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Abstract

In the Home Care Crew Scheduling Problem a staff of caretakers
has to be assigned a number of visits to patients’ homes, such that the
overall service level is maximised. The problem is a generalisation of
the vehicle routing problem with time windows. Required travel time
between visits and time windows of the visits must be respected. The
challenge when assigning visits to caretakers lies in the existence of
soft preference constraints and in temporal dependencies between the
start times of visits.

We model the problem as a set partitioning problem with side
constraints and develop an exact branch-and-price solution algorithm,
as this method has previously given solid results for classical vehicle
routing problems. Temporal dependencies are modelled as generalised
precedence constraints and enforced through the branching. We in-
troduce a novel visit clustering approach based on the soft preference
constraints. The algorithm is tested both on real-life problem instances
and on generated test instances inspired by realistic settings. The use
of the specialised branching scheme on real-life problems is novel. The
visit clustering decreases run times significantly, and only gives a loss
of quality for few instances. Furthermore, the visit clustering allows us
to find solutions to larger problem instances, which cannot be solved
to optimality.

∗Corresponding author: Email: mase@man.dtu.dk. Address: Department of Man-
agement Engineering, Technical University of Denmark, Produktionstorvet, Building 424,
DK-2800 Kgs. Lyngby, Denmark. Tel.: +45-45254442. Fax: +45-45933435.
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1 Introduction

The Home Care Crew Scheduling Problem (HCCSP) described in this paper
has its origin in the Danish health care system. The home care service was
introduced in 1958 and since then, there has been a constant increase in the
number of services offered. The primary purpose is to give senior citizens
and disabled citizens the opportunity to stay in their own home for as long
as possible. The HCCSP is the problem of scheduling caretakers in a way
that maximises the service level, possibly even at a reduced cost.

When a citizen applies for home care service, a preadmission assessment
is initiated. The result of the assessment is a list of granted services. The
services may include cleaning, laundry assistance, preparing food, and sup-
port for other everyday tasks. They may also include assistance with respect
to more personal needs, e.g. getting out of bed, bathing, dressing, and dosing
medicine. As a consequence of the variety of services offered, people with
many different competences are employed as caretakers.

Given a list of services for each of the implicated citizens, a long-term
plan is prepared. In the long-term plan, each service is assigned to specific
time windows, which are repeated as frequently as the preadmission assess-
ment prescribes. The citizens are informed of the long-term plan, and hence
they know approximately when they can expect visits from caretakers. From
the long-term plan, a specific schedule is created on a daily basis. In the
daily problem, caretakers are assigned to visits. A route is built for each
caretaker, respecting the competence requirements and time window of each
visit and working hours of the caretaker.

In the following, we restrict ourselves to looking at the daily schedul-
ing problem only. The problem is a crew scheduling problem with strong
ties to vehicle routing with time windows. However, we have a number of
complicating issues that differentiates the problem from a traditional vehi-
cle routing problem. One complication is the multi-criteria nature of the
objective function. It is, naturally, important to minimise the overall oper-
ation costs. However, the operation costs are not very flexible in the daily
scheduling problem. More important is it to maximise the level of service
that can be provided. The service level depends on a number of different
factors. Often, it is impossible to fit all visits into the schedule in their
designated time windows. Hence, some visits may have to be rescheduled
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or cancelled. In our solutions, a visit is either scheduled within the given
restrictions or marked as uncovered. The manual planner will deal with
uncovered visits appropriately. The main priority is to leave as few visits
uncovered as possible. Also, all visits are associated with a priority and it is
important to only reschedule and cancel less significant visits. Furthermore,
it is important to service each citizen from a small subgroup of the whole
workforce (the so-called preferred caretakers), as this establishes confidence
with the citizen. Another complication compared to traditional vehicle rout-
ing, is that we have temporal dependencies between visits. The temporal
dependencies constrain and interconnect the routes of the caretakers.

HCCSP generalises the Vehicle Routing Problem with Time Windows
(VRPTW) for which column generation solution algorithms have proven suc-
cessful, see Kallehauge et al. (2005). Therefore, we model HCCSP as a Set
Partitioning Problem (SPP) with side constraints and develop a branch-and-
price solution algorithm. Temporal dependencies are modelled by a single
type of constraints: generalised precedence constraints. These constraints
are enforced through the branching. Different visit clustering schemes are
devised for the problem. The schemes are based on the existence of soft pref-
erence constraints. The visit clustering schemes for the exact branch-and-
price framework are novel. The visit clustering will naturally compromise
optimality, but will allow us to solve larger instances. We will compare the
different visit clustering schemes by testing them both on real-life problem
instances and on generated test instances inspired by realistic settings. To
our knowledge, we are the first to enforce generalised precedence constraints
in the branching for real-life problems. The contribution of this paper is
hence twofold. Firstly, we devise visit clustering schemes for the problem,
and secondly, we enforce generalised precedence constraints in the branching
for the first time for real-life problems.

Optimisation methods for crew scheduling are widely used and described
in the literature, especially regarding air crew scheduling. However, when
it comes to scheduling of home care workers the literature is sparse. This
work builds on top of two recent Master’s theses, Lessel (2007) and Thomsen
(2006). The most recent of these, Lessel (2007), uses a two-phase approach
which first groups the visits based on geographical position, competences,
and preferences. A caretaker is associated to each group and the second
phase considers each group as a Travelling Salesman Problem with Time
Windows (TSPTW).

The other thesis, Thomsen (2006), treats the problem as a Vehicle Rout-
ing Problem with Time Windows and Shared Visits (VRPTWSV) and uses
an insertion heuristic to feed a tabu search with initial solutions. The models
and solution methods in Lessel (2007) and Thomsen (2006) can only handle
connected visits where two caretakers are at the same time at the citizen.

With offset in the Swedish home care system, Eveborn et al. (2006) de-
scribe a system in operation. They use a Set Partitioning Problem model
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and solve the problem heuristically by using a repeated matching approach.
The matching combines caretakers with visits. Eveborn et al. (2006) re-
port that the travelling time savings in a moderate guess are 20% and that
the time savings on the planning correspond to 7% of the total working
time. Bredström and Rönnqvist (2008) show a mathematical model that
can handle synchronisation constraints and precedence constraints between
pairs of visits. The model is a VRPTW with the additional synchronisa-
tion and precedence constraints that tie the routes together. They solve
the model using a heuristic. Bredström and Rönnqvist (2007) develop a
branch-and-price algorithm to solve the model of Bredström and Rönnqvist
(2008), but without the precedence constraints. The model is decomposed
to an SPP and the integrality requirement on the binary decision variables
is relaxed. Also, the synchronisation constraints are removed from the SPP.
Instead, integrality and synchronisation are handled by the branching, and
to our knowledge they are the first to use a non-heuristic solution approach
to home care problems. Their subproblem is an Elementary Shortest Path
with Time Windows (ESPPTW).

Bertels and Fahle (2006) use a combination of linear programming, con-
straint programming and metaheuristics for solving what they call the Home
Health Care Problem. However, they do not incorporate connected visits,
which makes their approach less interesting for our situation. Begur et al.
(1997) describe a decision support system (DSS) in use in the United States.
The DSS provides routes for caretakers by using GIS systems. Their model is
a Vehicle Routing Problem (VRP) without time windows and without shared
visits, which again is not suitable for our needs. Cheng and Rich (1998) de-
scribe the Home Health Care Routing and Scheduling Problem which they
model as a Vehicle Routing Problem with Time Windows (VRPTW). They
distinguish between full-time and part-time caretakers. They use a two-
phase heuristic approach, in which they first find an initial solution using
a greedy heuristic. Next, the solution is improved using local search. The
model does not include temporal connections between visits.

Related to the HCCSP is the Manpower Allocation Problem with Time
Windows (MAPTW). A demanded number of servicemen must be allocated
to each location within the time windows. Primarily the number of used
servicemen must be minimised, and secondarily the used travel time. The
jobs have different locations, skill requirements, and time windows. This
problem is dealt with by Lim et al. (2004). More closely related to HCCSP
is the Manpower Allocation Problem with Time Windows and job-Teaming
Constraints (MAPTWTC). Li et al. (2005) present a construction heuristic
combined with simulated annealing for solving MAPTWTC instances. Their
model adds synchronisation constraints to the model of Lim et al. (2004),
but does not include precedence constraints. MAPTWTC is also solved in
Dohn et al. (2009a), again with multiple teams cooperating on tasks. An
exact solution approach is introduced. They decompose to a set partitioning
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problem and develop a branch-and-price algorithm. The subproblem in the
column generation is an ESPPTW.

