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Abstract

Many sports fans invest a great deal of time into watching and analyzing the per-
formance of their favorite team. However, the tools at their disposal are primarily
heuristic or based on folk wisdom. We provide a concrete mechanism for calcu-
lating the minimum number of points needed to guarantee a playoff spot and the
minimum number of points needed to possibly qualify for a playoff spot in the
National Hockey League (NHL). Our approach uses a combination of constraint
programming, enumeration, network flows and decomposition to solve the prob-
lem efficiently. The technique can successfully be applied to any team at any point
of the season to determine how well ateam must do to make the playoffs,

Keywords: constraint satisfaction, network flows, optimization

1. Introduction

As a season progresses, sports fans become intensely focused on the playoff
race and the position of their team in the standings. Sports sections of major news-
papers publish the results of the games and announce when teams have qualified
for the playoffs and when they have been eliminated (e.g., the Globe and Mail).
However, the newspapers use a heuristic measure for determining when teams
have qualified for or been eliminated from the playoffs and announcements are
sometimes not made until several days late. Since fans are interested in knowing
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when their team has clinched as early as possible, the exact answer is of more
interest as the heuristic answer may not give precise results.

However, if the team has not clinched a playoff spot, the decision version of
the problem provides no information about how close ateamisto earning a playoff
position. The problem of determining how close a team is to clinching a playoff
spot can be modeled as an optimization problem that determines the minimum
number of pointsthat is necessary to guarantee a spot. This bound on the number
of points can also be used to determine when a team has no guarantee of making
the playoffs and when ateam has |ost a crucial game and |eft destiny in the hands
of another team. These bounds give both fans and the managers of the teams
additional information. For a coach, there is the additional benefit of knowing
which games must be won so they can rest injured players before the playoffs.
The qualification and elimination problems addressed here are NP-Hard problems
and an efficient solution is not known to exist (McCormick, 1999; Gusfield &
Martel, 2002).

In this paper, we propose a hybrid constraint programming and enumeration
method to exactly solve qualification and elimination problems for the National
Hockey League (NHL) playoffst. Our solutionsto both the qualification and elim-
ination problems use a phased strategy that solves enumerated sub-problems with
network flows and constraint programming. Constraint programming is a method
for modeling and solving combinatorial problems (see, for example, Ross et al.
(2006) for more details on constraint programming). In constraint programming,
instances are usually solved using backtracking search interleaved with constraint
propagation, where constraint propagation is a method for enforcing local levels
of consistency on the constraints.

We experimentally evaluated our proposed approach using instances from the
2005-06 and 2006-07 seasons. For these seasons, qualification of teams was
shown up to five days earlier than the Globe & Mail (2005-2007). The qualifi-
cation and elimination versions of the problem can be solved in seconds in most
cases and within ten minutes for all instances. In sports, analysts, reporters and
coaches often refer to “must win” games. Our proposed method can identify
games where, by losing the game, a team puts its playoff aspirations into the
hands of its opponents. Nine teams in the 2006-07 season are identified that lost
at least one of these “must win” games and found themselvesin a position to earn
aplayoff spot again only through the actions of their opponents.

Portions of thiswork have previously been published in Russell & van Beek (2008, 2009a,b).



2. Related Work

The problem of determining when a sportsteam has mathematically clinched a
playoff spot has been well studied for several sports, including baseball (Schwartz,
1966; Robinson, 1991; Wayne, 2001; Adler et a., 2002) and soccer (Ribeiro & Ur-
rutia, 2005). The problem is known as awinner determination problem. Schwartz
(1966) first looked at this type of problem algorithmically for baseball. Two op-
timization variants of winner determination problems are discussed in this paper:
the playoff qualification problem and the playoff elimination problem.

Approaches for solving these problems have been proposed for the Brazilian
football championship (Ribeiro & Urrutia, 2005) and for Mg or League Baseball
(Adler et a., 2002); both approaches use integer programming. However, these
sports have a simpler scoring model—where a scoring model defines the reward
for each possible outcome of a game—or a simpler playoff qualification method
than hockey. Robinson (1991) givesamodel for determining the number of points
needed to clinch a playoff spot in the National Basketball Association and solves
the model using integer programming techniques. Robinson (1991) also gives
a model for the NHL but the model did not allow for wild card teams or tie-
breaking. Gusfield & Martel (2002) use similar methods for calculating bounds
on when a team has been eliminated from baseball playoffs. Our work differs
from theirsin that there are multiple wild card teamsin the NHL. Cheng & Steffy
(2008) study the problem of determining qualification for the NHL using integer
programming. However, their model could not be solved when secondary and
tertiary tie-breaking rules were included.

Wayne (2001) introduces the concept of a lower bound that could be used
to determine whether or not a team was eliminated from the playoffs. Gusfield
& Martel (2002) show how this idea can be extended to include a single wild
card team. The existence of an upper bound is discussed in this paper. Kern &
Paulusma (2004) show that the approach by Schwartz (1966) could also be used
for other scoring models if the scoring model is normalized. However, Kern and
Paulusmamake an assumption regarding the play of the distinguished team ¢, that
isinfeasible for the optimization problems studied here, as it is assumed ¢, wins
or loses every remaining game, for elimination or qualification, respectively.

