
Improving the Efficiency of a Best-First Bottom-Up

Approach for the Constrained 2D Cutting Problem

Gara Miranda∗, Jesica de Armas, Carlos Segura, Coromoto León

Dpto. Estad́ıstica, I. O. y Computación. Universidad de La Laguna.

38271 - La Laguna. Santa Cruz de Tenerife, Spain.

Phone number: +34 922 318180

Fax number: +34 922 318170

Abstract

This work introduces several improvements in the solution of the Constrained
2D Cutting Problem. Such improvements combine the detection of domi-
nated and duplicated cutting patterns with the implementation of parallel
approaches for best-first search methods. The analysis of symmetries and
dominances among the cutting patterns is able to discard some non-optimal
or redundant builds, thus reducing the search space to be explored. The ex-
perimental evaluation demonstrates that when the domination/duplication
rules are applied to an efficient parallel approach, the obtained reduction
in the number of managed nodes involves a noticeable decreasement on the
computational effort associated to the final search process.

Key words: Cutting Problems, Parallel Algorithms, Pattern Dominances
and Symmetries, Exact Tree Searches

∗Corresponding author
Email addresses: gmiranda@ull.es (Gara Miranda), jdearmas@ull.es (Jesica de

Armas), csegura@ull.es (Carlos Segura), cleon@ull.es (Coromoto León)

Figure 1: Vertical and horizontal meta-rectangles. Shaded areas represent waste.

1. Introduction

Cutting Problems (CPs) arise in many production industries where large
stock sheets (glass, textiles, pulp and paper, steel, etc.) must be cut into
smaller pieces. CPs are usually analyzed together with packing problems
and can both be classified attending to several characteristics [1, 2, 3]: the
number of dimensions, the number of available surfaces and patterns, the
shape of the patterns, the orientation, etc. This work is focused on a variant
of the Constrained 2D Cutting Problem (2DCP) which targets the cutting
of a large rectangle S of dimensions L × W in a set of smaller rectangles
using orthogonal non-staged guillotine cuts. That means that any cut must
orthogonally run from one side of the rectangle to the other end producing
two new rectangles. The produced rectangles must belong to one of a given
set of rectangle types D = {T1 . . . Tn} where the i-th type Ti has dimensions
li × wi. Associated with each type Ti there is a profit pi and a demand
constraint bi. The goal is to find a feasible cutting pattern with xi pieces of
type Ti maximizing the total profit:

max

n∑

i=1

xipi subject to xi ∈ {0, 1, . . . , bi}

The posed problem is an output maximization problem where the large
objects are only supplied in limited quantities which do not allow for accom-
modating all small items, so the usage of the available large objects must
be maximized in order to arrange a maximum value of small items. More-

2

over, all dimensions are fixed and the assortment of small items is weakly
heterogeneous. Analyzing the problem from this point of view, one of the
most recent typologies for cutting and packing [3] suggests to denote the
problem as “Single Large Object Placement Problem”. However such a name
is just a suggestion in order to unify the notation in the cutting and pack-
ing field, because the same problem appears in the related literature under
several different names: Template-Layout Problem, Two-Dimensional Cut-
ting Problem, Rectangle Packing Problem, Orthogonal Knapsack Problem,
or Cutting Stock Problem. In particular, the majority of the studies related
to the here presented proposals [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] use
the name Cutting Stock Problem to denote the problem we are analyzing.

Though a large number of heuristics have been devised for the solution
of this cutting problem [5, 6, 17, 18], the number of exact algorithms is not
as extensive. However, since the profit obtainable from the raw material is
a crucial issue for most production industries, the study and design of exact
approaches may appear as an interesting research field. Similar to what hap-
pens with other combinatorial optimization problems, most exact approaches
for the 2DCP are based on an enumeration of the solution search space. Such
algorithms can generally assume that the state space is represented in the
form of a tree. There is an evaluation function associated with the nodes of
the tree, and an orderly search procedure is applied for visiting the nodes. In
a branch-and-bound formulation, the order for traversing the tree is usually
just a depth-first search, so that no evaluation function is required to estab-
lish the order among nodes [4, 19]. However, in such a case, the evaluation
function is used to measure the newly created nodes - potential solutions -
against the best existing solution. This way, the tree is pruned by avoiding
the exploration along paths which cannot yield solutions better than the cur-
rent one. On the other hand, in a best-first search, the order of traversal of
the search graph is determined by the evaluation function [9, 11, 12]. More-
over, the search typically stops as soon as a complete solution - goal node
- is found. If the evaluation function satisfies certain conditions, then this
scheme guarantees optimal solutions.

Both tree-search branch-and-bound procedures has been successfully ap-
plied to the posed 2DCP and also to problems where restricted three-staged
patterns are considered [20, 21, 22]. However, since best-first approaches
have shown a more efficient behavior [9], in this work we have focused on
the original Viswanathan and Bagchi’s algorithm (VB). VB algorithm [9]
is based on Wang’s bottom-up proposal on building vertical and horizontal

3

Algorithm 1 Viswanathan and Bagchi’s Algorithm
1: OPEN := {T1, T2, . . . , Tn}; CLIST := ∅; f’ := UpperBound();
2: repeat

3: Choose α meta-rectangle from OPEN with highest f ′ value;
4: if (h′(α) == 0) then

5: return(α);
6: end if

7: Insert α in CLIST;
8: for all β in CLIST do

9: γH = αβ−; lγH
= lα + lβ ; wγH

= max(wα, wβ); /* horizontal build */
10: γV = αβ|; lγV

= max(lα, lβ); wγV
= wα + wβ ; /* vertical build */

11: g(γH) = g(γV) = g(α) + g(β);
12: xi(γH) = xi(γV) = xi(α) + xi(β) ∀i;
13: if ((lγH

≤ L) and (wγH
≤ W) and (xi(γH) ≤ bi∀i)) then

14: Insert γH in OPEN;
15: end if

16: if ((lγV
≤ L) and (wγV

≤ W) and (xi(γV) ≤ bi∀i)) then

17: Insert γV in OPEN;
18: end if

19: end for

20: until forever

combinations of patterns [5] (see Figure 1). Wang’s proposal studies a less
general formulation of the problem where the values of the demanded rect-
angles are directly proportional to their areas. The method is heuristic and
does not guarantee the achievement of optimal solutions, although several
improvements have been proposed [7, 8, 23]. VB algorithm uses Gilmore and
Gomory’s [24] dynamic programming solution - for the unbounded version
of the problem - to build an upper bound. VB resembles A* algorithms and
uses two lists, open and clist, to yield the set of feasible solutions. At
each iteration of VB algorithm, the element α - with size lα × wα - from
open with better upper bound is chosen and combined with the elements
in clist to produce horizontal γH = (αβ−) and vertical γV = (αβ|) builds
(see Algorithm 1).

Later, Hifi [11] and Cung et al. [12] proposed a modified version of VB
algorithm (called mvb) introducing an initial lower bound, a bi-dimensional
data structure to manage clist (thus decoupling the generation loop in two:
one for the horizontal combinations and other for the vertical ones), a reduced
upper bound, and some rules to find in constant time duplicated/dominated
patterns. However, most recent works based on VB algorithm have been
carried out within our group [25, 26, 27, 28, 29, 30]. Such works include
several improvements over the sequential VB algorithm (new lower and upper
bounds, efficient data structures to manage builds, new reformulation of the
problem, etc.) and also some parallel proposals.