The HCCSP can be seen as a VRPTW, but with the addition of the
complicating connections between visits, and with another objective than
the regular minimisation of total distance. When only synchronised visits
are considered as connection type, the problem can be referred to as shared
visits, yielding the VRPTWSV. The literature on VRPTW is huge. We refer
to Kallehauge et al. (2005) and Cordeau et al. (2002). Recently, a variant
of VRPTW very similar to the HCCSP has been described in Dohn et al.
(2009b). The authors formalise the concept of temporal dependencies in the
Vehicle Routing Problem with Time Windows and Temporal Dependencies
(VRPTWTD) and investigate the effectiveness of different formulations and
solution approaches.

The remainder of the paper is organised as follows. In Section 2, we
present an IP formulation of HCCSP. In Section 3, we introduce a decom-
posed version of this formulation. In Section 4, we present the specialised
branching scheme used. Section 5 introduces clustering of visits and other
methods to decrease the solve time of the pricing problem. Real-life and
generated test instances are described in Section 6. In Section 7, we present
results from test runs on these instances. Finally, in Section 8 we conclude
on our work and suggest topics for future research.

2 Problem formulation

The set of caretakers is denoted K, and the set of visits at the citizens
is denoted C = {1, . . . , n − 1}. For each visit i ∈ C a time window is
defined as [αi, βi], where αi ≥ 0 and βi ≥ 0 specify the earliest respectively
latest possible start time of the visit. For algorithmic reasons, we introduce
artificial visits 0k and nk as the start visit respectively end visit for caretaker
k ∈ K, and we define N k = C ∪ {0k, nk} as the set of all potential visits for
caretaker k. The duty length for each caretaker k ∈ K is given by the time
window [α0k , β0k ] = [αnk , βnk ], i.e. caretaker k ∈ K cannot start his or her
duty before time α0k ≥ 0 and must have finished his or her last visit before
time β0k ≥ 0. The travel distance between a pair of visits (i, j) is given
by the parameter skij . The parameter depends on k ∈ K as the caretakers
use different means of transportation. If it is not possible to travel directly
between visits i and j for caretaker k, then skij = ∞. We define skii = ∞,
∀k ∈ K,∀i ∈ N k. The parameter skij includes the duration (service time)
of visit i. Travelling between any two visits i and j gives rise to the costs
ckij dependent on the caretaker k ∈ K. For any combination of i ∈ C and
k ∈ K the parameter ρki = 1 if k can be assigned to visit i, ρki = 0 otherwise.
Also, for any combination of i ∈ C and k ∈ K the preference parameter
δki ∈ R gives the cost for letting caretaker k handle visit i. A negative cost
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t ime

(a) Synchronisation.

t ime

(b) Overlap.

t ime

(c) Minimum difference.

t ime

(d) Maximum difference.

t ime

(e) Min+max difference.

Figure 1: Five types of temporal dependencies. Each of the five subfigures
shows the time windows of two visits i (top) and j (bottom) with a temporal
dependency between them. Assuming some start time for visit i, the dotted
line shows the earliest feasible start time for visit j, and the dashed dotted
line shows the latest feasible start time. For synchronisation (a) the two
lines coincide, and are drawn as one full line.

means that we would like caretaker k to handle visit i, whereas a positive
cost means that we would prefer not to let caretaker k handle visit i. The
parameter γi is the priority of visit i ∈ C, the higher, the more important.

As described in Section 1, visits may be temporally dependent due to
different home care needs. In order to make it easier for the manual planner
to assign substitutes to the uncovered visits, it is required that visits, which
have a temporal dependency to an uncovered visit, still respect the temporal
dependency. In other words, a temporal dependency is still respected even
if one of the visits is uncovered. Five types of temporal dependencies are
often seen in practice. The five types can be seen in Figure 1. These tem-
poral dependencies can be modelled by introducing generalised precedence
constraints of the form

σi + pij ≤ σj ,

where σi denotes the start time of visit i, and pij ∈ R quantifies the required
gap. The set of pairs of visits (i, j) ∈ C×C for which a generalised precedence
constraint exists is denoted P.

As can be seen, this constraint simply implies that j starts minimum pij
time units after i. An often encountered example of a temporal dependency
is that of synchronisation, see Figure 1(a), where two visits are required to
start at the same time. The way to handle this is to add both (i, j) and
(j, i) to P with pij = pji = 0. As also described by Dohn et al. (2009b),
Table 1 shows how to model all the temporal dependencies of Figure 1 with
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generalised precedence constraints. It can be seen that (a), (b) and (e) each
requires two generalised precedence constraints, whereas (c) and (d) only
need one each.

Temporal dependency pij pji

(a) Synchronisation 0 0
(b) Overlap −durj −duri

(c) Minimum difference diffmin N/A
(d) Maximum difference N/A −diffmax

(e) Minimum+maximum difference diffmin −diffmax

Table 1: Values for pij for the five temporal dependencies of Figure 1. duri
is the service time of visit i, diffmin is the minimum difference required and
diffmax is the maximum difference required.

2.1 Integer programme

To model the problem, three sets of decision variables are defined: the bi-
nary routing variables xkij , the scheduling variables tki ∈ Z+ and the binary
coverage variables yi. xkij = 1 if caretaker k ∈ K goes directly from visit
i ∈ N k to j ∈ N k, and xkij = 0 otherwise. The scheduling variable tki is the
time the caretaker k ∈ K starts handling visit i ∈ N k. tki = 0 if caretaker k
is not assigned to visit i. yi = 1 if visit i ∈ C is not covered by any caretaker
and yi = 0 otherwise. The weights w1, w2 and w3 are used to control the
objective function.

HCCSP can now be formulated as the integer programme given be-
low. The formulation is very similar to the formulation in Bredström and
Rönnqvist (2007).
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minw1

∑
k∈K

∑
i∈Nk

∑
j∈Nk

ckijx
k
ij + w2

∑
k∈K

∑
i∈C

∑
j∈Nk

δk
i x

k
ij+ w3

∑
i∈C

γiyi (1)

s.t.
∑
k∈K

∑
j∈Nk

xk
ij + yi = 1 ∀i ∈ C (2)

∑
j∈Nk

xk
ij ≤ ρk

i ∀k ∈ K,∀i ∈ C (3)

∑
j∈Nk

xk
0k,j = 1 ∀k ∈ K (4)

∑
i∈Nk

xk
i,nk = 1 ∀k ∈ K (5)

∑
i∈Nk

xk
ih −

∑
j∈Nk

xk
hj = 0 ∀k ∈ K,∀h ∈ C (6)

αi

∑
j∈Nk

xk
ij ≤ tki ≤ βi

∑
j∈Nk

xk
ij ∀k ∈ K,∀i ∈ C ∪ {0k} (7)

αnk ≤ tknk ≤ βnk ∀k ∈ K (8)

tki + sk
ijx

k
ij ≤ tkj + βi(1− xk

ij) ∀k ∈ K,∀i, j ∈ N k (9)

αiyi +
∑
k∈K

tki + pij ≤
∑
k∈K

tkj + βjyj ∀(i, j) ∈ P (10)

xk
ij ∈ {0, 1} ∀k ∈ K,∀i, j ∈ N k (11)

tki ∈ Z+ ∀k ∈ K,∀i ∈ N k (12)
yi ∈ {0, 1} ∀i ∈ C (13)

The objective (1) is multi-criteria. Often, minimising uncovered visits
(the third term) is prioritised over maximising caretaker-visit preferences
(the second term), which again is prioritised over minimising the total trav-
elling costs (the first term). This can be accomplished by setting w1 = 1,
w2 =

∑
k∈K

∑
i∈N k

∑
j∈N k c

k
ij and w3 = w2|C|maxk∈K,i∈C δki . Constraints

(2) ensure that each visit is covered exactly once or left uncovered, and care-
takers can only handle allowed visits (3). Constraints (4)–(6) ensure that
the caretakers begin at the start visit, end at the end visit, and that routes
are not segmented. Constraints (7) and (8) control that time windows are
respected. Furthermore, Constraints (7) set tki = 0 when k does not visit i.
Travelling distances are respected due to Constraints (9). Constraints (10)
are the generalised precedence constraints. The y-variable terms ensure
that generalised precedence constraints are respected even when visits are
cancelled. Finally, Constraints (11)–(13) set the domains of the decision
variables.

The HCCSP formulation can be seen as a generalisation of an uncapac-
itated, multiple-depot VRPTW. The aim is to push flow for each caretaker
from start visit to end visit through as many profitable nodes as possible
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while respecting time windows and minimising costs. Also, it is only allowed
for one caretaker to go through each node.

