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This paper describes a planning problem, arising in the energy supply chain, that deals with the planning
of the production runs of micro combined heat and power (microCHP) appliances installed in houses,
cooperating in a fleet. Two types of this problem are described. The first one is the Single House Planning
Problem (SHPP), where the focus is on supplying heat in the household. The second one combines many
microCHPs into a Fleet Planning Problem (FPP) and focuses on the mutual electricity output, while still
considering the local heat demand in the individual households. The problem is modeled as an ILP. For
practical use a local search method is developed for the FPP, based on a dynamic programming formula-
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1. Introduction

The classical energy supply chain is changing. Production, dis-
tribution, consumption, storage and load management are exam-
ples of fields in the energy supply chain that undergo a lot of
attention and changes in recent years. In production the focus is
on renewable technologies and technologies that increase the cur-
rent energy efficiency. For example, Ayompe et al. (2010) discuss
energy models for small-scale Photo Voltaic (PV) systems, Lanza-
fame and Messina (2010) design a micro-wind turbine and Alanne
and Saari (2004) discuss possibilities for small-scale CHP technol-
ogies for buildings. Regarding distribution, the design and dimen-
sioning of the network is investigated as in Green et al. (1999),
but also the subdivision of the electricity network into different
voltage layers (Kester et al., 2009 discuss an improved MV/LV sta-
tion), the distribution of the national gas network (Andre et al.,
2009) and the international connection between national electric-
ity/gas networks are important topics. With respect to the latter,
Giesbertz and Mulder (2008) present economic aspects of such
connected networks. From the consumption point of view energy
saving appliances are developed and newly developed appliances
are more often controllable to some extent. Wembhoff and Frank
(2010) show an example of the control of an HVAC system (Heat-
ing, Ventilating and Air Conditioning). Also high quality energy
storage becomes more and more important in the new energy sup-
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ply chain. The paper of Arsie et al. (2009) is an example of research
on Compressed Air Energy Storage (CAES) in combination with a
windmill park. Load management involves both reducing the en-
ergy consumption via focusing on awareness (Mills and Schleich,
2010) and improving the energy efficiency via energy policy (Oik-
onomou et al., 2009) or scheduling techniques for controllable en-
ergy consuming/producing appliances. The papers of Kok et al.
(2005) and Molderink et al. (2010) are examples of large-scale en-
ergy management systems on domestic level. Summarizing, a lot of
current research is ongoing with a focus on energy efficiency in the
broadest view.

In this work we consider an energy-related planning problem
which occurs when an emerging technique for energy production
is introduced in the energy supply chain. In general, an emerging
development in one area of the energy supply chain may have
implications to other areas and can lead to severe problems in
the overall energy infrastructure. For example, a growing share of
electricity generated by wind turbines in the total electricity pro-
duction may lead to more instability in the grid, since the electric-
ity output of a wind turbine park is more dynamic than the steady
generation of a coal-fired power plant. To overcome such problems
one may have to look at storage (e.g. CAES), other production facil-
ities (e.g. by using a, rather inefficient, peak power plant) or load
management.

In this paper we consider the microCHP (combined heat and
power) technology, providing generation on a domestic scale. An
initial summary of the potentials of this technique is given by
the United States Department of Energy (2003). The production
of a microCHP in a household is related to the energy production
and consumption. If furthermore energy storage is added to this
setting, also load management comes into play. Since a large share
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of microCHP in the electricity grid (in this setting we can speak of a
‘fleet’ of microCHPs) can lead to grid instability problems, also the
network side of the problem comes into the picture. As a conse-
quence, the considered problem combines the above mentioned
fields of the energy supply chain with multidirectional influences.

More specific, the planning problem for a fleet of microCHPs is
twofold. The first problem concerns the supply of the heat demand
in the individual households. This demand can be satisfied by plan-
ning the production of heat by the microCHP directly at the time of
demand, or by planning the supply of heat via a heat buffer, which
means that the heat has to be produced by the microCHP at an ear-
lier time. The second problem is to match the total electricity pro-
duction pattern of a combined fleet of houses with a given total
electricity demand pattern. Whereas the first problem is a time re-
lated matching problem for a single device, the second has to syn-
chronize the production planning of the individual microCHPs to a
global objective (a size related problem).

The paper is organized as follows. The next section gives an
overview of microCHP generation and its characteristics. In Section
3 related planning problems, optimization frameworks and the
positioning of this work are discussed. Section 4 presents the two
planning problems occurring in this context, and methods to solve
these problems. Section 5 contains some computational results for
the methods proposed in Section 4. In the last section, recommen-
dations for future work are given.

2. Overview of microCHP and its application

MicroCHP appliances consume natural gas and produce both
heat and electricity at a certain heat to electricity rate. The electri-
cal output is in the order of 1 kW, which means that it is suitable
for use on a household scale. There are several possible technical
realizations of a microCHP, such as Stirling engines, rankine cycle
generators, reciprocating engines and fuel cells, where Stirling en-
gines are nearest to full market exposure.

MicroCHP is considered as an alternative energy producer, due
to its relatively high energy efficiency, compared to that of large
power plants. The main advantage is the more efficient use of
the heat, since produced heat in a power plant cannot be trans-
ported/used as efficiently (if it is not lost already in the production
process) as on domestic scale. However, this means that the prin-
ciple focus of combined heat and power production on a domestic
scale should be on the efficient storage/consumption of heat in or-
der not to lose this advantage. Therefore, microCHP mainly can be
seen as a replacement for current boiler systems, and secondly as a
domestic electricity generator.

The generation characteristics of microCHP depend on the cur-
rent advances in the generation technology on the one hand, and
on house characteristics and grid policy on the other hand. First,
the heat production of the microCHP has to fulfill the heat demand
of the household. Next, the electricity production of the microCHP
is bounded by regulations set by the national government. Also the
total energy efficiency of the technology limits the ratio between
the heat and electricity generation. Given a certain generation
technology, the electricity to heat ratio is known and can be used
as given input for the planning problem.

Fig. 1 shows the electricity output profile for an example run of
a microCHP based on a Stirling engine. There is no one-to-one rela-
tion between the microCHP being switched on and the power out-
put. In general, a run can be roughly divided into three phases:

e a startup phase, in which, after some grid tests, the engine is
started and the power output slowly increases to its maximum
output value;

e a constant phase, in which the power output balances around
the maximum output value;
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Fig. 1. Electricity output of a microCHP run.

e a shutdown phase, in which the engine is slowed down.

Roughly the same division into phases yields for the heat out-
put. The highest energy efficiency is reached in the constant phase.
For this reason, and to prevent wearing of the system, longer runs
are preferred over shorter ones. This results in a minimum time
that the microCHP has to run, once switched on. For similar rea-
sons the microCHP has to stay off for a minimum amount of time,
once switched off.

