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A NOTE ON IMPOSING STRONG COMPLEMENTARY 

SLACKNESS CONDITIONS IN DEA 
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Abstract: A new DEA model has been introduced recently combining the primal and the 
dual models in order to impose strong complementary slackness conditions. It was 
claimed that a reference set that contains the maximum number of efficient units can then 
be determined. The model is very interesting as a theoretical idea. However, not only 
does the computational burden increase significantly, but it seems also that the basic 
matrices may be inherently ill-conditioned, leading to wrong results. Numerical 
experiments have been carried out on two real datasets of medium size with 163 and 920 
units. These experiments show pervasive existence of ill-conditioned matrices leading to 
obviously wrong estimates of efficiency scores, and units declared as efficient reference 
units while actually being inefficient. 
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1. Introduction 

 

In a series of recent papers (Sueyoshi and Sekitani 2007a, b; Sueyoshi and Sekitani 2009; 

Sueyoshi and Goto 2010) a new DEA model was introduced combining the primal and 

dual DEA models and imposing strong complementary slackness conditions. A main 

purpose of the new model, termed DEA/SCSC in Sueyoshi and Goto (2010, p. 3), was to 

identify all possible optimal solutions, i.e. to find all units in the reference sets for each 

unit under study.  

 

The new DEA model is very interesting as a theoretical idea. However, Sueyoshi and 

Sekitani (2007a, p. 1941) and (2009b, p.783) underlined a drawback with the method that 

it increases the computational burden, thus the proposed formulation needs a considerable 

computation time in solving a large data set. Indeed, there seems to be some serious 

numerical problems with their approach. By including constraints securing that strong 

complementary slackness conditions are obtained, the size of the problem  increases 

significantly in comparison with the standard DEA model introduced in Banker et al. 

(1984) (BCC). Thus, the size of the proposed model and the inherent problem of 

comparability of measurement units may result in ill-conditioned basic matrices.  

 

Although the wish to find complete solutions are mentioned by many DEA researchers, 

Cooper et al. (2006, p. 125) warn against trying to find all solutions by stating “Chasing 

down all optimal solutions can be onerous.” The purpose of this note is to follow up this 

remark and address problems that may be encountered by applying a model that promises 

to find all optimal solutions, by conducting computational experiments, addressing 

middle-sized problems using two real-life datasets. The method of Sueyoshi and Sekitani 

seemingly works correctly for small datasets, like the constructed set in Sueyoshi and 

Sekitani (2009, p. 782), consisting of six units with two inputs and a single output, but in 

our experience not for medium-sized problems. 
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We will only use the BCC models as the reference models and only consider radial 

efficiency measures. It is underlined in Sueyoshi and Sekitani (2007b, pp. 558,559); 

(2009, p. 782); Sueyoshi and Goto (2010, p. 4) that the new model shall give identical 

efficiency scores as found by solving the BCC model. We will use this as a criterion 

when evaluating the results of the new model. 

 

The plan of the paper is as follows: In Section 2 we present the BCC models and the 

DEA/SCSC model. The computational experiments including a comparison between 

BCC and DEA/SCSC results for efficiency scores, reference sets and dual variables are 

presented in Section 3. Concluding remarks and ideas for future research are presented in 

Section 4. 

 

 

2. Strong complementary slackness 

 

We will limit our investigation to a BCC model extended to the DEA/SCSC model, 

following Sueyoshi and Sekitani (2007b).1 The primal and dual versions of the BCC 

model, specified as input-oriented, are: 
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1 Sueyoshi and Sekitani (2007a) and Sueyoshi and Sekitani (2009) investigated non-radial models like the 
additive model, the latter paper also investigating the BCC model, while Sueyoshi and Sekitani (2007b) 
investigated only the BCC model. 
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Sueyoshi and Sekitani (2007a), (2007b) proposed to use strong complementary slackness 

conditions (SCSC) of the linear programming as a computational procedure in order to 

find all vertices of every face in DEA model. Their main model, DEA/SCSC, in Sueyoshi 

and Sekitani (2007b) takes the following form:  
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The first four conditions are from the primal model (1a), and the next three conditions are 

from the dual model (1b). The condition 0
T

ou Y u    locks the solution of the efficiency 

score of the primal model to the optimal value of the objective function of the dual 

model. The last three conditions express the SCSC constraints. In order to secure that 

strong complementarity is obtained the variable η is entered as the objective function in 

(2) and also in the three last constraints (Sueyoshi and Sekitani 2007b, p. 559; 2009, p. 

782). 

