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Abstract 

The primary goal of this paper is the development of a generalized method to compute the fill 

rate for any discrete demand distribution in a periodic review policy. The fill rate is defined as 

the fraction of demand that is satisfied directly from shelf. In the majority of related work, this 

service metric is computed by using what is known as the traditional approximation, which 

calculates the fill rate as the complement of the quotient between the expected unfulfilled 

demand and the expected demand per replenishment cycle, instead of focusing on the 

expected fraction of fulfilled demand. This paper shows the systematic underestimation of the 

fill rate when the traditional approximation is used, and revises both the foundations of the 

traditional approach and the definition of fill rate itself. As a result, this paper presents the 

following main contributions: (i) a new exact procedure to compute the traditional 

approximation for any discrete demand distribution; (ii) a more suitable definition of the fill 

rate in order to ignore those cycles without demand; and (iii) a new standard procedure to 

compute the fill rate that outperforms previous approaches, especially when the probability of 

zero demand is substantial. This paper focuses on the traditional periodic review, order up to 

level system under any uncorrelated, discrete and stationary demand pattern for the lost sales 

scenario. 
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1. Introduction and literature review 

One of the service measures most commonly used in practice is the volume fill rate, defined 

as the fraction of demand that is immediately fulfilled from on hand stock (see Silver et al. 

(1998) or Axsäter (2000) among others). Therefore, in practice it also indicates the size of the 

backordering demand when this is allowed (Tempelmeier (2007)). The volume fill rate is also 

known as item fill rate, unit fill rate or just fill rate (denoted by β in the rest of this paper). 

Over the last sixty years, several works have suggested methods to estimate the fill rate in 

different contexts. However, to the best of our knowledge, there is not any exact and general 

method to estimate it under any discrete demand context. This paper focuses on the exact 

estimation of the fill rate for the periodic review, order up to level (base stock) system. This 

stock policy is commonly denoted by (R, S) and consists of examining the status of an item 

every R fixed time periods and launching a replenishment order which raises the inventory 

position to the order up to level S. 

Traditionally the estimation of the fill rate is simplified through the computation of the 

number of units short, i.e. the demand that is not satisfied, instead of computing directly the 

fulfilled demand per replenishment cycle. This approach was named as the traditional 

approximation (denoted by βApprox in the rest of this paper) by Johnson et al.  (1995) and 

consists of calculating the complement of the quotient between  the expected unfulfilled 

demand per replenishment cycle and the total expected demand per replenishment cycle as 

follows 

  
 

 
1Approx

E unfulfilled demand per replenishment cycle

E total demand per replenishment cycle
    (1) 

Given that the expected demand per replenishment cycle can be easily calculated, methods 

based on the traditional approach focus on estimating the expected unfulfilled demand per 

replenishment cycle (also known as expected shortage). Additionally most of the authors 

assume a normally distributed demand for the (R, S) system, e.g. Hadley and Whitin (1963), 

Silver and Peterson (1985), de Kok (1990), Johnson et al.  (1995) and Silver and Bischak 

(2011). Even those authors that define the fill rate as the long run average fraction of demand 

satisfied immediately from shelf, estimate it by using the traditional approximation [Sobel 

(2004); Zhang and Zhang (2007) and Chen et al.  (2003)]. In fact, Teunter (2009) 

demonstrates the equivalence between the long run approach and the traditional 

approximation. Then, the study of the related literature reveals that the traditional 

approximation is the most common method used to compute the fill rate. However there is not 
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available a general and exact expression to calculate the fill rate when demand is modelled 

with any discrete demand pattern for the (R, S) system.  

Another approach to compute the fill rate consists of directly estimating the fraction of the 

fulfilled demand per replenishment cycle instead of determining the expected shortage. But in 

this case as well, estimation methods are developed just for specific demand distributions and 

inventory systems, as is the case of Feeney and Sherbrooke (1966), who develop an exact 

method for the sales replacement policy (S-1, S) when demand follows a compound Poisson 

process, which is later simplified by Muckstadt and Thomas (1980) for the Poisson 

distribution. On the other hand, Boyaci and Gallego (2001) develop an estimation method of 

the fill rate under Poisson demand distribution when the inventory is continuously reviewed in 

an order point, order up to level (s, S) system.  