3. The National Hockey L eague

The NHL consists of thirty teams evenly arranged into two conferences, East
and West. Each conference in turn is composed of three divisions with five teams



in each division. Every team plays 82 games with 41 home games and 41 away
games. Teams play six games against each team in their division, four games
against teams in their conference but not their division and one or two games
against teams in the opposite conference. An NHL game must end in a win or
aloss. Each game consists of regulation time—three periods of twenty minutes
each—and, if tied at the end of regulation time, a five minute overtime, which
ends when agoal is scored. If the game remains tied after overtime, a shootout is
conducted, which must conclude with a winner. The NHL has a unique scoring
model. The winner of the game always earns two points. The losing team earns
no pointsif the game ends during regulation time, but earns one point if the game
ends during an overtime period or a shootout.

Teams are placed in standings by number of points earned, for both divisional
and conference standings. In both conferences, a team makes the playoffsif they
are a division leader or one of the top five teams that are not division leaders in
their conference. If there are ties in the number of points, the NHL uses three
different tie-breaking measures to determine the standings. The first tie-breaking
measure isto compare the number of winsby each team. If teamsarestill tied after
comparing the number of wins, the second tie-breaking measure is to compare the
number of points earned against only those teams that are tied. The third tie-
breaking measure is the total number of goals scored in the entire regular season.
In our work, we include the first and second tie-breaking measures, but not the
third, as the number of goals in a season cannot be determined or bounded in
advance. For qualification, it is assumed that ateam has not qualified if they need
to win via the third tie breaker. Conversely, for elimination, it is assumed that a
team has a chance to qualify if they could win viathe third tie breaker.

4. A Motivating Example

As anillustrative example that will be used throughout the paper, a simplified
six team league is constructed where teams play each other exactly four times, for
atotal of 20 gameseach, and only four of the six teamswill make the playoffs. For
simplicity, divisions are not introduced in this example but are discussed later in
the paper. The six teams are Boston, Chicago, Detroit, Montreal, New York and
Toronto, and a round robin tournament with four identical rounds is generated.
The schedule can be seen in Figure 1. In the example, the first thirteen games
of the season have been played and each team has seven games remaining. The
symmetry is for clarity and is not required by the techniques, as in practice not
every team plays on each game day. From the results of the games, the standings
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30 31 1 2 3 4 5
M:0,T:2 T:2B:1 T:2,NY:0 T:1,C:2
NY:2,B:1 M:1,D:2 M:2,C.0 M:2,B:1
D:2,C.0 NY:2,C.0 B:2,D:1 NY:0,D:2
6 7 8 9 10 1 12
T:2,D:0 M:1,T:2 T:0,B:2 T:0,NY:2
NY:2,M:0 NY:2,B:0 M:2,D:1 M:2,C.0
B:1,C:2 D:1,C:2 NY:1,C:2 B:1,D:2
13 14 15 16 17 18 19
T.0,C:2 T:1,D:2 M:2,T:1 T:2,B:0 T:2,NY:0
M:2,B:1 NY:2,M:0 NY:2,B:0 M:2,D:0 M:2,C.0
NY:2,D:0 B:2,C:0 D:2,C.0 NY:2,C.0 B:2,D:1
20 21 22 23 24 25 26
TvC TvD MvT TvB
MvB NY v M NY vB MvD
NY vD BvC DvC NY vC
27 28 29 30 1 2 3
TvNY TvC TvD
MvC Mv B NY vM
BvD NY vD BvC

Figure 1: An example schedule for six teams where each team plays each other team four times
for atotal of sixty of games. Thirteen of each team’s games have been played and the results, in
terms of points, are noted against the played games. The remaining seven games that each team
must still play are listed with their scheduled opponents.

can be constructed (see Table 1) and the games remaining between each pair of
teams tabulated (see Table 2).

5. Basic Modds

In this paper, we solve two related optimization problems: the playoff qualifi-
cation problem and the playoff elimination problem.

Definition 1 (Playoff Qualification Problem). Given a remaining schedule of games
left to play, the results up to a given point of the season—i.e. points and wins
earned by teams so far—and a distinguished team ¢,, the playoff qualification
problem is to determine the minimum number of points needed by ¢, such that if
they earn that number of points there exists no scenario, i.e. a completion of the
remaining games, such that ¢, does not qualify for the playoffs.

Definition 2 (Playoff Elimination Problem). Given a remaining schedule of games
left to play, the results up to a given point of the season—i.e. points and wins
earned by teams so far—and a distinguished team ¢,, the playoff elimination
problem is to determine the minimum number of points such that if ¢, earns that
number of points there exists at least one scenario where ¢, earns a playoff spot.
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Table 1: The standings of the hypothetical league after the first thirteen games of the schedule
have been played. Each team is awarded 2 points for each win, 0 points for each loss and 1 point
for each overtimeloss.

Team Games Games | Wins Losses Overtime | Points
Played Remaining Losses
New York 13 7 9 3 1 19
Montrea 13 7 8 3 2 18
Toronto 13 7 7 3 3 17
Detroit 13 7 6 3 4 16
Boston 13 7 4 3 6 14
Chicago 13 7 5 8 0 10

The set of teamsin the NHL isdenoted 7" = {¢4,...,t,}. Let C; be the set
of indices of teams in the conference and D, be the set of indices of teamsin the
division to which team ¢; belongs. Let T'B;, the tie-breaking set, be the set of
indices of the teams tied with team ¢;, including ¢;, in both points and wins from
the same conference at the end of the regular season.

We introduce the lower case letters w, o and p to represent the variables for
wins, overtime losses and points, respectively, earned at the end of the regular
season. We use the upper case letters W, O, P and G to represent the constant
values of wins earned, overtime losses earned, points earned and games remain-
ing, respectively, up to the current date of the regular season.