The HCCSP generalises the Travelling Salesman Problem (TSP). TSP is
well-known to be NP-hard as its decision problem version is NP-complete,
see Problem ND22 in Garey and Johnson (1979). Therefore, also HCCSP is
NP-hard, and we can therefore not expect to solve the problem efficiently,
i.e. in polynomial time. The NP-hardness of the HCCSP is the reason why
we develop a branch-and-price solution algorithm.

3 Decomposition

We will Dantzig-Wolfe decompose the HCCSP described in the previous sec-
tion and model it as a set partitioning problem with side constraints. Then
we will solve the model using dynamic column generation in a branch-and-
price framework. This approach has presented superior results on VRPTW
and the similarities to HCCSP are strong enough to suggest the same ap-
proach here. There is a vast amount of literature on column generation based
solution methods for VRPTW, see e.g. Kallehauge et al. (2005) for a recent
literature review and an introduction to the method. In a branch-and-price
framework the problem is split into two problems, a master problem and a
subproblem. The subproblem generates feasible caretaker schedules, which
are then subsequently combined in a feasible way in the master problem. In
the master problem, given a large set of feasible schedules to choose from,
one schedule is chosen for each caretaker. Given a set of caretakers K, each
caretaker must choose a schedule from the set Rk, which is the set of poten-
tial schedules for caretaker k. Together, the schedules must cover as many
visits as possible from the set C.

A feasible schedule r for a caretaker k ∈ K is defined as a route starting
at 0k and ending at nk and respecting all constraints in the IP formulation
from Section 2.1 which do not link multiple routes. The schedule includes
the starting times of the visits. The parameter ckr gives the cost for caretaker
k ∈ K for schedule r ∈ Rk, and ci = w3γi gives the cost for leaving visit
i ∈ C uncovered. The binary parameter akir = 1 if visit i is included in
schedule r for caretaker k and akir = 0 otherwise. Moreover, tkir is the start
time of visit i in schedule r for caretaker k, if i is included in r for k. If i is
not included in r for k, tkir = 0.

3.1 Master problem

We introduce the binary decision variable λkr where λkr = 1 if schedule r ∈ Rk
is chosen for caretaker k ∈ K, and λkr = 0 otherwise. Furthermore, we
introduce the binary decision variable Λi where Λi = 1 if visit i ∈ C is
uncovered, and Λi = 0 otherwise. HCCSP can now be solved by finding a
minimum cost combination of schedules such that all constraints are fulfilled.
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The master problem of the Dantzig-Wolfe decomposition of HCCSP is given
by the mathematical programme shown below.

min
∑
k∈K

∑
r∈Rk

ckrλ
k
r +

∑
i∈C

ciΛi (14)

s.t.
∑
k∈K

∑
r∈Rk

ak
irλ

k
r + Λi = 1 ∀i ∈ C (15)

∑
r∈Rk

λk
r = 1 ∀k ∈ K (16)

αiΛi +
∑
k∈K

∑
r∈Rk

tkirλ
k
r + pij ≤

∑
k∈K

∑
r∈Rk

tkjrλ
k
r + βjΛj ∀(i, j) ∈ P (17)

λk
r ∈ {0, 1} ∀k ∈ K,∀r ∈ Rk (18)

Λi ∈ {0, 1} ∀i ∈ C (19)

The total costs of the schedules plus the costs of leaving visits uncovered are
minimised (14). The cost of a schedule contains the remaining components
of the original objective and is therefore determined by the travel costs and
by the service level of the visits in the schedule. Constraints (15) ensure that
all visits are either included in exactly one schedule or considered uncovered.
One schedule must be assigned to each caretaker (16), and the generalised
precedence constraints must be respected (17). Again, the Λ-variable terms
in Constraints (17) ensure that precedence constraints are respected even
for uncovered visits. Integrality of the decision variables is ensured by Con-
straints (18) and (19). Any feasible solution to the decomposed problem is
a feasible solution to the original problem, and any optimal solution to the
decomposed problem is an optimal solution to the original problem.

To be able to solve the master problem in an LP-based branch-and-price
framework, the integrality constraints on λkr and Λi are relaxed. Also, the
precedence constraints (17) are relaxed, as we thereby have no constraints
interconnecting the starting times in the schedules of different caretakers.
This gives a simpler pricing problem, which will be explained further in
Section 3.2. The two relaxed constraints will be handled in the branching.

As the number of feasible schedules for each caretaker is enormous, the
set Rk of schedules for caretaker k ∈ K is restricted to only contain a small
subset R′k of promising schedules, which will be generated by the column
generating pricing problem. We abbreviate the relaxed and restricted master
problem as RMP. For each primal solution to the RMP, we obtain a dual
solution [π, ω], where πi, i ∈ C, and ωk, k ∈ K, are the dual variables
of Constraints (15) and (16), respectively. The dual variables are used in
the column generation technique to generate new schedules that lead to an
improvement of the solution to the RMP.
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3.2 Pricing problem

The pricing problem is used to find the feasible schedule with the most neg-
ative reduced cost (if any exists). As the caretakers have different working
hours and competences, the pricing problem is split into |K| independent
pricing problems. The pricing problem is an Elementary Shortest Path
Problem with Time Windows (ESPPTW), which has been proved NP-hard
in Dror (1994). The pricing problem for a caretaker k ∈ K is formulated as
an integer programme below. Any feasible solution to the pricing problem
with negative cost represents a column with negative reduced cost in the
RMP.

min
∑

i∈Ñk

∑
j∈Ñk

(
w1c

k
ij + w2δ

k
i − πi

)
xij − ωk (20)

s.t.
∑

j∈Ñk

x0k,j = 1 (21)

∑
i∈Ñk

xi,nk = 1 (22)

∑
i∈Ñk

xih −
∑

j∈Ñk

xhj = 0 ∀h ∈ Ck (23)

αi

∑
j∈Ñk

xij ≤ ti ≤ βi

∑
j∈Ñk

xij ∀i ∈ Ck ∪ {0k} (24)

αnk ≤ tnk ≤ βnk (25)

ti + sk
ijxij ≤ tj + βi(1− xij) ∀i, j ∈ Ñ k (26)

xij ∈ {0, 1} ∀i, j ∈ Ñ k (27)

ti ∈ Z+ ∀i ∈ Ñ k (28)

Here, we have introduced the decision variables xij and ti which are the
same as in (1)–(13), without the k index. For a given k ∈ K, the subset of
visits Ck = {i ∈ C : ρki = 1} is the set of visits allowed for k. Moreover,
Ñ k = Ck ∪ {0k, nk}, and we define δk

0k
= δk

nk
= π0k = πnk = 0.

The relatively simple expression (20) for the reduced costs of a column
is one of the reasons why the generalised precedence constraints are relaxed.
One could, as done in van den Akker et al. (2006) and in Dohn et al. (2009b)
have kept the generalised precedence constraints in the RMP. This would
have implied a more complicated pricing problem, as the pricing problem
then incorporates a means of adjusting the starting times in a schedule
based on the dual variables. In van den Akker et al. (2006) they do not
solve their pricing problem by an exact method, but use a heuristic method.
Benchmark results from Dohn et al. (2009b) show that in many cases it is
as good to relax the generalised precedence constraints, as to keep them in
the master problem.
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We solve the pricing problem with a labelling algorithm built on ideas
from Chabrier (2006) and Feillet et al. (2004).

4 Branching

The generalised precedence constraints and the integrality constraints that
were relaxed from the master problem are handled in the branching part
of the branch-and-price algorithm. To handle both types of constraints, we
need to present two branching methods. One to handle the violation of an
integrality constraint and another to handle the violation of a precedence
constraint. The branching scheme used to handle precedence constraint
violations is a time window branching scheme. This also enforces integrality
to a certain point as shown in Gélinas et al. (1995). Nonetheless, one cannot
solely rely on time window branching to enforce integrality, so we use an
additional branching scheme to force the solution to integrality. First, we
will present a preprocessing technique.

4.1 Preprocessing of time windows

The visits C can be grouped according to how they are connected by gen-
eralised precedence constraints. Define the directed temporal dependency
graph G = (V,A) by V = C and A = P. The graph G consists of one or
more sub-graphs, which corresponds to the connected components in the
undirected version of G. An example of such a graph is shown in Fig-
ure 2(a). From the existing generalised precedence constraints, additional
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(b) The same graph expanded with de-
rived arcs.

Figure 2: A temporal dependency graph.

derived generalised precedence constraints can be found. In every subgraph
with three or more nodes, we look for triples i, j, k ∈ C where (i, j), (j, k) ∈ P
with i 6= j, j 6= k, k 6= i. If (i, k) /∈ P, then the pair is added to P with
pik = pij+pjk. If (i, k) ∈ P the offset is updated to pik := max{pik, pij+pjk}
in order to get the tightest constraint. The process is repeated until no fur-
ther constraints can be derived or tightened. The example will now look
as in Figure 2(b). This derivation of generalised precedence constraints will
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make it possible to reduce more time windows, as there will be a greater
number of precedence constraints on which to perform the following pair-
wise reduction technique.