If the heat consumption is directly supplied by the microCHP,
the decisions to run the microCHP are completely determined by
the heat demand. As a result often short runs of the microCHP will
occur. This is the reason, why microCHPs are in general combined
with a heat buffer. An additional heat buffer allows to decouple
production from consumption up to a certain degree and, there-
fore, to make a planning possible. The term ‘planning’ reflects to
the series of decisions to let (a/multiple) microCHP(s) run at
sequential time periods or not.

Based on the above considerations, the planning for a house
with a microCHP and a heat buffer is heat demand driven. Further-
more, decisions in certain time periods have a large impact on pos-
sible decisions in future time periods. E.g. switching on a microCHP
now leads to a certain minimum amount of heat generation and,
therefore, increases the heat level in the heat buffer. This may have
as a consequence that in certain future time periods the microCHP
cannot run, since it cannot get rid of the produced heat without
spoiling heat to the near environment.

Once houses are collaborating in a larger grid, the mutual power
output of the different houses adds a global electricity driven ele-
ment to the planning problem. The group of houses can act as a so-
called Virtual Power Plant (VPP) by producing a certain electricity
output. This output may be partially consumed by the houses
themselves, but part of it may also be delivered to the electricity
network. This aggregated output has an impact on the way the
electricity retailer of the households should act on a short term
electricity market in advance (e.g. for 24 h ahead) or on a realtime
market. The retailer has to subtract the expected overall produc-
tion profile of the fleet from its overall need of electricity, and to
buy only the reduced amount or, in case of an overproduction, to
sell the remaining amount on the market. As the prices of electric-
ity on these markets vary over time, it may be beneficial to steer
the fleet to produce more electricity in expensive periods.

The planning problem considered in this paper focuses on using
the electricity production of a large fleet of houses on the short
term market. As this market is a day ahead market, a retailer has
to come up with a possible production plan of the fleet in advance
to be able to adapt its acting on the market. This profile somehow
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will depend on the prices of the market, but for the retailer the
most important question is if he is able to reach this profile with
the fleet, since a deviation of the realized planning the next day
leads to (huge) costs on the balancing market. In this paper we
concentrate on the offline planning a day ahead. This planning will
be based on predictions for the heat demand of the houses. The on-
line problem occurring the next day is out of the scope of this pa-
per and needs different approaches. Kok (2009) shows some
bidding strategies for online decision making. Furthermore, in
Molderink et al. (2010) it is shown how the offline planning after-
wards can be used as a guideline for online decision making.

3. Related work

In this section we present a summary of related work on the
planning problem and the optimization framework in which our
planning problem is situated. Also we give an indication of how
our model could be used in a real world scenario.

3.1. The unit commitment problem

The planning problem regarding existing generation technolo-
gies in the current energy supply chain is known under the general
term of the unit commitment problem (UCP). For an overview of the
basic UCP and literature we refer to Sheble and Fahd (1994) and
Padhy (2004). The classic UCP as presented in Kerr et al. (1966)
and Hara et al. (1966) combines the economic dispatch problem,
which is the problem of scheduling the outputs of up-and-running
power generators (see e.g. (Bakirtzis et al., 1994)), with the decision
problem of which power generators to use at what time intervals
(i.e. the commitment problem). The generators have startup/shut-
down generation profiles and minimum periods in which they
should run or remain switched off. Typically the generation output
can be chosen (between limits). As an objective operation/mainte-
nance costs are minimized or profit is maximized, where the total
output of the system should exceed demand (and optionally spin-
ning reserve should exceed a percentage of this demand too). Large
thermal power plants are the most common type of generator as in
Takriti et al. (2000). In Philpott et al. (2000), Cerisola et al. (2009),
Groewe-Kuska and Roemisch (2005), Caroe and Schultz (1998) also
hydro power plants are considered, which includes storage in the
model. In the latest years, the stochastic UCP is considered (e.g.
Takriti et al. (2000), Caroe and Schultz (1998), Philpott et al.
(2000), Groewe-Kuska and Roemisch (2005), Cerisola et al.
(2009)), which uses load scenarios to take uncertain load profiles
into account.

The planning problem presented in this paper is a new variant
of the UCP, in the sense that the economic dispatch is completely
fixed (the operation of a microCHP is fully determined by the deci-
sions to have it on or off), in combination with the requirement
that the total production is also bounded from below (each mic-
roCHP is obliged to run due to heat demand) and that the produc-
tion profile over time is strongly restricted by the heat demand
profile of the house. Especially these last requirements differ from
the planning of large thermal units, which in general do not focus
on the (hard-constrained) storage of heat. Whereas hydro-based
power plants also offer the possibility to pump water or have
external water inflow, microCHP storage is only based on the gen-
eration, which leads to a more strict feasibility problem. Further-
more, the number of generators that is used in this problem also
exceeds the common amount in the UCP by a large factor.

3.2. Optimization framework

Our planning problem is part of a three-step optimization meth-
odology (Molderink et al., 2010), that aims at optimizing the control

of domestic smart grid technology. Successively, load profiles of rel-
evant devices are predicted one day ahead (e.g. for a microCHP a
heat profile for the house is predicted), based on these predicted
load profiles a planning of local entities (e.g. a microCHP, a fridge/
freezer, an electric vehicle) is made one day ahead, and the local
entities are realtime controlled, based on the planning and realtime
profiles. A simulator has been developed (Bakker et al., 2010) to ver-
ify the behavior of this methodology and to analyze the impact of
distributed generation, distributed storage and demand side load
management. An alternative approach is the power matcher pre-
sented in Kok et al. (2005). It proposes a multi agent system to con-
trol supply and demand in electricity networks with a high share of
distributed generation. An electronic exchange market is used as a
platform for control agents, representing devices in the system.
Further approaches are HOMER (National Renewable Energy
Laboratory, 2005) and ALEP (International Energy Agency, 2000),
which are simulation tools/models to analyze the impact of design
choices for distributed power systems. However, the focus in these
projects is not on the control of such power systems.

3.3. Positioning of the work

Virtual Power Plants are already in use in practice. An example
of a VPP can be found in Hassenmueller (2009), which consists of
nine small hydroelectric plants with a total capacity of 8.6 MW.
This VPP is planned to be expanded to have at least a capacity of
15 MW (using about 15 generators), in order to be allowed to mar-
ket electric power on the balancing markets according to the Ger-
man situation. A distributed energy management system is used to
plan the operations of this VPP. Comparing the size to our mic-
roCHP use case, this could be translated to a VPP consisting of at
least 15000 microCHPs, whose operation has to be planned. For
an example of such a type of VPP using generators on micro
(domestic) scale we refer to Lichtblick (2009). In their case the
electricity supplier is the owner of the local generators and can
use them to reach its own objectives. For our general approach
we consider a similar ownership construction in which the elec-
tricity supplier has control; however, local comfort (i.e. heat de-
mand) is leading. Due to the limited amount of decision freedom
for each individual microCHP compared to the hydroelectric gener-
ators, in our case the flexibility of the system results mostly from
the large number of generators in the VPP. In our planning problem
we therefore focus on feasibility aspects. Global constraints on the
total electricity output of the VPP result from either demands on
network stability or from planned or already offered production
patterns on the electricity market. In the latter case, the planning
problem can be seen as the problem of finding a detailed planning
of an already cleared (and globally optimized) offer. Since we do
not consider the market offer itself as in Neame et al. (2003), the
electricity prices can be seen as fixed parameters. Note that in this
paper the global constraints are also used to verify the dynamics of
the problem and might not correspond to realistic market offers.
The planning that finally results from this situation is used as a
guideline for realtime control of the fleet in the third step of the
three-step optimization methodology. Uncertainty of load profiles
is thus tackled in the third step and not within the day ahead plan-
ning considered in this paper.