Reference 
Inventory 

Policy 

Demand 

Pattern 

Fill Rate 

Approach 
Exact 

Hadley and Whitin (1963) (R, S) Normal TA y 

  Poisson TA y 

Feeney and Sherbrooke (1966) (S-1, S) Compound Poisson FD y 

Muckstadt and Thomas (1980) (S-1, S) Poisson FD y 

Silver and Peterson (1985) (R, S) Normal TA n 

de Kok (1990) (R, S) Normal TA y 

Johnson et al.  (1995) (R, S) Normal TA y 

Boyaci and Gallego (2001) (s, S) Poisson FD y 

Sobel (2004) (R, S) Any continuous TA y 

  Gamma TA y 

  Normal TA y 

  Normal TA n 

Zhang and Zhang (2007) (R, S) Any continuous TA y 

  Normal TA y 

  Normal TA n 

Teunter (2009) (R, S) Any continuous TA y 

Silver and Bischak (2011) (R, S) Normal TA y 

Approach: Traditional approximation (TA), Expected fraction of fulfilled demand (FD). Exact: yes (y), no (n) 

Table 1: Overview of approaches and methods to compute the fill rate. 

 

Table 1 summarizes the different methods and approaches previously cited that are used to 

compute the fill rate. This paper proposes for the (R, S) system, for any discrete demand 

pattern: (1) a general method to compute the traditional approximation; and (2) a general 

method to compute the fill rate as the fraction of demand that is immediately fulfilled from 
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shelf. In order to achieve these objectives, the fill rate definition is revised to avoid cycles 

without demand. Furthermore this paper assumes that unfulfilled demand is lost, that is the 

most common situation in certain industries such as the retail sector (Johansen (2005)). 

The remaining Sections of this paper are organized as follows. The periodic review policy, 

notation and assumptions of this paper are introduced in Section 2. Section 3 is dedicated to 

the derivation of a standard method to compute the expected unfulfilled demand per 

replenishment cycle and to test the performance of the traditional approximation. Section 4 

focuses on the fill rate definition and derives a revised method to compute the fill rate, based 

on this definition. However, the lack of accuracy that the revised approach shows for patterns 

with a high probability of zero demand leads us to review the fill rate definition in Section 5, 

and to derive a generalized method able to provide the exact value of the fill rate even when 

the probability of no demand during the cycle cannot be ignored. Finally, Section 6 is 

dedicated to the discussion of the methods presented in Sections 3, 4 and 5 and to summarize 

the main contributions of this paper. 

 

2. Basic notation and assumptions  

The traditional periodic review, order up to level (R, S) system places replenishment orders 

every R units of time of sufficient magnitude to raise the inventory position to the order up to 

level S. The replenishment order is received L periods after being launched. Figure 1 shows an 

example of the evolution of the on hand stock in this system. Notation in the rest of the paper 

is as follows 

S = order up to level (units), 

R = review period corresponding to the time between two consecutive reviews 

and replenishment cycle corresponding to the time between two 

consecutive deliveries (time units), 

L = lead time for the replenishment order, 

zt = on hand stock at time t from the first reception, 

Dt = total demand during t consecutive periods, 

ft(·) = probability mass function of Dt , 

Ft(·) = cumulative distribution function of Dt , 
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Figure 1: On hand stock and inventory position evolution in a periodic review, lost sales 

order up to level system 

The rest of the paper assumes that: (i) time is discrete and is organized in a numerable and 

infinite succession of equi spaced instants; (ii) the lead time, L, is constant; (iii) only one 

outstanding replenishment order is launched within any period which means that L<R; (iv) 

backlogged demand is not allowed; (v) the replenishment order is added to the inventory at 

the end of the period in which it is received, hence these products are available for the next 

period; (vi) demand during a period is fulfilled with the on hand stock at the beginning of the 

period; and (vii) the demand process is considered stationary, independent and identically 

distributed, i.i.d., and defined by any discrete function. Note that assumption (iii) is widely 

used in the common derivation of policies for the lost sales scenario. The complexity to 

extend it to more than one replenishment order is explained in Hadley and Whitin (1963). 

 

3. Standard method to compute the traditional approximation 

The traditional approximation of the fill rate computes the complement of the ratio between 

the expected unfulfilled demand and the expected demand per replenishment cycle as shown 

in expression (1). The expected demand can be straightforwardly computed so all that is left 

to compute is the expected unfulfilled demand per replenishment cycle. However, as the 

introduction points out, the related literature only suggests expressions to compute it for 

specific demand distributions. Section 3.1 is dedicated to the proposal of a standard method 

for the calculation of the expected unfulfilled demand that can be used when demand follows 

any discrete demand distribution, according to the assumptions detailed in the previous 
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section. After that, Section 3.2 shows the performance of the method comparing with 

simulated data. 

