
The optimal allocation of server time slots
over different classes of patients

Stefan Creemers, JeroenBeli±n and Marc Lambrecht

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 1122

The optimal allocation of server
time slots over different classes of

patients

Stefan Creemers1,2, Jeroen Beliën2,3, Marc Lambrecht2

1
IESEG School of Management,

Rue de la Digue 3, 59000 Lille, France
Tel.: +33-3-20545892, Fax: +33-3-20574855

s.creemers@ieseg.fr

2
Katholieke Universiteit Leuven, Faculty of Business and Economics,

Department of Decision Sciences and Information Management,
Research Center for Operations Management,

Naamsestraat 69, B-3000 Leuven, Belgium
Tel.: +32-16-326958, Fax: +32-16-326624

firstname.lastname@econ.kuleuven.be

3
Hogeschool-Universiteit Brussel

Center for Modelling and Simulation,
Stormstraat 2, B-1000 Brussel, Belgium

jeroen.belien@hubrussel.be

Abstract

We present a model for assigning server time slots to different
classes of patients. The objective is to minimize the total expected
weighted waiting time of a patient (where different patient classes may
be assigned different weights). A bulk service queueing model is used
to obtain the expected waiting time of a patient of a particular class,
given a feasible allocation of service time slots. Using the output of
the bulk service queueing models as the input of an optimization pro-
cedure, the optimal allocation scheme may be identified. For problems
with a large number of patient classes and/or a large number of feasi-
ble allocation schemes, a step-wise heuristic is developed. A common
example of such a system is the allocation of operating room time slots
over different medical disciplines in a hospital.

Keywords: Markov processes, OR in health services, Optimal capacity
allocation, Bulk service queue, Patient waiting time

1

1 Introduction

In this article we present a model for assigning a set of predefined server
time slots to a number of patient classes. For each patient class and each
feasible allocation scheme, a bulk service queueing model can be analyzed.
The output of the queueing models serve as the input of an optimization pro-
cedure. The optimization procedure minimizes the total expected weighted
waiting time of a patient (different classes of patients are allowed to have
different weights). For large problem sizes (i.e. problems with a large num-
ber of patient classes and/or a large number of feasible allocation schemes),
a step-wise heuristic is developed.

The model is applicable to problem settings characterized by the following
features:

• The capacity of the server can be divided into discrete blocks of time.

• The allocation of service time slots is a strategic, long-term decision
(as such, the model does not deal with the day-to-day, operational
allocation problem).

• Patients have to make an appointment in order to receive service in
an upcoming service time slot. From the making of an appointment
until their arrival at the service facility (e.g. the hospital), patients are
introduced into a queue that is also referred to as the “waiting list”.

• The waiting time of a patient is an important decision criterion.

• No interaction effect between patient classes takes place (i.e. patients
of a particular class can only be served during the service time slots
assigned to that class).

A typical example of such a system is the allocation of operating room time
slots over different medical disciplines (where each medical discipline repre-
sents a patient class). In general, the daily capacity of each operating room
may be divided into two service time slots: before noon and after noon (other
divisions are of course possible). The allocation of these service time slots to
medical disciplines is a strategic decision that has to be made by the hospi-
tal management (where the waiting time of patients is an important decision
variable). The problem of allocating operating room capacity has been widely
studied. Most studies however focus on the operational level of sequencing

2

patients, leveling bed occupancy and optimizing the daily routine of hospi-
tal life (refer to Cardoen, Demeulemeester and Beliën (2010) for a recent
review of the relevant literature). Only few analytic studies are dedicated to
the strategic aspect of capacity allocation in hospitals. This is especially true
when it comes to the study of waiting lists (i.e. the queue of patients who are
waiting for their appointed date in order to receive treatment). The strate-
gic importance of waiting lists has been stressed by a multitude of authors
including Hanning (1996), Goddard and Tavakoli (1998), Besley, Hall and
Preston (1999), Martin and Smith (1999), Vanden Bosch and Dietz (2000)
and Rotstein and Alter (2006). Albeit some noteworthy works by Worthing-
ton (1987) and Green (2008) among others, few analytic efforts have been
pledged to address the problem of waiting lists. The model presented in this
article addresses the long-term waiting of patients and optimizes its trade-off
with the allocation of hospital resources. Next to applications in health care,
the model may be adopted to any setting in which a shared resource has to
be allocated among a number of competing users. Examples include:

• The allocation of shared class rooms over various faculties at a univer-
sity.

• The allocation of shelf space in supermarkets.

• . . .

The contribution of this article is threefold: (1) we present a new bulk
service queueing model that allows the study of the queueing behavior of a
single class of patients that receives service during predefined service time
slots; (2) we devise an optimization procedure that allows to determine the
optimal allocation (with respect to patient waiting time) of server time slots
over a number of patient classes; (3) we develop a step-wise heuristic to
cope with large problem sizes. The remainder of this article is organized as
follows. Section 2 discusses the bulk service queue that is used to model the
queueing behavior of a single patient class that receives service during a given
set of time slots. The optimization procedure and the step-wise heuristic are
presented in Section 3. Section 4 provides a numerical example and Section 5
concludes.

3

2 Bulk service queueing model

The bulk service queueing model presented in this article observes the queue-
ing behavior of a single class of patients that is allowed to receive service
during a given set of service time slots. Upon the start of such a service
time slot, a number of patients is removed from the queue (e.g. the waiting
list) in order to receive service at the service facility (e.g. the hospital). The
number of patients is either: (1) the number of patients in the queue; (2) the
maximum number of patients allowed to receive service during the upcoming
service time slot. The model does not observe the time spent waiting for
service at the service facility (e.g. the time spent waiting inside the hospital)
nor the actual service process itself (refer to Creemers and Lambrecht (2009a)
and Creemers (2009c) for models in which these elements are incorporated).
Note that these latter elements are of lesser importance when observing the
waiting list.

The arrival of patients occurs during arrival time slots (e.g. patients are
allowed to make an appointment on working days, during office hours). The
characterization of the arrival process during each of the arrival time slots is
allowed to differ (i.e. the model allows for time-dependent arrival patterns).
Note that the continuous-time case (in which arrivals are allowed to occur at
any moment in time) corresponds to the setting in which only a single arrival
time slot is assumed.

The main objective of the bulk service queueing model is to assign arriving
patients to the first appropriate service time slot (i.e. the first service time
slot in which the appropriate class of patients is allowed to receive service)
that has capacity available. The properties of the bulk service queueing
model may be summarized as follows:

• Patients arrive during arrival time slots.

• Patients are removed from the queue only at the start of a service time
slot.

• Patients receive service in the first upcoming service time slot in which
capacity is still available.

• Patients are removed instantaneously, in batches and according to a
FCFS policy.

4

• The number of patients removed depends on the current queue size
and the maximum number of patients that is allowed to receive service
during the upcoming service time slot.

The server operates under a vacation policy. The dynamics of the vacation
mechanism are as follows. Upon the start of an appropriate service time slot,
the server returns from vacation, instantaneously removes up to a maximum
number of patients from the queue and departs on a vacation once more.

Bulk service queues have been receiving a lot of attention during the
past decades. For a general reference work on bulk service queues, refer to
Chaudhry and Templeton (1983). More recent advances have been made
by Gupta and Goswamib (2002), Chaudhry and Gupta (2003), Gupta and
Karabi Sikdar (2004), Janssen and van Leeuwaarden (2005), Banik, Gupta
and Chaudhry (2009) and Tadj and Abid (2009) among others. Within the
literature on vacation models a wide variety of models exist (refer to Doshi
(1986), Takagi (1988) and Tian and Zhang (2006) for a general overview).
The model presented in this article possesses some unique features, rendering
the modeling exercise rather complex:

• Arrival time slots have a unique characterization (i.e. each arrival time
slot is allowed to have its own length and patient interarrival distribu-
tion).

• The interarrival times of patients follow an i.i.d. phase-type (PH)
distribution.

• At the start of each service time slot, there is a maximum number of
patients that is removed. As such, the bulk service queueing model has
a k-limited service discipline. Note that service itself (i.e. the removal
of up to k patients from the waiting list) occurs instantaneously.

• The maximum number of patients removed, depends on the service
time slot that is about to start (e.g. the maximum number of patients
served during a service time slot on Thursday is allowed to differ from
the maximum number of patients served during a service time slot on
Friday). As such, the model features time-dependent values of k.

• A vacation is initiated at the following time instances: (1) the start of
a service time slot (after the removal of up to k patients); (2) the start
of an arrival time slot; (3) the end of an arrival time slot. Since these

5

time instances are fixed moments in time, the intervals in between (i.e.
the vacation durations) are of fixed (i.e. deterministic) length as well.

• The deterministic length of a vacation depends on the moment at which
the vacation is initiated (e.g. a vacation initiated after a service time
slot on Thursday is allowed to have a different length compared to a
vacation that is initiated after a service time slot on Friday).