4

This work introduces several improvements over the authors previous
approaches. Improvements are based on the detection of dominated and du-
plicated cutting patterns. This way, some non-optimal or redundant builds
are discarded, so that the search space can be significantly reduced. Such
reduction involves a decreasement on the computational effort associated to
the search process. However, for real-world instances, the search space is still
quite large, so the design of parallel approaches is decisive. The introduction
of dominance/duplication rules in the algorithm affects the search process,
so it is necessary to design parallel algorithms which can manage the highly
irregular and unpredictable search space, thus enhancing the efficiency of the
search process. In this sense, it is important not only the design of the algo-
rithm but also the implementation, so two different parallel algorithms have
been designed and both have been implemented using both shared memory
(openmp) and distributed memory paradigms (mpi). Section 2 is devoted
to describe the type of domination and duplication rules applied to discard
non-essential cutting patterns. The parallel algorithms where the dominance
rules have been introduced are presented in section 3. Section 4 shows the
obtained computational results. Finally, the conclusions and some lines of
future work are given in section 5.

2. Duplicated and Dominated Cutting Patterns

The algorithm operation involves the exploration of all promising branches
of the tree search, thus ensuring the achievement of the optimal solution.
The usage of efficient lower and upper bounds makes it possible to reduce
the search space significantly [29], although it is still very large for most real
instances. In order to reduce the search space even more, another possibility
lies in detecting duplicated or dominated tree branches. In this sense, there
exists studies on graph-theoretical models [31], although we are going to fo-
cus on the analysis on some simple problem-specific properties and rules. For
example, in the here posed problem, duplicated branches represent equivalent
cutting patterns, i.e. physically, they represent the same usage of the stock
sheet, although the same set of final pieces can be obtained through different
cutting processes (see Figure 2). Dominated branches, on the other hand,
represent non-promising cutting patterns, i.e. there exists a “similar” build
which improves somehow on the dominated one. Figure 3 shows a dominated
cutting pattern, γ1, which has the same dimensions as γ2 but includes fewer
pieces. In order to improve the efficiency of the algorithm, it is essential

5

Figure 2: Duplicated patterns

Figure 3: Dominated pattern γ1

to find and delete duplicated and dominated patterns, so that only one of
them is explored and no redundant exploration is done. There are different
alternatives for introducing rules to detect duplicated or dominated patterns:
they can be applied in the pattern generation process (pre-generation rules)
or afterwards (post-generation rules).

2.1. Pre-generation Rules

Before doing a horizontal or vertical combination of patterns, it is worth-
while to check certain conditions in order to avoid the creation of repeated or
non-promising constructions. Three different types of duplication/dominance
rules are proposed. They are based on those proposed in [12], although here,
some improvements are introduced and a completely new formulation is pro-
posed in order to simplify their understanding and implementation.

2.1.1. Type D1: dominated patterns in generation

Sometimes the combination of two different patterns produces a new build
which may introduce considerable waste of the stock sheet. When the empty
space obtained from the combination of the two builds is large enough to
accommodate one or more of the available pieces, we can avoid the generation
of such a construction. It is obvious that this construction will not lead to
an optimal solution because there is a possible build which has the same
dimensions but employs the space better, introducing extra pieces in the free
space, and so obtaining a higher profit.

6

Figure 4: Dominated patterns (γH , γV) and available pieces

Let α and β be two different patterns. Suppose that γH and γV are the
feasible patterns obtained from the horizontal and vertical combination of α

and β. Let ΘH and ΘV be the resultant empty space of the horizontal and
vertical construction, respectively (see Figure 4). Assume that xi(α) and
xi(β), with i ∈ S = {1, .., n}, represent the number of type Ti pieces used in
builds α and β, respectively. Then γH or γV are dominated patterns if:

γH : ∃i ∈ S xi(α) + xi(β) < bi and (lΘH
, wΘH

) >= (li, wi)
γV : ∃i ∈ S xi(α) + xi(β) < bi and (lΘV

, wΘV
) >= (li, wi)

where wΘH
= |wα − wβ| and lΘH

= lα if wα < wβ or lΘH
= lβ otherwise.

In the case of the vertical build, lΘV
= |lα − lβ| and wΘV

= wα if lα < lβ or
wΘH

= wβ otherwise.
This domination rule must be checked during the search process, at the

step dedicated to the combination of the current best build α with the already
explored builds β. If it is detected that the new build γH or γV is a dominated
pattern, it is not inserted in open, thus avoiding a further exploration of a
non-promising build. For each pair (α, β), the domination rule must check
if there is any available piece which fits inside the generated trim loss. So,
the complexity a single checking is O(n), being n the number of pieces.

2.1.2. Type D2: symmetric patterns in opposite directions

Let α and β be patterns obtained only by horizontal combinations of
pieces. Such a pattern containing only horizontal concatenations is denoted
H-pattern. Consider d = lα − lβ and d ≥ 0, i.e. lα ≥ lβ . Let α′ and α′′

be the last subpatterns combined horizontally to obtain α, and let β ′ and
β ′′ be the last subpatterns combined horizontally to obtain β. Then, the
pattern combinations γ1 = β ′β ′′ − α′α′′ − | and γ2 = β ′α′ | β ′′α′′ |− are said
to be symmetric (see Figure 5). If lα′ ≥ lβ′ and lα′′ ≥ lβ′′ , γ1 represents a
dominated pattern and it can be discarded. As shown in Figure 5, when

7

Figure 5: Patterns α and β and constructions γ1 and γ2

lα′ ≥ lβ′ and lα′′ ≥ lβ′′ , γ2 dominates γ1. Both contain the same pieces, so
they have the same profit, but γ2 utilizes the space better. In γ1 as well as
in γ2, the length is given by the lengths of the subpatterns α′ and α′′, i.e.
lγ1 = lγ2 = lα′ + lα′′ . The widths of γ1 and γ2 are different, however:

wγ1
= max{wβ′ , wβ′′} + max{wα′ , wα′′}

wγ2
= max{(wβ′ + wα′), (wβ′′ + wα′′)}

The width of γ1 will always be the maximum possible, while γ2 is able
to obtain a lower width. So, γ1 and γ2 are symmetric patterns - they use
exactly the same set of pieces - but γ1 needs a greater width to lay down
the pieces. Since the problem objective involves the maximization of the
stock sheet usage, γ1 represents a non-promising solution which is always
dominated by its symmetric pattern γ2.

This type of dominance is checked inside the search loop. It is evaluated
every time the current best build α and an element from open, denoted
β, are going to be vertically concatenated. First, it is necessary to check
whether both builds, α and β, are H-patterns. In the case where they both
are H-patterns, then if conditions lα′ ≥ lβ′ and lα′′ ≥ lβ′′ hold, the new
vertical build γ = αβ| (which corresponds to the previously denoted γ1) is
not created or inserted in open, because during the search process a pattern
representing γ2, and thus having better properties than γ, will be created.
As the checking involves the analysis of two representation of patterns (to
check if they have only horizontal or vertical constructions) the complexity
is O(2 ∗ m) = O(m), being m = 2 ∗ n − 1 the maximum size of a pattern
representation (note that patterns are described with the pieces involved and
the symbols | or − for denoting vertical/horizontal constructions).