3.1. Derivation 

The unfulfilled demand per replenishment cycle depends on both the amount of demand 

during the cycle, DR, and the on hand stock level just after the replenishment arrives at the 

beginning of the cycle, z0. Obviously, under periodic review conditions, a shortage occurs 

whenever DR>z0 and hence, for any feasible value of  0 0,z S , the expected unfulfilled 

demand per cycle is as follows 

     0

0 1

S

R

i j i

E (unfulfilled demand per replenishment cycle) P z i j i P D j


  

        (2) 

The complexity of (2) is, in fact, in how to compute the probability of every stock level at the 

beginning of the cycle i.e., the whole vector ( )0P z . Note that we assume that the on hand 

stock at the beginning of the cycle can be from 0 to S. To estimate the probability of every z0, 

we follow the inductive approach proposed by Cardós et al.  (2006) which is further explained 

in Cardos and Babiloni (2011). This probability vector is computed by means of calculating 

the probability transition matrixes of the on hand stock levels between: (i) the beginning of 

the cycle and the review (times 0 and R-L in Figure 1); and (ii) the review and the beginning 

of the next replenishment cycle (times R-L and R in Figure 1). In summary, the computational 

effort to find the pmf of z0 is substantial.  Once ( )0P z is known, substituting expression (2) 

into expression (1), the standard method to compute the traditional approximation of the fill 

rate can be expressed as

     

 

0

0 1

1

1

S

R

i j i

Approx

R

j

P z i j i f j

j f j





  





   

 



 


 (3) 

where the denominator represents the expected total demand per replenishment cycle.  

 

3.2. Illustrative examples and discussion 

This section illustrates the performance of expression (3) against the simulated fill rate, βSim, 

which is computed as the average fraction of the fulfilled demand in every replenishment 

cycle when considering 20,000 consecutive periods: 

 
1

 1

 

T
t

Sim

t t

fulfilled demand

T total demand




   (4) 
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where T indicates the total number of replenishment cycles. This simulation uses the data 

from Table 2 which encompasses 54 different cases. 

Lead time L = 1, 2 

Review period R = 5  

Order up to level S = 1, 2, 3, 4, 5, 6, 7, 8, 9 

Demand variability (Poisson distributed) λ = 1, 1.5, 3 

Table 2: First set of data (54 cases) 

 

Figure 2 presents the comparison between βApprox and βSim for the Table 2 cases and shows the 

significant deviation that appears between them. In fact, βApprox underestimates the simulated 

fill rate for all the cases and therefore the traditional approximation seems to be biased. When 

demand is normally distributed, Johnson et al.  (1995) pointed out results similar to those we 

obtained for the Poisson distribution. Hence, the traditional approximation produces 

significant deviations that cannot be neglected. Note that the expression (3) leads to the exact 

value of the traditional approximation. Therefore deviations that Figure 2 shows arise from 

estimating the fill rate using the traditional approach (see expression (1)) and not from how it 

is calculated.  
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Figure 2: βApprox vs. βSim for the cases from Table 2 

 

 

4. A revised approach focused on the fill rate definition 

In an effort to understand the lack of accuracy the traditional approximation shows, we realize 

that expression (1) does not really fit the fill rate definition. As mentioned, the fill rate is 
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defined as the fraction of the demand that is fulfilled immediately from the on hand stock. 

Therefore, according to the definition, the fill rate is 

 
fulfilled demand per replenishment cycle

E
total demand per replenishment cycle

 
 
 

 (5) 

As known,      E X Y E X E Y    if X and Y are independent random variables. Even in 

this context,  
1X

E E X E
Y Y

   
    

   
 but 

 
1 1

E
Y E Y

 
 

 
 and therefore 

 

 

E XX
E

Y E Y

 
 

 
 (see 

for example Grinstead and Snell (1997)). 

Therefore, 

 

 

        

        

E fulfilled demad per replenishment cyclefulfilled demad per replenishment cycle
E

total demand per replenishment cycle E total demand per replenishment cycle

 
 

 

 

note that 

 

 

 

 
1

E fulfilled demand per replenishment cycle E unfulfilled demand per replenishment cycle

E total demand  per replenishment cycle E total demand  per replenishment cycle
 

 

and then 

 

 
1

E unfulfilled demand per replenishment cyclefulfilled demand per replenishment cycle
E

total demand  per replenishment cycle E total demand  per replenishment cycle

 
  

 

 

This section is dedicated to derive an exact method to estimate the fill rate following the 

expression (5) for the (R, S) system valid for any discrete distribution of demand. This method 

is named as βRev and its performance over different Poisson demand patterns is analyzed 

through some illustrative examples in Section 4.2. 