For every team ¢, and opponent ¢;, w;; and o,; represent the number of wins
and overtime losses earned at the end of the regular season by ¢; over ¢; and IV;;
and O;; represent the number of wins and overtime losses earned up to the current
date of the season. The points p;; earned by team ¢, against opponent ¢; at the end
of the regular season is the weighted sum of the wins, worth two points, and the
overtime losses, worth a single point. The total points p; earned at the end of the
regular season by team ¢; is the sum of the points earned against all opponents.
Let G,; represent the number of games remaining for ¢; against ¢; at the current
date and let G; = ), Gi; represent the number of games remaining for ¢; against
al teams. A scenario S is a completion of the schedule by assigning results to
the remaining games. For each team ¢;, let mpp; = maxg(p;) be the maximum
possible points that could be earned by ¢; under any scenario.

At the conclusion of the regular season, eight teams from each conference for



Table 2: The number of games remaining for each team against each opponent after the thirteen
completed games in the example.

Teams | Boston Chicago Detroit Montreal New York Toronto
Boston — 2 1 2 1 1
Chicago 2 - 1 1 1 2
Detroit 1 1 - 1 2 2
Montreal 2 1 1 - 2 1
New York 1 1 2 2 — 1
Toronto 1 2 2 1 1 -

atotal of sixteenteamsqualify for the playoffs. A team ¢; qualifiesfor the playoffs
if (a) t; isadivision leader; i.e., the team with points greater (or equal with better
tie breakers) than all other teamsin itsdivision, or (b) ¢; isawild card team; i.e.,
not adivision leader but with points greater (or equal with better tie breakers) than
at least seven other teams in its conference that are not division leaders. A team
has qualified when the points needed to guarantee a playoff spot iszero. A team¢;
controlstheir own destiny if the points needed to guarantee a playoff spot does not
exceed mpp;. A team t; has been eliminated when the points needed to possibly
qualify for a playoff spot exceeds mpp;.

The basic model of the NHL Qualification Problem is a combination of nine
constraints (Constraints (1)—(9) below). Following Ribeiro & Urrutia (2005), the
problem of finding the minimum points necessary for ateam ¢, to qualify is con-
verted into the problem of finding the maximum number of points such that there
exists a scenario where ¢, could have been eliminated. The number of points
needed to clinch a playoff spot isthen one greater than this maximum. Constraint
(2) enforces that each game must end in a winner. Constraint (2) enforces that
each team earns only one win or one overtime loss for each game played. Con-
straint (3) enforces that the total winsisthe sum of the winsagainst all opponents.
Constraints (4) and (5) enforce that the points between two teams is the weighted
sum of wins and overtime losses and the total points is the sum of points against
all opponents, respectively. Constraint (6) formally definesthe tie-breaking setsin
terms of the model variables. Constraint (7) states that to be better than ¢, ateam
must be better on points (7a), better on tie breakers (7b and 7c) or be a division
leader (7d). An indicator variable b; is introduced that is 1 if and only if ¢; has
more points or better tie breakers than ¢, or is a division leader. Constraint (8)



enforces that there must be at least eight teams in ¢,’s conference—i.e., playoff
contenders—that are better than ¢,. Constraint (9) ensures that ¢, is not adivision
leader by enforcing that there must exist some team ¢;, different from ¢,, that is
the leader of ¢,’s division.

maxp, ,
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The NHL Elimination Problem has a similar model where the solution is the
minimum number of points such that ¢,, the team under consideration, could do
no worse and still make the playoffs.

minp, ,
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Constraints (10)—(15) inthe NHL Elimination Problem areidentical to Constraints
(1)—(6) in the NHL Qualification Problem. Constraint (16) states that a team is
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worse than ¢, if they have less points (16a) or equal points and worse tie breakers
than ¢, (16b or 16c) and the team is not a division leader (16d). Constraint (17)
states that ¢, qualifies for the playoffsif there are seven teams worse than ¢, or ¢,
isadivision leader.

Both of the qualification and elimination models have 1800 integer variables
with domainsin [0...8] (w;; and o;;), 900 variables with domainsin [0. .. 16]
(pi;), 30 variables with domains [0...164] (p;) and 15 variables with [0, 1] do-
mains (b; or w;). The qualification model contains 3647 constraints and the elimi-
nation model contains one less.

6. Solving the Model

6.1. Overview

In this section, we give an overview of the solvers for qualification and elimi-
nation problems. The solver for the qualification problem uses a phased approach
that decomposes the problem based on Constraint (7). The approach here, of
enumerating and using different phases, differs from (Van Hentenryck, 1989, pg.
169) as it is possible to determine when a problem is hard and can be reserved
until later, if needed. In Constraint (7), the first three conditions (7a, 7b, 7c) form
atie-breaking constraint. These three conditions have a mutually exclusive struc-
ture as a relaxed version of (7a), where equality is allowed between p; and p,,
would include all solutionsto (7b) and (7c), and arelaxed version of (7b), where
equality is allowed between w, and w,, would include all solutionsto (7c).

Thefirst phase of the solver enforces (7a) but not (7b) and (7c). Using enumer-
ation, the maximum number of points earned by any sufficient set of better teams
gives a bound p on the number of points ¢, would need to earn. If the bound p
is less than F,, the points earned by ¢, so far in the season, ¢, has guaranteed a
playoff spot. If the bound p is more than mpp,, the maximum possible points
that could be earned by ¢, at the end of the regular season, ¢, cannot guarantee a
playoff spot. In all other situations, further tie-breaking is necessary and p and the
sets with point value p are passed to the second phase of the solver.