If two visits i, j ∈ C are connected via a (possibly derived) generalised
precedence constraint (i, j) ∈ P, it might be possible to tighten the time
windows of i and j, such that [α′i, β

′
i] = [αi,min{βi, βj − pij}] and [α′j , β

′
j ] =

[max{αj , αi + pij}, βj ] are the new time windows as illustrated in Figure 3.
This preprocessing is repeated until no time windows are tightened. The

preprocessing technique can be used in every node of the branch-and-bound
tree. It should be noted that this time window reduction can only be carried
out, because it is required that also temporal dependencies with cancelled
visits must be respected. If this was not the case, then the cancellation of
a visit i with (i, j) ∈ P would lead to the time window of j being “reset”
(assuming it was previously reduced by preprocessing).

t ime
p

ij
p

ij

(a) Before preprocessing.

t ime
p

ij
p

ij

(b) After preprocessing.

Figure 3: Adjustment of time windows in accordance to a generalised prece-
dence constraint. Each of the subfigures shows the time windows of two
visits i (top) and j (bottom).

4.2 Branching on generalised precedence constraints

A generalised precedence constraint (i, j) ∈ P is violated if there exists
positive variables λk1

r1 > 0 and λk2
r2 > 0 (the relaxation allows for k1 = k2

and r1 = r2, but we will prevent that in the subproblem) in the solution to
the RMP for which

tk1
i,r1

+ pij � tk2
j,r2

.

Therefore, to remedy this, we will alter the time windows in the branches.
In the left branch the time window of visit i is set to [αi, tsplit − 1], where
tsplit is the split time. In the right branch the time window of visit i is set to
[tsplit, βi]. The preprocessing technique described in the previous section is
used again, which will result in the time window of visit j in the right branch
being changed to [tsplit + pij , βj ]. All previously generated schedules violat-
ing these new time windows are removed. The split time is selected such
that tk2

j,r2
− pij + 1 ≤ tsplit ≤ tk1

i,r1
. Hence, the branching scheme divides the
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solution space into two sets, where the solution that violates the precedence
constraint for (i, j) becomes infeasible in each of them. Synchronisation
constraints are often seen in home care instances. The branching scheme
suggested here combined with preprocessing of time windows is as strong as
the scheme tailored for synchronisation described in Ioachim et al. (1999).
This is elaborated in Dohn et al. (2009b), where it is also described how
to pick the best split time in the given interval. An illustration of the gen-
eralised precedence constraint branching scheme can be found in Figure 4.

t ime

(a) Parent node.

t ime

(b) Left child node.

t ime

(c) Right child node.

Figure 4: Example of the branching applied when a generalised precedence
constraint is violated. Each of the subfigures shows the time windows of
two visits i (top) and j (bottom), and the start times of the visits in an
RMP solution. The violated constraint for (i, j) has pij = 2. The dotted
line shows the chosen split time, and the distance between the ticks on the
time line is two time units.

4.3 Integer branching

In the following, we will let Ak denote the |C| × |R′k|-matrix where the
elements are given by the parameter akir for a given caretaker k ∈ K, i.e. each
column in Ak represents a schedule r ∈ R′k. Now, consider the structure of
the constraint matrix of the RMP which is shown in Figure 5. For clarity,
we only show ones of the constraint matrix and introduce m = |K| and
n̄ = n− 1.

λk1
1 · · · λk1

|R′k1 | · · · λkm
1 · · · λkm

|R′km | Λ1 · · · Λn̄

1 1
... Ak1 · · · Akm

. . .
n̄ 1
k1 1 · · · 1
...

. . .
km 1 · · · 1

Figure 5: Constraint matrix for the RMP.
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We observe that the RMP has strong integer properties due to the gen-
eralised upper bound constraints (16) for each caretaker, see e.g. Rezanova
and Ryan (2010) for further details and references. That is, for all caretakers
k ∈ K, their submatrix of the constraint matrix is perfect. Consequently,
fractionality in the LP solutions will never appear within one caretaker’s
block of schedules. Any fractions in the RMP can therefore only occur be-
tween blocks of columns, belonging to different caretakers. Hence, if the
LP solution is fractional, it is because two or more caretakers compete for
one or more visits in their schedules. Let i ∈ C denote a visit for which
caretaker k ∈ K is competing with one or more other caretakers. Since the
visit can only be handled by one caretaker, then in an integer solution either
k handles i or k does not handle i.

We will exploit the strong integer properties of the constraint matrix of
the RMP to apply a so-called constraint branching strategy, see Ryan and
Foster (1981). We introduce the sum Ski =

∑
r∈R′k a

k
irλ

k
r . If a fractional

solution occurs, the constraint branching strategy is now to find a visit-
caretaker pair (i, k) of a visit i ∈ C and a caretaker k ∈ K for which 0 <
Ski < 1. In the 1-branch visit i is forced to be handled by k and in the
0-branch prohibit visit i from being handled by k. Notice that since at
least one of the unique λkr is fractional then at least one sum Ski is also
fractional. This can be shown by a contradiction argument, see Dohn and
Kolind (2006).

Whenever the sum Ski is fractional for two or more visit-caretaker pairs
(i, k), we have to select one of these as the candidate for branching in the
node. If Ski is close to 1, forcing Ski = 1 will probably not change the solution
drastically, so only a small increase in the lower bound can be expected in
this branch. On the other hand, as the LP solution suggests that caretaker
k should handle i in an optimal solution, ruling out this option (Ski = 0)
is likely to cause a major increase in the lower bound. If Ski is close to
0, a similar line of reasoning also shows a skewed branching. In order to
keep the branch-and-bound tree balanced, we select the “most fractional”
candidate, i.e. the candidate closest to one half. More formally, we select
(i∗, k∗) = arg min(i,k)∈C×K:0<Ski <1

∣∣Ski − 1
2

∣∣.
5 Clustering of visits and arc removal

The HCCSP exhibits a structural feature that can be used to group or
cluster visits. HCCSP has, as opposed to VRPTW, a preference parameter
for each caretaker-visit combination. Moreover, test runs have suggested
that the ESPPTW solver is a bottleneck in the branch-and-price algorithm.
Therefore, we have developed schemes that reduce the sizes of the ESPPTW
networks, which will in turn decrease the running time of the algorithm.
For some larger instances, visit clustering is even needed to find feasible
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solutions.
When no reduction of the ESPPTW networks is used, every caretaker

k ∈ K can visit every i ∈ C where ρki = 1. However, in a good solution
(assuming the objective function weights are set as suggested in Section 2.1),
a caretaker k will only handle visits i where δki is favourable. Therefore, we
have devised three ways of clustering visits for a caretaker according to the
preference parameter δki , thereby effectively reducing the network sizes for
each caretaker. Again, let Ck = {i ∈ C : ρki = 1}. All schemes operate with
a cluster of visits C̄k ⊆ Ck for a caretaker. The first scheme only puts visits
in the cluster, when it is directly profitable, i.e. C̄k = {i ∈ Ck : δki < 0}.

In the second scheme preference parameters for caretaker k are ordered
non-decreasingly as δki1 ≤ · · · ≤ δ

k
iξ
≤ · · · ≤ δki|Ck| with ties broken arbitrarily.

Define the set ∆k
ξ = {δki1 , . . . , δ

k
iξ
} given the parameter ξ. The second scheme

then defines the cluster as C̄k = {i ∈ Ck : δki ∈ ∆k
ξ}. The cluster contains

the ξ most profitable visits.
The two first clustering schemes do not guarantee that all visits are in

a cluster. Therefore, all remaining visits i ∈ C\
⋃
k∈K C̄k are added to all

clusters.
The third scheme seeks to exploit the integer properties of the problem

described in Section 4.3. If the caretakers cannot compete for visits, the LP
solutions will be naturally integer, and hence the run times will decrease
significantly. Therefore, we make the visit clusters pairwise disjoint, i.e.
∀k1, k2 ∈ K, k1 6= k2 : C̄k1 ∩ C̄k2 = ∅. Again, the preference parameters for
each caretaker are ordered non-decreasingly. Hereafter, the scheme iterates
over the caretakers in a round-robin fashion and puts the most profitable
visit in the caretaker’s cluster (if it is not already put in another caretaker’s
cluster). Suppose visit j is already in C̄k for caretaker k, then there are two
conditions under which another visit i is not permitted in the cluster. If i
cannot be carried out before j, and also j cannot be carried out before i,
then the visits can never be scheduled in the same route. This is detected
whenever αi + skij > βj ∧ αj + skji > βi. The second condition is when there
is a temporal dependency, which disallows any route with both visits. This
is the case when (i, j), (j, i) ∈ P and −skji < pij ∧ −skij < pji.