4. The microCHP planning problem

In this section we define and treat the microCHP planning
problem. The microCHP planning problem can be divided into
two problems. The first problem consists of the planning of a sin-
gle microCHP, subject to local (feasibility) constraints. This prob-
lem is called the Single House Planning Problem (SHPP). In the
second problem, global constraints on the sum of the production
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of individual microCHPs are added, as these appliances are con-
sidered to cooperate in a so-called fleet. This leads to the Fleet
Planning Problem (FPP).

In practice a decision maker is completely free to instanta-
neously switch on or switch off a microCHP at any moment in time.
However in our model, we discretisize the time and allow a deci-
sion maker only to switch on or off the microCHP for complete
time intervals. The discretization of the time horizon on the one
hand leads to a simpler model, but on the other hand, the short
term market also works with time intervals, hence a discretization
of time is needed. More precisely, we divide the planning horizon
[0,T] of the SHPP/FPP into Ny time intervals [t;,ti.1] of equal length
N—TT. The decision to have a microCHP on or off is made for a com-
plete interval [t;, ti+1]. As a consequence of this, we introduce deci-
sion variables x; for the intervals:

1
Xj:{o

where interval j is the interval [¢;_;,§],j=1,...,Nr. A solution to the
SHPP is a vector x = (Xi,...,Xy,) € X, where X = {0, 1} is the Ni-
dimensional space of possible binary decision variables.

Before describing the microCHP planning problem for a fleet of
houses 1,...,N, we first focus on the constraints on the choice for
the decision vectors for individual microCHPs. A solution x' for
house i needs to consider the technical constraints of the microCHP
of house i (hard constraints) and should respect the heat demand
of house i at all times (semi-hard constraints). These constraints
lead to subspaces of feasible decision vectors, where by Xﬂ cX
we denote the set of all decision vectors respecting the hard tech-
nical constraints for house i and by X; C X the set of vectors which
satisfy the semi-hard heat demand constraints. In Fig. 2 a sketch of
the construction of the solution spaces for the fully constrained FPP
is given. Based on these notations the set X}, := X\ N X} denotes
the set of solutions for house i which respect the hard and semi-
hard constraints. Furthermore, the sets Y;:=X] x---x X} and
Yiz:=X], x --- x X}, form the feasible spaces in the FPP, when
each individual house has to respect the given hard or hard and
semi-hard constraints. However, next to the local constraints for
each house, we may add semi-hard constraints on a global produc-
tion pattern, i.e. on the set of all individual decision vectors. This
leads to sets Y, CY; and Y;,CY;> which denote the solution
spaces for the fully constrained FPP, if next to the hard constraints
or the hard and semi-hard constraints for each house also the
semi-hard constraints on the global production pattern have to
be taken into account.

Besides the constraints on the decisions also an objective is
added to the FPP. Here multiple directions of choosing this objec-
tive are possible. Variable electricity prices influence the planning
decisions, but also energy efficiency, heat buffer levels (for sequen-
tial planning problems) and network capacity can be taken into ac-
count. In general, the objective function is a function z on the space
S=X' x --- x XN, Different versions of the FPP may now be formed
by the selection of an objective function z(S) and a subspace
S* C S, where S e€{Yy,Y2, \71, ?1,2}. Furthermore, the Single

if the microCHP is on during interval j
if the microCHP is off during interval j,

(1)

house 3
house 2

house 1

Intersection
_—

' XinXx;

House Planning Problem is a special case achieved by setting
N = 1. By the choice of the space S*, the decision maker may allow
decision vectors which do not fulfill all the semi-hard constraints.
In such cases, penalty costs for violating these semi-hard con-
straints are used and the problem becomes more flexible in the
sense of finding a feasible solution. In this paper we focus on elec-
tricity prices as objective and the problem variant where all semi-
hard constraints have to be taken into account.

In the following section we give, next to a more detailed defini-
tion of the problem, an overview of the solution approaches to the
Single House Planning Problem and the Fleet Planning Problem.
First, we present a general Integer Linear Programming (ILP) for-
mulation in Section 4.1 that can be applied to both problems. This
ILP formulation has mainly as goal to give a more detailed explana-
tion of the constraints on the decision vectors. Next, Section 4.2
presents a dynamic programming approach to solve the SHPP.
Starting from this single house approach, in Section 4.3 a heuristic
method is derived to tackle the FPP, which is able to solve the fleet
problem in reasonable time for use in practice.

4.1. ILP formulation

To model the FPP as an ILP we start with a general description of
the input parameters. Next we describe the constraints, using
these input parameters and the decision variables xj‘ as specified
in (1). Finally the objective function is presented.

The input of the FPP consists of numbers specifying the dimen-
sions of the problem and data specifying characteristic behavior
within the problem. The size of the problem is determined by
the planning horizon, specified by the number of intervals N,
and the number of houses forming the fleet, denoted by N. Behav-
ioral parameters can be divided into three categories:

e generation of the microCHPs;
e heat demand of the houses;
e electricity demand of the fleet.

The generation of the microCHP of house i, i € {1,...,N}, is char-
acterized by a minimum runtime MR', a minimum offtime MO', the
heat generation G, , for a time interval if the microCHP is running
at full power, and a value o specifying the ratio between electricity
and heat generation. Furthermore, each house has two vectors:

G = (63, s E;V,. ) giving the loss of the heat generation during
up

so-called start up intervals and G = <C§, G ) giving the ex-
down

tra heat generation during shutdown intervals. For the length NLP
of the start up period it is assumed that N;, < MR and for the

length Ny, it is assumed that N}, < MO' (which is valid in the
current available microCHPs). Next to the above data, specifying
the behavior of the microCHP, it has to be known in which state
the microCHP is at the begin of the planning period. To specify
the state of the microCHP, it would be sufficient to specify if it is
on or off and for how long it is in this state. However, for ease of

Cartesian product
_
1 2 3
Xio X Xy x Xil,

Fig. 2. Solution space for the microCHP planning problem.
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notation we represent the initial state of the microCHP of house i
by a vector X = ()’(“FM,, .. ,)?g) of length M = max{MR’, MO'}, speci-
fying for some periods in the past the behavior of the microCHP.