To summarize, we have a bulk service queueing model featuring: (1) arrival
time slots that have a unique characterization; (2) a k-limited service disci-
pline; (3) vacations of deterministic length; (4) time-dependent values of k
as well as time-dependent vacation lengths. Similar models may be found in
Creemers and Lambrecht(2009a), Creemers and Lambrecht (2009b). In this
article, we further refine the model presented in Creemers and Lambrecht
(2009b) and adopt it in a multi-class setting (refer to Section 3). The refine-
ment concerns a complete overhaul of one of the submodels such that: (1)
computational efforts are reduced; (2) numerically exact results are obtained
(whereas previously results were approximative).

The performance measure of interest (i.e. the input of the total expected
weighted waiting time of a patient) is the expected waiting time of a patient
of a particular class. Building on Markov chain theory and through the use of
PH distributions, matrix analytical methods and efficient algorithms, we ob-
tain numerically exact results. The validity of these results are supported by
simulation studies. Computational experiments show that real-life systems
may be assessed (refer to Creemers (2009c) for an assessment of the validity
and the computational performance of the bulk service queueing model). In
the remainder of this section, we define the basic processes that govern the
bulk service queueing model, we characterize the PH distributions that are
used to model system processes and establish a counting process to deter-
mine the distribution of the number of arriving patients during a vacation.
Next we present the bulk service queueing model itself.

2.1 Basic Processes

The service process of a given class of patients is a succession of service time
slots during which patients are served. Each service time slot is is character-
ized by the maximum number of patients kis allowed to receive service. We
assume recurring cycles to be present in the succession of service time slots
(e.g. the use of a specific operating room is assigned to the orthopaedics

6

Figure 1: Cyclic nature of the service and arrival process

department every Thursday and Friday afternoon). A cycle of service time
slots has length Tcs .

Similarly to the service process, the arrival process is a succession of
arrival time slots ia during which patients of a particular class are allowed to
arrive. An arrival time slot ia is fully characterized by: (1) the length Tia ;
(2) the mean interarrival time λ−1

ia
; (3) the variance of interarrival times σ2

ia .
We assume recurring cycles to be present in the succession of arrival time
slots. A cycle of arrival time slots has length Tca . An illustration of the cyclic
nature of service and arrival processes is provided in Figure 1. In building
the bulk service queueing model, we will fully exploit the repetitive structure
of the service and arrival processes.

Note that we allow the arrival and the service cycle to differ because
the arrival of a patient of a particular class does not necessarily coincide
with the service time slots that have been assigned to that patient class (e.g.
an orthopaedic patient might call to make an appointment on all working
days, during office hours whereas the orthopaedics department only performs
surgery on Thursday and on Friday afternoon). As such, our model is a
generalization of the more common setting in which arrivals are only allowed
to take place during the time that service is allowed to take place.

The vacation process is obtained when superimposing both the service
and the arrival process. The vacation process is the continuous (i.e. un-
interrupted) succession of vacations iv, of deterministic length Tiv . A new

7

Figure 2: The vacation process at the bulk service queueing model

vacation iv is initiated at each instance in time at which (1) a service time
slot starts; (2) an arrival time slot starts; (3) an arrival time slot ends. This
observation is used to determine Tiv . We illustrate this procedure in Figure
2. Because service and arrival processes are assumed to be cyclic, the vaca-
tion process is cyclic as well. The cycle length of the vacation process Tcv
equals the least common multiple of Tcs and Tca (assuming the ratio of Tcs
and Tca is a rational number). A cycle of vacations contains J vacations (for
the remainder of the text, index j is defined as j ∈ {1, 2, . . . , J}). We illus-
trate these principles in Figure 3. Note that, due to the cyclic nature of the
vacation process, a vacation of type (j+(iJ)) is also a vacation of type j (for
the remainder of the text, index i is defined as i ∈ {0, 1, . . .}). In addition,
vacations may be divided into different classes (e.g. arrivals are allowed to
take place only during vacations of a particular class). A definition of the
different vacation classes is presented in Section 2.4.1.

8

Figure 3: Cyclic nature of the vacation process

2.2 Phase-Type Distributions

In order to model a general i.i.d. arrival process and a deterministic vacation
process, we adopt continuous-time PH distributions. Continuous-time PH
distributions use exponentially distributed building blocks to approximate
(with arbitrary precision) any positive-valued continuous distribution. PH
distributions are widely implemented in the queueing literature. For a review
on the literature and an introduction on PH distributions we refer to Neuts
(1981), Latouche and Ramaswami (1999) and Osogami (2005) among others.
A PH distribution is the distribution of time until absorption in a Markov
chain with absorbing state 0 and state space {0, 1, . . . , ζ, ζ + 1}. It is fully
characterized by parameters τ and Z. τ is the vector of initial probabilities
to start the process in any of the (ζ + 1) transient states and Z is the matrix
containing the transition rates between transient states. The infinitesimal
generator of the Markov chain representing the PH distribution is presented
below:

Q =

∣∣∣∣ 0 0
t Z

∣∣∣∣ ,

9

where 0 is a matrix of appropriate dimension containing only zeros and (t =
−Ze) (with e a vector of ones of appropriate size).

In this article we adopt simple PH approximations of the arrival process.
Whereas a multitude of approximations are available (ranging from very
simple procedures to complex algorithms), we limit ourselves to the matching
of the first two moments of the interarrival time distribution (i.e. λ−1

ia
and

σ2
ia ; the respective mean and variance of the interarrival time distribution

are matched by the PH distribution). For notational convenience, let λ−1
j

and σ2
j denote the mean and variance of the interarrival time distribution of

arrivals during a vacation of type j. The two-moment matching procedure
developed in this section minimizes Mj, the number of phases required to
approximate the arrival process at a vacation of type j. Define Mj; the set
containing the different arrival phases of the arrival process at a vacation
of type j (as such, (|Mj| = Mj)). Of course, if no arrivals are allowed to
occur during a vacation of type j, (Mj = 0) and (Mj = {∅}). If arrivals are
allowed to occur, we make a distinction between three cases: (1) (C2

j = 1); (2)
(C2

j > 1); (3) (C2
j < 1) (where (C2

j = σ2
jλ

2
j) denotes the squared coefficient

of variation of interarrival times at a vacation j). This distinction allows us
to minimize the number of phases required to match the first two moments
of any positive-valued continuous distribution. In the first case, a simple
exponential distribution of parameter λj suffices to approximate the arrival
process. τ j and Zj are given by:

τ j = 1 , Zj = −λj.
In the second case, we model the arrival process using a convex mixture of 2
exponential distributions (i.e. using a hyper-exponential distribution). The
parameters of the hyper-exponential distribution matching the interarrival
time distribution with rate λj and variance σ2

j are given by:

υj1 =
2

2− C4
j + C6

j

, (1)

υj2 = 1− υj1 , (2)

λ−1
j1

=
1

2λj

(
2− C2

j + C4
j

)
, (3)

λ−1
j2

=
1

λj
− 1

λjC2
j

, (4)

where υj1 , υj2 , λj1 and λj2 denote the probability of having an interarrival
time that is exponentially distributed with parameter λj1 , the probability of

10

having an interarrival time that is exponentially distributed with parameter
λj2 , the parameter of the first exponential distribution and the parameter of
the second exponential distribution respectively. τ j and Zj are defined as:

τ j = 1 υj1
2 υj2

, Zj =
1 2

1 −λj1 0
2 0 −λj2

.

With respect to the third case, we model the arrival process using a
hypoexponential distribution (a series of exponential distributions whose pa-
rameters are allowed to differ; a generalization of the Erlang distribution).
The parameters of the hypoexponential distribution matching the interarrival
time distribution with rate λj and variance σ2

j are given by:

ζj = bC−2
j c − bC2

j bC−2
j cc, (5)

λ−1
j1

=

ζj
λj

+

√
− ζj
λ2j

+
C2
j ζj

λ2j
+

C2
j ζ

2
j

λ2j

ζj + ζ2
j

, (6)

λ−1
j2

=
1

λj
−

z2
j

λj
(
ζj + ζ2

j

) − ζj

√
− ζj
λ2j

+
C2
j ζj

λ2j
+

C2
j ζ

2
j

λ2j

ζj + ζ2
j

, (7)

where ζj, λj1 and λj2 denote the number of phases of exponential duration of
parameter λj1 that occur prior to the last phase, the parameter of the expo-
nentially distributed interarrival times at the first ζj phases, the parameter
of the exponentially distributed interarrival time at the last phase. τ j and
Zj are presented below:

τ j =

1 1
2 0
...

...
ζj 0

ζj + 1 0

, Zj =

1 2 · · · ζj ζj + 1
1 −λj1 λj1 · · · 0 0
2 0 −λj1 · · · 0 0
...

...
...