 

Their method is very interesting approach as a theoretical idea. However, it may not be 

efficient from computational point of view, especially for the large-scale problems. The 
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size of the model (2) increases significantly in comparison with the BCC model; to be 

more exact, the size of model (2) is measured by the total number of rows multiplied with 

the total number of columns )3()3222(  nrmnrm , where the number of 

inputs is m, the number of outputs is r, and the number of production units is n. 

Remember that the size of the BCC model is )1()1(  nrm , and )( rm   is usually 

much less than n .  

 

Moreover, economic interpretation of some constraints of model (2) does not make sense 

because in model (2) one has to add variables measured in quite different units during the 

solution process; this is without meaning. The two aspects pointed out above may result 

in ill-conditioned basic matrices.  

 

3. Numerical experiments 

 

We first investigated the behaviour of the DEA/SCSC model by using a constructed 

dataset of only five units and two inputs and a single output taken from Krivonozhko and  

 

Table 1. Constructed data* 

*Source: Krivonozhko and Førsund (2009) 

 

Førsund (2009).2 This dataset is of about the same dimension as the constructed datasets 

in Sueyoshi and Sekitani (2009, p.782).3 The solutions of the two models for the 

efficiency score and the dual variables are identical with efficiency scores both equal to 

                                                 
2 To the dataset shown in Figure 1 there we add an inefficient unit F (4, 4, 3/2). 
3 We also run this dataset having six units and two inputs and a single output, using our software and got 
the same results (Sueyoshi and Sekitani (2009, p.783), confirming the correct performance of the 
DEA/SCSC model for small datasets. 

Variables A B C D E F 

Input 1 5/4 1 3 5 2 4 

Input 2 5/4 3 1 5 2/3 4 

Output 9/8 3/2 3/2 3 1/2 3/2 
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0.5, all dual variables for input and output constraints are positive and equal, and the dual 

variables for the convexity constraint are equal. However, the units of the reference sets 

differ, having one more unit in the reference set of the DEA/SCSC model in addition to 

the same two reference units in the BCC model. This is to be expected. Naturally, the 

weights then differ. In principle, if the reference set is unique we should get the same 

reference set for the two models. However, when there are multiple reference sets the 

DEA/SCSC model will give us all the reference units, so we would expect the latter 

model to give us more reference units. The reference units appearing in the solution of 

the BCC model should then be included in the reference set given by the DEA/SCSC 

model. 

 

In order to investigate our suspicions about what will happen when using larger real 

datasets, we conducted computational experiments using two middle-sized models. For 

the first model, call it Model 1, we took the data for electricity utilities in Sweden 1987; 

see Førsund et al. (2007). Max, min and mean statistics are shown in Table 1. The 

number of production units in this model is 163. 

 

Table 2. Data for electricity utilities, Sweden 1987 

Variables Mean St. deviation Min Max Unit 1 Unit 104 

Outputs       

MWh low voltage 286057 3454887 9190 4895138 160604 219398

MWh high voltage  665979 46644285 0 65966223 47863 46140

No of customers low voltage 22841 225909 695 422793 11720 17302

No of customers high voltage 36 641 0 908 18 18

Inputs   

Labour, man years  133 6493 2 9189 35 58

Km of low voltage lines 1168 21159 21 30033 716 883

Km of high voltage lines 989 40783 8 57733 177 560

Transformer capacity in kVA 155434 1801496 4000 2554000 79000 136700

 

In our computational experiments we used optimisation software CPLEX (Moré and 

Wright 1993), one of the best optimisation programs, and software FrontierVision, a 
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specially elaborated program by our group at the Institute for Systems Analysis, Moscow, 

for DEA models that enables one to visualize the multidimensional frontier with the help 

of the construction of two- and three-dimensional sections of the frontier. 

 

Sueyoshi and Sekitani (2007b) recommended solving model (2) for every production unit 

in the model. We have followed this recommendation. Consider the results for two 

electricity distribution units, 1 and 104, chosen randomly. Inputs and outputs for these 

units are given in Table 2. Solving the BCC input-oriented model (1a) for unit 104, 

CPLEX software produces the following optimal solution: 

5869.0*  , 5257.0*
139  , 1913.0*

157  , 211.0*
255  , 072.0*

271  ,         (3) 

where *
j  is the j th optimal variable, all other λ-variables are equal to zero. Observe that 

the FrontierVision program produces the same solution (3). 

 

Solving the DEA/SCSC model (2) for unit 104, CPLEX software produces the following 

optimal solution: 

5924.0*  , 02.0*
22  , 46.0*

139  , 0057.0*
144  , 13.0*

157  ,     

019.0*
203  , 086.0*

246  , 185.0*
255  , 088.0*

271  ,                      (4) 

here again *
j  is the j th optimal variable, all other λ-variables in the optimal solution are 

equal to zero. 