The second phase of the solver enforces (7a) and (7b) but not (7¢). Given the
sets from the first phase and the point bound p, each set is checked to determine
if there exists a scenario where each team in the set could earn more than p points
or exactly p points and more winswhen ¢, has p points. If such a scenario exists,
t, would need one more point to guarantee a playoff position. If ¢, cannot earn
that extra point, i.e. p + 1 > mpp,, t, cannot guarantee a playoff spot. If no
such scenario exists, al of the sets where teams could earn more points or equal
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points and equal or more wins are found. If no such set of teams exists, ¢, would
guarantee with p points. If such sets of teams do exist, further tie-breaking is
necessary and the sets are passed to the third phase of the solver.

Thethird phase solvesa decision version of the complete model. If there exists
asolution, ¢, would need p + 1 pointsto guarantee. Asbefore, if p+1 > mpp,, ¢,
cannot guarantee a playoff spot. If there does not exist a solution, ¢, would need
p points to guarantee a playoff spot.

Much of the same mechanisms can be used for the playoff elimination prob-
lem. The goal isto search for any set of seven teamsto occupy the spots below ¢,,.
If this set of teams exist or if ¢, isadivision leader at a given point bound then ¢,
can possibly qualify for the playoffs. Using a similar bounding technique, a tight
bound can be obtained and the same phased solving methods can be applied.

We next describe each of the three phasesin more detail.

6.2. The First Phase

In this section, the mechanisms for solving the first phase of the solver are
described. Identifying sets of teams that could potentially be division leaders and
wild card teams is presented as a technique for relaxing the constraints of the
model. Combined with the enumeration of these sets, a bound is generated and
the bounding of the sets provides a tight lower bound on the actual value of the
complete problem. Given the enumeration and bounding, itissimpleto answer the
two necessary questions for the first phase: If the bound p is less than P, then ¢,
has already qualified and if p is greater than mpp, then guaranteeing qualification
isnot possible.

6.2.1. Enumerating the set of implication constraints

Constraint (8) requires that there be at least eight teams where Constraint (7)
is satisfied (by enforcing that at least eight of the indicator variables are true). It
is possible to enumerate, in the case of NHL teams, al of the sets of enforced
indicators possible under (8).

An Elimination Set, F, is a set of eight or more teams from the same confer-
ence that includes at least one team from each division and does not include t,.
Each team ¢; € E must either have mpp; > P, or be the only team in £ from a
division D; suchthat D; # D,. We restrict the size of the sets considered to those
that contain exactly eight teams as any solution with more teamsis also a solution
with only eight teams. Theintuitionisthat an elimination set represents apossible
set of teams that would all make the playoffs and so eliminate ¢,,.
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Example 1 (Finding Elimination Sets). Our example league (see Section 4) has
four playoff positions. Hence, the elimination set has four teams. Given t, =
New York, the elimination sets are formed from the remaining five teams. Every
subset of size four that can earn more points than the number of points New York
currently has is a viable elimination set. The elimination sets are:

{Montreal, Toronto, Detroit, Boston}  {Montreal, Toronto, Detroit, Chicago}
{Montreal, Toronto, Boston, Chicago} {Montreal, Detroit, Boston, Chicago}
{Toronto, Detroit, Boston, Chicago}

A Qualification Set, (), is a set of seven or more teams from the same confer-
encethat does not include any team that has clinched adivision leadership position
and does not include ¢,. Only sets with the smallest number of teams, seven, are
considered because a solution with more teams is also a solution for seven teams.
The intuition is that a qualification set is a possible set of teams that would not
make the playoffsif ¢, qualified for the playoffs.

Example 2 (Finding Qualification Sets). Our example league has six teams and
four playoff spots. Therefore, a qualification set would have two teams. The only
pairs in this example that are not qualification sets are the ones including New
York. The qualification sets are:

{Montreal,Toronto} {Boston,Chicago} {Montreal, Detroit} {Detroit, Boston}
{Montreal, Chicago} {Toronto, Boston} {Montreal, Boston}
{Toronto, Chicago} {Toronto, Detroit} {Detroit, Chicago}

Elimination (and qualification) sets are used to ssmplify the basic model. Since
we know exactly which teams must be better (or worse), Constraint (8) can be
removed as it will always be satisfied and Constraint (7) is replaced by,

Vie E (pi>pg)V(pi=pgANw;>wy) V... . (18)

However, instead of a single model, the problem must now be solved for each
enumerated elimination set and the best solution is taken.

6.2.2. Calculating the bound

Since the NHL Playoff Qualification Problem is an optimization problem,
not all of the feasible solutions lead to an optimal solution and bounding can
be used to remove feasible solutions that are non-optimal. The bound of an
elimination set F is given by maxg (min;cg(p;)), where S is the set of sce-
narios and p, = min (min;ep (p;), mpp,). The bound on the qualification set
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Q) is given by ming (max;eq (p;)), where S is the set of scenarios and p, =
max (max;eq (pi), ;).