. . .
...

...
ζj 0 0 · · · −λj1 λj1

ζj + 1 0 0 · · · 0 −λj2

.

For the three cases, Mj equals 1,2 and ζj + 1 respectively. A summary of
the PH distributions, used in this article, is provided in Figure 4.

11

Figure 4: Overview of PH distributions used at the bulk service queueing
model

2.3 Counting process

A counting process is established in order to obtain the distribution of the
number of patients arrived during a vacation of type j. The counting pro-
cess developed here builds on the insights presented in Ramaswami (1988).
Define Pj[i, d|0, c] as the probability of having i arrivals during a vacation
of type j and an arrival process at final phase d (d ∈Mj) given: (1) a PH
distribution of parameters Zj and τ j; (2) an arrival process at initial phase
c (c ∈ Mj). The distribution of the number of arrivals may be obtained
through a counting process of the MAP (Markovian Arrival Process) char-
acterized by Cj0 and Cj1 . The counting process has a continuous-time rate
matrix:

Qj =

∣∣∣∣∣∣∣∣∣∣∣

Cj0 Cj1 0 0 · · ·
0 Cj0 Cj1 0 · · ·
0 0 Cj0 Cj1 · · ·
0 0 0 Cj0 · · ·
· · · · · · · · · · · · . . .

∣∣∣∣∣∣∣∣∣∣∣
,

12

where (Cj0 = Zj) and
(
Cj1 = tjτ

>
j

)
. The transition probabilities of the

counting process during a vacation of deterministic length Tj are given by:

Cj (Tj) = eTjQj =
∞∑
i=0

T ij
i!

Qi
j. (8)

In order to avoid numerical problems and to enhance computational perfor-
mance, we apply a uniformization argument to the counting process. More
specifically, define:

Pj =
Qj

λmaxj

+ I, (9)

where I is an identity matrix of appropriate dimension and λmaxj is the largest
rate of the PH distribution of parameters Zj and τ j. Building on the insights
presented in Tijms (2003), we obtain:

Cj (Tj) = e−Tjλ
max
j

∞∑
i=0

(Tjλ
max
j)i

i!
Pi
j. (10)

Since we are only interested in transitions moving from states with queue size
zero, we only need to observe the first block row of Cj (Tj). More specifically,
the first block row of Cj (Tj) holds the distribution of the number of arrivals
during a vacation of type j (i.e. probabilities Pj[i, d|0, c]). In order to obtain

the first block row of Cj (Tj), it suffices to compute P
(i)
j1

; the first block row of

Pi
j (∀i ≥ 0). P

(i)
j1

may be obtained through the simple recursive relationship:

P
(i)
j1

=

(
Cj0

λmaxj

+ I

)
P

(i−1)
j1

+

[
0

Cj1

λmaxj

P
(i−1)
j1

]
. (11)

2.4 Model

The bulk service queueing model presented in this article is not a straightfor-
ward queueing model. One possible approach would be to construct a Markov
chain of four dimensions: (1) the queue size Q : Q ∈ {0, 1, 2, . . .}; (2) the
vacation type j; (3) the phase of the arrival process m : m ∈ {1, . . . ,Mj};
(4) the phase of the vacation process v : v ∈ {1, . . . , V }.

Unfortunately, the use of multidimensional Markov chains is in general
not advisable since it is clear that, as J , Mj or V increase, the resulting
statespace grows rapidly. When modeling real life problems, memory- and

13

computational constraints are quickly met. In order to efficiently assess per-
formance measures, we decompose the systems into two subsystems:

• A first subsystem observes the queueing process of patients only at
the start of a vacation of type j, prior to the removal of up to kj
patients. We use a set of DTMC X (X = {X1, . . . , XJ} and Xj =
{Xj (t) : t ≥ 0}) to analyze this first subsystem; where DTMC Xj may
be defined as a two-dimensional stochastic process whose statespace
can be represented by pairs (Q,m)j. From the analysis of the DTMC
Xj, we obtain Q�j ; the expected number of patients in queue during a
vacation of type j, given that these patients did already arrive prior to
vacation j.

• A second subsystem observes the queueing process of those patients
who arrive during a vacation of type j. Using simple arithmetics, we
obtain Qpj ; the expected number of patients in queue during a vacation
of type j, given that these patients did arrive during vacation j.

We illustrate this decomposition in Figure 5. Decomposing the system signif-
icantly improves computational efficiency due to: (1) dimensional reduction
of the statespace; (2) avoiding unnecessary computations.

The DTMC Xj observes the queueing behavior of patients at the start
of a vacation of type j prior to the removal of up to kj patients from the
queue. Therefore, observation moments coincide with the start of a vacation.
The actions taking place in between two successive observation moments
(i.e. the start of a vacation of type j and the start of the next vacation
of type j) are left unobserved. We refer to Figure 6 for an illustration. In
order to take the unobserved alterations of the queueing process into account,
one needs to compute all possible outcomes (i.e. resulting queue sizes) and
their corresponding probabilities. More specifically, one wants to know the
probability of having t patients in the queue at the beginning of a vacation
of type j, given that, at the beginning of the previous vacation of type j, s
patients were present in the queue. More formally, define Pj,n[t, d|s, c] as the
probability of moving from a state with queue size s and arrival phase c at
the start of a vacation j towards a state with queue size t and arrival phase
d at the start of vacation (j + n) (c ∈ Mj ∧ d ∈ Mj+n). In order to obtain
Pj,J [t, d|s, c] (i.e. the transition probabilities of the DTMC Xj), we first
determine Pj,1[t, d|s, c] by means of a counting process outlined in Section

14

Figure 5: System decomposition at the bulk service queueing model

15

Figure 6: The set of DTMC X

16

2.3. These latter probabilities serve as the input of an iterative algorithm
that yields the required transition probabilities Pj,J [t, d|s, c].

In what follows we first provide a classification of the different vacation
classes and show how to obtain Pj,1[t, d|s, c] for each vacation class. Next
we propose an algorithm to compute probabilities Pj,J [t, d|s, c] and use these
probabilities to construct the DTMC Xj. We use matrix analytical methods
to obtain the stationary distribution of the number of patients in the queue
at the start of a vacation of type j, prior to the removal of up to kj patients
from the queue (this distribution may be used to determine Q�j). In addition,
we present an alternative algorithm that further improves computational
performance. Next, we develop the arithmetics required to compute the
expected number of patients in queue during a vacation of type j (i.e. Q∗j).
Finally, we aggregate the performance measures (i.e. Q�j and Q∗j) to obtain
general results.

2.4.1 A Classification of Vacations

A distinction between five classes of vacations may be made:

• Class 1 vacations coincide with the end of an arrival time slot but do
not coincide with the start of a service time slot.

• Class 2 vacations coincide with the start of a service time slot, do not
coincide with the start of an arrival time slot and no arrival session is
still in progress.

• Class 3 vacations coincide with the start of an arrival time slot but do
not coincide with the start of a service time slot.

• Class 4 vacations coincide with both the start of an arrival time slot
and the start of a service time slot.

• Class 5 vacations coincide with the start of a service time slot, do not
coincide with the start of an arrival time slot and an arrival session is
still in progress.

We do not allow for (multiple) adjacent arrival time slots because of the
limitations involved with the PH distributions adopted in this article. Mul-
tiple adjacent arrival time slots however, might be used to take into account
additional time-dependencies in the arrival process. The different classes of

17

Figure 7: Overview of different vacation classes

vacations are illustrated in Figure 7. Let cj : cj ∈ {1, 2, 3, 4, 5} denote the
class of a vacation j. Depending on the class, a vacation j is characterized
by:

• a deterministic length Tj (∀j : cj ∈ {1, 2, 3, 4, 5}),

• a maximum number of patients kj that is served instantaneously at
the start of a vacation j (∀j : cj ∈ {2, 4, 5} and (kj = 0) for all
j : cj ∈ {1, 3}),

• a mean interarrival time λ−1
j and variance σ2

j (∀j : cj ∈ {3, 4, 5}). Note
that (Mj = 0) and (Mj = {∅}) for all vacations j : cj ∈ {1, 2}.

Each of the vacation classes requires a distinct modeling approach.

Class 1 Vacation

Since no arrivals nor service takes place, the queueing process remains unal-
tered during class 1 vacations. If vacation (j + 1) is of class 2, we have (note

18

that a vacation j of class cj ∈ {1, 2} can never be succeeded by a vacation
(j + 1) of class cj+1 ∈ {1, 5}):

Pj,1[t, ∅|s, ∅] =

{
1 ∀s, t : s = t,
0 otherwise.

(12)

For cj+1 ∈ {3, 4}, we have:

Pj,1[t, d|s, ∅] =

{
τ j+1(d) ∀s, t : s = t,
0 otherwise,

(13)

where τ j+1(d) indicates the probability of starting the arrival process of a
vacation (j + 1) at an arrival phase d (refer to Section 2.2 for a definition of
τ j).