The heat demand of house i is characterized by a heat demand
vector H' = (H{,...,H}, ). Since this heat demand is supplied by a
heat buffer we use a value BL' to describe the initial heat level in
the buffer, a value BC' to describe the buffer capacity and a value
K to describe the heat loss parameters for the buffer. This heat loss
is assumed to be constant for all intervals.

The electricity demand of the FPP is specified by lower and
upper bound vectors P = (PY™ ... PY*") and P =

PP ... PYP") for the production pattern of the fleet. Further-
more, the electricity price is given by a price vector 7=
(71, ).

As mentioned before, the only decision variables in the problem
are the binary variables x]' forj=1,...,Nrand i=1,...,N. Next to
these variables we introduce variables g]’ﬁ and ej’i to represent the
generation of heat and electricity, respectively. These variables de-
pend on the decision variables x and the generation characteristics.
To formalize this dependence we need to know in which state the
microCHP is. For this, it is helpful to introduce binary variables
startj and stop}, where start; is a binary variable for interval j and
house i, indicating whether the microCHP is started at the begin-
ning of interval j or not:

.| 1 if the microCHP starts ininterval jinhouse i(x’ﬁ =1landxi ;= 0)
start} = i J
0 otherwise.
)
Likewise, stopj’i is defined as:
stop = { 1 if the microCHP stops in interval j in house i(xj’l =0andx_, = 1)
0 otherwise.
3)

To ensure that the binary variables start; and stop; are consistent
with the x-variables, constraints (4)-(9) are added. If necessary,
the run history X is used in these equations.

X, j=2-MR,.. . Nr

start: > X —xi,  j=2-MR,... Nr, (4)
starti <xi  j=2-MR',...,Nr, (5)
starti <1-xi,  j=2-MR,...Nr, (6)
stop} > xi_, —xi  j=2-MR... N (7)
] (8)

9)

=
stop} <
stop; < 1-x;

Table 1 shows how these constraints force the variables start; and
stop; to take their correct values. Using the start and stop variables,
the generation of heat gj'f can be expressed as:

. ) X l\l£1117l . X N;owni‘1 .. X
g =GpuX — > Gistartl  + Y Gjystop, j=1,....Nr,
k=0 k=0
(10)
and the generation of electricity as:
e —olg j=1.. Ny (11)

Table 1
The construction of start and stop variables from consecutive x variables.

X, « Eq Eq. Eq. Start!  Eq. Eq. Eq. Stop}
(4) (5) (6) (7) (8) (9)

0 0 =0 <0 <1 0 >0 <0 <1 0
0 1 =1 <1 <1 1 >-1 <0 <0 0
1 0 >-1 <0 <0 0 >1 <1 <1 1
1 1 >0 <1 <0 0 >0 <1 <0 0

The consequences of starting/stopping on the generation a mic-
roCHP are specified by (10) and (11). Yet it still remains to guaran-
tee a correct functioning of the microCHP with respect to the
minimum runtime and offtime requirements. The minimum run-
time constraint demands that the microCHP has to run for at least
MR! consecutive intervals, once a choice is made to switch it on.
The minimum offtime constraint demands that the microCHP has
to stay off for at least MO' consecutive intervals, once a choice is
made to switch it off. Eq. (12) forces the decision variable x]'i to be
one if one start occurs in the previous MR' — 1 intervals, since xj’i is
only allowed to take the values zero and one. Likewise, Eq. (13)
forces the decision variable x]’i to be zero if one stop occurs in the
previous MO' — 1 intervals. Again, if needed the given start and stop
variables from the past (following from the given x values) are used.

j-1

x> > start, j=1,...,Nr, (12)
k=j-MR+1
X<1- > stop, j=1,...,Nr. (13)
k=j—MO'+1

Note, that after a start of the microCHP, it takes at least MR' inter-
vals before a stop may occur. Since furthermore between two con-
secutive starts one stop occurs, we never can have more than one
start in MR’ consecutive intervals. Similar reasoning learns that
we never can have more than one stop in MO' consecutive intervals.
To specify the constraints resulting from the heat demand, we
introduce variables hl]’- specifying the heat level in the buffer of
house i at the beginning of interval j. For the first interval, this level
is given by the initial heat level BL' (Eq. (14)). The change of the
heat level in interval j is given by the amount of generated heat
gjﬁ minus the heat demand QHJ’ and the loss parameter (K')
(see Eq. (15)). Finally, the capacity of the heat buffer has to be re-
spected (Eq. (16)).

hl, = BL', (14)
hi=hl_ +g —H_ —K j=2..Np+1, (15)
0<hl<BC' j=1,.. Np+1. (16)

The semi-hard constraints on the global production pattern can
be formulated as follows:

N

Do <P j=1,.. N, (17)
i=1

N .

el =P™ j=1,...,Nr. (18)
i=1

The most natural objective function for the FPP is to maximize
the profit on the electricity market:

N N
z=max) Y el (19)
=1 o

The ILP model of the FPP now consists of all Eqs. (1)-(19). This ILP
problem has N x Nr binary decision variables and O(N x Nt) con-
straints. Even for a single house, we still have Ny decision variables.
If we choose for 5 min intervals, this results in an ILP with 288 bin-
ary decision variables for a planning horizon of one day. In the next
subsection we show, that for a single house a faster approach can be
developed.

4.2. Dynamic programming formulation

In this section we propose dynamic programming (DP) formula-
tions for the planning problem for a single house and for a fleet of
houses. We first introduce a DP for a single house. Next the individ-
ual house formulations are combined into a larger DP for the fleet.
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The DPs use the same input parameters and decision variables x as
in the previous subsection.

SHPP- The DP for the single house i is based on state variables
ol = (A}BJ’:,CJ‘? , describing the possible states of the microCHP of
house i at the begin of interval j. More precisely, we have:

. AJ’ expressing the number of consecutive intervals that the on/
off state of the microCHP is unchanged looking back from the
start of the current interval j (positive values indicate that the
microCHP is running and negative values indicate that the mic-
roCHP is off);

. B]’ expressing the total number of intervals the microCHP has
been running from the beginning of the planning period until
the start of the current interval j;

. CJ’ expressing the number of runs of the microCHP which have
already been finished.

Note, that based on these three characteristics the current state
of the microCHP and the produced heat can be completely speci-
fied. Furthermore, the number of possible states for a given house
i is bounded by Ny. In the DP we use Ny + 1 phases corresponding to
the start of the intervals j=1,...,Nr+ 1, where the final phase cor-
responds to the state at the end of the planning horizon (after
interval Nr). For each state a]'i in phase j a cost function F} aj'f is
introduced, which expresses the maximal profit which can be
achieved in the intervals j,...,Nr if the micpoCHP is in state 0']’1 at
the begin of interval j. Thg calculation of F; gaj‘? depends on the
possible actions in state o} and the values of thé cost function for
some states in phase j + 1. The possible actions are to either have
the on/off state unchanged or to switch it. If we leave the state un-
changed (no start or stop) we get as new state in interval j + 1:

(A+1.B+1,G) if4/>0

"l (A-18.0)

s if A; <0.