The use of clustering will sacrifice optimality, and later we will look
into how big the gap to optimality is, and compare it against the benefit
of improved run time. The closest to this idea we have seen in the VRP
literature is the petal method, see e.g. Foster and Ryan (1976), which clusters
the visits based on geographical position.

5.1 Expansion of visit clusters

The clustering of visits can lead to visits being uncovered not because it
is optimal, but due to the clustering. Hopefully, these are only a very few
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visits. In order to remedy this, the clusters are made dynamic, in the sense
that expansion of the clusters is allowed. For any branch-and-bound node,
uncovered visits can be detected, by looking at the LP optimal solution.
If there are uncovered visits, they are added to all clusters, and the LP
problem is solved again. We suggest two versions of the cluster expansion.
Either cluster expansion can happen only in the root node, or it can happen
in any node of the branch-and-bound tree. Especially the latter adds a twist
of unpredictability (though still deterministic) to the problem, because the
problem basically can be changed anywhere in the branch-and-bound tree.
It can happen that the lower bound for a child is lower than the lower bound
for its parent, which is avoided when expansion is only allowed in the root
node.

5.2 Removal of idle arcs

We will here present another method to reduce the network sizes. The
time where the caretaker is neither visiting a citizen nor travelling is called
idle time. This is time where the caretaker is basically just waiting for the
time window of the next visit to open. Therefore, another means to reduce
the sizes of the ESPPTW networks, is to remove arcs where the minimum
idle time φkij = αj − (βi + skij) between two visits is high. Again, proof of
optimality is sacrificed, but in a good solution, we probably would not see
the use of many arcs with large idle time.

6 Test instances

We have had access to four authentic test instances from two Danish mu-
nicipalities. These are named hh, ll1, ll2 and ll3. Based on the authentic
instances we have generated 60 extra instances. These instances are con-
structed by generating new sets of generalised precedence constraints for
each of the four authentic instances, while still keeping the original sets
of caretakers and visits and original travelling times. The new generalised
precedence constraint sets are based on the five types of temporal depen-
dencies from Figure 1, and we have created five sets named td0–4. The
generalised precedence constraints in the set td0 are of the temporal de-
pendency type synchronisation (a). The set td1 is of the type overlap (b).
The set td2 consists of the types minimum difference (c) and maximum dif-
ference (d). When values are drawn randomly, these categories collapse to
one. The set td3 is of type minimum+maximum difference (e). Finally, td4
is a random combination of the other four types. Three sets of generalised
precedence constraints were generated for each of these fives sets: Sets A,
B, and C, where the number of generalised precedence constraints approx-
imately is, respectively, 10%, 20%, and 30% of the number of visits. The
sets of generalised precedence constraints were generated as in Dohn et al.
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(2009b). Characteristics for these test instances can be seen in Table 2. The
notation td[0-4] expands to td0, td1, td2, td3, and td4. It is compacted in
the table, because the instances share the same characteristics.

Furthermore, Bredström and Rönnqvist (2007) have very kindly given us
access to their 30 data instances. These data instances are generated based
on realistic settings and only contain synchronisation constraints. All visits
have the same priority, and no visits are excluded for any of the caretakers,
i.e. ρki = 1,∀i ∈ C,∀k ∈ K. The preference parameter δki is drawn randomly
between −10 and 10. For all of the instances, all caretakers in that instance
have the same duty hours. Characteristics for these test instances can also
be seen in Table 2. Again, br-[06-08][S,M,L]-td0 means that for each of
br-06, br-07, and br-08, there are three instances: One with small (S) time
windows, one with medium (M) time windows, and one with large (L) time
windows.
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|K| 15 8 7 6 15 15 15 8 8 8 7 7 7 6 6 6 4 10 16
|C| 150 107 60 61 150 150 150 107 107 107 60 60 60 61 61 61 20 50 80
|P| 6 0 0 0 16 30 46 10 22 32 6 12 18 6 12 18 4 10 16

Table 2: Characteristics for the test instances. |K| is number of caretakers,
|C| is number of visits and |P| is number of generalised precedence con-
straints.

7 Computational results

The aim in this section is to compare the different visit clustering techniques
presented in Section 5. We will also try to measure the effects of removal
of idle time arcs and cluster expansion. Using clustering will sacrifice opti-
mality, and we will here investigate how big the gap to optimality is, and
compare it against the benefit of improved run time.

We measure three quality parameters, which are also the terms of the
objective function: uncovered visits, caretaker-visit preferences, and total
travel costs. The weights of the objective function are set as suggested in
Section 2.1, so a hierarchical ordering is obtained. We seek to minimise the
number of uncovered visits and maximise the preference level of the solution.
The total travel costs are measured in minutes for all caretakers for the
whole daily schedule. We subtract the durations of the visits in the total
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travel time, hence giving preference to longer visits, and thereby maximising
the so-called face-to-face time. More formally, we define the travel cost as
ckij = skij−2 ·duri. Hence, if it were only possible to cover either visit i or the
two visits j and h, coverage of visit i is preferred, whenever γi ≥ γj +γh and
duri > durj + durh, assuming the travel time for both options is the same.
Minimising the total travel costs are not as important as minimising the two
other measurements, but low travel costs are naturally preferred. In order
to be able to make comparisons this third measure is ignored, when we are
performing tests on the instances from Bredström and Rönnqvist (2007).

The algorithm is implemented in the branch-and-cut-and-price frame-
work from COIN-OR, see Lougee-Heimer (2003), using the COIN-OR open-
source LP solver CLP. All tests are run on 2.2 GHz processors. As an
outcome of preliminary tests, we return up to five negative reduced cost
columns per caretaker per iteration. For all of the test runs we have set
a time out limit of one hour. The implementation of the ESPPTW solver
ensures that generalised precedence constraints, that make two visits mutu-
ally exclusive, are respected within the individual routes. This tightens the
lower bounds and reduces the number of branch-and-bound nodes.

We have grouped the instances into 35 test groups based on their size,
the type of temporal dependency included, and the number of temporal
dependencies. The test groups can be seen in Table 3. For each of these
groups, 13 different settings for the algorithm are compared. The settings
are written as CS-RA-ER, abbreviating clustering scheme, removal of arcs,
and expansion in root only, respectively. CS = 0 corresponds to no use of
visit clustering. CS = 1 gives all-preferred clusters, i.e. clusters for care-
taker k where δki < 0 for all visits i in the cluster, as described in Section 5.
CS = 2 gives fixed-size clusters of a fixed size ξ. CS = 3 gives pair-wise dis-
joint clusters. Before the preference parameters are sorted they are shuffled
randomly in order to make the tie-breaking arbitrary. The setting RA is a
binary parameter, which is 1, if we remove arcs based on idle time, and 0
otherwise. The setting ER is also a binary parameter, which is 1, if we only
allow cluster expansion in the root node of the branch-and-bound tree, and
0 if cluster expansion is allowed in every node of the branch-and-bound tree.
Thus, the settings 0-0-0 (as well as the redundant settings 0-0-1) give the
optimal solution. However, some of the instances are not possible to solve
to optimality within the time limit, they can only be solved using clustering.
For CS = 2, we use a fixed cluster size ξ = 12. With a fixed cluster size of 12,
the pricing problems (at least initially, before cluster expansion) are solved
very fast. When arcs are removed, the largest allowed minimum idle time
φkij is set to 10 minutes, both based on preliminary tests. The abbreviation
BR is used when we show results from Bredström and Rönnqvist (2007).

In Table 3 the comparison is shown. The numbers are averages over all
instances in the test group. In total, we have 1190 test runs, which gives
a good statistical foundation. Let T and Z denote the run time and the
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objective value, respectively, of a given test run, and let Tref and Zref denote
the run time and the objective value of a reference solution, respectively. The
time difference is then calculated as T/Tref in percent, and the objective gap
is calculated as |(Z − Zref)/Zref| in percent. When the objective is better
than the reference objective a minus sign is added. The reference settings
are the leftmost, in most cases it will be the settings 0-0-0, which is a very
intuitive reference. All the instances in the test groups [hh,ll1] and [hh,ll1]-
td[0-4]-[A,B,C] have not been possible to solve to optimality. Any attempt
has, when the one hour time out limit is reached, ended up with around
70% or more of the visits uncovered in the best solution in the branch-
and-bound tree. Therefore, the reference settings for these test groups will
be 1-0-0. When using relative gaps for comparison, one should be careful,
because relative gaps are highly dependent on the objective measure. In our
case we have a very high penalty on uncovered visits, so a single uncovered
visit as opposed to no uncovered visits would lead to a large gap. Also, for
all instances based on ll1, there will be eight visits that are impossible to
cover, as they cannot be completed within the working hours of any of the
caretakers. This fixed cost for all generated routes makes the gaps smaller.