Class 2 Vacation

Since no arrivals are allowed to take place, the queueing process remains
unaltered during class 2 vacations. However, at the start of a class 2 vacation
j, a maximum of kj patients is removed from the queue. If (cj+1 = 2), we
have:

Pj,1[t, ∅|s, ∅] =


1 ∀s, t : s > kj ∧ t = s− kj,
1 ∀s, t : s ≤ kj ∧ t = 0,
0 otherwise.

(14)

For cj+1 ∈ {3, 4}, we have:

Pj,1[t, d|s, ∅] =


τ j+1(d) ∀s, t : s > kj ∧ t = s− kj,
τ j+1(d) ∀s, t : s ≤ kj ∧ t = 0,
0 otherwise.

(15)

Class 3 Vacation

For a given vacation j we use the counting process developed earlier to obtain
the distribution of the number of patients arrived. No services takes place at
a class 3 vacation. For cj+1 ∈ {1, 2}, we have:

Pj,1[t, ∅|s, c] =

{ ∑
d∈Mj

Pj[i, d|0, c] ∀s, t : t− s = i,

0 otherwise.
(16)

19

If (cj+1 = 5), we have (note that a vacation j of class cj ∈ {3, 4, 5} can never
be succeeded by a vacation (j + 1) of class cj+1 ∈ {3, 4}):

Pj,1[t, d|s, c] =

{
Pj[i, d|0, c] ∀s, t : t− s = i,
0 otherwise.

(17)

Note that class 3 vacations are not preceded by a vacation during which ar-
rivals are allowed to take place. As such, the initial arrival phase probabilities
are given by τ j. This observation also holds for class 4 vacations.

Class 4 Vacation

Similar to class 3 vacations, we obtain the distribution of the number of
patients arrived by means of the counting process discussed previously. At
the start of a class 4 vacation j, a maximum of kj patients is removed from
the queue. For cj+1 ∈ {1, 2}, we have:

Pj,1[t, ∅|s, c] =


∑
d∈Mj

P [i, d|j, 0, c] ∀s, t : s > kj ∧ t = s+ i− kj,∑
d∈Mj

Pj[i, d|0, c] ∀s, t : s ≤ kj ∧ t = i,

0 otherwise.

(18)

If (cj+1 = 5), we have:

Pj,1[t, d|s, c] =


Pj[i, d|0, c] ∀s, t : s > kj ∧ t = s+ i− kj,
Pj[i, d|0, c] ∀s, t : s ≤ kj ∧ t = i,
0 otherwise.

(19)

Class 5 Vacation

Class 5 vacations are identical to class 4 vacations except for their definition of
the initial arrival phase probabilities. Whereas the start of a class 4 vacation
coincides with the start of a new arrival time slot (i.e. initial arrival phase
probabilities are given by τ j), the start of a class 5 vacation occurs while an
arrival process is already in progress. As such, the initial arrival probabilities
should reflect the phase of the arrival process at the start of the class 5
vacation (i.e. the initial arrival process phase equals the final arrival process
phase of the previous vacation).

20

2.4.2 Algorithm 1

The algorithm developed in this section serves the purpose of computing
Pj,J [t, d|s, c]; the probability of moving from a state (s, c)j at the start of a
vacation of type j towards a state (t, d)j+J at the start of the next vacation of
type j. Define Pj,n[u, e|(s, t), (c, d)] as the probability to depart from a state
(s, c)j at the start of a vacation j, to visit state (t, d)j+n−1 at the start of
vacation (j + n− 1) and to end up in state (u, e)j+n at the start of vacation
(j + n) (c ∈ Mj ∧ d ∈ Mj+n−1 ∧ e ∈ Mj+n). We assume at least two
vacations to be present in a vacation cycle (i.e. (J ≥ 2); if (J = 1) the
requested probabilities Pj,J [t, d|s, c] are given by Pj,1[t, d|s, c]).

Before advancing to the algorithm itself, a number of important properties
are established:

Property 1 When moving from the start of a vacation j to the start of a

vacation (j + J), no more than

(
Qc =

J∑
j=1

kj

)
patients can be removed from

the queue.

Property 2 Pj,J [t, d|s, c] = Pj,J [(t+ i), d|(s+ i), c] ∀s : s ≥ Qc.

One of the practical implications of these properties is that only states with
queue sizes up to Qc have to be evaluated by the algorithm, resulting in a
significant reduction of memory and computational requirements.

The algorithm consists of two main steps: (1) iteration; (2) evaluation.
In the upcoming sections, we discuss these steps in detail. A final section
provides a general outline of the algorithm.

Step 1: Iteration

Prior to starting the first iteration step we initialize a counter (n = 2) and
compute all probabilities Pj,1[t, d|s, c] for all vacations j and all possible queue
sizes and arrival phases. In a first phase of the iteration step, compute all
probabilities Pj,n[u, e|(s, t), (c, d)] as follows:

Pj,n[u, e|(s, t), (c, d)] =
Pj,(n−1)[t, d|s, c]P(j+n−1),1[u, ∅|t, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n = 2,
Pj,(n−1)[t, d|s, c]P(j+n−1),1[u, e|t, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n ∈ {3, 4} ,
Pj,(n−1)[t, d|s, c]P(j+n−1),1[u, ∅|t, d] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n ∈ {1, 2} ,
Pj,(n−1)[t, d|s, c]P(j+n−1),1[u, e|t, d] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n = 5,

(20)

21

where Pj,(n−1)[t, d|s, c] is either computed in a previous iteration step or is
given by Pj,1[t, d|s, c].

In the second phase of the iteration step, we aggregate all resulting prob-
abilities over t and d and obtain probabilities Pj,n[u, e|s, c] as follows:

Pj,n[u, e|s, c] =
∞∑
t=0

∑
d∈Mj+n−1

Pj,n[u, e|(s, t), (c, d)]. (21)

After aggregation, we proceed to the evaluation step.

Step 2: Evaluation

At the evaluation step we evaluate if (n = J). If the condition holds, we
have obtained the required probabilities Pj,J [t, d|s, c]. If the condition does
not hold, we increment the counter n and proceed to another iteration step.

Discussion

A general outline of the algorithm is provided in Algorithm 1.
The computational efficiency of Algorithm 1 follows from the aggregation

of probabilities Pj,n[u, e|(s, t), (c, d)] and the limitation of initial queue size s :
s ≤ Qc. When disregarding the complexity resulting from the computation
of Pj,1[t, d|s, c], the complexity of Algorithm 1 is O ((J − 2)QcQ

2
maxM

3
max);

where: (1) Mmax = max(Mj) : j ∈ {1, . . . , J}; (2) Qmax is the maximum
number of patients that has a nonzero probability to arrive during any va-
cation j (note that ∀s : s ∈ {0, . . . , Qc}, ∀t, u : t, u ∈ {0, . . . , Qmax} and
∀c, d, e : c, d, e ∈ {1, . . . ,Mmax}).

2.4.3 Stationary distribution of the DTMC Xj

To obtain the stationary distribution at a vacation j, we define Pj as the
transition matrix of the DTMC Xj. Following directly from Property 1 and
2 we have that:

Pj,J [t, d|s, c] = 0 ∀s > Qc ∧ t < (s−Qc) ,
Pj,J [t, d|s, c] = Pj,J [(t+ i), d|(s+ i), c] ∀s ≥ Qc.

(22)

In other words, if (s > Qc), it is impossible to deplete the queue when
moving from a state (s, c)j at the start of a vacation of type j towards a

22

Algorithm 1 Algorithm to obtain Pj,J [t, d|s, c]
for all Vacations j do

for all s, t, c, d do
Compute Pj,1[t, d|s, c]

end for
end for
for all Vacations j do

Set n = 2
while n < J do

for all s, t, u, c, d, e do
Pj,n[u, e|(s, t), (c, d)] =
Pj,(n−1)[t, d|s, c]P(j+n−1),1[u, e|t, d]

end for
for all s, u, c, e do

Pj,n[u, e|s, c] =
∞∑
t=0

∑
d∈Mj+n−1

Pj,n[u, e|(s, t), (c, d)]

end for
Increment n

end while
end for

23

state (t, d)j+J at the start of the next vacation of type j. In addition, if
(s ≥ Qc), transition rates moving from states at the start of a vacation
of type j towards the start of the next vacation of type j are equal given:
(1) equal arrival phases (c, d); (2) equal difference in queue sizes (s, t) and
(s + i, t + i). These properties endow the Markov chain Pj with a special,
repetitive structure. More specifically, Pj may be represented as a non-skip-
free M/G/1 Markov chain (refer to Gail, Hantler and Taylor (1997)):

Pj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bj,0,0 Bj,0,1 Bj,0,2 Bj,0,3 · · ·
Bj,1,0 Bj,1,1 Bj,1,2 Bj,1,3 · · ·

...
...