 

The efficiency scores are close, but not identical as should follow from the restrictions in 

(2). At first sight solution (4) gives us a reference set for inefficient unit 104. We note 

that all four reference units of the BCC model are also reference units in the DEA/SCSC 

model, but also four more are included in the latter model. However, it turned out that 

unit 144 and unit 203 in the reference set of the DEA/SCSC model are inefficient; their 

efficiency scores are 82 % and 95 %, respectively calculated in the BCC model. 

Moreover, there is internal inconsistency within the DEA/SCSC model because in these 

model units 144 and 203 have efficiency scores of 83 % and 97 %, respectively, although 

all the reference units had to have efficiency scores of 1. 
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Inspecting the solutions of the dual variables for the two models set out in Table 3 we see  

 

Table 3. Solutions for dual variables for unit 104 solving the BCC model and the DEA/SCSC 
model 

 

that the solutions for some of the dual variables are equal to zero, but one less in the 

DEA/SCSC model. 

 

Figure 1 represents an intersection of the eight-dimensional production possibility set  

 

 

Figure 1. Input isoquant for unit 104pr, the projection of unit 104 onto the frontier 

 

with a two-dimensional plane for unit 104pr, the projection of unit 104 on to the frontier 

in the BCC input-oriented model, where the directions of the plane are determined by the 

following outputs: total amount of low-voltage electricity delivered to customers and 

number of customers low voltage. The light and dark points in the figure denote 

projections of units from the reference sets onto the two-dimensional plane. Unit 139, 

Model Dual variables for inputs Dual variables for outputs 
v1 v2 v3 v4 u1 u2 u3 u4 

BCC  3.52.10-3 2.33.10-4 0 4.32.10-6 3.18.10-6 0 0 0 

DEA/SCSC  4.11.10-3 2.03.10-4 0 4.25.10-6 2.6.10-6 0 7.41.10-6 0 
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unit 157, unit 255 and unit 271 belong to the reference set obtained with the help of the 

BCC input-oriented model (1a). The light unit 144 and unit 203 are inefficient; they are 

included in the reference set according to model (2).  

 

Increasing the scale of Figure 1 in order to observe the details we obtain Figure 2.  

 

 

Figure 2. Vectors of supporting hyperplanes for unit 104pr 

  

Vector BCCu


 is the vector of dual variables that determines the supporting hyper-plane at 

point 104pr. Vector BCCu


 is perpendicular to the slack facet at point 104pr, since 

component BCCu3  of vector BCCu


 is zero (Table 3), and the corresponding slack variable 


3s  is nonzero, this agrees completely with the strong complementary slackness 

conditions, see Cooper et al.  (2006). However vector Su


 is not perpendicular to the slack 

facet since both u1 and u3 are positive (u2 and u4 zero), according to model (2) (Table 3). 

So, the strong complementary slackness conditions are not satisfied, in the sense that both 

variables from the dual pair 3u  and 3s  are positive, this is because the model (2) 

generates ill-conditioned basic matrices during the solution process. 
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The point is that when “astute” mathematicians write strong complementary slackness 

conditions, they consider them just as conditions, i.e. they keep in mind that only one 

variable of the dual pair of variables is nonzero. The situation is quite another if 

somebody uses SCSC model as a solution procedure, in this case one has to add quite 

different variables measured in different units during the solution process. 

 

Solving the input-oriented problem BCC model (1a) for unit 1, the CPLEX program 

produced the following optimal variables: 

 78.0*  , 063.0*
82  , 012.0*

119  , 269.0*
139  ,     

 220.0*
246  , 041.0*

255  , 403.0*
286  ,                                              (5) 

all other optimal λ-variables are equal to zero. FrontierVision gives us the same result. 

 

However, solving DEA/SCSC model (2) by CPLEX program for unit 1, we obtained the 

following result: 

 805.0*  , 072.0*
33  , 065.0*

42  , 100.0*
103  , 223.0*

139  ,    

 027.0*
157  ,  012.0*

185  , 047.0*
190  , 098.0*

246  ,                      (6) 

155.0*
255  , 013.0*

275  , 183.0*
286  ,     

all other λ-variables in the optimal solution are equal to zero.  

 

The efficiency scores are close, but not identical. Again, it seems that we obtain the 

reference set for unit 1. In the BCC model unit 1 has 6 reference units and 11 in the 

DEA/SCSC model, and three of them appear in both in sets.  However, again one unit in 

the DEA/SCSC reference set, Unit 185, turned out to be inefficient; its efficiency score is 

83 % in the BCC model. 