Given an elimination set £, the bound is calculated by relaxing the model
described at the end of Section 6.2.1 replacing Constraint (18) with,

Viee(pi > pq) (19)

Constraint (19) is a valid relaxation as it contains al possible solutions to Con-
straint (18). We now show that this model can be solved using a sequence of
network flow calculations. First, some points can be determined initialy,

p;:Pz“FQZsz"‘Q Z Gij + Z Gij - (20)

J¢Ci JEEU{tq} jeBEU{tq}

Equation 20 represents the sum of the points aready earned (P;), the wins against
teamsnotintheset E'U {t} (2 ;¢c, Gij +2 X ¢p04,y Giy) @d one point each
from games against teams in £'U {t,} (3_;cpuq,) Gij)- These points are valid
because every increase does not affect the maximum possible points of the other
teamsin E.

We want to find a point value where there is a feasible flow on a specifically
constructed flow graph. The first step isto find an initial value for the bounding
procedure determined by relaxing the constraints that a specific number of games
must be played between two teams and that ¢, must be able to earn that many
points. First, the lowest mpp; for al teams i € E isfound. Next, the points
described by Equation 20 are calculated for each team and any points that could
be earned by playing t, are added. During this step, a count of the number of
remaining games is kept. The teams are sorted by increasing point values. Games
from the count of remaining games are added to the worst or set of equally worst
teams until the lowest mpp; is reached or the count is reduced to zero. Lemma 1
shows that theinitial valueis greater than the actual bound.

Lemma 1 (Thelnitial Value). The initial value is greater than the actual bound.

Proof. Proof by contradiction. Assume that there exists an actual bound that is
higher than the initial value given by the algorithm. This assumes that there exists
some assignment of winsthat is not possible under the relaxations. Since two con-
straints are removed and none are added, the relaxation must be valid. Therefore,
the solution to the original problem must be contained in the set of solutionsto the
relaxation and any bound achievable on the original problem is achievable under
the relaxation. O
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Figure 2: Theinitia value calculation for the example. (a) The number of points earned by each
team. (b) Added six pointsfor each team for the three gamesthey play against both New York and
Chicago and four points for the four remaining games. (c) The sorted list of teams. (d) Two wins
are added to Boston. (e) A single point each is added to Boston and Detroit. (f) Three points are
added to the three weskest teams and the algorithm terminates with a single game remaining.

Example 3 (Calculating the Initial Value). Referring to the example described in
Section 4, the first elimination set described previously in Example 1 is Montreal,
Toronto, Detroit and Boston. This leaves New York and Chicago out of the set.
Boston has the lowest maximum possible points, where mppg = 28. Figure 2a
shows the current points of the teams (See Table 1). Figure 2b shows the points,
two per game, added for the games outside the set and the points, one point per
game, added for the games inside the set (See Table 2). Teams are sorted in
ascending order as shown in Figure 2c. Boston has two less points than Detroit so
two of the remaining games are assigned to Boston (See Figure 2d). One game is
added to Boston and Detroit (See Figure 2e). Boston, Chicago and Toronto each
have one point less than Montreal and one game each is assigned (See Figure
2f). The lowest mpp; has been reached, so the algorithm returns 28. All other
elimination sets would have a bound of 24 because Chicago can earn at most
24 points. Each initial value must be tightened and made feasible by adding the
removed constraints.

The initial value is likely to be infeasible due to the relaxation of necessary
constraints. To find a feasible value, a network flow based algorithm is used.
Starting with the initial value, we decrease the value until the current value c is
feasible. Given avalue c every team in the elimination set plus ¢, needs to win
a certain number of games to reach the value. The need n; of a team ¢; is the
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difference between ¢ and the adjusted points of #;,
n; = max (¢ — p;, 0), (21)

where p/, is defined in Equation 20.

Once the needs are known for a given elimination set, a source node s and a
sink nodet are created. A nodefor every matchup of teamsfrom the set composed
of the elimination set plus ¢, is added and, in a second column, a node for each
team in the elimination set plus ¢,. Thereis an arc from s to every matchup ¢, j
with an upper and lower bound of G;;. For a matchup between ¢;,¢;, there are
two outgoing edges to ¢; and t; with lower bounds of 0 and upper bounds of G';;.
For ateam t;, there is an edge to the sink with a lower bound of n; and an upper
bound of G;. For t,, the edge to the sink has an upper and lower bound of n;. An
example of such anetwork can be found in Figure 3.

Example 4 (Calculating the Bound). Referring to the example described in Sec-
tion 4, the bounding technique is applied to the first set of teams generated in
Example 1. In Example 3, the upper bound for this set is 28. The needs are cal-
culated for each team and the flow network in Figure 3 is constructed. The two
columns of nodes are the matchups and the teams, respectively. Edges are added
to the graph connecting the layers. For example, New York plays Montreal twice
so the edge from the source to the New York-Montreal has a capacity of two. From
New York-Montreal, there is an edge to New York and an edge to Montreal and
both of them have an upper bound of 2 and a lower bound of 0. New York reaches
the bound exactly so its upper and lower bound capacities are equal. Montreal,
alternatively, has a need of two but an upper bound of six. Once constructed, a
feasible flow algorithm is applied (Ahuja et al., 1993). Figure 3 shows that there
exists a feasible flow and the initial value is, in this case, a feasible bound. The
bound on all of the other elimination sets is 24.

Constraint (19) gives the relaxed form of the origina constraint where only
the first tie-breaking condition is considered. Recall that in the basic model we
want the maximum number of points where p, is still eliminated. A relaxation of
this model gives us an upper bound on the basic model but it turns out that this
upper bound is a tight lower bound on the origina problem which is to find the
minimum number of points such that p, guarantees a playoff spots.