...
...

. . .

Bj,Qc−1,0 Bj,Qc−1,1 Bj,Qc−1,2 Bj,Qc−1,3 · · ·
Aj,0 Aj,1 Aj,2 Aj,3 · · ·
0 Aj,0 Aj,1 Aj,2 · · ·
0 0 Aj,0 Aj,1 · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where Aj,i and Bj,s,t are Mj ×Mj matrices that depend on the PH distribu-
tion used to model the arrival process at a vacation of type j. If no arrivals
are allowed to occur during a vacation of type j (i.e. cj ∈ {1, 2}), Aj,i and
Bj,s,t are scalars and are given by:

Bj,s,t = Pj,J [t, ∅|s, ∅],
Aj,i = Pj,J [i, ∅|Qc, ∅].

If arrivals are allowed to occur, we once more make a distinction between 3
cases. In the case of (C2

j = 1), Aj,i and Bj,s,t are scalars and are given by:

Bj,s,t = Pj,J [t, 1|s, 1],
Aj,i = Pj,J [Qc, 1|i, 1].

In the case of (C2
j > 1) we have:

1 Mj

Bj,s,t = 1 Pj,J [t, 1|s, 1] Pj,J [t,Mj |s, 1] ,
Mj Pj,J [t, 1|s,Mj] Pj,J [t,Mj |s,Mj]

1 Mj

Aj,i = 1 Pj,J [i, 1|Qc, 1] Pj,J [i,Mj|Qc, 1] .
Mj Pj,J [i, 1|Qc,Mj] Pj,J [i,Mj|Qc,Mj]

24

With respect to the hypoexponential case (i.e. (C2
j < 1)), Bj,s,t is defined as

follows:

Bj,s,t =
1 2 · · · ζj Mj

1 Pj,J [t, 1|s, 1] Pj,J [t, 2|s, 1] · · · Pj,J [t, ζj |s, 1] Pj,J [t,Mj |s, 1]
2 Pj,J [t, 1|s, 2] Pj,J [t, 2|s, 2] · · · Pj,J [t, ζj |s, 2] Pj,J [t,Mj |s, 2]
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

. .
ζj Pj,J [t, 1|s, ζj] Pj,J [t, 2|s, ζj] · · · Pj,J [t, ζj |s, zj] Pj,J [t,Mj |s, ζj]
Mj Pj,J [t, 1|s,Mj] Pj,J [t, 2|s,Mj] · · · Pj,J [t, ζj |s,Mj] Pj,J [t,Mj |s,Mj]

and Aj,i is given by:

Aj,i =
1 2 · · · ζj Mj

1 Pj,J [i, 1|Qc, 1] Pj,J [i, 2|Qc, 1] · · · Pj,J [i, ζj |Qc, 1] Pj,J [i,Mj |Qc, 1]
2 Pj,J [i, 1|Qc, 2] Pj,J [i, 2|Qc, 2] · · · Pj,J [i, ζj |Qc, 2] Pj,J [i,Mj |Qc, 2]

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

. .
ζj Pj,J [i, 1|Qc, ζj] Pj,J [i, 2|Qc, ζj] · · · Pj,J [o, ζj |Qc, ζj] Pj,J [i,Mj |Qc, ζj]
Mj Pj,J [i, 1|Qc,Mj] Pj,J [i, 2|Qc,Mj] · · · Pj,J [i, ζj |Qc,Mj] Pj,J [i,Mj |Qc,Mj]

The repetitive structure observed in Pj may be exploited using matrix an-
alytical methods. Matrix analytical methods have been studied for several
decades and have attracted the attention of many researchers in the queueing
field. For an overview of literature and an introduction to matrix analytical
methods, refer to Latouche and Ramaswami (1999), Riska (2002), Osogami
(2005), Bini, Meini and Steffe (2006a and 2006b) among others. In short,
matrix analytical methods allow the (numerically) exact analysis of a wide
variety of queueing systems featuring some repetitive structure (more specif-
ically, M/G/1, GI/M/1 and quasi-birth-death processes).

The matrix Pj can be reblocked into blocks Bj,i and Aj,i of dimensions
MjQc ×MjQc as follows:

Pj =

∣∣∣∣∣∣∣∣∣∣∣

Bj,0 Bj,1 Bj,2 Bj,3 · · ·
Aj,0 Aj,1 Aj,2 Aj,3 · · ·
0 Aj,0 Aj,1 Aj,2 · · ·
0 0 Aj,0 Aj,1 · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
,

which can be solved as a traditional M/G/1 Markov chain. More specifically,
this involves the computation of an auxilliary matrix Gj which is obtained
as the solution of (refer to Bini, Meini and Steffe (2006a)):

Gj =
∞∑
i=0

Aj,iG
i
j. (23)

25

However, as is indicated in Gail, Hantler and Taylor (1997), such reblocking
might increase computational requirements (since it involves computations
of MjQc×MjQc matrices instead of computations of Mj×Mj matrices). For
non-skip-free M/G/1 Markov chains, Gail, Hantler and Taylor (1997) have
shown that Gj may be obtained as follows:

Gj = C (gj)
Qc , (24)

where (gj = (Gj,0,Gj,1, . . . ,Gj,Qc−1)) is the first block row of Gj and C (gj)
Qc

is a companion matrix. C (gj) may be represented as:

C (gj) =

∣∣∣∣∣∣∣∣∣∣∣

0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
Gj,0 Gj,1 Gj,2 · · · Gj,Qc−1

∣∣∣∣∣∣∣∣∣∣∣
.

As such, once the first block row of Gj is known, it is a simple matter
to compute Gj. Using the functional iteration algorithm outlined in Gail,
Hantler and Taylor (1997), we compute Gj. Once we obtained Gj, we are
able to compute πj[i] using the recursive formula developed in Ramaswami
(1988):

πj[n] =

(
πj[0]B(n)

j +
n−1∑
i=1

πj[i]A(n−i)
j

)(
I−A(0)

j

)−1

, ∀n : n ≥ 1, (25)

where:

A(n)
j =

∞∑
i=n

Aj,i+1G
i−n
j , ∀n : n ≥ 0,

B(n)
j =

∞∑
i=n

Bj,iG
i−n
j , ∀n : n ≥ 0,

and πj[0] is the solution of (refer to Ramaswami (1988)):

πj[0] = πj[0]B(0)
j , (26)

−νj = πj[0]bj − νjπj[0]e + πj[0] (I−Bj) (I−Aj)
] aj, (27)

where:

• Aj =
∞∑
i=0

Aj,i,

26

• Bj =
∞∑
i=0

Bj,i,

• aj =
∞∑
i=0

(i− 1)Aj,ie,

• bj =
∞∑
i=0

iBj,ie,

• νj = α>j aj and αj is the stationary distribution vector of Aj,

• operator (·)] denotes the group inverse operation.

πj[i] is the vector of stationary probabilities associated with a queue size
s : s ∈ {iQc, . . . , ((i+ 1)Qc − 1)}. More specifically, πj[i] holds the station-
ary distribution of states (s, c)j : ∀s, c : s ∈ {iQc, . . . , ((i+ 1)Qc − 1)}
∧c ∈Mj. From πj[i] we obtain πj[s, c], the stationary distribution of being
in a state (s, c)j ; ∀s, c : s ∈ {0, 1; . . .}∧c ∈Mj. Note that the stationary dis-
tribution πj[s, c] (and all performance measures derived thereof) is computed
in a numerically exact manner.

2.4.4 Algorithm 2

In this section, we develop an algorithm that uses the stationary distribution
πj[s, c] of a single DTMC Xj to determine the stationary distribution of
all other DTMC Xj+n : n ∈ {1, . . . , J − 1}. Together with probabilities
Pj,1[t, d|s, c], the stationary distribution πj[s, c] serves as the input of the
algorithm outlined below. The algorithm is a simple iterative procedure that
consists of two steps: (1) iteration; (2) evaluation. In what follows, we discuss
these steps in detail. In a final section, we provide a discussion and give a
general outline of the algorithm.

Step 1: Iteration

Prior to starting the first iteration step we initialize a counter (n = 1) and
compute the stationary distribution πj[s, c] for a single vacation j. In the

27

iteration step, the stationary distribution π(j+n)[t, d] is computed as follows:

π(j+n)[t, d] =

∞∑
s=0

∑
c∈Mj+n−1

π(j+n−1)[s, c]P(j+n−1),1[t, ∅|s, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n = 2,

∞∑
s=0

∑
c∈Mj+n−1

π(j+n−1)[s, c]P(j+n−1),1[t, d|s, ∅] ∀cj+n−1 ∈ {1, 2} ∧ ∀cj+n ∈ {3, 4} ,

∞∑
s=0

∑
c∈Mj+n−1

π(j+n−1)[s, c]P(j+n−1),1[t, ∅|s, c] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n ∈ {1, 2} ,

∞∑
s=0

∑
c∈Mj+n−1

π(j+n−1)[s, c]P(j+n−1),1[t, d|s, c] ∀cj+n−1 ∈ {3, 4, 5} ∧ ∀cj+n = 5,

(28)

where π(j+n−1)[s, c] is either computed in a previous iteration step or is given
by πj[s, c]. After the iteration step, we proceed to the evaluation step.