 

4.1. Derivation  

Demand during a replenishment cycle can be: (i) lower than or equal to the on hand stock at 

the beginning of the cycle, i.e. DR≤z0. Then the fill rate will be equal to 1; or (ii) greater than 

the on hand stock at the beginning of this cycle, i.e. DR>z0. Then the fill rate will be the 

fraction of this demand that is satisfied by the on hand stock at the beginning of this cycle. 

Therefore, if we know exactly the on hand stock level at the beginning of the cycle, z0=i, then 

βRev can be calculated as 
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      Re 0

1

v R R

j i

i
z i P D i P D j

j




 

       (6) 

Expressing (6) through the probability mass and cumulative distribution functions, ft(·) and 

Ft(·) respectively,  

      Re 0

1

v R R

j i

i
z i F i f j

j




 

     (7) 

Finally, applying expression (7) to every stock level at the beginning of the cycle  0 0,z S  

the general method to compute βRev is 

      Re 0

0 1

S

v R R

i j i

i
P z i F i f j

j




  

 
     

 
   (8) 

 

4.2 Illustrative examples and discussion 

Using the data from Table 2, Figure 3 shows the comparison between βRev and βSim where 

neither bias nor significant deviations appear. Therefore, the suggested revised method 

outperforms the traditional approximation for these cases.  
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Figure 3: βRev vs. βSim for the cases from Table 2 

 

However, with the aim of testing the performance of βRev over different demand patterns we 

use a new set of data that includes Poisson distributions with a high probability of zero 
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demand over the replenishment cycle. Figure 4 illustrates the performance of βSim versus βRev 

for the 54 cases which result from the set of data summarized in Table 3. 

 

Lead time L = 1, 2 

Review period R = 5  

Order up to level S = 1, 2, 3, 4, 5, 6, 7, 8, 9 

Demand rate (Poisson distributed) λ = 0.01, 0.1, 0.5 

Table 3: Second set of data (54 cases) 
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Figure 4: βRev vs. βSim for the cases from Table 3 

 

Figure 4 shows the following main results: (i) significant deviations appear between βRev and 

βSim; and (ii) βRev tends to overestimate βSim. We find that during the cycles without demand 

expression (8) leads to consider the fill rate equal to 1. As a consequence of this reasoning, 

βRev always overestimates βSim in those cycles. However, from a practical point of view, it is 

useless to consider a service metric when there is no demand to be served. For example, 

consider a sku whose stock is reviewed monthly over a year and with no demand during 11 

months. The fill rate per cycle will be equal to 1 if it is estimated through expression (8). 

Suppose now that two units are demanded in month 12 but there is only one available unit on 

the shelf. The fill rate for this last month will be 0.50. After that, the annual fill rate for this 

sku will be equal to 0.96 when in fact just half of the demanded units per year have been 

served. Therefore, computing the fill rate using expression (8) does not show the real 

performance of the inventory system. As a consequence cycles without demand should not be 
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taken into account to estimate the fill rate. Thus, although βRev is more accurate than the 

traditional approximation, it cannot be accepted as a general method to estimate the fill rate. 

 

5. The proposed approach: a generalized method to estimate the fill rate 

In order to overcome the shortcoming explained above, we need to include explicitly the 

condition of having positive demand during the cycle in the fill rate definition. Therefore, we 

propose a generalized definition of the fill rate as the fraction of demand that is fulfilled with 

the on hand stock during a cycle with positive demand, which is expressed as 

fulfilled demand per replenishment cycle 
E | positive demand during the cycle

total demand per replenishment cycle

 
 
 

 (9) 

Sections 5.1 and 5.2 are dedicated to the derivation of a generalized method named as *
 to 

compute the fill rate according to the expression (9), and to measure its performance, 

respectively. 