8

We have developed a more accurate implementation which involves the
consideration of all possible divisions of α and β patterns into subpatterns
α′, α′′, β ′, and β ′′. Although the consideration of some other possible sub-
divisions of the patterns increases the associated cost of the rule checking,
it makes it possible to detect more dominated nodes. Moreover, during the
search not many large H-patterns are explored since the most promising cut-
ting patterns usually involve both horizontal and vertical combinations.

2.1.3. Type D3: symmetric patterns in the same direction

Let α and β be patterns obtained by only horizontal combinations of
pieces, i.e. H-patterns (or only vertical combinations of pieces, i.e. V-
patterns). The horizontal construction (the vertical case could be made in
the same way) between these two patterns, α (taken from clist) and β

(taken from open), is not created if either of the following cases is satisfied:

1. α is composed of different type of pieces:

∃i, j ∈ S = {1, .., n}, xi(α) ≥ 1, xj(α) ≥ 1, i 6= j

2. α is composed of only one type of piece, β is composed of different
types of pieces, and one of the pieces of β is the piece composing α:

∃i ∈ S = {1, .., n}, xi(α) ≥ 1 and 6 ∃j ∈ S = {1, .., n}, xj(α) ≥ 1, i 6= j

∃k, l ∈ S = {1, .., n}, xk(β) ≥ 1, xl(β) ≥ 1, k 6= l

∃m ∈ S = {1, .., n}, xm(β) ≥ 1, m = i

3. α is composed of only one type of piece, β is composed of only one type
of piece, this piece is the same for α and β, and the difference between
the number of pieces in α and β is greater than 1:

∃i ∈ S = {1, .., n}, xi(α) ≥ 1 and 6 ∃j ∈ S = {1, .., n}, xj(α) ≥ 1, i 6= j

∃k ∈ S = {1, .., n}, xk(β) ≥ 1 and 6 ∃l ∈ S = {1, .., n}, xl(β) ≥ 1, k 6= l

|xi(α) − xk(β)| > 1, i = k

These three duplication pattern cases are checked at each search step,
before doing a concatenation of patterns α and β. If both constructions α

and β are H-patterns, then if any of the three conditions is satisfied, the new
build αβ− is not generated. If both constructions α and β are V-patterns,
then if any of the three conditions is satisfied, αβ| is not generated. In
this case, the checking also has a complexity of O(2 ∗ m) = O(m), being
m = 2 ∗ n − 1 the maximum size of a pattern representation.

We must ensure that the application of these three rules do not produce
the missing of a non-redundant solution. So, we are going to analyze, on one

9

hand the generation of patterns composed of one single type of piece, and
on the other hand the generation of patterns composed of different types of
pieces. Let Tni

represents a pattern composed of n pieces of type i. If ni is
an even number, then the pattern Tni

can be obtained by the combination
of the patterns Tni/2 and Tni/2. If ni is an odd number, then the pattern Tni

can be obtained by the combination of the patterns T(ni+1)/2 and T(ni−1)/2.
In both cases, the difference of pieces between the patterns to be combined
is not greater than 1. This way, the generation of any single-type-of-piece
pattern is ensured.

Now, let be TliTmj
Tnk

a pattern composed of l pieces of type i, m pieces
of type j, and n pieces of type k, where l ∈ [1, bi], m ∈ [1, bj], and n ∈ [1, bk].
We have already ensured the achievement of sub-patterns Tli, Tmj

, and Tnk
,

because there are composed of a single type of piece. Because of the algo-
rithm operation, all these sub-patterns will be introduced in clist following
an order established by the estimation function f ′ (line 3, Algorithm 1). Sup-
posing an order Tli > Tmj

> Tnk
, i.e. Tli is the first to enter clist, Tmj

the
second and so on, then the pattern TliTmj

Tnk
can be obtaining as follows:

1. When β = Tnk
, Tmj

will be inside clist because Tmj
> Tnk

.

2. So, for α = Tmj
and β = Tnk

, the composition Tmj
Tnk

is obtained
because α doesn’t include different type of pieces and there is no pieces
of type m inside β.

3. The search process will continue until β = Tmj
Tnk

.

4. At that moment, the combination with α = Tli will be done, because
α is already in clist since Tli > Tmj

> Tnk
and because α doesn’t

include different type of pieces and there is no pieces of type i inside β.

For patterns containing more subsets of different type of pieces, the process
can be repeated introducing the necessary extra steps. Note that the order
in which the pieces may appear is not important for this analysis because we
are focused on constructions of only horizontal (vertical, respectively) com-
binations, so that, the order will not affect to the final obtained composition.

2.2. Post-generation Rules

Once new patterns have been generated, they are held in one of the
two available data structures: open or clist. Elements in open represent
generated builds that are waiting to be explored. open is implemented
as an array of pointers to linked lists of subproblems [27]. Subproblems
with the same upper bound f ′ go to the same linked list, following a FIFO

10

structure. The elements in clist, on the other hand, have already been
explored, i.e. they have been extracted from open and combined with the
elements in clist. In order to simplify the detection of patterns exceeding
the cutting stock dimensions, in the modified version of the algorithm, clist

is implemented as a bi-dimensional data structure which groups its elements
by length and width sizes [12, 27]. Elements in the same list are ordered
following a FIFO structure.

2.2.1. Type D4: duplicated/dominated patterns in OPEN

Before inserting a pattern γ in open, a check is done of whether open

already contains a pattern γ′ with the same set of pieces as γ and lower or
equal dimensions:

∀i ∈ S = {1, .., n}, xi(γ
′) = xi(γ) and lγ′ ≤ lγ , wγ′ ≤ wγ

In this case, γ is dominated (or duplicated if the dimensions match, lγ′ =
lγ and wγ′ = wγ), so it is not inserted in the list. γ is only compared with
the elements in open with the same f ′ value, i.e. a check with the whole list
would involve excessive computational effort. On the contrary, if γ dominates
one or some of the elements in open, they must be removed from the list.
Avoiding the insertion of a duplicated/dominated element in open may avoid
a future exploration of a non-promising cutting pattern. The complexity of
the checking is O(p ∗n), being p the number of elements in the open sublist
and n the number of pieces.

2.2.2. Type D5: duplicated/dominated patterns in CLIST

Every time a pattern α is going to be inserted in clist, a check is done
of whether there is already a pattern α′ in clist containing the same set
of pieces or more. Thanks to the clist structure, which stores elements by
length and width dimensions, α is only compared with the elements in clist

having the same length and width dimensions:

∀i ∈ S = {1, .., n}, xi(α
′) ≥ xi(α) and lα′ = lα, wα′ = wα

So, if an element α′ with the same dimensions as α uses the same pieces,
α is duplicated. If α′ uses the same set of pieces as α and some other ones,
then α is dominated by α′. In such cases, α is not inserted in the list. On
the contrary, if α uses the same pieces and more than some of the elements
in clist, which share dimensions with α, they are dominated by α and so
they are removed from the list. Avoiding the insertion of an element in clist

11

may save up to two combinations (horizontal and vertical) for each of the
subsequently explored cutting patterns. The complexity of the checking is
also O(p∗n), being p in this case the number of elements in the clist sublist
and n the number of pieces.