Step 2: Evaluation

At the evaluation step, we evaluate if (n = J). If the condition holds, we
have computed all the required stationary distributions. If the condition does
not hold, we increment the counter n and proceed to another iteration step.

Discussion

A general outline of the algorithm is provided in Algorithm 2.

Algorithm 2 Optimized algorithm to obtain Pj,J [t, d|s, c]
for all Vacations j do

for all s, t, c, d do
Compute Pj,1[t, d|s, c]

end for
end for
For a single vacation j compute πj[s, c]
Set n = 1
while n < J do

for all t, d do

π(j+n)[t, d] =
∞∑
s=0

∑
c∈Mj+n−1

π(j+n−1)[s, c]P(j+n−1),1[t, d|s, c]

end for
Increment n

end while

Given the stationary distribution of a single DTMC Xn, one may may
efficiently obtain the stationary distribution of all other DTMC Xj : j ∈

28

{1, . . . , J} \ {n} using Algorithm 2. In order to obtain the stationary distri-
bution of a single DTMC Xn, we resort to matrix analytical methods. To
further enhance computational performance, the PH distribution used to
model the arrival process at the single DTMC Xn should have as few phases
as possible (i.e. select the DTMC Xn for which Mn = min(Mj)∀j : j ∈
{1, . . . , J}). When disregarding the complexity resulting from the computa-
tion of Pj,1[t, d|s, c], the complexity of Algorithm 1 isO ((J − 1)(Qc + 1)(Qmax + 1)M2

max).
Note that ∀s : s ∈ {0, . . . , Qc}, ∀t : t ∈ {0, . . . , Qmax} and ∀c, d : c, d ∈
{1, . . . ,Mmax}.

2.4.5 Aggregation of results

Using the stationary distribution πj[s, c], various performance measures may
be derived. In this article, we limit ourselves to the expected queue size at the
start of a vacation j. Note that πj[s, c] holds the stationary distribution of the
queue size prior to the removal of up to kj patients from the queue. Because
we are interested in the expected number of patients after the removal of up
to kj patients, a shifting operation is required:

Q�j =
∞∑
s=kj

∑
c∈Mj

(s− kj)πj[s, c]. (29)

In order to compute Q∗j we resort to probabilities Pj[i, d|0, c] (i.e. the
probabilities resulting from the counting process; the probabilities of having
a number of arrivals during a vacation of type j). When assuming a time-
independent arrival process, the expected number of patients in queue during
a vacation of type j (given that these patients arrive during vacation j itself)
is given by:

Q∗j =
ηj
2

(30)

where ηj is the expected number of arrivals during a vacation of type j and
is computed as follows:

ηj =
∞∑
i=0

∑
c∈Mj

∑
d∈Mj

iPj[i, d|0, c]. (31)

Note that:

29

• The problem of identifying Q∗j corresponds to the computation of the
average production over a production cycle, the average demand over
a demand cycle, the average inventory over an inventory cycle (disre-
garding the presence of safety stock),

• Probabilities Pj[i, d|0, c] have already been determined in the process
of computing πj[s, c]. As such, limited additional computational effort
is required to compute Q∗j .

• (Q∗j = 0) for all cj ∈ {1, 2}.

The expected number of patients in queue during a vacation of type j is:

Qj = Q�j +Q∗j . (32)

Performance measuresQ�j , Q∗j and henceQj are computed in in a numerically
exact manner.

From the previous sections we obtained the expected queue size during
a vacation of type j. We can aggregate these results to obtain the expected
queue size at the bulk service queueing model (defined asQ) and the expected
waiting time of a patient (defined as W).

The average queue size at the bulk service queueing model is given by:

Q =
J∑
j=1

pjQj, (33)

where pj is the probabilities of finding oneself at a vacation of type j:

pj =
Tj
J∑
j=1

Tj

. (34)

Using Little’s law, we can compute the expected waiting time of a patient:

W =
Q
J∑
j=1

ηj
Tj

, (35)

In this article we limit ourselves to the computation of the expected waiting
time of a patient. Note however that higher moments may easily be derived.

30

3 Optimal capacity allocation model

From the bulk service queueing model we obtain the expected waiting time of
a given class of patients and a given allocation scheme. More formally, define
Y = {1, 2, . . . , Y }, the set of all patient classes. Let wy denote the weight of
the expected waiting time of a patient of class y (for the remainder of the text,
index y is defined as y ∈ {1, 2, . . . , Y }). In addition, define H = {1, 2, . . . , H}
to be the set of all available service time slots. Each service time slot h is
characterized by a duration Lh (for the remainder of the text, index h is
defined as h ∈ {1, 2, . . . , H}). Let f(h, y) denote the allocation of time slot
h to class y. An allocation scheme is a function f(·) that maps all elements
of S onto elements of Y (i.e. a function that allocates service time slots to
patient classes). An allocation scheme f(·) can be seen as a set of allocations
f(h, y) such that every time slot h is allocated to a patient class y. The set of
feasible allocation schemes is denoted by F. The cardinality of F (defined as
F) depends on: (1) the number of patient classes; (2) the number of service
time slots to be allocated; (3) the restrictions imposed upon allocating service
time slots over patient classes. For each patient class y : y ∈ Y and each
feasible allocation scheme f(·) : f(·) ∈ F, a bulk service queueing model may
be analyzed. Let Wy,f(·) denote the expected waiting time of a patient of
class y if an allocation scheme f(·) is imposed. The total expected weighted
waiting time function given an allocation scheme f(·) may be formulated as
follows:

TWf(·) =
Y∑
y=1

wyWy,f(·). (36)

For smaller problems an enumerative search of the solution space may be
performed. for large Y and/or large F , such an enumerative approach might
prove to be unfeasible. Therefore, a step-wise heuristic is developed. Note
that:

• While the theoretical number of possible solutions quickly grows be-
yond bounds, practical limitations (e.g. strategic choices made by hos-
pital management, preferences of medical staff etc.) significantly reduce
the size of the solution space.

• Whereas the enumerative search yields an optimal solution, the step-
wise heuristic is not necessarily optimal.

31

In what follows, we discuss both the enumerative search as well as the step-
wise heuristic.

3.1 Enumerative search

When minimizing TWf(·) over all feasible allocation schemes f(·) : f(·) ∈ F,
we obtain the optimal solution of the optimization problem (i.e. the allo-
cation of service time slots over patient classes such that the total expected
weighted waiting time of a patient is minimized). The objective function is:

min
f(·)∈F

TWf(·) =
Y∑
y=1

wyWy,f(·). (37)

Note that additional constraints (e.g. strategic limitations, doctor prefer-
ences etc.) can easily be introduced.

3.2 Step-wise heuristic

The step-wise heuristic contains two steps. The first step involves finding a
good (at least feasible) starting solution. We propose the use of a feasible
schedule that: (1) is evenly spread across time; (2) takes into account the
weights of the patient waiting times; (3) maximizes the number of unassigned
service time slots (i.e. each patient class is assigned the minimum number of
service time slots required to avoid infinite queues). The procedure builds on
the principle that patients have to wait longer in a system in which service
moments are located far away from each other in time (e.g. patients will have
to wait longer in a system in which they receive service only once a month
when compared to a system in which weekly service is issued).

After a starting solution has been obtained, a steepest descent algorithm
is initiated in order to assign the unassigned service time slots. In what
follows we discuss both the starting solution as well as the steepest descent
algorithm.

3.2.1 Starting solution

The objective of the starting solution is to define a feasible allocation scheme
in which each patient class is provided with the minimum number of time
slots required and these time slots are scheduled as evenly as possible across

32

time. Since an occupancy of 100% or more leads to infinite waiting times, the
minimum number of time slots for each patient class is the smallest number
for which the occupancy is less than 100%. The remaining time slots are
assigned in the steepest descent algorithm described hereafter. In order to
become a starting solution in which the time slots are distributed as evenly
as possible, our objective will minimize the largest ‘distance’ (in time) be-
tween two succeeding time slots for each class. Due to a limited number of
available time slots per time period, a perfectly spread distribution of time
slots for each patient class is very unlikely. In that case, priority is given
to the more important patient classes by adding the weights of each class in
the objective function. More formally, the problem we solve to find a good
starting solution can be stated as follows.