If we change the on/off state, we have:
(-1.B,G+1) ifA>0
(1.8/+1.6)

<

[y W

if Aj < 0.
This leads to the following recursive expression for F} (a]’ﬁ):

Fi (a}) = max {cj’ (a}, 6‘}) +Fj, (6}),9’: (a]'i, (3-]'1) +F, (GD }7

where cj'f(a, ¢’) denotes the cost associated with the choice corre-
sponding to the transition from ¢ to ¢’. The calculation of these
costs is similar to the calculation of the values e]’i used in the previ-
ous subsection plus some feasibility checks on the state transitions
and can be done in constant time.

If we define Fj, (a;'\,ﬁ]) =0 for all possible states o, ,; in
phase Ny + 1 we can recursively calculate F} (¢}) and deduce a cor-
responding optimal decision vector x'.

In case we optimize for the electricity market, the DP of a single
house can be seen as a function f on a price vector 7:
fi(m) — .

The function fi(7t) gives an optimal local planning for the SHPP and
can be calculated in runtime O(N}), given a certain price vector (and
of course the data of house i).

FPP- The optimal decision vector x' for house i is represented by
a path in the network representing the DP of house i. If we want to
extend this DP to a DP for the FPP, the resulting N decision vectors
x!,...,x" need to fulfill also the constraints on the production pat-
tern (17) and (18). The consequence for the DP formulation is that
the number of states in each phase increases exponentially. A state

in the DP for the fleet has to be specified by a vector of states for
the individual houses; o; := (011,4..,0'?). From each state g; we

have 2V possible actions that can be taken (existing of N binary
choices to leave the state unchanged or not in each house). Note
that a state transition is only feasible if, next to the individual fea-
sibility checks on the house states, the state vector (of the com-
bined houses) also fulfills the production pattern constraints of
the given interval.

To formalize the DP for the fleet of houses, we denote by Dj(o;)
the maximal fleet profit that can be achieved in the intervals
J»...,Ng if, at the begin of interval j, the state of house i is given
by oi, for i=1,...,N. Due to the semi-hard fleet production con-

straints a state transition from g; to o} may not be allowed even

if all individual state transitions (aj’ﬁ, o*f) are allowed for the indi-
vidual houses. Therefore we cannot simplify the DP by calculating
the individual house DPs independently and merging the results.

So we need to calculate the complete fleet DP, which has an expo-
nential runtime of O(N3"*1), since the state space explodes by the

possible combinations of houses in each phase of the DP (O(N3")).

Note that in Bosman et al. (2010b) it has been shown that (a re-
stricted version of) the FPP is NP-complete in the strong sense.
Thus, it is very unlikely to get a fast exact approach for the FPP.
Therefore, in the next subsection we present a heuristic method
to solve the FPP in a faster way.

4.3. Local search using single house DPs for the FPP

The DP for the SHPP presented in the previous subsection can be
seen as a function fi(7r) which maps a given price vector 7 to a deci-
sion vector x' for house i. Furthermore, the DP for the FPP can be
seen as a function d on a price vector 7:

d(m) — (x',...,xN).

This function d(7) maximizes a certain objective function and out-
puts N vectors consisting of the planning in N corresponding houses.
Whereas fi(r) finds a solution in polynomial time, d(r) needs expo-
nential time to be evaluated. Since this is not feasible in practice, a
heuristic is developed to find a solution to the FPP that is both fea-
sible and, hopefully, close to the optimum solution, and can be
found in reasonable time.

Structure- The presented heuristic method is based on two
principles:

1. As long as the semi-hard fleet production constraints are not
considered, the fleet optimum is a combination of the individ-
ual optima, i.e. we may solve the individual house DPs sepa-
rately: d(m):=(f\(n),....fN(n));

2. The individual function f(r) for house i only depends on the
price vector 7.

The idea of the approximation method is the following. If we dis-
card the semi-hard fleet constraints in first instance, we can calcu-
late the fleet DP by separating it into N single house DPs. This
reduces the runtime to O(N x N7*). Now we reintroduce the fleet
constraints as a feasibility check on the output of this calculation.
This combination of calculating separate DPs and performing a fea-
sibility check results in a new structure: a certain fleet production
and a yes/no answer whether this production is allowed by the fleet
constraints. The basis of the heuristic method now is to use this
structure of separately calculated DPs and a feasibility check on
the sum of these individual DPs, by iteratively searching the set of
price vectors in an effective way until a price vector 7 is found, where
the feasibility check leads to a positive answer and where 7 is not too
different from the real price vector 7. In this way we may expect that
the resulting solution is close to the optimum.
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Iterative search- In Subsection 4.2 we proposed the fleet DP,
where all possible combinations of production vectors in individ-
ual houses are coded by the state space. In the heuristic we need
a way to search through these possible combinations, since the
dependence between different house productions is lost when cal-
culating separate house DPs. Since we do not want to change the
state definition in the house DP (this would lead to the original
fleet DP or similar state expansions), the only way of applying a
search can go via the input of the DPs. Since f{(n) depends on the
price vector T we change the price vector of the house DPs in
our search. Of course the objective function for the fleet production
is still calculated with the original price vector 7.

Starting with a price vector 7' = 7t for each house i, we itera-
tively adjust the price vectors based on the result of the DPs for
the individual houses using their current price vectors. We try to
remain as close as possible to the original price vector, in the hope
to stay close to the optimal value for the objective function. In each
iteration the price nj'l of interval j is locally adjusted if:

. P}“’p” is violated and the microCHP of house i is decided to be on
in the current solution;

. P}”We’ is violated and the microCHP of house i is decided to be off
in the current solution.

In the first case n]'? is multiplied with a factor a, where 0 <a < 1.
In the second case n]'? is multiplied with a factor 2 — a. All other
prices remain unchanged.

Stop criteria—- The method stops when a feasible solution is
found or when a maximum number of iterations MaxIt is reached.
If the maximum iteration count MaxIt is reached and we did not
find a feasible solution, the solution with the smallest error value
err is given as a best approximation to the fleet constraints. This er-
ror err is the absolute sum of the mismatch to the upper and/or
lower bounds P{"**" and PP*":

Nr N N
err:=>" <max ( ej — PP, 0) + max (P]’-"W” - el 0) >
= i=1 i=1

In Algorithm 1 a summary of the algorithm is given.

Algorithm 1. Local search on the FPP

Input: price vector 7, lower and upper bounds P°*¢" and
PUPPeT qii .— 7 for all houses i
repeat

solve fi{(x') for all i resulting in solution x = (x', ... xV);
calculate total production (Zf’zleﬁ N Zﬁ\’zle;'w) of solution
X5

for all j do

if >Vl > P{P then
for all i with x]f =1do
n]! <= anj'.
end for
end if
if Y1 el < PP then
for all i with xJi =0do
n} <= 2- a)n}
end for
end if

end for
until solution x is feasible or MaxlIt is reached

Note that the basic structure of this heuristic may also be ap-
plied to other dynamic programming formulations which allow a
decomposition of the state, leading to a simplified version, consist-
ing of a set of individual DPs.