Note that when the pre-generation rules are not activated, rule D5 is
able to detect and eliminate the patterns avoided by rules D1 and D3. Since
the pairs of non-dominated and dominated patterns, and non-duplicated and
duplicated patterns analyzed in rules D1 and D3, respectively, have identical
dimensions, they will be soon or later introduced in the same position of the
clist structure, so that, they can be discarded by rule D5.

Note that these two post-generation rules are only applied for subsets of
elements in open and clist, respectively. One can think that it may be
better to apply the comparison of the given pattern to all the elements in
open or clist, respectively. However, we noted that in such cases the rule
checkings didn’t compensated for the improvement obtained in the reduction
of nodes. For this reason, we finally decided to design rules that could apply
the comparisons in a more restricted group of patterns.

3. Parallel Algorithms

We have proposed a set of dominance/duplication rules which makes pos-
sible to highly reduce the problem search space, thus reducing the computa-
tional time required for the sequential search algorithm. However, the intrin-
sic complexity of vb algorithm still makes solving large problem instances
computationally difficult. For this reason, the possibilities of parallelizing
the algorithm have been carefully studied. An analysis of Algorithm 1 shows
its intrinsically sequential nature. Each search step requires computing the
most promising non-explored meta-rectangle. Such a computation consists
of horizontal and vertical combinations of the selected meta-rectangle with
those already explored. All these combinations are necessary to ensure the
best exact solution is obtained. If some of the meta-rectangle combinations
are missed, the best solution could be missed. Taking into account this
kind of dependency between the problem tasks, two parallel approaches have
been carefully designed, thus ensuring the achievement of the optimal so-
lution. The first approach is a fine-grained approximation and involves the
parallelization of the build-generation step. The coarse-grained alternative
is based on the parallelization of the whole search loop. The study of these

12

parallel schemes shows that any attempt to parallelize the vb algorithm must
consider its highly irregular computational structure.

3.1. Fine-Grained Scheme

This implementation is based on the introduction of a parallel generation
of meta-rectangles from a certain best meta-rectangle. The general operation
of this scheme follows the same structure as that of the sequential scheme
presented in Algorithm 1. The main difference appears in the build genera-
tion loop. Each processor involved works on a section of the bi-dimensional
clist data structure, combining the current best meta-rectangle with a sub-
set of the elements in clist. Each processor keeps a replicated copy of clist.
Meanwhile, open is distributed and only contains the builds locally gener-
ated by its own processor. This management of the structures allows the
processors to work independently in the generation of new meta-rectangles.

However, after each combination of the current build with the previous
best ones, each processor must identify its own local best build, i.e. the
local meta-rectangle with highest upper bound value. To determine which is
the global best current meta-rectangle to be expanded next, each processor
communicate its local best upper build and from this subset of best builds the
best global one is determined and communicated to all the processors. This
all-to-all reduction point is shown in Figure 6. Once the processors have the
new best build, they can start with the generation work. The same reduction
point is used to update the global best solution value, so that non-promising
cutting patterns can be properly discarded.

B e s tO p e n

P0

B e s tO p e n

P
1

B e s tO p e n

P
2

B e s t U p p e r s

B e s t

CLIST

OPEN OPEN OPEN

CLIST CLIST

Figure 6: All-to-all reduction point

13

Algorithm 2 Fine-Grained Parallel Algorithm
1: if (k == MASTER) then

2: OPENk = {T1, T2, . . . , Tn};

3: sharedBestUpper[k] = StaticMap(element in OPENk with highest f’); sharedBestUpId = k;

4: else

5: OPENk = ∅;

6: end if

7: CLIST = ∅; BestSol = LowerBound(); BestSolValue: = g(BestSol);

8: while (∃i/ OPENi 6= ∅) do

9: if (k == sharedBestUpId) then

10: Remove α meta-rectangle from OPENk with highest f’;

11: else

12: α = DynamicMap(sharedBestUpper[sharedBestUpId]);

13: end if

14: Insert α in CLIST;

15: # pragma omp parallel for

16: for (all β in CLIST / xi(α) + xi(β) ≤ bi∀i, lβ + lα ≤ L) do

17: ΓH = αβ−; /* horizontal build */

18: lΓH
= lα + lβ ; wΓH

= max(wα, wβ); g(ΓH) = g(α) + g(β);

19: xi(ΓH) = xi(α) + xi(β) ∀i ∈ [1, n];

20: if (g(ΓH) >BestSolValue) then

21: Clear OPENk from BestSolValue to g(ΓH);

22: BestSolValue = g(ΓH); BestSol = ΓH ;

23: end if

24: if (f ′(ΓH) >BestSolValue) then

25: Insert ΓH in OPENk at entry f ′(ΓH);

26: end if

27: end for

28: # pragma omp parallel for

29: for (all β in CLIST / xi(α) + xi(β) ≤ bi∀i, wβ + wα ≤ W) do

30: ΓV = αβ|; /* vertical build */

31: lΓV
= max(lα, lβ); wΓV

= wα + wβ ; g(ΓV) = g(α) + g(β);

32: xi(ΓV) = xi(α) + xi(β) ∀i ∈ [1, n];

33: ...
34: end for

35: sharedBestUpper[k] = StaticMap(element in OPENk with highest f’);

36: sharedBestSolValue[k] = BestSolValue;

37: # pragma omp flush (sharedBestUpper, sharedBestSolValue)

38: if (k == MASTER) then

39: sharedBestUpId = i/ 6 ∃j sharedBestUpper[j] > sharedBestUpper[i];

40: sharedBestSolId = i/ 6 ∃j sharedBestSolValue[j] > sharedBestSolValue[i];

41: end if

42: # pragma omp flush (sharedBestUpId, sharedBestSolId)

43: if (sharedBestSolValue[sharedBestSolId] != BestSolValue) then

44: Clear OPENk from BestSolValue to sharedBestSolValue[sharedBestSolId];

45: BestSolValue = sharedBestSolValue[sharedBestSolId]; BestSol = NULL;

46: end if

47: end while

48: if (BestSol != NULL) then

49: Return BestSol;

50: end if

The parallel algorithm is based mainly on the parallelization of two for

loops together with a reduction point for the update of two variables: next
best meta-rectangle and current best solution. Because of the simplicity of
openmp and the ease of working with loops in parallel, the openmp api

was initially used to implement the fine-grained approach [27] (Algorithm 2
shows the openmp pseudocode for thread k). The usage of openmp al-

14

lowed for an easy customization of the work distribution. The combinations
through clist elements are shared out based on the openmp schedule clause.
Different static and dynamic scheduling options have been checked, although
no important differences have been noticed among them. The main obsta-
cle to implementation lies in using dynamic structures as linked lists (open

and clist). In attempting to devise a more immediate approximation where
these dynamic lists are shared, and thus modified by all the threads, we found
that there is no mechanism available to ensure the integrity of the dynamic
data. In openmp there is a pragma to ensure the integrity of a static vari-
able, #pragma flush (name of static variable), but there is no way of doing
a flush over a variable allocated in the heap. This requires the introduction
of some additional operations in order to share dynamic data.