 

Inspecting the solutions of the dual variables for the two models set out in Table 4 we see that 

the solutions for four of the dual variables are equal to zero. The DEA/SCSC model 

produces three dual variables for outputs equal to zero, two more than for the BCC 

model. This is a rather strange result and one may suspect that such a result is created by 

ill-conditioned matrices. 
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Table 4. Solutions for dual variables for Unit 1 solving the BCC model and the DEA/SCSC model 

 

 

For Model 2 we took the data from 920 Russia bank’s financial accounts for January 

2009, where we use the following inputs and outputs for the BCC model: 

   Inputs: working assets; time liabilities; demand liabilities. 

   Outputs: equity capital; liquid assets; fixed assets. 

Max, min and mean statistics for banks are shown in Table 5. 
 
 
Table 5. Data for banks Russia 2008 

Variables Mean St. deviation Min Max Unit 1 Unit 353 

Outputs       

Liquid assets, ths rubles 4279490 30304201 73 717402532 82362674 35755186 

Equity capital, ths 
rubles 

2205806 23572632 423 632286730 28283056 24829951 

Fixed assets, ths rubles 608481 7414069 42 221058541 4551402 6225750 

Inputs       

Demand liabilities, ths 
rubles 

11318997 140641585 0 4184548095 102656087 74148463 

Time liabilities, ths 
rubles 

18289244 162725433 1 4213176749 424810499 191632992 

Working assets, ths 
rubles 

24587080 230385425 0 6233536293 484631606 249211165 

 

We have solved the BCC input-oriented model (1a) and the DEA/SCSC model (2) for a 

large group of banks.  

 

Consider a typical solution for unit 353 chosen in a random manner. Solving the BCC 

input-oriented model (1a) for unit 353 by CPLEX software we obtain the following 

optimal variables: 

72.0*  , 0886.0*
47  , 7686.0*

180  , 0542.0*
199  , 0794.0*

476  , 009.0*
951        (7) 

all other optimal λ-variables are equal to zero. FrontierVision produced the same result. 

Model Dual variables for inputs Dual variables for outputs 
v1 v2 v3 v4 u1 u2 u3 u4 

BCC  2.89.10-3 0 1.35.10-3 8.33.10-6 4.84.10-6 1.16.10-6 0 1.76.10-3 

DEA/SCSC  2.4.10-3 0 1.26.10-3 8.7.10-3 5.6.10-6 0 0 0 
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Solving model (2) for unit 353 by CPLEX software, we obtain the following optimal 

variables: 

16.1*  , 8994.0*
67  , 00086.0*

126  , 00095.0*
140  , 0303.0*

199  , 0674.0*
528  ,  (8) 

all other  -variables are equal to zero.  

 

The solutions for the efficiency score are quite different; in fact the efficiency score in the 

DEA/SCSC model is outside the range giving meaning being greater than 1. Again, 

production units associated with variables (8) do not form a reference set since 1*   

and unit 67, unit 126 and unit 140 are inefficient; their efficiency scores are 93%, 2%, 

17%, respectively.  

 

Figure 3 depicts an intersection of the six-dimensional production possibility set with a  

 

Figure 3. Output isoquant for bank 353 

 

two-dimensional plane for bank 353, where the direction of the plane is determined by 

the following inputs: demand liabilities and time liabilities. The light unit 67, unit 126 

and unit 140 are inefficient. These units are included in the reference set according to 

model (2). 
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All sections of the multidimensional production possibility set with two-dimensional 

planes were constructed using software FrontierVision. 

 

As a second unit from the bank data we picked unit no. 1. Solving the BCC input-

oriented model (1a) for Unit 1 by CPLEX software we obtain the following optimal 

variables: 

6436.0 , 1417.0199  , 0345.0418  , 0705.0528  , 1183.0951  ,                       (9) 

all other optimal λ- variables are equal to zero.  

Solving model (2) for Unit 1 by CPLEX software, we obtain the following optimal 

variables: 

6802.0 , 1629.048  , 1199.0199  , 0402.0476  , 5201.0528  , 

  0496.0898  , 1069.0951  ,                                                                                 (10) 

all other optimal λ-variables are equal to zero. The efficiency scores differ, and of the 

four units appearing in the reference set in the BCC model three appears also in the 

reference set of the DEA/SCSC model together with three new ones. However, again this 

optimal solution do not form a proper reference set, since unit 48 and unit 898 are 

inefficient, their efficiency scores are equal to 91 % and 78 %, respectively. 