As mentioned earlier, the dynamic expansion of visit clusters makes the
algorithm behave somewhat unpredictable. In the cases where we see the
time difference being close to 100% and the objective gap at the same time
being close to 0%, it is very likely that the clusters are expanded to nearly
the entire set Ck, thereby getting close to CS = 0. On the other hand, when
the gap is small and the time difference significantly below 100%, then a
good initial clustering is used. With regard to the time-quality trade-off,
the all-preferred (CS = 1) and the fixed-size (CS = 2) clustering schemes
both have instance groups where they are performing best. If dynamic
cluster expansion was not used, then it would be expected that the fixed-
size clustering scheme would be the fastest on larger instances (e.g. instances
based on hh or ll1), as the cluster size is kept small. This does not happen,
though, due to the clusters being expanded aggressively. The aggressive
expansion happens when a lot of visits are uncovered and therefore added
to every caretaker’s cluster. For the hh and ll1 instance groups, we therefore
see that the fixed-size clustering is slower, but better than the all-preferred
clustering. In some test runs with the fixed-size clustering scheme in the
test groups [ll2,ll3]-td0-A and [ll2,ll3]-td3-B, the initial clustering has lead
to very large branch-and-bound trees. This is visible in the averages. For the
pair-wise disjoint clustering scheme the picture is more clear. As expected
it is very fast, but it does not come without a price, as the solution qualities
for this scheme generally are the worst.

Focusing on the impact of removal of idle time arcs (RA), Table 3 does
not disclose much. It it very hard to find a pattern in the impact of this
setting. Removal of idle time arcs may reduce the ESPPTW networks,
but the removal could also lead to more visits being uncovered in the LP
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Settings
Group 0-0-0 1-0-0 1-0-1 1-1-0 1-1-1 2-0-0 2-0-1 2-1-0 2-1-1 3-0-0 3-0-1 3-1-0 3-1-1 BR

Time difference (%)
br-[01-05] 100 39 96 48 52 47 54 60 57 6 4 6 5 192
br-[06-08] 100 60 58 48 55 11 20 13 57 1 1 1 1 157
br-[09-10] 100 81 81 87 87 21 50 11 27 1 1 1 0 144
[hh,ll1] N/A 100 87 70 106 105 104 48 45 8 5 5 4 N/A
[hh,ll1]-td0-A N/A 100 246 99 322 1395 1384 1872 1770 77 35 66 36 N/A
[hh,ll1]-td0-B N/A 100 44 102 43 540 1362 160 1235 30 23 30 18 N/A
[hh,ll1]-td0-C N/A 100 45 72 88 266 645 168 971 63 41 56 42 N/A
[hh,ll1]-td1-A N/A 100 100 74 74 138 155 110 235 47 45 43 38 N/A
[hh,ll1]-td1-B N/A 100 78 89 75 161 126 123 133 40 34 38 33 N/A
[hh,ll1]-td1-C N/A 100 89 97 109 101 123 89 104 56 37 48 29 N/A
[hh,ll1]-td2-A N/A 100 97 89 80 29 29 39 36 5 5 5 6 N/A
[hh,ll1]-td2-B N/A 100 2788 216 253 121 124 100 91 15 15 15 13 N/A
[hh,ll1]-td2-C N/A 100 115 107 848 211 173 140 133 81 52 75 58 N/A
[hh,ll1]-td3-A N/A 100 43 91 90 510 440 258 247 5 4 6 5 N/A
[hh,ll1]-td3-B N/A 100 58 201 177 15 17 17 16 3 2 2 1 N/A
[hh,ll1]-td3-C N/A 100 104 104 104 11 8 8 5 1 1 2 1 N/A
[hh,ll1]-td4-A N/A 100 61 50 176 103 106 71 64 18 11 19 12 N/A
[hh,ll1]-td4-B N/A 100 207 67 119 351 351 106 90 8 5 11 7 N/A
[hh,ll1]-td4-C N/A 100 99 16 60 102 102 15 24 4 3 4 2 N/A
[ll2,ll3] 100 15 15 17 19 8 29 6 29 0 0 0 0 N/A
[ll2,ll3]-td0-A 100 14 16 37 71 2014 2014 1310 2014 1 1 1 1 N/A
[ll2,ll3]-td0-B 100 40 38 42 42 1 1 1 1 0 0 0 0 N/A
[ll2,ll3]-td0-C 100 31 29 30 29 3 3 3 3 2 1 2 2 N/A
[ll2,ll3]-td1-A 100 98 98 20 24 19 24 11 16 0 0 0 0 N/A
[ll2,ll3]-td1-B 100 65 63 21 34 20 4 5 5 0 0 0 0 N/A
[ll2,ll3]-td1-C 100 94 94 91 91 1 1 1 0 0 0 0 0 N/A
[ll2,ll3]-td2-A 100 12 12 11 11 1 17 1 11 0 0 0 0 N/A
[ll2,ll3]-td2-B 100 12 12 83 77 98 98 98 94 0 0 0 0 N/A
[ll2,ll3]-td2-C 100 7 8 11 10 66 62 79 76 1 1 1 1 N/A
[ll2,ll3]-td3-A 100 97 97 89 97 1 97 1 96 0 0 0 0 N/A
[ll2,ll3]-td3-B 100 21 22 12 12 940 1971 463 1970 0 0 1 1 N/A
[ll2,ll3]-td3-C 100 97 97 97 97 1 1 0 0 0 0 0 0 N/A
[ll2,ll3]-td4-A 100 99 98 102 102 79 98 45 11 0 0 0 0 N/A
[ll2,ll3]-td4-B 100 99 99 82 79 0 0 0 0 0 0 0 0 N/A
[ll2,ll3]-td4-C 100 93 93 50 92 0 0 0 0 0 0 0 0 N/A
Avg. (0-0-0) 100 56 59 52 57 175 239 111 235 1 1 1 1 N/A
Avg. (1-0-0) N/A 100 180 115 157 704 884 480 884 14 10 13 10 N/A

Objective gap (%)
br-[01-05] 0 204 203 205 205 3 3 5 4 806 937 1070 1201 0
br-[06-08] 0 0 0 0 0 121 147 93 147 524 747 526 776 0
br-[09-10] 0 0 0 -1 -1 155 179 158 179 289 914 292 914 6
[hh,ll1] N/A 0 26 26 26 0 0 3 3 75 83 83 90 N/A
[hh,ll1]-td0-A N/A 0 4 -6 4 -20 -13 -19 -11 7 32 7 32 N/A
[hh,ll1]-td0-B N/A 0 18 7 18 -7 0 -5 2 23 44 23 54 N/A
[hh,ll1]-td0-C N/A 0 21 10 24 3 7 -1 6 15 40 32 53 N/A
[hh,ll1]-td1-A N/A 0 0 -2 -2 -29 -2 -27 0 -4 4 6 13 N/A
[hh,ll1]-td1-B N/A 0 19 0 28 -9 2 -9 6 15 34 17 36 N/A
[hh,ll1]-td1-C N/A 0 20 0 20 -14 16 -10 12 20 35 20 35 N/A
[hh,ll1]-td2-A N/A 0 2 4 4 15 15 -8 -8 14 14 46 46 N/A
[hh,ll1]-td2-B N/A 0 2 6 6 -4 -2 -2 0 31 33 39 39 N/A
[hh,ll1]-td2-C N/A 0 2 6 6 -6 2 -4 4 11 36 15 42 N/A
[hh,ll1]-td3-A N/A 0 9 2 9 0 0 -2 -2 59 61 61 63 N/A
[hh,ll1]-td3-B N/A 0 0 2 2 0 0 2 2 58 63 60 72 N/A
[hh,ll1]-td3-C N/A 0 18 2 20 2 5 2 5 11 16 20 27 N/A
[hh,ll1]-td4-A N/A 0 5 -5 5 12 5 -2 5 34 43 34 46 N/A
[hh,ll1]-td4-B N/A 0 13 0 11 2 11 2 11 37 59 39 63 N/A
[hh,ll1]-td4-C N/A 0 16 -2 10 2 8 0 2 18 54 18 66 N/A
[ll2,ll3] 0 0 0 0 0 456 570 456 570 1710 1710 3990 3990 N/A
[ll2,ll3]-td0-A 0 0 0 0 0 174 174 0 35 626 626 764 764 N/A
[ll2,ll3]-td0-B 0 0 0 0 0 246 246 246 246 369 390 635 717 N/A
[ll2,ll3]-td0-C 0 0 0 0 0 153 153 153 153 170 204 255 408 N/A
[ll2,ll3]-td1-A 0 0 0 0 0 456 570 456 570 1597 1597 2052 2052 N/A
[ll2,ll3]-td1-B 0 0 0 0 0 343 570 115 570 1711 2508 1597 3078 N/A
[ll2,ll3]-td1-C 0 0 0 0 0 229 570 570 798 1483 2053 1711 2167 N/A
[ll2,ll3]-td2-A 0 0 0 0 0 456 570 0 114 2622 2622 5015 5015 N/A
[ll2,ll3]-td2-B 0 0 0 0 0 103 103 21 21 185 185 451 451 N/A
[ll2,ll3]-td2-C 0 0 0 0 0 68 68 0 0 442 442 664 664 N/A
[ll2,ll3]-td3-A 0 0 0 0 0 0 114 456 570 2622 2622 3534 3534 N/A
[ll2,ll3]-td3-B 0 0 0 0 0 1 114 1 114 2508 2508 2964 2964 N/A
[ll2,ll3]-td3-C 0 0 0 0 0 1 1 1 1 1711 1711 2395 2395 N/A
[ll2,ll3]-td4-A 0 0 0 0 0 266 266 266 266 1012 1012 2077 2077 N/A
[ll2,ll3]-td4-B 0 0 0 0 0 266 266 266 266 1119 1119 1970 1970 N/A
[ll2,ll3]-td4-C 0 0 0 0 0 266 266 266 266 959 959 2343 2343 N/A
Avg. (0-0-0) 0 11 11 11 11 198 261 186 257 1182 1309 1806 1973 N/A
Avg. (1-0-0) N/A 0 5 1 5 100 137 93 135 647 722 988 1086 N/A