Lemma 2 (One More Point Lemma). Given the set of bounds calculated for each
enumerated elimination set, the largest bound in the set is at most one less than
the optimal solution to the original problem.
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Figure3: Thefeasibleflow network from Example4, which showsthe elimination set of Montreal,
Toronto, Detroit and Boston for New York with a point bound of 28. The arcs are annotated with
their upper and lower bound capacities. The bold nhumber represents a possible feasible flow on
the network.

Proof. Let £’ be the elimination set with the highest bound, p. In the case where
the bound is greater than mpp,, then there is always a solution where ¢, can be
eliminated. Otherwise, the solution obtained is the maximum value of p, such that
each team ¢;, 7 € £’ has at least as many points ast,. If ¢, earns one more point
then there must always exist oneteam¢;, : € E’ suchthat ¢; cannot simultaneously
obtain p + 1 points along with ¢, or the origina bound was not the maximum
solution to the relaxed model. Therefore, if ¢, earns one more point than the
relaxed bound, they guarantee qualification and they could qualify with p if they
are better on tie breaks. O

Example5 (TheFirst Phase). In Example 4, it is shown that there exists a solution
to the problem with equality constraints for New York at a point bound of 28 and
the set { Montreal, Toronto, Detroit, Boston} is the only possible set with an
optimal solution as the other sets have a point bound of 24. Since 28 is neither
greater than the maximum possible points of New York or less than the current
points of New York, no decision can be made and the second phase is needed.

6.3. The Second Phase

In the second phase, only the elimination sets where teams can reach the point
bound p are kept from the first phase and, for each set, there exists no scenario
where every team in the set earns more points than the bound. We call such sets
retained elimination sets. The second phase is looking for sets where every team
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earns more pointsthan the bound or if ateam just reaches the bound, the tied team
earns more wins. Team ¢, has a certain number of earned wins, ,, and some
maximum and minimum possible given p. The win range is defined as,

Wq"‘max((p_Pq)_anO)quSWq"‘{(p 2PZ>J - (22)
Given the range of win values, each value is checked while bounding the wins
of t,, denoted w. For each retained elimination set, it is determined whether the
teams can collectively exceed p or p and exceed w. The difference between the
bound and points of a team (p — P;) can be reduced by assuming every loss
happens in overtime giving each team G, extra points. Therefore, the number
of wins needed to reach p isequal to (p — P,) — G;. These problems are solved
similarly to the previous bound calculation but with adjusted needs. There are
four different cases that must be considered: some teams have exceeded p, some
teams may be able to reach p but would have more than w wins, some teams may
reach p but require morewinsto ensure that w is exceeded and ¢, which must earn
exactly w wins. The needs and conditions are formalized as follows,

0 if(p—P,)—Gi <0
N — p—F)—G; if(p—F) -G+ W; >w 23)
) P-FR) -G+l if(p-F) -G+ W, <w

w— T it (pi = p) A (wi = w)

Given the needs from Equation 23, this problem is formulated as a feasible
flow problem as described in Section 6.2.2 except with new needs. If there exists
a solution then ¢, would need an extra point beyond p in order to guarantee a
playoff spot. If p + 1 is greater than mpp, then ¢, cannot guarantee qualification.
Otherwise, p+ 1 pointsisreturned. If there are no solutions, it must be determined
if every team can be at least tied with p and w. Equation 23 ismodified to combine
the third condition with the second condition. If there is again no solution, there
is no scenario where t, does not qualify when earning p points and that value is
returned. Any sets that have a solution must be passed to the third phase.

Example 6 (The Second Phase). Referring to the example described in Section 4
and last expanded in Example 5, the tie-breaking methodology is expanded. First,
using Equation 22, New York must have between 11 and 13 wins if they earn 28
points. Teams need extra wins to reach p so the first criterion of Equation 23 does
not hold. For the second criterion, it must be determined how many wins a team
absolutely must earn to reach the bound.
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Montreal: (28 —18 —7)+8 =11 Detroit: (28—16—7)+6 =11
Toronto: (28 —17—7)4+7=11 Boston: (28—14—-7)+4=11

None of the teams can exceed even the lowest win value without earning another
win and the third criteria from Equation 23 is enforced for all teams and each
team’s need increases by one. Recall, however, from Example 5, that Boston can
not increase their need as Boston requires all of their seven games just to reach
28 points. Since Boston cannot earn more than 11 wins, win values of 12 and 13
can be pruned. The previous equation shows that the teams could be tied with 28
points and 11 wins. Thus, the only remaining set has a point bound of 28, the only
eligible win bound is 11 and the third phase is required.

6.4. The Third Phase

The third phase of tie-breaking incorporates the most complicated of the tie-
breaking constraints. It states that teams who are tied in terms of both points and
wins are compared in terms of the number of points earned only against those
teams who have also earned exactly that number of points and wins. The tie-
breaking sets are enumerated in this phase to allow more efficient propagation.
The tie-breaking set 7B, is the set of teams tied with ¢, such that, for every
t; € TB,, p; = p and w; = w wherep, = p and w, = w.

The possible membership of a tie-breaking set can be pruned using a simi-
lar mechanism to the one introduced in the second phase. The difference is that,
unlike the second phase where the fourth criteria of Equation 23 only applied to
tq, here any teamin 7B, will compute their need using this criteria. Any possi-
ble tie-breaking set where there is no feasible flow can be pruned. The equality
modification to Equation 23 from Section 6.3 would also be applied.