 

5.1. Derivation 

Following the same reasoning as in Section 4.1., if we know the on hand stock level z0 at the 

beginning of the cycle, we can calculate its fill rate β
*
 using the following expression 

      *

0

1

| 0 | 0 | 0R R R R R

j i

i
z i D P D i D P D j D

j




 

          (10) 

Note that this expression is the same as the expression (6), but including the condition of 

positive demand during the replenishment cycle. Using the probability mass function and the 

cumulative distribution function, we can rewrite (10) as follows 

 
   

 

 

 
*

0

1

0
( | 0)

1 0 1 0

R R R

R

j iR R

F i F f ji
z i D

F j F




 


    

 
  (11) 

Extending expression (11) to every feasible value of z0, the generalized expression to compute 

β
*
 results as 

  
   

 

 

 
*

0

0 1

0

1 0 1 0

S
R R R

i j iR R

F i F f ji
P z i

F j F




  

  
     

   
   (12) 
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5.2. Illustrative examples and discussion 

Figure 5 shows the comparison between β
*
 and βSim for the resultant cases from Table 2 and 

Table 3. As can be observed neither bias nor significant deviations appears on it for any of the 

108 aggregated cases. Therefore in these cases β
*
 seems to compute accurately the fill rate 

even when the probability of no demand during the cycle cannot be neglected. 
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Figure 5: β* vs. βSim for the cases from Table 2 and Table 3 

 

 

6. Discussion and summary 

The traditional approximation of the fill rate, Approx, computes it by estimating the ratio 

between the expected unfulfilled demand per replenishment cycle and the total expected 

demand per replenishment cycle. According to the related literature, the difficulty consists of 

obtaining the expected unfulfilled demand (expected shortage) during the replenishment cycle. 

We presented in Section 3 a standard method to calculate the exact expected unfulfilled 

demand per replenishment cycle and use it to compute Approx for any discrete demand 

distribution. However, when we tested its performance versus the simulated fill rate (see 

Figure 2), we realised that the traditional approximation tends to underestimate the simulated 

fill rate, and therefore the traditional approximation is biased. An important consequence of 

this is found when using a target fill rate to determine the order up to level of the inventory 

policy. Figure 6 shows the evolution of the traditional approximation, βApprox, and the exact 

estimation, β
*
, when increasing the order up to level for a Poisson distributed demand with 

demand rate λ=1, review period R=5 and lead time L=2. It can be seen that if, for example, a 

target fill rate is set to 0.70, the traditional approximation leads to S=5 whereas in fact just 

S=4 is necessary to reach the target. In this example, using the traditional approximation to 
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determine S leads to an increase in the average stock level and thus the inventory holding cost 

of the system. This inefficiency is especially relevant in industries in which the unit cost of 

the item is high and/or storage space is limited. Therefore, managers should be aware of the 

risk of using the traditional approximation to set the order up to level. 
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Figure 6: Comparison between the traditional approximation, βApprox, and the exact 

estimation, β
*
, with Poisson demand with λ=1, R= 5 and L=2. 

 

In order to improve the fill rate estimation we later focused on the fill rate definition and 

suggest a revised method, Rev, to directly estimate the expected fulfilled demand per 

replenishment cycle exactly as stated by the definition itself. This method works properly in 

some cases, as Figure 3 shows; however the simulated fill rate is overestimated by Rev when 

dealing with demand patterns with a significant probability of zero demand, as in Figure 4. 

These results lead us to go back again to the fill rate definition which is generalized in Section 

5 to explicitly avoid the chance of no demand during the cycle. In keeping with this, a new 

generalized and exact estimation method, *
, is proposed in Section 5 to compute the fill rate 

with any discrete demand pattern, as illustrated by Figure 5. Therefore, the generalized fill 

rate method proposed in this paper, *
: (i) leads to the exact fill rate value; (ii) is suitable even 

when the probability of zero demand cannot be neglected; (iii) can be applied to any discrete 

demand distribution. Note that the need to consider only cycles with positive demand does not 

emerge when using the traditional approximation because it just considers the expected 

demand, and in the case of no demand cycles it does not affect the estimation.  

This paper proposes a revised definition of the fill rate in a discrete demand context to avoid 

the distortion caused by the cycles with no demand. However, the revised definition also 
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applies when demand is continuous because the cycles without demand have also to be 

removed to obtain a useful and general service metric. In fact, the exact estimation procedures 

that can be found in the literature for both discrete or continuous demand can only be applied 

when the chance of no demand during the cycle is negligible as pointed out by Silver and 

Bischak (2011). 

This paper is part of a wider research project devoted to identify the most simple and effective 

method to find the lowest value of S which ensures the target fill rate under discrete context. 

Therefore, further extensions should be focused on: (i) assessing the exact method when using 

other discrete distribution functions of demand able to model significant variability on 

demand sizes with a high probability of zero demand; (ii) characterizing the cases where 

approximations (including some possible new ones) have the most important deviations, (iii) 

analyzing risks of using different fill rate approximations to set the parameters of the stock 

policy, and (iv) deriving a new expression for the backordering scenario that follows the 

approach suggested in this paper. 
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