairol (1996) 0.55 24.65 4 Sun Sparc IPC
Cordeau et al. (2001) 0.56 24.62 Pentium IV 2 GHz

Baker and Ayechew (2003) 0.56 29.11 Pentium 266 MHz

Toth and Vigo (2003) 0.64 3.84 Pentium 200 MHz
Gendreau et al. (1994) 0.86 46.80 Silicon Graphics 36 MHz
Ai and Kachitvichyanukul (2009) 0.88 2.72 Intel P4 3.4 GHz
Yurtkuran and Emel (2010) 1.04 2.20 Intel Core2 Duo, 2 GHz
Bullnheimer et al. (1999) 1.51 18.44 Pentium 100 MHz

Rego (1998) 1.54 2.32 HP 9000/712

Osman (1993) 2.11 151.35 VAX 8600

@ Average deviation from best known results

P Average computing time in minutes

¢ Computational results obtained from Cordeau g28I05)

Many of the heuristics within the 0.1% average deon from best known solutions are population-
based methods combined with local search, and noarthe methods that yielded an average

deviation of less than 0.4% are hybrids of variteshniques. The implemented version of the

heuristic is a pure artificial bee colony algorithamd is also one of the effective algorithms fa t

CVRP. It is not easy to compare running times fog various metaheuristics due to different
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computing environments. We believe that the repo@PU time for the enhanced ABC heuristic is

reasonable and acceptable.

Table 5. Enhanced ABC results for the large-scale inganc

Instance n Q S L m Best known ABC DFB*
solution solution (%)

kellyO1 240 550 0 650 10 5626.81 5861.14 4.16
kelly02 320 700 0 900 11 8431.66" 8720.37 3.42
kelly03 400 900 0 1200 10 11036.22  11572.69 4.86
kelly04 480 1000 0 1600 10 13592.88 13829.02 1.74
kelly05 200 900 0 1800 5 6460.98 6593.17 2.05
kelly06 280 900 0 1500 7 8404.26" 8729.70 3.87
kellyO7 360 900 0 1300 9 10156.58 10533.43 3.71
kelly08 440 900 0 1200 11 11643.90 12054.77 3.53
kelly09 255 1000 0 0 14 580.42 593.35 2.23
kelly10 323 1000 0 0 16 738.49° 750.77 1.66
kellyll 399 1000 0 0 18 914.72 932.81 1.98
kellyl2 483 1000 0 0 19 1106.76" 1138.32 2.85
kellyl3 252 1000 0 0 26 857.19° 872.45 1.78
kellyl4 320 1000 0 0 30 1080.55 1109.48 2.68
kellyl5 396 1000 0 0 33 1342.53 1367.37 1.85
kellyl6 480 1000 0 0 37 1620.85 1651.31 1.88
kellyl7 240 200 0 0 22 707.76° 710.42 0.36
kellyl8 300 200 0 0 27 995.13 1019.64 2.46
kelly19 360 200 0 0 33 1365.97 1377.54 0.85
kelly20 420 200 0 © 38 1820.02  1850.59 1.68
Average 2.48

@ Obtained from Nagata and Braysy (2009)
® Obtained from Prins (2004)
¢ Obtained from Prins (2009)

4Deviation from the best known solution

The enhanced ABC heuristic was also tested on@Harge-scale instances by Golden et al. (1998).
Table 5 lists the characteristics of these instartogether with the average solutions and best
solutions obtained by the enhanced ABC heuristice Bverage deviation from best known
solutions is 2.31%. Table 6 provides a comparisorithe results with some of the metaheuristics
published in the literature. The enhanced ABC Hstigrioutperforms the deterministic annealing
algorithm described in Golden et al. (1998), thangtar tabu search by Toth and Vigo (2003), the
very large neighborhood search by Ergun et al. §20the path relinking approach by Ho and
Gendreau (2006) and the variable neighborhood lsgmocedure by Kytdjoki et al. (2007). As with
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the classical instances, population-based hewistienbined with local search also generated the
best results for the large-scale instances. Frantahle we notice that the memetic algorithm by
Nagata and Braysy (2009) and the AGES algorithnMiegter and Braysy (2007) obtained much

better solutions than the rest of the methods.

Table6. Comparison of computational results of differer@thods for the large-
scale instances

Reference ADFB CPU time® Computer

Nagata and Braysy (2009) 0.02 355.90 Opteron 2.4 GHz
Mester and Braysy (2007) 0.18 24.40 Pentium IV 2.8 GHz
Prins (2009) 0.48 7.27 Pentium IV 2.8 GHz
Marinakis et al. (2010) 0.58 4.06 Pentium M750 1.86 GHz
Pisinger and Ropke (2007) 0.67 107.67 Pentium IV 3 GHz
Chen et al. (2010) 0.74 284.40 Pentium IV 2.93 GHz
Reimann et al. (2004) 0.78 49.33 Pentium 900 MHz
Tarantilis (2005) 0.78 45.58 Pentium 400 MHz
Derigs and Kaiser (2007) 0.86 113.34 Celeron 2.4 GHz
Prins (2004) 1.09 66.90 Pentium 1 GHz

Li et al. (2005) 1.24 N/A  N/A

Cordeau et al. (2001) 1.64°¢ 56.11 Pentium 2 GHz

Lin et al. (2009) 1.79 118.98 Pentium IV 2.8 GHz
Szeto et al. 248 32.38 Pentium 1.73 GHz
Ho and Gendreau (2006) 2.74 39.96 Pentium 2.53 GHz
Toth and Vigo (2003) 3.06 17.55 Pentium 200 MHz
Ergun et al. (2006) 3.95 137.95 Pentium 733 MHz
Golden et al. (1998) 4.10 37.20 Pentium 100 MHz
Kytojoki et al. (2007) 4.67 0.02 AMD Athlon64 3000+

@ Average deviation from best known results
P Average computing time in minutes

¢ Computational results obtained from Cordeau g28i05)

5. Conclusions

In this paper, we presented an artificial bee cpl@hBC) heuristic for the capacitated vehicle
routing problem (CVRP). The ABC heuristic is a fginew approach, and it is based on the
foraging behavior of honey bees. An enhanced versidhe ABC heuristic has been developed to
improve the original heuristic for solving the CV.RFomputational results show that the enhanced
ABC heuristic is able to produce much better sohgithan the original one and uses slightly little
more computation time. The results also show thatenhanced ABC can produce good solutions
when compared with existing heuristics for solvthg CVRP. These results seem to indicate that
the enhanced heuristic is an alternative to sdieecapacitated vehicle routing problem.
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