This parallel algorithm can be easily implemented in a distributed mem-
ory scheme. In this case, the processors would exchange these variables
through mpi functions instead of using static shared data structures. More
specifically, lines 35-36 of Algorithm 2 are replaced by a packing of the best
meta-rectangle and the best solution value into a communication buffer. For
the communication of the information, line 37 is replaced by an MPI Allgatherv
operation. Then, lines 38-46 are replaced by the following: each processor
unpacks the information gathered, updates the new best solution value and
also the best current meta-rectangle to be analyzed. In this implementation,
we notice that any dynamic distribution of loop iterations, is more complex
than the ones achieved by the openmp schedule clause. The user must ex-
plicitly manage all shared variables, synchronization points and locks, thus
decreasing the simplicity - and possible the efficiency - of the approach. More-
over, the openmp implementation demonstrated that dynamic distributions
of such fine-grained tasks didn’t allow for better results. That is why both
implementations will be compared and tested with a static and equitable
distribution of the loop iterations.

3.2. Coarse-Grained Scheme

The coarse-grained approach consists of the parallel execution of the main
search loop together with a flexible synchronization scheme and a load bal-
ancing strategy [29]. Algorithm 3 shows the code for processor k. The
parallel scheme replicates clist and distributes open among the available
processors, p. Each processor independently follows the same steps as in the
sequential algorithm: selection of the best meta-rectangle of the local open

for its combination with the elements in clist. Communication among the

15

Figure 7: Irregular generation of meta-rectangles

processors is held at least every tPeriod seconds or iP eriod search iterations,
tPeriod and iP eriod being configuration parameters specified by the user.
This communication point is strictly required to generate the complete set
of feasible solutions. At this point, processes perform an all-to-all communi-
cation (line 5) to exchange information about: the best solution value, the
number of elements in open and the sets of builds that have been analyzed
since the last communication step. With the information of the best local
solutions, the current best global solution can be updated, thus allowing
processors to avoid - during the next search steps - the exploration of un-
necessary areas of the search space. The number of elements in each open

structure is also exchanged in order to have an approximate idea of each
processor’s associated work load, which is necessary for the load balancing
strategy applied (line 14).

The resulting performance depends on how the communication steps are
introduced into the algorithm. If the communication step is done only
when all processors have no pending work, the parallel algorithm obtains
no speedup at all. Processors would spend most of their time doing unneces-
sary combinations and waiting for other processors to exchange information.
So, the communication among processors must be frequently repeated during
the search process. The simplest idea is to introduce these communication
points after a certain number of search steps, iP eriod. The inconvenience
of this approach is that the work load associated with each search iteration

16

may differ considerably. Figure 7 shows the highly irregular work load asso-
ciated with different meta-rectangles. Meta-rectangle λ only generates two
new constructions, while ζ generates at least one new build when combined
with every Ti item. If communications are done every certain amount of
search iterations, many of the processes will spend most of their time idle
while a few of them are working intensely. The other proposed alternative
introduces periodically communications within a fixed time interval, tPeriod.
The simplest idea for implementing such a proposal involves checking a timer
at every search loop iteration.

The drawback to this last approach is that, as mentioned before, the
work load varies considerably from iteration to iteration, so that the timer
checkings will not equally occur among processors. However, increasing the
time period so that several search iterations can be done before the tPeriod is
reached, helps to compensate the load within iterations. Another alternative
time-based synchronization scheme which is independent of the structure of
the search iterations was tested [29, 30], although its complexity did not
compensate for the gain in synchronization effectiveness. For this reason,
here we propose the usage of both criteria together - the time and iteration
intervals - so as to make it possible to better balance the work executed by
every processor between synchronization points.

Considering that many communication steps are performed in the parallel
algorithm, a dynamic and parametric load balancing scheme was designed
in order to fairly balance the work load among processors. The size of the
open structures is not an exact indicator of the computational effort required
to solve the pending work. Nevertheless, obtaining a good distribution of
the pending tasks among processes yields good performance, because each
process has enough pending work to be busy until the next communication
step. The resulting load balancing - sharing - scheme aims to have no idle
processes by redistributing the elements of the open structures when any
process has less work than a certain threshold. The redistribution of work
usually happens before any process becomes idle, i.e. the load sharing scheme
predicts that some of the processes are going to be idle soon and performs
the redistribution.

Since the parallel algorithm is based on a completely distributed scheme,
where a single communication point is required every certain interval of time
or iterations, the initial approach was implemented in mpi. However, it is
beneficial to compare the initial mpi proposal with an approach based on
openmp. For an openmp implementation, we know that the communication

17

Algorithm 3 Coarse-Grained Parallel Algorithm
1: OPENk = {Tk+j∗p / k + j ∗ p < n}; CLIST = ∅;

2: BestSol = LowerBound(); BestSolValue = g(BestSol);

3: while (∃i/ OPENi 6= ∅) do

4: if (OPENk == ∅) or (time ≥ tPeriod) or (iters == iPeriod) then

5: (λ, C, R) = AllToAll (BestSolValue, sizeof(OPENk), PC);

6: if (max(λ) > BestSolValue) then

7: Clear OPENk from BestSolValue to max(λ);

8: BestSolValue = max(λ); BestSol = NULL;

9: end if

10: CLIST = CLIST ∪ (R - PC); PC = ∅;

11: Π = {π0, . . . , πp−1} partition of {S ⊗ T / S, T ∈ R; S 6= T};

12: Compute vertical and horizontal combinations of πk;

13: if (balanceRequired(C, minBalThresh, maxBalThresh)) then

14: loadBalance(C, MaxBalanceLength);

15: end if

16: iters = time = 0;

17: else

18: Choose α meta-rectangle from OPENk with highest f’;

19: Insert α in CLIST and in PC;

20: for (all β in CLIST / xi(α) + xi(β) ≤ bi∀i, lβ + lα ≤ L) do

21: ΓH = αβ−; /* horizontal build */

22: lΓH
= lα + lβ ; wΓH

= max(wα, wβ); g(ΓH) = g(α) + g(β);

23: xi(ΓH) = xi(α) + xi(β) ∀i ∈ [1, n];

24: if (g(ΓH) >BestSolValue) then

25: Clear OPENk from BestSolValue to g(ΓH);

26: BestSolValue = g(ΓH); BestSol = ΓH ;

27: end if

28: if (f ′(ΓH) >BestSolValue) then

29: Insert ΓH in OPENk at entry f ′(ΓH);

30: end if

31: end for

32: for (all β in CLIST / xi(α) + xi(β) ≤ bi∀i, wβ + wα ≤ W) do

33: ΓV = αβ|; /* vertical build */

34: lΓV
= max(lα, lβ); wΓV

= wα + wβ ; g(ΓV) = g(α) + g(β);

35: xi(ΓV) = xi(α) + xi(β) ∀i ∈ [1, n];

36: ...
37: end for

38: iters = iters + 1;

39: end if

40: end while

41: if (BestSol != NULL) then

42: Return BestSol;

43: end if

of the necessary synchronization data must be performed through the usage
of static shared data structures. So, the general structure of Algorithm 3 is
maintained, but the communication of data is done through shared memory.
For the all-to-all communication (line 5), the data packing, sending-receiving,
and unpacking is replaced by a write on a shared memory structure of the
best solution value, the open list size, and the set of best analyzed builds.
In order to share the set of analyzed builds, they must be mapped onto a
static structure.