First, let Ry denote the minimum number of time slots required for class
y. We define the binary decision variable xyrh to be 1 if time slot h is
assigned to class y in the r-th position (r ∈ 1, 2, ..., Ry) and 0 otherwise. Let
dh1h2 be a parameter indicating the difference in time between two time slots
h1 and h2 (for the remainder of the text, indices h1 and h2 are defined as
h1, h2 ∈ {1, 2, . . . , H}). For instance, if h1 and h2 correspond to the afternoon
time slots of operating rooms 1 and 2, dh1h2 is equal to 0 hours (both time
slots occur at the same time). On the other hand, if h1 and h2 correspond
to afternoon time slots on Monday and Tuesday respectively, dh1h2 is equal
to 24 hours. Note that dh1h2 is also defined for h2 < h1. In this case, the
difference in time is dependent on the length of the cycle time. For instance,
if the cycle time is one week and h1 and h2 correspond to afternoon time
slots on Friday and Tuesday respectively, dh1h2 is equal to 24*4=96 hours.
Let zyr(r+1) be a help variable representing the difference in time between the
r-th and the (r+1)-th time slot assigned to class y and let zmaxy denote the
maximal difference in time over all pairs of succeeding time slots assigned to
class y. The model is then as follows:

Minimize

Y∑
y=1

wyz
max
y (38)

subject to

Y∑
y=1

Ry∑
r=1

xyrh ≤ 1 ∀h ∈ {1, 2, . . . , H} (39)

33

H∑
h=1

xyrh = 1 ∀y ∈ {1, 2, . . . , Y } ∀r ∈ {1, . . . , Ry} (40)

h2−1∑
h1=1

xyrh1 ≥ xy(r+1)h2∀y ∈ {1, 2, . . . , Y }∀r ∈ {1, . . . , Ry − 1}∀h2 ∈ {2, . . . , H}

(41)

zyr(r+1) =
H∑

h1=1

H∑
h2=h1+1

dh1h2xyrh1xy(r+1)h2∀y ∈ {1, 2, . . . , Y }∀r ∈ {1, . . . , Ry−1}

(42)

zy(Ry)1 =
H∑

h1=1

H∑
h2=1

dh1h2xy(Ry)h1xy1h2 ∀y ∈ {1, 2, . . . , Y } (43)

zmaxy ≥ zyr(r+1) ∀y ∈ {1, 2, . . . , Y } ∀r ∈ {1, . . . , Ry − 1} (44)

zmaxy ≥ zy(Ry)1 ∀y ∈ {1, 2, . . . , Y } (45)

xyrh ∈ {0, 1} ∀y ∈ {1, 2, . . . , Y }∀r ∈ {1, . . . , Ry}∀h ∈ {1, 2, . . . , H}
(46)

zyr(r+1) ≥ 0 ∀y ∈ {1, 2, . . . , Y } ∀r ∈ {1, . . . , Ry − 1}
(47)

zy(Ry)1 ≥ 0 ∀y ∈ {1, 2, . . . , Y } (48)

zmaxy ≥ 0 ∀y ∈ {1, 2, . . . , Y } (49)

Problem (38)-(49) is a min-max quadratic programming problem (QP). The
objective function (38) minimizes the maximal difference between two suc-
ceeding time slots (weighted over all classes) in order to obtain a schedule
in which the time slots are distributed as evenly as possible over time. Con-
straint set (39) ensures that each time slot is assigned at most once, while
constraint set (40) ensures that each class receives its minimal number of time
slots. Constraint set (41) models the precedence constraints. Constraint sets
(42) and (43) calculate the difference (in time) between two succeeding time
slots. Constraint sets (44) and (45) make sure that the variable zmaxy is set
to the maximal difference in time between any two succeeding time slots for
each class y. Finally, constraint sets (46) to (49) define the decision variables.

34

Problem (38)-(49) can be solved with a commercial optimization package
that allows for solving QPs, e.g. IBM-ILOG CPLEX c©. This works rea-
sonably well for small problem dimensions, which is a realistic assumption
because the total minimal number of time slots Ry is often much smaller than
the available number of time slots. The solution to problem (38)-(49) yields
a feasible allocation scheme f(·) that is used as a starting solution in the
steepest descent algorithm (described hereafter). In the unlikely case that
problem (38)-(49) could not be solved to optimality within a reasonable time
limit, one can always end the computation and work with a non-optimal but
still feasible solution to problem (38)-(49).

3.2.2 Steepest descent algorithm

Once we obtain the feasible starting solution, the steepest descent algorithm
may be initiated. The steepest descent algorithm assigns all the unassigned
time slots, i.e. the total available time slots minus the total minimal numbers
of time slots (over all classes). The latter are already allocated in the starting
solution and are frozen for the remainder of the search. In the steepest de-
scent algorithm, each iteration involves assigning one unassigned service time
slot to a service class in a greedy way, i.e. such that the resulting weighted
waiting time is minimized. An outline of the steepest descent algorithm is
provided in Algorithm 3.

In what follows we present a numerical example to illustrate both the
enumerative and the heuristic solution approach.

4 Numerical example

Consider a small hospital that has one operating room at its disposal. The
cycle time is one week and the operating room is only available for service
during weekdays. Each weekday may be divided into two service time slots:
before noon and after noon. All service time slots are assumed to be of
equal length (i.e. Lh1 = Lh2 : ∀h1, h2 ∈ {1, 2, . . . , H}). The hospital is
specialized in two major medical disciplines: orthopaedics and neurology.
These disciplines account for 90% of the patient population, the remaining
10% of the patients are of lesser strategic importance and are served by a
variety of smaller departments. As such, the ten available time slots (per
week) are to be allocated among the orthopaedic, the neurology and the

35

Algorithm 3 Steepest descent algorithm

Set f(·)MIN corresponding to the allocation scheme in the starting solution
for all unassigned time slots h do

Set TWMIN = +∞
Set y = 1
while y ≤ Y do

Set f(·) = f(·)MIN

Assign time slot h to patient class y
Set f(·) = f(·)

⋃
f(h, y)

Compute TWf(·)
if TWf(·) < TWMIN then

Set TWMIN = TWf(·)
h∗ = h
y∗ = y

end if
Increment y

end while
Set f(·)MIN = f(·)MIN

⋃
f(h∗, y∗)

Increment h
end for

36

smaller departments. Three patient classes may be discerned (i.e. (Y = 3)):

y Class
1 Neurologic patients
2 Orthopaedic patients
3 Other patients

Assume that hospital management wants to prioritize neurologic patients
over orthopaedic and other patients and orthopaedic patients over other pa-
tients. The weights are:

y wy Class
1 0.8 Neurologic patients
2 0.5 Orthopaedic patients
3 0.1 Other patients

In order to maintain transparency, we assume that arrivals are allowed to
occur at any moment in time (i.e. we assume a single arrival session for all
classes of patients). Furthermore assume that four patients can be served dur-
ing each service time slot, regardless of patient class (i.e. k = 4 ∀y : y ∈ Y).

An example of a feasible allocation scheme is provided below:

Monday Tuesday Wednesday Thursday Friday
Before noon 2 1 1 1 1
After noon 2 3 3 3 3

The number in each time slot indicates the assigned patient class (1, 2 or
3). All that remains is to characterize the arrival processes of the different
classes of patients. The data are presented in the table below (all time-related
variables are expressed in terms of hours):

y λ−1 C2 λ−1
1 λ−1

2 ζ ν1 ν2

1 200/18 1.5 15.28 3.70 1 0.64 0.36
2 200/18 0.33 3.70 3.70 2
3 50 1 50

As such, the arrival process of neurologic patients is the most variable and
is modeled using a hyper-exponential distribution with a mean interarrival

37

time of 200/18 hours (i.e. neurologic patients arrive at the queue every 200/18

hours on average; refer to Section 2.2 for an account on the PH distributions
used to model the arrival processes of the different patient classes). For each
patient class, we summarize the data on the required number of service time
slots:

Patient class 1 2 3
Number of arriving patients 15.12 15.12 3.36
Number of patients served during a service time slot 4 4 4
Required number of service time slots 3.78 3.78 0.84
Integer required number of service time slots 4 4 1

We now have all the data needed to initiate the step-wise heuristic de-
scribed above. First, nine (4+4+1) out of the ten available time slots are
assigned to the three patient classes by solving the min-max QP for finding
a good starting solution (step 1). The resulting optimal allocation scheme is
presented below:

Monday Tuesday Wednesday Thursday Friday
Before noon 1 1 1 1
After noon 2 2 3 2 2

Second, starting from this initial solution, the steepest descent algorithm
will complete the schedule. For this example, this second step is rather easy,
as it only involves assigning the single remaining time slot to one of the
three patient classes such that the (weighted) total waiting time decreases
the most. The resulting allocation scheme is presented below:

Monday Tuesday Wednesday Thursday Friday
Before noon 1 1 1 1 1
After noon 2 2 3 2 2

This allocation scheme turns out to be the optimal one (checked by complete
enumeration) having an optimal objective value of 61.66 (the worst feasible
allocation scheme has an objective value of 314.77). As both the initial solu-
tion and the steepest descent algorithm are heuristic methods with respect to
the real objective, that is minimizing the weighted total waiting time, there is
no guarantee that our procedure results in the optimal solution. Hence, the
detection of the optimal solution in this small example is coincidence. The

38

smaller the problem instance, the larger the chance of finding the optimum
(as there is a limited number of solutions). For larger problems, complete
enumeration cannot longer be used to check the optimality of the solution
within a reasonable time limit. We expect, however, that the optimality
gap (relative difference between the optimal solution value and the solution
value resulting from applying our procedure) decreases with growing prob-
lem dimensions. The average waiting times of a patient of the neurology,
orthopaedics and other class respectively, are provided below:

y wy Wy wyWy

1 0.8 54.53 43.62
2 0.5 31.36 15.68
3 0.1 23.59 2.36
Total 61.66

Note that the model may also be used to answer additional capacity-related
strategic questions (e.g. should the hospital expand capacity, does the hos-
pital overprioritize the neurologic department, . . .).