Table 3: Comparison of different settings for the algorithm for the test
groups. Settings are written as CS-RA-ER. Test groups br-[x-x][S,M,L]-td0
are shortened to br-[x-x]. The average ‘Avg. (0-0-0)’ uses the settings 0-
0-0 as reference settings and does not include the test groups [hh,ll1] and
[hh,ll1]-td[0-4]-[A,B,C], as test runs are not carried out in these groups with
the settings 0-0-0. The average ‘Avg. (1-0-0)’ uses the settings 1-0-0 as
reference settings and includes all test groups, but not the settings 0-0-0.
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solution and therefore added to all caretaker’s clusters. This would increase
the network sizes.

The table shows that when cluster expansion is allowed in every node in
the branch-and-bound tree (ER = 0), the solution quality tends to be just
better than when expansion is only allowed in the root node (ER = 1). This
is expected, but still, if many visits are uncovered in the root LP solution,
this could lead to large clusters, and thereby better solution quality.

Looking at the numbers for the test groups ending with A, B, and C,
there does not seem to be a correlation between the performance of the
different clustering schemes and the number of generalised precedence con-
straints for an instance. None of the clustering schemes stand out with a
consequently good or bad performance in either size A, B, or C. Likewise,
there does not seem to be a correlation between the type of temporal de-
pendency and the performance of the schemes. This is also sensible, as the
clustering is preference-based and as such independent of types and numbers
of temporal dependencies.

If we compare our results against the results from Bredström and Rönnqvist
(2007), we are significantly faster in all test groups. We are able to verify
their optimal solution values for the groups br-[01-05][S,M,L]-td0 and br-[06-
08][S,M,L]-td0, and we are able to improve the best known solution values
for the group br-[09-10][S,M,L]-td0 by 6% on average. For some instances we
can prove optimality of the improved solutions. The settings 1-1-0 and 1-1-1
give better solution quality on average for the group br-[09-10][S,M,L]-td0
than the setting 0-0-0. This is possible, because we reach the time out limit
on some test runs, and therefore the returned solution is not necessarily
optimal, but only the best solution in the branch-and-bound tree at time
out.

Table 4 shows detailed statistics for individual test runs. The test runs
shown here are chosen, because they are representative for the numbers from
Table 3. It should be noted, that we have integerised the preference param-
eter in the instances from Bredström and Rönnqvist (2007), by scaling it
with a factor of 104. In the process some rounding took place, and further-
more the results reported in Bredström and Rönnqvist (2007) are rounded.
Therefore, reported numbers for the settings 0-0-0 and BR in Table 4 will
not necessarily match on all digits. Also, one should keep in mind that our
lower bounds are tighter.

The detailed statistics for the test runs show that there is a clear con-
nection between the run times and the sizes of the branch-and-bound trees,
which is intuitively very sensible and expected. It should here be noticed
that Bredström and Rönnqvist (2007) use significantly fewer branch-and-
bound nodes than our algorithm. This is most probably due to their branch-
ing candidate selection which seems to perform very well.

Overall it can be said, that, as expected, run times can be decreased
by using visit clustering, but this implies a decreased solution quality. It
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br-05S-td0 0-0-0 -76277.00 -76277 0 11 4 284 687 0.31 0.17 0.60
br-05S-td0 1-0-0 -71289.00 923612 1 3 1 64 124 0.02 0.02 0.05
br-05S-td0 1-1-0 -71289.00 923612 1 3 1 88 154 0.04 0.02 0.07
br-05S-td0 1-0-1 -71289.00 923612 1 3 1 64 124 0.02 0.03 0.05
br-05S-td0 1-1-1 -71289.00 923612 1 3 1 88 154 0.03 0.02 0.07
br-05S-td0 2-0-0 -76277.00 -76277 0 9 3 200 436 0.12 0.08 0.26
br-05S-td0 2-1-0 -76277.00 -76277 0 9 3 152 366 0.11 0.06 0.22
br-05S-td0 2-0-1 -76277.00 -76277 0 9 3 200 436 0.14 0.06 0.28
br-05S-td0 2-1-1 -76277.00 -76277 0 9 3 152 366 0.12 0.06 0.22
br-05S-td0 3-0-0 933849.00 933849 1 1 0 16 38 0.00 0.00 0.01
br-05S-td0 3-1-0 933849.00 933849 1 1 0 16 34 0.00 0.00 0.01
br-05S-td0 3-0-1 933849.00 933849 1 1 0 16 38 0.00 0.00 0.02
br-05S-td0 3-1-1 933849.00 933849 1 1 0 16 34 0.00 0.01 0.02
br-05S-td0 BR -76290.00 -76290 0 1 - 139 - - - 0.64
br-06M-td0 0-0-0 -380509.00 -379854 0 353 33 8989 8941 54.91 35.10 107.18
br-06M-td0 1-0-0 -380509.00 -379854 0 419 58 10284 8359 34.44 26.10 72.35
br-06M-td0 1-1-0 -379287.00 -378589 0 431 48 10904 8148 32.17 26.71 70.64
br-06M-td0 1-0-1 -380509.00 -379854 0 419 58 10284 8359 34.38 26.32 72.53
br-06M-td0 1-1-1 -379287.00 -378589 0 431 48 10904 8148 32.17 26.49 69.67
br-06M-td0 2-0-0 -376764.00 649853 1 77 38 1910 1399 2.67 4.16 8.22
br-06M-td0 2-1-0 -374594.00 -332648 0 109 54 2520 1701 4.04 5.23 11.37
br-06M-td0 2-0-1 -376764.00 641531 1 91 40 2240 1642 2.83 4.49 8.95
br-06M-td0 2-1-1 -374594.00 653339 1 177 43 4070 2254 5.11 7.72 15.67
br-06M-td0 3-0-0 -362005.00 686191 1 51 25 1060 530 0.22 1.73 2.42
br-06M-td0 3-1-0 -352443.00 -301188 0 33 16 840 464 0.14 1.41 1.87
br-06M-td0 3-0-1 -362005.00 1662244 2 47 13 880 436 0.20 1.31 1.81
br-06M-td0 3-1-1 -352443.00 3680521 4 31 15 520 282 0.08 0.81 1.12
br-06M-td0 BR -386860.00 -379880 0 101 - 1861 - - - 247.88
hh 1-0-0 6851842.00 6851850 5 187 21 16755 12032 27.74 587.64 639.90
hh 1-1-0 6851859.00 6851867 5 141 15 11910 9090 17.65 422.74 458.90
hh 1-0-1 6851842.00 6851850 5 171 19 15915 11629 22.73 517.76 564.61
hh 1-1-1 6851859.00 6851867 5 139 15 11640 8792 19.51 613.39 694.34
hh 2-0-0 6858829.00 6858843 5 167 21 16890 20070 42.30 549.17 617.44
hh 2-1-0 7860857.00 7860868 6 121 21 6630 6896 17.90 235.45 266.05
hh 2-0-1 6858829.00 6858843 5 167 21 16305 19558 43.97 569.96 639.66
hh 2-1-1 7860857.00 7860868 6 115 21 5880 6012 13.21 186.02 209.15
hh 3-0-0 11869075.00 10870068 9 23 11 1650 1594 1.06 45.22 48.64
hh 3-1-0 12871112.00 11872103 10 21 10 1080 1012 0.48 29.91 31.94
hh 3-0-1 11869075.00 13869078 10 21 10 1140 1223 0.60 29.90 32.29
hh 3-1-1 12871112.00 14871115 11 19 9 810 855 0.36 22.95 24.50
ll1-td1-B 1-0-0 36920146.00 37926295 17 21 10 952 1487 2.05 31.07 35.56
ll1-td1-B 1-1-0 36920146.00 37926294 17 17 8 992 1494 2.08 23.22 26.91
ll1-td1-B 1-0-1 36920146.00 44921229 18 25 12 792 1128 1.43 21.31 24.26
ll1-td1-B 1-1-1 36920146.00 48924236 19 27 13 888 1230 1.80 18.80 22.20
ll1-td1-B 2-0-0 33245315.00 35937179 15 65 32 2216 3688 33.05 86.91 128.25
ll1-td1-B 2-1-0 33245315.00 34937306 17 51 25 1856 3524 28.04 60.63 95.23
ll1-td1-B 2-0-1 33245315.00 40932305 17 39 19 1448 2962 21.55 65.10 94.11
ll1-td1-B 2-1-1 33245315.00 41932341 18 73 36 2104 3535 32.74 65.87 106.49
ll1-td1-B 3-0-0 38767254.00 39934260 16 17 8 856 1074 0.88 15.47 17.73
ll1-td1-B 3-1-0 38767255.33 39934260 16 21 10 816 1035 1.02 13.13 15.56
ll1-td1-B 3-0-1 38767254.00 48931257 19 19 9 552 825 0.53 8.86 10.31
ll1-td1-B 3-1-1 38767255.33 48932218 19 25 12 576 721 0.58 8.39 9.96
ll2-td4-C 0-0-0 940394.00 940400 1 341 22 15393 29336 204.53 103.45 333.50
ll2-td4-C 1-0-0 940394.00 940400 1 153 14 6279 8202 29.95 19.74 56.44
ll2-td4-C 1-1-0 940398.75 940400 1 27 7 938 1488 4.19 3.10 8.33
ll2-td4-C 1-0-1 940394.00 940400 1 153 14 6202 8114 29.61 19.24 55.40
ll2-td4-C 1-1-1 940398.75 940400 1 27 7 854 1331 3.88 2.83 7.72
ll2-td4-C 2-0-0 940412.00 4941459 2 3 1 203 582 0.31 0.79 1.26
ll2-td4-C 2-1-0 940415.00 4941423 2 3 1 203 553 0.23 0.70 1.09
ll2-td4-C 2-0-1 940412.00 4941459 2 3 1 203 582 0.31 0.79 1.25
ll2-td4-C 2-1-1 940415.00 4941423 2 3 1 203 553 0.25 0.67 1.09
ll2-td4-C 3-0-0 3949532.00 3949532 4 1 0 84 233 0.03 0.22 0.30
ll2-td4-C 3-1-0 25951558.00 25951558 8 1 0 56 152 0.01 0.14 0.21
ll2-td4-C 3-0-1 3949532.00 3949532 4 1 0 84 233 0.02 0.23 0.31
ll2-td4-C 3-1-1 25951558.00 25951558 8 1 0 56 152 0.02 0.15 0.22