Inspecting the solutions of the dual variables for the two models set out in Table 4 we see 

 

Table 6. Solutions for dual variables for unit 1 solving the BCC model and the DEA/SCSC model 

 

that the solutions for some of the dual variables are equal to zero, especially for outputs, 

having one more zero than for the BCC model, again indicating problems with obtaining 

a proper optimal solution. 

 
Model 

 
Dual variables for inputs

 
Dual variables for outputs 

Convexity 
constr. 

v1 v2 v3 u1 u2 u3 uo 
BCC 7.51.10-9 0 4.71.10-10 2.61.10-9 8.00.10-9 0 -0.027 

DEA/SCSC 1.34.10-8 0 2.06.10-9 0 2.42.10-8 0 -1 
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Let us try to reveal the reasons why CPLEX program does not produce reliable solutions 

for model (2). Consider some constraints of model (2) 

.
1

 


o

n

j
jj YYu                                                           (11) 

In Model 1 components of output vector jY  are measured in the following units: MWh 

low voltage, MWh high voltage, number of customers, low voltage, and number of 

customers, high voltage, respectively. Components of the weight vector u   is measured 

in the following units: (efficiency score)/MWh, (efficiency score)/(number of high-

voltage customers), (efficiency score)/(number of low-voltage customers)4. The variables 

j  and   are dimensionless. Hence in relation (11) one has to add (or subtract) quite 

different variables during the solution process, for example: (efficiency score) / MWh, 

MWh, and a dimensionless variable. So, economic interpretations of some constraints of 

model (2) do not make sense. If different units of measurement are chosen this changes 

the numerical sensitivity of the basic matrices. 

 

Moreover, the size of basic matrices of model (2) is significantly increased. For Model 1 

the size of basic matrices (considered as square matrices) is345 345 , at the same time 

the size of the basic matrices of the BCC model (1a) is 99 . For the Model 2 the size of 

the basic matrices of the DEA/SCSC problem (2) is1855 1855 , and the size of the basic 

matrices for the BCC model (1a) is 77 . 

 

As a consequence, the condition number of the basic matrices for model (2) also 

increases significantly. Remember that the condition number of a matrix (Wilkinson, 

1965) characterizes the sensitivity of the solution of a system of linear equations with 

respect to this matrix and the right-hand side. The more value of the condition number 

corresponds to the more ill-conditioned matrix. The condition number of a square 

nonsingular matrix A  is determined as 
2

1

2

AA . 

 

                                                 
4 The efficiency score is dimensionless or measured in percent. 
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In our computational experiments with the BCC model and the DEA/SCSC model we 

calculated condition numbers for basic matrices of the BCC model (1a) and model (2) 

with the help of the software Mathematica 6.0. On the average, the increase of condition 

number values of model (2) in comparison with the BCC model (1a) is by factor 102 to 

103. 

 

Thus, basic matrices of model (2) are ill-conditioned even for the middle-sized problems. 

This explains why CPLEX program may not produce correct solutions using the 

DEA/SCSC model (2). 

 

 

4. Conclusions 

 

The motivation for introducing the DEA/SCSC model by Sueyoshi and Sekitani (2007a, 

b) and (2009) was to obtain complete solutions of efficient units being in the reference set 

of an inefficient unit. Although Sueyoshi and Sekitani (2009) and (2007b) pointed to 

increases the computational burden, no mentioning of potentially ill-conditioned basic 

matrices was done. However, we have demonstrated, first by pointing out the magnitude 

of the increase in the dimension of the basic matrices, and then by carrying out numerical 

experiments on medium-sized real data, that ill-conditioned matrices may easily occur 

and make valueless solutions offered by the DEA/SCSC model. Efficiency scores of the 

models differed in spite of the restriction that should obtain equality, and the DEA/SCSC 

model declared units, that where inefficient in the BCC model, actually belonging to the 

reference set when solving the DEA/SCSC model, i.e., the units were efficient according 

to the DEA/SCSC model, again violating the theoretical restriction. 

 

We should also mention the inherent problem of the dimension of the variables in the 

strong complementary slackness constraints of the DEA/SCSC model. When a model 

violates such a fundamental feature that only variables with the same unit of 

measurement can be added up, then it is to be expected that ill-conditioned basic matrices 

may occur.  
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Clearly, for the DEA/SCSC model to be applied successfully for real datasets larger than 

artificial small-scale data sets a special solution algorithm is required. The computational 

procedure proposed in Sueyoshi and Sekitani (2007b) is not really helpful because Step 1 

there assumes that an optimal solution to (2) is found. Further research is warranted. 
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