Once the tie-breaking sets have been pruned, afeasible solution to Constraint
(7) must be found. A constraint programming solver is used to determine the fea-
sibility of the final constraint. The basic model is extended to take advantage of
the enumeration from the previous phases. First, the optimization criterion can be
removed as the tight bounding has turned the problem into a decision problem.
Second, the complicated digunction (7) is replaced with a series of ssimpler con-
straints. The teams which are members of the tie-breaking set must have exactly
p points and w wins. Additionally, those tie-breaking set members who are also
members of the elimination set must have more points against other tie-breaking
members than ¢, while those who are not members of the elimination set do not
have to enforce this. If ateam is neither a member of the elimination set nor the
tie-breaking set then all constraints can be relaxed as those teams do not have
to meet any bounds. Those teams who belong to the elimination set but not the
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tie-breaking set have to earn more points or equal points and more wins than ¢,,.
However, to earn enough points to exceed the bounds, it is only necessary to en-
force that the teams reach their need values. By enforcing the needs, the teams
necessarily satisfy this constraint.

Example 7 (The Third Phase). Referring to the example described in Section 4
and last expanded in Example 6, recall that there is a single eligible elimination
set with p = 28 and w = 11. Since Chicago could only earn 24 points, Chicago is
not a candidate for the tie-breaking set. Now, the set of New York and Boston com-
bined with any subset of the remaining teams is a valid tie-breaking set. However,
recall from Example 6 that each team needs to earn at least one more win (and
thus point) in order to not be tied. Observe from Figure 3, that none of the teams
exceeded their minimum capacity and no further points could be earned by any
team. Therefore, the only valid tie-breaking set is the one that contains the entire
set and New York. Now all that remains to be shown is that the constraint program
described by the elimination set, point bound, win bound and tie-breaking set has
a solution. In fact, there is no solution where this is true. New York can earn at
most seven points against Chicago and Montreal must earn eight points against
Chicago as there was no slack in the feasible flow to allow Montreal or New York
to drop games from teams outside the set. Therefore, New York has 21 points
against teams in the set and Montreal only has 20 points against teams within the
set and, therefore, New York needs 28 points to guarantee a playoff position.

6.5. A Note About Division Leaders

An intentional omission from the preceding discussion of the solution is the
issue of division leaders and their special status in sports leagues. A division
leader isguaranteed aplayoff spot regardless of how it would have actually ranked
had it not been at the top of itsdivision. The complication of these division leaders
arises from the tie-breaking constraints used. First, it is shown that a most one
division |leader could be weaker than ¢,,.

Lemma 3 (At Most One Weak Division Leader). At most one of the three division
leaders can have fewer points or equal points and fewer wins than ¢, if ¢, does not
clinch a playoff spot.

Proof. Suppose that the two other division leaders have fewer points or equal
points and fewer winsthan ¢,. This means that every other team in both divisions
will have fewer points or equal points and fewer winsthan ¢,. Since at most four
other teams from ¢,’s division plus the two division |eaders would qualify, ¢, must
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qualify in seventh at worst. Therefore, at most one division leader can have fewer
points or equal points and fewer winsif ¢, does not qualify for the playoffs. [

If ateam is a division leader that has fewer points or equal points and fewer
wins then there are obviously no other teams that could be in the elimination set.
Therefore, any elimination set that contains only asingleteam from adivision that
does not includet, can simply drop that team. If the set contains no membersfrom
adivision, again not containing ¢, eight sets of seven are generated by |eaving out
one team.

The more complicated case is when every member of the elimination set from
aparticular division is also in the tie-breaking set. In this case, it is possible for
ateam ¢; to fail to be better than ¢, but to still also be the division leader. The
reason for the discrepancy isthat when ¢; is compared using the third tie-breaking
criteria, it is possible for ¢; to lose the tie break against ¢, but not the division
members. If this pertains to a division not containing ¢,, the problem is solved
normally and, if a solution is returned, avalid solution is obtained. If no solution
isfound or if ¢, is possibly a division leader, further steps must be taken. Given
thereisonly asmall number of possible division leaders, the problem is solved by
checking each different division |eader.

6.6. The Elimination Problem

The focus of the explanation has been on the solver for the qualification prob-
lem but the basic mechanics are applied in the same manner for the NHL Playoff
Elimination Problem. The major difference is how the point bound is calcul ated
given aqualification set. Instead of finding the maximum point value of the weak-
est team in the set, the minimum possible point value of the strongest team is
found using the feasible flow algorithm. Once the point bound is established, the
other major differenceisthat if asolutionisfound then the point bound isreturned
and if there is no solution then the point bound plus oneis returned.

Another difference with elimination problemsiswith division leaders. It must
be checked first if ¢, could be a division leader for fewer points. Note this can
be integrated seamlessly with the normal procedure by adding the set containing
only the other division members. If this set has a better point value, it is kept and,
if not, it is pruned like other sets.

7. Experimental Results

The solver was implemented in C++ using the Boost Graph Library (Siek
etal., 2001) for thefeasible flow calculationsand ILOG Solver (ILOG S.A., 1998)
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Table 3: Theresults of qualification compared against the published Globe and Mail results. Only
results that differ are shown.