Table 4: Key statistics for selected test runs. Settings are written as CS-
RA-ER.
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is difficult to point out the best settings as well as to quantify the speed
gain/quality loss trade-off. As mentioned earlier, it is seen that the pair-wise
disjoint clustering is by no doubt the fastest, but if quality is also taken into
account, the all-preferred clustering scheme tends to perform best. Settings
with CS = 1 have at least equally good and in most cases much better run
times when compared to the settings 0-0-0 and do only have a significant
loss in quality for the test group br-[01-05][S,M,L]-td0. The loss in quality
is due to three out of 15 instances in the group having a single uncovered
visit in the solutions with CS = 1. Focusing on the all-preferred clustering
scheme, it seems to be slightly better for the solution quality to allow cluster
expansion in every node of the branch-and-bound tree.

Lastly, it should be mentioned that we have also compared our solu-
tions of hh, ll1, ll2, and ll3 with the current practice. Current practice is
based partly on an automated heuristic and partly on manual planning. Un-
fortunately, it is not straight forward to make a comparison. It is clearly
indicated, though, that we are able to enhance the service level. There is a
significant decrease in the number of uncovered visits and a truly dramatic
decrease in the number of necessary constraint adjustments. Constraint ad-
justments are another way of dealing with an uncovered visit, so that it is
possible to fit the visit into the schedule anyway. Possible options are to:
reduce the duration of the visit, extend the time window of the visit or ex-
tend the work shift of one of the caretakers. This is done a lot in practice,
and it makes comparison very difficult. However, any of these adjustments
will naturally decrease the overall quality of the schedule. In the presented
solution method, we have chosen to keep all the original constraints intact,
and let the constraint adjustment be a manual post-processing task. This
decision is supported by the fact that it is hard to put a quantitative penalty
on all possible adjustments before solving.

8 Conclusion and future work

Initiated by the method’s successful use in the VRPTW context, we have
formulated the Home Care Crew Scheduling Problem as a set partitioning
problem with side constraints and developed a branch-and-price solution al-
gorithm. All temporal dependencies are modelled as generalised precedence
constraints, and these constraints are enforced through the branching. To
our knowledge, we are the first to enforce generalised precedence constraints
in the branching for real-life problems. Based on the preference parame-
ters, we have devised different visit clustering schemes. The visit cluster-
ing schemes for the exact branch-and-price framework are novel. We have
compared the visit clustering schemes in order to survey how much they
decrease run times, and how much they compromise optimality. The visit
clustering schemes have been tested both on real-life problem instances and
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on generated test instances inspired by realistic settings. The tests have
shown that by using clusters with only preferred visits, run times were sig-
nificantly decreased, while there was only a loss of quality for few instances.
The clustering schemes have allowed us to find solutions to instances that
could not be solved to optimality. Summarised, our main contributions are:
Development of visit clustering schemes for the Home Care Crew Schedul-
ing Problem, and enforcement of generalised precedence constraints in the
branching for real-life problems.

We see a number of directions in which future work on this problem
could go. One direction is improvement of the algorithm presented in this
paper. New visit clustering schemes could be devised accompanied by cluster
expansion schemes. For the clustering scheme with a fixed cluster size, it
could be interesting to look into what determines a good cluster size for a
given instance. It might be possible to express the cluster size as a function
of number of visits and number of caretakers.

Other very interesting and yet unexplored planning problems in home
care are long-term planning and disruption management. In the long-term
planning problem, the goal is to present a plan that spans e.g. half a year.
The long-term problem does not decide how the visits should be assigned
to the specific caretakers, but only how to distribute the visits optimally on
the weekdays and possibly in time windows.

In a disruption management or recovery situation the original plan has
become infeasible due to unforeseen circumstances. Therefore, rescheduling
of the caretakers for the remains of the planning period (most likely the rest
of the day) must take place. The goal of the rescheduling is to provide a
new, feasible plan very fast, i.e. within minutes, with as few alterations to
the original plan as possible. In many cases the disruption will only directly
influence a smaller subset of the caretakers, and an approach could be in-
spired by what Rezanova and Ryan (2010) do for train driver rescheduling.
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In the Home Care Crew Scheduling Problem a staff of caretakers has to be assigned a
number of visits to patients’ homes, such that the overall service level is maximised. The
problem is a generalisation of the vehicle routing problem with time windows. Required
travel time between visits and time windows of the visits must be respected. The challenge
when assigning visits to caretakers lies in the existence of soft preference constraints and
in temporal dependencies between the start times of visits.

We model the problem as a set partitioning problem with side constraints and develop
an exact branch-and-price solution algorithm, as this method has previously given solid
results for classical vehicle routing problems. Temporal dependencies are modelled as
generalised precedence constraints and enforced through the branching. We introduce a
novel visit clustering approach based on the soft preference constraints. The algorithm
is tested both on real-life problem instances and on generated test instances inspired
by realistic settings. The use of the specialised branching scheme on real-life problems
is novel. The visit clustering decreases run times significantly, and only gives a loss of
quality for few instances. Furthermore, the visit clustering allows us to find solutions to
larger problem instances, which cannot be solved to optimality.
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