18

Problem Search Time

No Dom. Pre-gen. Post-gen. All Dom.
ATP33s 2522.22 66.44 3.45 3.46
ATP36s 80.18 12.93 1.23 1.22
ATP37s 341.85 5.45 2.67 2.59
ATP39s 17.28 4.3 2.78 2.72

CL 07 25.72 140.25 20.70 6.79 5.71
CL 07 25.72 996.27 87.01 23.94 16.41
CL 07 50.89 184.55 8.24 4.22 2.78
CL 07 101.37 115.26 12.99 6.21 4.58

CW6 132.83 24.10 5.91 5.69
Hchl2 1752.04 329.92 143.24 100.86
Hchl5s 180.31 22.62 5.87 5.52
Hchl5s 193.76 24.29 8.97 7.93

Table 1: Effect of the dominance and duplication rules

4. Computational Results

In this section we analyze the impact of the proposed dominance/dupli-
cation rules and the validity of the parallel implementations when combined
with this type of sequential optimizations which involve an unpredictable
variation of the search space. The computational study was performed on
some instances which are available at [32, 33] and which have been widely
used in many related studies [13, 17, 29, 34]. Tests were run on an SMP
NovaScale 6320 node, which supports up to 32 Intel R© Itanium 2 processors
at 1.5GHz. The compilers used were: gcc 3.4.6, icc 9.1, and mpicc for MPI
Bull 1.6.5. For every experiment, ten executions were repeated and average
values considered. All the computational times are shown in seconds.

In previous works [27, 29], we have demonstrated the validity of our
sequential approach when compared to the original ones, so here we will focus
on how the detection and deletion of dominated/duplicated bounds of the
search tree affects to our sequential and parallel proposals. Table 1 presents
the results obtained when all dominance/duplication rules are incorporated
in our version of mvb algorithm. The table shows the total execution time
invested in the search of the solution when: no dominance or duplication rules
are applied, only pre-generation rules are applied, only post-generation rules
are applied, and both types of rules are applied. The results demonstrate
that both dominance rules allow for a reduction of the initial search space,
although the post-generation checks seem to have a greater effect in the
global search process. Post-generation rules are less frequently checked -
only on insertion or computational stages - and they are not too expensive
computationally. Besides, they are able to discard a considerable quantity

19

No Dominances All Dominances

Proc. Fine openmp Coarse mpi Fine openmp Coarse mpi

ATP33s

1 4190.82 4420.71 19.3 19.53
2 3361.66 2617.68 9.29 10.82
4 2141.4 1410.84 5.43 5.88
8 1919.88 789.67 7.04 3.4
16 1678.36 394.66 5.61 1.99

Hchl2

1 2733.7 3256.23 198.86 167.56
2 2463.14 2004.98 164.37 103.54
4 1867.8 1273.17 141.08 54.44
8 1610.41 1050.85 169.35 33.25
16 1622.06 767.03 149.59 18.2

CW6

1 782.65 907.19 42.25 44.36
2 238.53 476.89 30.18 26.46
4 66.3 239.18 25.2 15.33
8 32.75 131.8 45.32 9.76
16 22.89 73.23 45.69 6.0

CL 07 50 09

1 264.48 249.37 3.82 4.16
2 170.99 137.05 3.28 2.58
4 123.94 79.17 2.79 1.31
8 138.9 45.99 2.99 0.87
16 110.11 23.68 2.84 0.58

Table 2: Dominances in fine-grained and coarse-grained parallel algorithms

of nodes, even including some of the detected by some pre-generation rules.
The checking of the pre-generation rules is done more frequently but even so,
they are not able to discard as many nodes as in the post-generation case.

Table 2 shows the execution times obtained when both, the fine-grained
(see Section 3.1) and the coarse-grained (see Section 3.2), parallel algorithms
are executed with 1, 2, 4, 8, and 16 processors. In this initial experiment,
we used the original implementation of the algorithms, i.e. the openmp im-
plementation for the fine-grained and mpi for the coarse-grained. For the
coarse-grained executions the configuration parameter tPeriod is fixed to 0.1
seconds and iP eriod = 50. The same parameter configuration was used for
every test problem, i.e. the algorithm was not configured on a per prob-
lem basis. Since the detection of dominances and duplicated nodes seriously
affects the structure of the search space, two versions of the parallel algo-
rithms were checked: one without considering the detection of dominances
and another including all the dominance tests. Note that when introducing
dominance checking, the execution times for most problems are drastically
reduced. Even so, in cases where execution times are not too short, parallel

20

algorithms are still able to obtain an acceptable speedup. Comparing the two
parallel approaches, we realize that the coarse-grained one is able to better
scale when the number of processors is increased and even when the execu-
tions are not very long. However, the fine-grained shows some difficulties
when the number of processors increases and when the executions are too
short. This fact is closely related to the grain associated with each parallel
approach and to the work load distribution obtained.

Figure 8 shows the distribution of generated nodes for the openmp fine-
grained approach, i.e. created builds which are obtained from vertical or
horizontal combinations, and the balancing of computed nodes for the mpi

coarse-grained, i.e. cutting patterns combined with all previous explored
nodes. Results are shown for two different problem instances - Hchl2 and
CW6 - and for executions with 1, 2, 4, 8, and 16 processors. The load
balancing scheme introduced in the coarse-grained parallelization allows for
a fair distribution of work among processors (note that in the right-hand-side
graphics the computed builds are almost homogeneous for the two processors
involved in the 2-processor execution, for the four processors involved in the
4-processor execution, and so on. However, the distribution of load in the
fine-grained approach depends on the features of the cutting patterns, which
can be considerably different from iteration to iteration. A fair distribution
of work load is more difficult to obtain when more threads collaborate in the
search because there is not enough work to distribute and the subproblems
are not uniformly spread throughout clist.

We studied the coarse-grained algorithm in depth, given that it has shown
a more promising behavior. For the algorithm, we developed two different
implementations, an original one based on mpi and another implementa-
tion using openmp. These two implementations of the same algorithm were
compared, considering also the main configuration parameters involved in
the algorithm: the synchronization time and iteration periods, tPeriod and
iP eriod. The behavior of each of the approaches depend on the synchro-
nization parameters and also on the given problem instance. That is, the
best synchronization configuration for the openmp approach depends on the
given problem, and generally it is different from the best configuration of the
mpi implementation for that particular problem. Moreover, as mentioned
in section 3.2, the optimal behavior of the algorithm is achieved when both
synchronization parameters, time and iterations, are combined. A wide tun-
ing of the combination of these parameters has been performed in an initial
analysis. Some subsets of the best combinations of parameters are shown in