5. Results

In this section we report on some computational experiments to
test the possibilities and limitations of the proposed solution ap-
proaches of the previous section. For this, we first describe in Sub-
section 5.1 a set of scenarios used for the computational tests.
These scenarios are solved and compared in two ways:

e using the ILP formulation of the FPP, implemented in AIMMS
modeling software and solved by CPLEX 11.1;
e using the local search approach, implemented in C++.

Both solution methods are executed on a desktop computer
(2.40 GHz and 2.00 GB RAM).

The corresponding results are presented in Subsection 5.2. Since
the computation time to solve the ILP grows rather fast, only the sce-
narios consisting of relatively small instances are solved by both
methods and compared for their objective value and computation
time. To the larger instances only the local search method is applied.
Some special attention is given to the ability of the local search
method to find feasible solutions for narrowing fleet constraints.

5.1. Scenario

The set of scenarios is divided into two subsets, one which con-
tains relatively small sized instances and one which contains larger
instances.

5.1.1. Small instances

The small instances consist of one up to ten houses, all equipped
with a microCHP and a heat buffer, where a planning is required
for 24 time intervals. These instances are solved by both the ILP
and the local search method, in order to compare the quality of
the solutions achieved by these methods. In comparing the ILP
with the local search method, both quality and computational
speed play an important role. The quality Q is defined as the quo-
tient of the local search objective value and the ILP objective value:

A
Zip

The relative speed S is the quotient of the local search’ computation
time and the ILP computation time:

__ timey
o timele ’

In more detail, the following parameters are used for the small
instances. The houses have a heat buffer with initial heat level
BL' = 5 kWh and capacity BC' = 10 kWh. The electricity to heat ratio
o is L and the heat loss is K' = 50 Wh for each house i. These values
correspond to the characteristics of a nowadays microCHP using a
Stirling engine and a heat buffer of around 150 1. Fig. 3 shows the
average heat demand in the 24 intervals for the ten houses. More
detailed information about the used heat demand profiles can be
found in Bosman et al. (2010a). The generation characteristics of
the microCHP are summarized in Table 2. We assume that the
microCHPs in house 1, 2, 3 and 10 are on at the start of the plan-
ning horizon; the other microCHPs are initially off. As price vector
7t we use the prices stated in Table 3.

To verify the quality of a solution dependent on the total
electricity output, we also vary the constraints on the total elec-
tricity production. In this context not only the quality of the
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Fig. 3. The average heat demand and the standard deviation in the ten houses of the
small instances and the 100 houses of the large instances.

Table 2

MicroCHP characteristics (in case of 24 intervals).
Parameter N Nigun MR MO Gi Gi G
value 1 1 1 1 800 400 8000

achieved solutions is of interest, but also the question whether
or not the local search method is able to find feasible solutions
in situations where the bounds on the production pattern get
more tight. We use ten production pattern variants, where we
set the lower and upper bounds P°"¢" and P“PP¢" and specify
them as constant percentages of the total maximally possible
electricity output of the group of houses. These percentages
are given in Table 4. The last variant gives the tightest combina-
tion of lower and upper bounds: the highest lower bound for
which a feasible solution is found (variant 1, 8 or 9) is combined
with the lowest upper bound for which a feasible solution is
found (variants 1-7). We denote by I(k,I) an instance of the k
houses {1,...,k}, where we use variant [ for the electricity pro-
duction bounds.

5.1.2. Large instances

The larger instances are used to test the local search method
more thoroughly on more realistically sized fleets of houses. These
instances contain up to 100 houses and require a planning for up to
96 intervals, which comes down to intervals of 15 min length in a
horizon of 24 h. For these instances the setting for the parameter g,
which defines the changes in the price vector, is tested against
varying fleet constraints and interval length to see how many iter-
ations are needed to find a feasible solution. In case a feasible solu-
tion cannot be found the error from the fleet constraints should be
minimized.

We use fleets of sizes 25, 50, 75 and 100 and intervals of 60, 30
and 15 min length, which gives 24, 48 and 96 intervals respectively
in total. The generation/household characteristics are similar to the
settings in the small instances (accounted for the interval length).
Minimum run-and offtimes are set to half an hour. Also, the heat
demand is similar to that for the small instances, as shown in
Fig. 3. Electricity prices are equal to those used in the small in-
stances. The production pattern variants for the large instances
are given by Table 4.

5.2. Solutions

Below we present the results for both types of instances. In the
local search method for the small instances we set the parameters
a=0.9 and Maxlt=100. In the large instances we have again
MaxIt =100. As multiplication factor a we now use the values
0.9, 0.7, 0.5, 0.3 and 0.1.

5.2.1. Small instances

The normalized objective values for the instances I(k,[) (i.e. the
objective values divided by the number of houses), calculated by
the ILP approach, are given in Table 5. If an instance does not have
a feasible solution this is denoted by a dash (-).

Some of the instances with a large number of houses and tight
production pattern constraints were terminated by the ILP solver,
due to slow convergence towards the best found solution. For these
instances, where the ILP solver did not find the optimal solution,
the upper bound on the objective, given by the solver, is also pre-
sented below the table. This gives an indication that the ‘large’
small instances are close to the largest ones that can be solved to
optimality by the current approach. Note that the upper bound
of 1(10,4) can be lowered by looking at the objective value of
1(10,3). The average objective values show that the tighter the fleet
constraints are, the less money can be earned.

In Table 6 the computational times are given, where we only
show the times corresponding to the feasible instances. A star (*)

Table 3
Electricity prices (APX market 29-10-2007).
Hour P,(€/MWh) Hour P,(€/[MWh) Hour Pj(€/MWh) Hour Pj(€ [MWh)
1 37.00 7 63.01 13 124.96 19 275.00
2 29.65 8 91.06 14 135.00 20 187.57
3 22.38 9 103.97 15 111.61 21 92.50
4 19.01 10 179.89 16 103.96 22 66.50
5 28.07 11 150.44 17 171.04 23 51.50
6 37.04 12 242.80 18 500.00 24 47.00
Table 4
Electricity production bounds, based on percentages of possible electricity production.
Production pattern variant Small instances Large instances
1 2 3 4 5 7 8 9 10 11 12 13 14
Lower bound (%) 0 0 0 0 0 0 10 20 tight 0 10 20 25
Upper bound (%) 100 90 80 70 60 40 100 100 tight 75 50 40 35
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Table 5

Objective value for instances I(k,I).
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1