West East
Team Optimal G&M Team Optimal G& M
Dalas Mar31  Aprl-3 | Ottawa Mar 22 Mar 27
Calgary Apr8  Apr9-10 | Buffalo Aprd  Apr5

2005-06 | Nashville  Apr9 Apr 10 New Jersey Aprl2 Apri4
SanJose  Apr13 Apr 14 Montreal Aprl4 Aprl8
Colorado  Apr 13 Apr 15

2006-07 | Nashville Mar 23 Mar 24 Buffalo Mar 18 Mar 22
Detroit Mar 24 Mar 25-26 | Atlanta Apr2 Apr 4

to solve the final constraint model. The calculated results are compared against
those shown in the Globe & Mail (2005-2007) for the 200506 and 2006-07
season. The 2006—-07 season results are used to calculate the minimum points
needed to clinch a playoff spot. In total, determining the bound for al 30 teams
on all 181 game days of the 2006-07 NHL season (5430 problems) took a little
over 46 hours on a Pentium 4 PC. Each instance, representing a team at a given
date, took less than ten minutes to calculate the bound and those problems near
the end of the regular season, where the results matter the most, were calculated
in seconds. To verify the basic model is infeasible, we implemented the model
in Gecode 3.5.0 (Schulte et al., 2011) but found that 88% of the qualification
instances and 82% of the elimination instances timed out after an hour.

Each of the instances for the 2005-06 and 2006-07 seasons was tested and the
date of qualification for each of the teams was determined. For most instances,
the solving time was a fraction of a second. Compared to the results posted in
the Globe and Mail, the exact results generated show qualification earlier for nine
teams during the 2005-06 season and for four teams during the 2006—07 season
(see Table 3). Entrieswith multiple dates are dueto the absence of Sunday editions
or unreported results. Qualification was shown earlier than the Globe and Mail by
as much as five and four days for the 2005-06 and 200607 seasons, respectively.

The bounds are plotted against both the current points of the team and maxi-
mum possible points of the team. Figure 4 shows the result calculated for Toronto
and Pittsburgh. If the points needed to guarantee are greater than the maximum
possible points, the team is no longer able to guarantee a playoff spot and, if the
points needed to possibly qualify are greater than the maximum possible points,
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Figure 4: (a) and (b) The minimum number of points needed by Toronto and Pittsburgh to guar-
antee or possibly qualify for a playoff spot in the 2006-07 NHL season.

the team iseliminated. A team has qualified if their points are equal to the points
needed to guarantee. Toronto placed themselvesin a position where guaranteeing
a playoff spot was not possible and got lucky four times but did not make the
playoffs because the current points never reached the upper bound value.

Table 4 showsthe results of the 200607 NHL season in terms of the minimum
points needed to guarantee a playoff spot. One interesting observation that can be
made from this table is that of the nine teams that got a second chance only two
of those teams ended up earning a playoff spot.

Table 5 shows the results breakdown of the solver in terms of its phases. The
first phase solves 1212 of the 5430 of the problems and in the second phase, with
tie-breaking on wins, afurther 3773 problems are solved. However, the remaining
8% of problemsrequire thethird phaseto break ties. In 47% of the total instances,
the answer differs from the initial lower bound.

8. Conclusion

As the season winds down, the fans of the NHL are interested in knowing
how far their team is from clinching a playoff spot. A method for solving the
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Table 4: Shows some of the features that can be highlighted by calculating the minimum number
of points needed to guarantee a playoff spot.

Feature Vaue | Team(s)

Earliest day without guarantee 64 days | St. Louis

Most days without guarantee 118 days | St. Louis

Most times ateam got lucky 4 Toronto, Boston, NY Rangers
Number of teams that got lucky 2 NY Islanders, NY Rangers
and earned a spot
Number of teams that got lucky 7 Toronto, Boston, Washington,
but failed to earn a spot Carolina, Edmonton, Phoenix,
Columbus

qualification and elimination problems for the NHL is presented. The calculation
is efficiently computed by using a multi-stage solver that combines enumeration,
flow network calculations and backtracking search.

Thiswork representsthe first complete and efficient solution to the NHL qual-
ification and elimination problems. The key to scaling up the approach was a
combination of enumeration, bounding, and constraint programming. As well,
the costly work of calculating the actual division leaders was avoided as much as
possible.

The 2005-06 and 200607 seasonswere used to verify that our approach could
solveredlistic instances. Solving an instance only took a fraction of a second and
each instance of the 2005-06 and 200607 seasons could be solved in severa
minutes. Aswell, clinching and elimination results could be announced as much
asfive days earlier than the Globe & Mail (2005-2007).

A side effect of calculating the number of points needed to qualify for the
playoffsisthe ability to determine when the team isin danger of losing control of
its destiny. These games, often described by coaches as “must win” games, can
be identified as the | oss reduces the maximum possible points to below the bound
of theteam. Nine different teamsin the 2006-07 NHL season were identified that
lost control of their fate and then gained that control back through mistakes by
their opponents. Only two of these teams took full advantage of this situation and
clinched a playoff spot. Of the nine teams that experienced this event, three of
them experienced it four times.
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Table 5: The counts of problemsin the 2007—08 season solved via the various stages of the solver.
Positively solved instances means a solution was found and the bound must be increased. Neg-
atively solved instances means that bound was valid for that instance. Any problem without a
definitive solution was passed to the next phase of the solver.

Solver Stage & Result Number of Cumulative
Instances (/5430) | Percentage

First Phase 1212 22%

Second Phase (Positively) 2249

Second Phase 1524 92%

Third Phase (Positively) 338

Third Phase (Negatively) 107 100%
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