21

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
e
n
e
r
a
t
e
d

N
o
d
e
s

Proccesors

Fine Grained OpenMP - Hchl2

1
2
4
8

16

 0

 5000

 10000

 15000

 20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o
m
p
u
t
e
d

N
o
d
e
s

Proccesors

Coarse Grained MPI - Hchl2

1
2
4
8

16

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
e
n
e
r
a
t
e
d

N
o
d
e
s

Proccesors

Fine Grained OpenMP - CW6

1
2
4
8

16

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o
m
p
u
t
e
d

N
o
d
e
s

Proccesors

Coarse Grained MPI - CW6

1
2
4
8

16

Figure 8: Load balancing: openmp fine-grained vs. mpi coarse-grained

Table 3 and Table 4, for the openmp and the mpi implementations, respec-
tively. For each execution, both, the total time invested in synchronizations
and the total search time, are shown. Note that the best configuration of
the iteration interval is the same for both proposals, but with regard to the
time synchronization interval, openmp behaves better with lower intervals
than mpi. In general, openmp executions involve a lower search time, thus
improving the performance obtained by the mpi implementation. Only when
the problem is simple and the number of threads increases, is the openmp ap-
proach not able to improve on the mpi results. Initially we thought that this
may be due to the overhead introduced by the synchronizations, but consid-
ering the synchronization times shown in the “Syn.” columns of the tables,
we realize that the average time that each process spends on synchroniza-
tions is very similar for both approaches. However, on further analyzing the
algorithms, we notice that in the openmp approach, all the processes usually
arrive at the synchronization points at the same time, meaning the deviation
among synchronization times is almost insignificant when compared to those
in the mpi implementation.

22

Iter. Time Processors

1 2 4 8
Syn. Search Syn. Search Syn. Search Syn. Search

ATP33s

10
0.3 0.000 19.264 1.246 10.097 0.994 5.240 0.990 3.526
0.6 0.000 19.092 1.315 10.229 1.012 5.298 1.765 4.363

15
0.3 0.000 19.028 0.292 9.346 0.244 4.666 0.320 2.767
0.6 0.000 19.081 1.115 9.968 1.129 5.514 1.800 4.573

Hchl2

10
0.3 0.006 183.719 17.329 101.984 11.225 47.638 8.530 30.890
0.6 0.005 184.880 17.114 97.595 11.437 48.402 8.032 30.397

15
0.3 0.004 184.865 15.616 93.245 10.762 47.951 7.638 29.179
0.6 0.004 183.119 15.479 92.043 11.581 49.041 8.233 30.273

CW6

10
0.3 0.000 43.183 0.723 22.953 0.713 13.088 0.929 8.774
0.6 0.000 43.184 1.309 23.690 1.243 14.245 1.387 9.806

15
0.3 0.000 43.133 0.848 23.429 0.710 12.697 0.797 8.235
0.6 0.000 43.213 0.471 22.912 0.454 13.483 1.177 9.432

CL 07 50 09

10
0.3 0.000 4.037 0.321 2.084 0.189 1.103 0.182 0.769
0.6 0.000 4.030 0.312 2.065 0.189 1.093 0.146 0.749

15
0.3 0.000 4.024 0.247 2.004 0.209 1.200 0.149 0.768
0.6 0.000 4.012 0.189 1.913 0.168 1.163 0.198 0.828

Table 3: Coarse-grained algorithm: openmp implementation

Iter. Time Processors

1 2 4 8
Syn. Search Syn. Search Syn. Search Syn. Search

ATP33s

10
1.5 0.005 19.048 0.670 10.766 0.729 6.010 0.681 3.625
2.0 0.005 18.953 0.680 10.859 0.730 6.007 0.652 3.595

15
1.5 0.004 18.929 0.740 10.638 0.827 6.247 0.573 3.338
2.0 0.004 18.956 0.769 10.732 0.858 6.322 0.556 3.307

Hchl2

10
1.5 0.145 162.108 12.108 111.075 12.607 63.422 9.322 35.926
2.0 0.146 162.011 12.086 111.326 12.837 64.514 9.324 35.872

15
1.5 0.116 166.109 12.870 115.838 11.851 63.919 7.773 33.496
2.0 0.117 162.728 12.815 115.474 11.620 63.400 7.805 33.572

CW6

10
1.5 0.005 43.163 2.841 26.811 3.196 17.856 3.541 11.909
2.0 0.005 42.880 2.852 26.897 3.193 17.813 3.533 11.886

15
1.5 0.004 43.143 2.053 26.642 2.304 18.261 2.357 11.028
1.0 0.004 42.918 2.064 26.852 2.308 18.280 2.596 11.347

CL 07 50 09

10
1.5 0.015 4.068 0.129 2.101 0.136 1.198 0.102 0.650
2.0 0.014 4.086 0.130 2.095 0.151 1.290 0.103 0.650

15
1.5 0.013 4.034 0.121 2.096 0.110 1.270 0.092 0.672
2.0 0.013 4.024 0.123 2.102 0.109 1.270 0.093 0.674

Table 4: Coarse-grained algorithm: mpi implementation

23

5. Conclusions

This work presents a set of dominance/duplication rules that makes it
possible to significantly reduce the solution search space, thus allowing for
an improvement in the efficiency of the best-first algorithm for the 2D Cut-
ting Problem. Dominance and duplication rules are based on the internal
properties of the problem solutions, i.e. the combination of pieces to gener-
ate the cutting patterns. Some rules can be checked previously to the pattern
generation process and other are checked after the creation of the builds. Al-
though they are less frequently applied, the post-generation rules have shown
a higher effect on the reduction of the total search time. They are not too
expensive computationally and they are able to detect redundant builds that
are also detected by some pre-generation checkings.

In order to handle even larger instances, two parallel schemes - based
on mvb algorithm - were also presented. The first approach is based on
a fine-grained model which executes the generation loops in parallel. The
other parallel scheme relies on a coarse-grained model. which is based on the
parallel execution of the search loop and on the introduction of efficient syn-
chronization and load-balancing schemes. For the coarse-grained algorithm,
different synchronization schemes were proposed: based on search iterations,
time intervals, or on a combination of both.

The results obtained with the fine-grained approach are not good enough
due to the highly irregular distribution of the work load. The real work
load depends on the number of builds stored in each clist matrix position,
and usually the builds are not uniformly spread throughout the structure.
However, in spite of the highly irregular computational structure and the
difficulties in breaking the sequential nature of best-first search approaches,
the combination of a bulk synchronous methodology with the use of a load-
balancing strategy resulted in a fair work load balance and a linear speedup
for the coarse-grained algorithm.

On the other hand, the comparison between openmp and mpi implemen-
tations shows that openmp performs better when the synchronizations are
done very frequently and involve the communication of a reduced amount
of data. mpi implementations showed better performance when the quan-
tity of data to communicate compensates for the network latency. Moreover,
mpi results demonstrate that it is able to better scale when compared to the
openmp implementations. We have demonstrated that, even for algorithms
with inherent sequential structure, it is possible to design suitable parallel

24

schemes capable of improving the efficiency of the approach. Furthermore, it
is important to note that the efficiency of the parallel schemes mainly depend
on the work grain and load distribution, although the selection of a suitable
parallel programming tool may be also decisive.

6. Acknowledgements

This work was funded by the ec (feder) and the Spanish Ministry of
Science and Technology as part of the ‘Plan Nacional de i+d+i’ (tin2008-

06491-c04-02). The Canary Government has also funded this work through
the pi2007/015 research project. The work of Jesica de Armas was funded
by grant fpu-ap2007-02414.

References

[1] H. Dyckhoff, A Typology of Cutting and Packing Problems, European
Journal of Operational Research 44 (2) (1990) 145–159.