1

2

k 3 4 5 6 7 8 9 10 n

1 1.147 1.092 - - - - - - - 1.092 1.110
2 1.236 1.208 1.016 1.016 1.016 1.016 - - - 1.016 1.075
3 1.197 1.197 1.106 1.106 1.002 - - - - 1.002 1.102
4 1.183 1.164 1.128 1.114 1.021 1.021 - 1.009 1.009 0.949 1.066
5 1.164 1.149 1.120 1.060 1.060 - - 1.118 - 1.023 1.099
6 1.163 1.150 1.130 1.092 1.048 1.027 B 1.139 . 1.021 1.096
7 1.156 1.145 1.137 1.109 1.069 0.972 0.925 1.150 - 0.924 1.065
8 1.156 1.145 1.130 1.114 1.080 1.032 0.919 1.152 1.069 0.902 1.070
9 1.153 1.143 1.121 1.098 1.072 0.993° - 1.150 1.113 0.976° 1.091
10 1.176 1.162 1.143 1.122° 1.095 1.037¢ 0.948¢ 1.173 1.028 0.945 1.083
u 1.173 1.156 1.115 1.092 1.051 1.014 0.931 1.127 1.055 0.985

¢ terminated by solver, upper bound 1.144.

b
c
d
e

terminated by solver, upper bound 1.058.
terminated by solver, upper bound 1.075.
terminated by solver, upper bound 0.989.
terminated by solver, upper bound 0.999.

denotes an instance that is terminated by the solver premature,
without determining the optimality of the solution. The computa-
tional times grow extremely fast if the number of houses grows or
the production pattern bounds get more tight. Also note the large
variance in these times under a fixed number of houses or a fixed
production pattern variant.

The quality of the local search method is verified by comparing
its objective values and computational times to the ones given in
Tables 5 and 6. The local search method is only applied to the fea-
sible instances as found by solving the ILP. The results for Q and
the computation times time;; and time;p are summarized in Table
7, where average values are categorized by number of houses (left

Table 6

Computational time (in seconds) for instances I(k,[).

side of the table) and by production pattern variant (right side of
the table). On the left hand side averages are taken over all (fea-
sible) production pattern variants and on the right hand side
averages over all (feasible) numbers of houses. As a first verifica-

tion, the local search method produces optimal results for all in-

stances I(k,1) as should be the case, since independent DPs can be
used in case of no network restrictions. The same yields for the

single house, since the available network sizes (1, 2 and 10) put

no practical restrictions on the electricity output. The average

quality Q of all instances is 0.95 and the average relative speed

S is 0.0098. No trend can be identified between the number of
houses and the quality of the local search method. It would be

1

1 2

k 3 4 5 6 7 8 9 10 u a
1 0.08 0.06 - - - - - - - 0.08 0.07 0.01
2 0.22 0.31 0.70 0.48 0.51 0.95 - - - 1.00 0.60 0.28
3 1.33 1.41 1.75 2.50 1.17 - - - - 1.22 1.56 0.46
4 1.34 1.81 2.45 2.05 8.27 7.36 - 5.98 2.78 9.86 4.66 3.05
5 5.00 6.06 9.33 45.28 57.41 - - 28.19 - 467.30 88.37 155.84
6 6.78 4.88 20.06 38.64 221.17 254.84 - 25.52 - 2326.13 362.25 748.13
7 7.89 16.77 25.11 47.64 839.84 6373.31 3052.55 9.75 - 1745.06 1346.44 2037.84
8 27.36 43.89 60.72 109.48 396.69 3302.30 9918.91 39.03 97.66 17999.19 3199.52 5753.94
9 129.39 200.31 332.52 2382.53 2858.05 7143.67* - 130.49 1270.13 16265.91* 3412.56 5016.03
10 461.98 1174.94 873.14 6879.08* 17285.17 6704.20* 8648.84* 79.89 1765.80 5757.88 4963.09 5080.93
n 64.14 145.04 147.31 1056.41 2407.59 3398.09 7206.77 45.55 784.09 4457.36
a 137.81 348.21 275.37 2185.10 5330.13 3087.73 2982.89 41.38 755.25 6570.37

Table 7

Results for small instances.
Houses Q Time (s) Infeas.% Production pattern Q Time (s) Infeas.%

Iz a M(ILP) u(ls) u a H(ILP) u(ls)

1 1.000 0.000 0.07 0.015 0.00 1 1.000 0.000 64.14 0.015 0.00
2 0.967 0.038 0.60 0.042 42.86 2 0.979 0.028 145.04 0.017 0.00
3 0.951 0.063 1.56 0.021 0.00 3 0.962 0.024 147.31 0.023 11.11
4 0916 0.062 4.66 0.066 3333 4 0.980 0.022 1056.41 0.029 11.11
5 0.942 0.059 88.37 0.051 14.29 5 0.955 0.047 2407.59 0.043 11.11
6 0.937 0.057 362.25 0.066 12.50 6 0.892 0.068 3398.09 0.065 0.00
7 0.969 0.032 1346.44 0.096 22.22 7 0.932 0.024 7206.77 0.182 33.33
8 0.958 0.047 3199.52 0.088 20.00 8 0.936 0.067 45.55 0.118 42.86
9 0.947 0.063 3412.56 0.073 11.11 9 0.912 0.030 784.09 0.239 100.00
10 0.962 0.036 4963.09 0.094 20.00 10 0913 0.057 4457.36 0.131 40.00
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interesting to see whether this still holds for large numbers of
houses. The production pattern variant has an effect on the qual-
ity. An explanation for this behavior is that the local search meth-
od has more difficulty in finding a feasible solution under tighter
network constraints, resulting in larger deviations from the origi-
nal price vector. This original vector is used in the objective value,
which results in worse results. This is also shown in the percent-
ages of infeasible solutions (violating the electricity constraints)
that are found by the local search method. The network variant
has more influence on this percentage than the number of houses.
If we look at the deviation from the electricity bounds (given by

Table 8
Results for large instances with a =0.9.

the error err), the solutions are relatively close to these bounds.
Therefore we included these infeasible solutions in all calcula-
tions and comparisons.

5.2.2. Large instances

For the large instances, we are interested in the behavior of the
local search method dependent on the following three instance
parameters: the size of the group of houses, the production pattern
variant, and the number of intervals in a planning for 24 h. The cri-
teria we use to evaluate the behavior are the objective value, the
computational time, the number of iterations the local search
method needs, the error and the percentage of infeasible solutions.
The results in Tables 8 and 9 are, for a given value of one of the
parameters, the averages over all combinations which are derived
from the two other parameters. The results achieved with the va-
lue a =0.9 (as applied to the small instances) are given in Table 8.