5 Conclusion

In this article we present a model that allows the optimal allocation of service
time slots (i.e. the server capacity) over a number of patient classes. The
optimal allocation minimizes the total expected weighted waiting time of a
patient (different classes of patient may be assigned different weights). The
inputs of the optimization procedure are drawn from a bulk service queueing
model that observes the queueing behavior of a single class of patients, given a
particular capacity allocation over all patient classes. As such, a bulk service
queueing model is analyzed for: (1) each class of patients; (2) each feasible
capacity allocation scheme. We build on the model presented in Creemers
and Lambrecht (2009b) and make some important improvements (we improve
both on computational requirements as well as on model accuracy).

The model presented in this article is inspired on a practical problem
experienced in many hospitals: how to allocate operating room capacity over
a variety of medical disciplines. Few studies have addressed this problem,
let alone tried to solve it. We present a model that allows hospital decision
makers to assess the impact of the allocation of operating room capacity on
the waiting time of different classes of patients. Since waiting time is only

39

one aspect in the decision-making process, there is still a lot of room for
further research.

Future research should focus on incorporating hospital-side elements into
the optimization procedure. Such elements include but are not limited to:
staff overtime, unused operating room capacity and additional stochastic
behavior (e.g. set-up of medical equipment, late arrival of medical staff,
failure/shortage of hospital resources). Next to applications in health care,
the model may also be adopted in other services and industries. Future
research should explore the possibilities with respect to the allocation of
class rooms over faculty or school departments, the allocation of shelf space
over consumer products,

Acknowledgements

The authors wish to thank the Fund for Scientific Research Flanders (FWO),
project G.0333.10N for the financial support.

References

[Banik2009] Banik, A.D., Gupta, U.C., & Chaudhry, M.L. (2009).
Finite-Buffer Bulk Service Queue Under Markovian Service Process:
GI/MSP a,b/1/N . Stochastic Analysis and Applications, 27(3), pp 500–
522.

[Besley1999] Besley, T., Hall, J. & Preston, I. (1999). The demand for private
health insurance : do waiting lists matter?. Journal of public economics,
72(2), 155–181.

[Bini2006] Bini, D., Meini, B., Steffe, S., & Van Houdt, B. (2006a). Struc-
tured Markov chains solver: algorithms. In ACM international conference
proceeding series, proceedings of SMCtools. Pisa, Italy.

[Bini2006] Bini, D., Meini, B., Steffe, S., & Van Houdt, B. (2006b). Struc-
tured Markov chains solver: software tools. In ACM international confer-
ence proceeding series, proceedings of SMCtools. Pisa, Italy.

40

[Cardoen2010] Cardoen, B., Demeulemeester, E., & Beliën J. (2010). Oper-
ating room planning and scheduling: a literature review. European Journal
of Operational Research, 201, 921–932.

[Chaudhry1983] Chaudhry, M.L., & Templeton, J.G.C. (1983). A first course
in bulk queues. New York: John Wiley & Sons.

[Chaudhry2003] Chaudhry, M.L., & Gupta, U.C. (2003). Analysis of a finite-
buffer bulk-service queue with discrete-Markovian arrival process: D −
MAP/Ga,b/1/N . Naval Research Logistics, 50(4), pp 345–363.

[Creemers2009] Creemers, S., & Lambrecht, M.R. (2009a). Queueing mod-
els for appointment-driven systems. Annals of Operations Research,
10.1007/s10479-009-0646-9.

[Creemers2009] Creemers, S., & Lambrecht, M.R. (2009b). An advanced
queueing model to analyze appointment-driven service systems. Computers
and Operations Research , 36(10), 2773–2785.

[Creemers2009] Creemers, S. (2009c). Appointment-driven queueing systems.
PhD thesis, Department of Decision Sciences & Information Management,
K.U. Leuven.

[Doshi1986] Doshi, B.T. (1986). Queueing systems with vacations - a survey.
Queueing Systems, 1, 29–66.

[Gail1997] Gail, H.R., Hantler, S.L. & Taylor, B.A. (1997). Non-skip-free
M/G/1 and G/M/1 type Markov chains. Advances in Applied Probability,
29(3), 733–758.

[Galassi2006] Galassi, M., Davies, J., Theiler, J., Gough, G., Jungman, B.,
Booth, M. & Rossi, F. (2006). GNU Scientific Library Reference Manual.
Network Theory Limited.

[Goddard1998] Goddard, J.A. & Tavakoli, M. (1998). Referral rates and
waiting lists: some empirical evidence. Health Economics, 7(6), 545–549.

[Green2008] Green, L.V. (2008). Using Operations Research to Reduce De-
lays for Healthcare. Tutorials in Operations Research, 1, 1–16.

41

[Gupta2002] Gupta, U.C., & Goswamib, V. (2002). Performance analysis of
finite buffer discrete-time queue with bulk service. Computers and Opera-
tions Research, 29(10), pp 1331–1341.

[Gupta2004] Gupta, U.C., & Karabi Sikdar (2004). The finite-buffer M/G/1
queue with general bulk-service rule and single vacation. Performance
Evaluation, 57(2), pp 199–219.

[Hanning1996] Hanning, M. (1996). Maximum waiting-time guarantee – an
attempt to reduce waiting lists in Sweden. Health Policy, 36(1), 17–35.

[Janssen2005] Janssen, A.J.E.M., & van Leeuwaarden, J.S.H. (2005). An-
alytic Computation Schemes for the Discrete-Time Bulk Service Queue.
Queueing Systems, 50, pp 141–163.

[Latouche1999] Latouche, G., & Ramaswami, V. (1999). Introduction to Ma-
trix Analytic Methods in Stochastic Modeling. Philadelphia: ASA-SIAM
Series on Statistics and Applied Probability.

[Osogami2005] Osogami, T. (2005). Analysis of multiserver systems via di-
mensionality reduction of Markov chains. PhD thesis, School of Computer
Science, Carnegie Mellon University.

[Martin1999] Martin, S. & Smith, P.C. (1999). Rationing by waiting lists:
an empirical investigation. Journal of Public Economics, 71(1), 141–164.

[Neuts1981] Neuts, M.F. (1981). Matrix-geometric solutions in stochastic
models. Baltimore: Johns Hopkins University Press.

[Ramaswami1988] Ramaswami, V. (1988). A stable recursion for the steady
state vector in Markov chains of M/G/1 type. Stochastic Models, 4(1),
183–189.

[Riska2002] Riska, A. (2002). Aggregate matrix analytic techniques and their
applications. PhD Dissertation, The College of William and Mary.

[Rotstein2006] Rotstein, D.L. & Alter, D.A. (2006). Where does the waiting
list begin? A short review of the dynamics and organization of modern
waiting lists. Social Science & Medicine, 62, 3157–3160.

42

[Tadj2009] Tadj, L., & Abid, C. (2009). Optimal management policy for a
single and bulk service queue under Bernoulli vacation schedules. Interna-
tional Journal of Applied Decision Sciences, 2(3), pp 262–274.

[Takagi1988] Takagi, H. (1988). Queueing analysis of polling models. ACM
Computing Surveys, 20, 5–28.

[Tian2006] Tian, N., & Zhang, Z. (2006). Vacation queueing models. New
York: Springer Science.

[Tijms2003] Tijms, H.C. (2003). A first course in stochastic models. Chich-
ester: John Wiley & Sons.

[Vanden Bosch2000] Vanden Bosch, P.M., & Dietz, D. C. (2000). Minimizing
expected waiting in a medical appointment system. IIE Transactions, 32,
841–848.

[Worthington1987] Worthington, D.J. (1987). Queueing models for hospital
waiting lists. The Journal of the Operational Research Society, 38(5), pp
413–422.

43

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	Creemers_Belien_Lambrecht_final