[2] P. E. Sweeney, E. R. Paternoster, Cutting and Packing Problems: A
categorized, application-orientated research bibliography, Journal of the
Operational Research Society 43 (7) (1992) 691–706.

[3] G. Wäscher, H. Haußner, H. Schumann, An improved typology of cut-
ting and packing problems, European Journal of Operational Research
183 (3) (2007) 1109–1130.

[4] N. Christofides, C. Whitlock, An Algorithm for Two-Dimensional Cut-
ting Problems, Operations Research 25 (1) (1977) 30–44.

[5] P. Y. Wang, Two Algorithms for Constrained Two-Dimensional Cutting
Stock Problems, Operations Research 31 (3) (1983) 573–586.

[6] V. Zissimopoulos, Heuristic methods for solving (un)constrained two-
dimensional cutting stock problems, Methods of Operations Research
49 (1985) 345–357.

[7] F. Vasko, A computational improvement to Wang’s two-dimensional
cutting stock algorithm, Computers and Industrial Engineering 16 (1)
(1989) 109–115.

25

[8] J. Oliveira, J. Ferreira, An improved version of Wang’s algorithm for
two-dimensional cutting problems, European Journal of Operational Re-
search 44 (1990) 256–266.

[9] K. V. Viswanathan, A. Bagchi, Best-First Search Methods for Con-
strained Two-Dimensional Cutting Stock Problems, Operations Re-
search 41 (4) (1993) 768–776.

[10] S. Tschöke, N. Holthöfer, A New Parallel Approach to the Constrained
Two-Dimensional Cutting Stock Problem, in: Parallel Algorithms for
Irregularly Structured Problems, Springer-Verlag, 1995, pp. 285–300.

[11] M. Hifi, An Improvement of Viswanathan and Bagchi’s Exact Algorithm
for Constrained Two-Dimensional Cutting Stock, Computer Operations
Research 24 (8) (1997) 727–736.

[12] V. D. Cung, M. Hifi, B. Le-Cun, Constrained Two-Dimensional Cutting
Stock Problems: A Best-First Branch-and-Bound Algorithm, Tech. Rep.
97/020, Laboratoire PRiSM, Université de Versailles (1997).

[13] M. H. Didier Fayard, V. Zissimopoulos, An Efficient Approach for Large-
Scale Two-dimensional Guillotine Cutting Stock Problems, JORS 49
(1998) 1270–1277.

[14] L. D. Nicklas, R. W. Atkins, S. K. Setia, P. Y. Wang, The Design and
Implementation of a Parallel Solution to the Cutting Stock Problem,
Concurrency - Practice and Experience 10 (10) (1998) 783–805.

[15] V.-D. Cung, M. Hifi, B. Le-Cun, Constrained Two-Dimensional Cutting
Stock Problems: A Best-First Branch-and-Bound Algorithm, ITOR 7
(2000) 185–210.

[16] M. H. Van-Dat Cung, B. Le-Cun, Constrained Two-Dimensional Cut-
ting Stock Problems: The NMVB approach and the Duplicate Test
Revisited, Tech. Rep. 2000.127, Université de Paris (2000).

[17] R. Alvarez-Valds, A. Parajn, J. Tamarit, A tabu search algorithm
for large-scale guillotine (un)constrained two-dimensional cutting prob-
lems, Computers and Operations Research 29 (7) (2002) 925–947.
doi:http://dx.doi.org/10.1016/S0305-0548(00)00095-2.

26

[18] D. Fayard, V. Zissimopoulos, An approximation algorithm for solving
unconstrained two-dimensional knapsack problems, European Journal
of Operational Research 84 (3) (1995) 618–632.

[19] M. Hifi, V. Zissimopoulos, Constrained Two-Dimensional Cutting: An
Improvement of Christofides and Whitlock’s Exact Algorithm, The Jour-
nal of the Operational Research Society 48 (3) (1997) 324–331.

[20] Y. Cui, Heuristic and exact algorithms for generating homogenous con-
strained three-staged cutting patterns, Computers and Operations Re-
search 35 (2008) 212–225.

[21] Y. Cui, An exact algorithm for generating homogeneous two-segment
cutting patterns, Engineering Optimization 39 (2007) 365–380.

[22] Y. Cui, An exact algorithm for generating homogenous t-shape cutting
patterns, Computers and Operations Research 34 (2007) 1107–1120.

[23] F. Vasko, C. Bartkowski, Using Wang’s two-dimensional cutting stock
algorithm to optimally solve difficult problems, International Transac-
tions in Operational Research 16 (2009) 829–838.

[24] P. C. Gilmore, R. E. Gomory, The Theory and Computation of Knapsack
Functions, Operations Research 14 (1966) 1045–1074.

[25] G. Miranda, C. León, An OpenMP skeleton for the A* heuristic search,
in: Springer-Verlag (Ed.), High Performance Computing and Commu-
nications, Vol. 3726 of LNCS, Naples, Italy, 2005, pp. 717–722.

[26] G. Miranda, C. León, OpenMP skeletons for tree searches, in: 14th
Euromicro Conference on Parallel, Distributed and Network-based Pro-
cessing, IEEE Computer Society, Montbeliard-Sochaux, France, 2006,
pp. 423–430.

[27] L. Garćıa, C. León, G. Miranda, C. Rodŕıguez, A Parallel Algorithm for
the Two-Dimensional Cutting Stock Problem, in: European Conference
on Parallel Computing (Euro-Par), Vol. 4128 of LNCS, Springer-Verlag,
Dresden, Germany, 2006, pp. 821–830.

27

[28] L. Garćıa, C. León, G. Miranda, C. Rodŕıguez, Two-Dimensional Cut-
ting Stock Problem: shared memory parallelizations, in: 5th Inter-
national Symposium on Parallel Computing in Electrical Engineering,
IEEE Computer Society, Bialystok, Poland, 2006, pp. 438–443.

[29] C. León, G. Miranda, C. Rodŕıguez, C. Segura, 2D Cutting Stock Prob-
lem: a New Parallel Algorithm and Bounds, in: European Conference
on Parallel Computing (Euro-Par), Vol. 4641 of LNCS, Springer-Verlag,
Rennes, France, 2007, pp. 795–804.

[30] C. León, G. Miranda, C. Rodŕıguez, C. Segura, A distributed paral-
lel algorithm to solve the 2D cutting stock problem, in: 16th Euromi-
cro Conference on Parallel, Distributed and Netword-Based Processing,
IEEE Computer Society, Toulouse, France, 2008, pp. 429–434.

[31] F. Clautiaux, A. Jouglet, A. Moukrim, A New Graph-Theoretical Model
for k-Dimensional Guillotine-Cutting Problems, in: Experimental Al-
gorithms, Vol. 5038 of LNCS, Springer Berlin / Heidelberg, 2008, pp.
43–54.

[32] DEIS - Operations Research Group, Library of Instances,
http://www.or.deis.unibo.it/research pages/ORinstances/2CBP.html.

[33] M. Hifi, 2D Cutting Stock Problem Instances,
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/.

[34] A. Caprara, P. Toth, Lower bounds and algorithms for the 2-dimensional
vector packing problem, Tech. Rep. OR/97/3, University of Bologna
(1997).

28