Houses zisIN Time(s) Iterations Error Infeas.(%) £ X
The computational time per house and the error per house de-
25 1007 1048 80.3 20588 750 crease slightly when the number of houses increases. For 100
50 1.026 1982 79.1 36063 75.0 ghtly : ,
75 1040 2869 78.7 59734 750 houses the error corresponds to 0.7 kWh over/underproduction
100 1.031 3831 78.8 71050 75.0 per house. For production pattern variant 11 the method always
Production pattern finds a feasible solution (in a few iterations), while for the variants
1 1165 859 168 o 00 12,13 and.14 no feasible solution is found (and the methpd stops
12 0971 2951 100.0 9340 100.0 after 100 iterations). However, note that these production con-
13 0984 2962 100.0 65654 100.0 straints are more tight than in the small instances and, thus, there
14 0.984 2958 100.0 112440 100.0 is quite a chance that no feasible solution may exist. Regarding the
Intervals number of intervals the computational times grow fast. The objec-
24 0953 1 753 27163 75.0 tive value increases as the number of intervals increases; however,
48 1.023 243 80.5 39252 75.0 the error increases accordingly, so the convergence is slower for a
96 1103 7053 81.9 74162 75.0 larger number of intervals.
Table 9
Results for large instances and varying a.
Houses zis/[N Time(s)
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
25 1.007 0.994 0.996 0.977 0.979 1048 1007 1011 997 1012
50 1.026 0.981 0.984 0.976 0.949 1982 1915 1912 1898 1925
75 1.040 1.001 0.975 0.966 0.970 2869 2719 2741 2746 2737
100 1.031 0.981 0.962 0.976 1.026 3831 3628 3569 3686 3647
Iterations Error
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
25 80.3 76.9 76.0 70.4 71.2 20588 21498 16103 17807 16377
50 79.1 77.0 72.8 71.8 72.3 36063 41865 33840 33758 28492
75 78.7 76.6 71.4 72.3 69.8 59734 60839 44525 47031 41800
100 78.8 76.6 72.1 72.4 70.8 71050 78146 68117 63392 56813
Production pattern zisIN Time(s)
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
11 1.165 1.090 1.033 1.005 1.005 859 405 417 519 535
12 0.971 0.964 0.966 0.964 0.971 2951 2949 2900 2886 2867
13 0.984 0.942 0.951 0.966 0.961 2962 2956 2957 2958 2956
14 0.984 0.961 0.967 0.959 0.987 2958 2959 2957 2963 2963
Iterations Error
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
11 16.8 7.1 8.7 9.9 9.6 0 0 0 0 0
12 100.0 100.0 83.7 77.0 74.6 9340 13148 12204 13381 10079
13 100.0 100.0 100.0 100.0 100.0 65654 69146 58121 48221 38450
14 100.0 100.0 100.0 100.0 100.0 112440 120054 92259 100386 94951
Intervals zisIN Time(s)
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
24 0.953 0.955 0.947 0.952 0.946 1 1 1 1 1
48 1.023 0.953 0.939 0.926 0.939 243 235 197 191 180
96 1.103 1.060 1.052 1.043 1.058 7053 6716 6726 6803 6810
Iterations Error
0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
24 75.3 75.1 75.1 75.2 75.2 27163 16775 16588 17969 17041
48 80.5 77.0 65.8 61.3 58.8 39252 44048 26431 23150 25548
96 81.9 78.2 78.4 78.8 79.2 74162 90937 78919 80372 65021
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(a) Two planning results using a = 0.9 for production pattern 12 and 25 houses
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Fig. 4. The detailed planning of a case with a different number of intervals.

Next, since optimal objective values are unknown for these in-
stances, the solutions of different updating schemes of the price
vector are compared to each other. In this comparison, the focus
is in first instance on the ability to find a feasible solution and
the objective value is only of secondary interest. The results for
using the values 0.9, 0.7, 0.5, 0.3 and 0.1 for the parameter a are gi-
ven in Table 9. The different updating schemes perform similar. If
the focus is more on minimizing the error, the values 0.5, 0.3 and
0.1 are advantageous. For these values of a for some instances with
production pattern variant 12 the local search method could find
feasible solutions. If the focus is on the objective value, a = 0.9 gives
better results against a slightly higher number of iterations and
computational time.

Fig. 4 shows a comparison of the detailed planning of a fleet of
25 houses and production pattern variant 12. A planning based on
half an hour intervals (red) is compared to a planning based on
intervals of a quarter of an hour (blue). 202.5 run hours are
planned for the half an hour based planning and 210.75 run hours
for the quarter of an hour planning. Fig. 4(a) shows that only 74.5
of these run hours of the two plannings do overlap. In Fig. 4(b) the
total generation is plotted against the background of the original
price vector (shaded area in green). This example emphasizes that
making a planning for 15 min intervals clearly leads to different re-

sults compared to a planning for 30 min intervals (both in total as
for individual houses), although the minimum runtime and offtime
stay fixed on 30 min.

In general we can state that an increase in the number of houses
leads to a better fit for the fleet to the given production bounds (i.e.
the amount of electricity per house outside the bounds decreases).
Concerning the amount of iterations, the largest improvement in
objective value is reached within the first 25 iterations. Remaining
iterations only lead to slightly better objective values. As a general
comment, it is hard to flatten the total output profile over the
whole day, when the aggregated heat demand profile deviates
too much from the desired production bounds for a too long
period.

6. Concluding remarks and recommendations

In this paper the Single House Planning Problem (SHPP) and the
Fleet Planning Problem (FPP) are introduced. For the FPP an ILP
model is given and a local search method is developed to cope with
large instances. Small instances are tested to verify the quality of
this heuristic method in comparison to the (optimal) solutions by
solving the ILP; the local search method results in a 5% loss in
objective value and a 99% gain in computation time. Furthermore,
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the local search method is tested for larger instances, to see
whether it is applicable in practice. Considering the fact that, in
practice, we can unfold one calculating entity per house, a planning
for 100 houses, 96 intervals and using 100 iterations can be made
within 2.3 min. In our experience we find that the maximum num-
ber of iterations MaxIt can easily be reduced with a factor four,
since most best solutions are found within the first 25 iterations.
Using this reduction a planning can be made in about half a min-
ute. Regarding feasibility, a feasible solution for the small instances
is not found in 19% of the cases, where the ILP formulation did find
a solution. Depending on the value of a, 67%-75% of the large in-
stances are infeasible (note that the production bounds for the
large instances are more tight).

Looking at possibilities to improve the heuristic method, the
updating scheme can be adjusted. In the current local search meth-
od the adjustments are based on the performance of the complete
group of houses. This could be changed by introducing sub groups,
each of which gets its own goal production pattern. Also opposite
adjustments in sequential iterations could be prohibited, to pre-
vent a ‘flipping’ effect in the used steering signals. As an alternative
price updating scheme, Lagrangian relaxation can be used to derive
the new prices. Finally, it may be worth to investigate if the (re)cal-
culation of the dynamic program can be done more efficiently by
using the results of the previous iteration.

To accommodate improvements in the design of a heuristic
method different problem formulations may be investigated. A
possible direction may be to formulate the problem in such a
way that a column generation technique can be used to separate
the local constraints on the production profiles from the global
constraints on the total production to simplify the planning
problem.
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