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a b s t r a c t

This paper studies the sales of a single indivisible object where bidders have continuous valuations. In
Grigorieva et al. [14] it was shown that, in this setting, query auctions necessarily allocate inefficiently
in equilibrium. In this paper we propose a new sequential auction, called the c-fraction auction. We show
the existence of an ex-post equilibrium, called bluff equilibrium, in which bidders behave truthfully
except for particular constellations of observed bids at which it is optimal to pretend a slightly higher val-
uation. We show c-fraction auctions guarantee approximate efficiency at any desired level of accuracy,
independent of the number of bidders, when bidders choose to play the bluff equilibrium. We discuss
the running time and the efficiency in the bluff equilibrium. We show that by changing the parameter
c of the auction we can trade off efficiency against running time.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The English auction remains the predominant auction format
used in practice, though we know since Vickrey [25] that it is stra-
tegically equivalent to the second-price, sealed bid auction. Roth-
kopf et al. [21] argued that third parties being able to ‘‘capture
fractions of the economic rent revealed by the second price proce-
dure’’ is one of the reasons why we hardly observe any Vickrey
auctions in practice. Engelbrecht-Wiggans and Kahn [11] support
this argument in their analysis. They study a model of a procure-
ment auction where the winner of the auction might have to un-
dergo a negotiation with a third party after the auction. In this
negotiation, information of the third party about the winner’s cost
revealed in the auction can have a negative influence on the win-
ner’s surplus and the auctioneer’s revenue. Also for combinatorial
auctions—settings with multiple, heterogenous goods and bidder
valuations for bundles of items—iterative auctions have been the
most popular approach: first in form of simultaneous ascending
auctions (Cramton [7]), later in form of ascending or descending
ll rights reserved.
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nts and suggestions of three
combinatorial auctions (de Vries et al. [10] and Mishra and Veera-
mani [18]) and clock and clock-proxy auctions (Ausubel et al. [1]).

Most ascending auctions studied in the theoretical literature
should be implemented by a continuous, increasing price clock,
where bidders drop out whenever the price exceeds what they
are willing to pay. However, in practice we see almost exclusively
implementations of the following two variants: (1) a discrete clock
is increased by increments chosen by the auctioneer; (2) bidders
submit increasing bids which exceed the current high bid plus
some minimum increment, usually in terms of a percentage of
the standing high bid. Cramton [7] reports that ‘‘bid increments
in the 5 to 10 percent range are required to get the auction to con-
clude in a manageable number of rounds’’. For example, if the auc-
tion is used to decide on the sales of radio spectrum, such
increments are in the order of hundreds of millions of dollars,
and can cause bidders to drop out because the next bid would ex-
ceed their valuation.

When the auctioneer sets bid increments he has to deal with a
tradeoff between efficiency and running time of the auction. As bid
increments define a decomposition of the continuum of valuations
into intervals, a large bid increment might lead to an inefficient
allocation of the item because it prohibits distinguishing between
bidders whose valuations are in the same interval. Small incre-
ments decrease the chance of allocative inefficiency, but increase
the running time of the auction, and thereby participation costs,
substantially [9]. Despite its practical relevance, the tradeoff be-
tween these two goals has found very little attention in the aca-
demic literature. The furthest reaching theoretical evaluation of
discrete bid levels has been given in David et al. [9], following up
on [8]. They provide a recipe on how to set a finite number of
discrete bid levels in order to maximize expected revenue of the
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auctioneer. Thereby they extend the analysis of Rothkopf and Hars-
tad [22], which was limited to either 2 bidders or 2 bid levels.
However, the recipe of David et al. can be solved analytically in a
few cases only. In other cases, the auctioneer has to rely on numer-
ical calculations. The key qualitative insight of these articles is that
decreasing increments are preferable to constant or increasing bid
increments—the common practice.

In this article we introduce a discrete query auction, called c-
fraction auction, for the sale of a single item. The auction gives
the auction designer full control of the tradeoff between ineffi-
ciency and running time. Based on a prior of bidders’ valuations,
the auctioneer can choose a single parameter, called c throughout,
to regulate both running time and expected inefficiency. The prac-
tical implementation requires the computation of values of the
quasi-inverse of cumulative distribution functions as the only
numerical tool. The auction is detail-free from the bidders’ per-
spectives by offering them an ex-post Nash equilibrium, called bluff
equilibrium, that differs only slightly from truth-telling (see Section
3 for details). In other words, the equilibrium analysis does not
have to make assumptions about bidders’ beliefs of other bidders’
valuations.

Our main contribution is to provide a detailed analysis of the
performance of the c-fraction auction under the so-called bluff
equilibrium. First, we investigate the running time of the auction
according to two measures, the expected number of rounds and
the expected number of queries performed in the auction.5 For
both measures, we first derive an exact recursive formula and then
give an upper bound for the function defined by this formula. We
prove that, for a fixed c, the expected number of rounds is bounded
by a function that is logarithmic in the number of players, while the
expected number of queries is bounded by a function that is linear in
the number of players. We also give an impression of the number of
rounds and number of queries by using computer simulations.

Second, we analyze the level of inefficiency of the auction. As
measures of inefficiency, we employ the probability of inefficient
allocation and the expected loss of welfare. For the probability of
inefficient allocation, we prove that it is no more than c for any
number of players, again after deriving an exact recursive formula.
This is remarkable because for an ascending auction with constant
or increasing bid increments, and, say, uniform i.i.d. valuations, the
probability of inefficient allocation is increasing in the number of
bidders and converging to 1. Indeed, the number nmax of bidders
with a value in the largest interval is increasing, and as such an
auction cannot distinguish between them, the probability of ineffi-
cient allocation is nmax�1

nmax
. With respect to the expected loss of wel-

fare, we derive for each distribution a constant c(c) such that the
expected loss of welfare is bounded from above by c(c) c for any
number of players. When valuations are uniformly drawn from
[0,1) it holds that c(c) = c and for the exponential distribution with
parameter k we have that c(c) = �(ln (1 � c))/k. Our results imply
that by choosing the appropriate c, the minimum level of efficiency
can be determined by the auctioneer before it is known how many
players will participate in the auction. We also give an impression
of the expected loss of welfare by using computer simulations. Fur-
thermore, we show that there is a tradeoff between efficiency and
running time: to increase the efficiency of the auction we have to
pay by increasing the number of rounds and increasing the number
of queries.

In Grigorieva et al. [14] we study the limitations of query
auctions with respect to the objective of economic efficiency
maximization in a setting with valuations distributed according
to a continuous density function. We show that any ex-post
5 As a query we consider each separate question of the auctioneer to an active
player. As a round we consider a sequence of queries in which each active player is
asked to act exactly once.
equilibrium in an ex-post individual rational query auction that
ends with positive probability after a finite number of queries can-
not be fully efficient. This result implies that in the setting of con-
tinuous valuations, full efficiency can only be achieved at the
expense of an infinite running time of a query auction for almost
all realizations of valuations. Our results on the c-fraction auction
prove a counterpart of this negative result: for any c > 0, the prob-
ability of inefficient allocation can be limited by c using an individ-
ually rational query auction with an ex-post equilibrium that ends
after a finite number of rounds for all realizations of valuations.
Furthermore, the number of rounds is logarithmic in the number
of bidders, and independent of the range of valuations.

Our paper is closely related to David et al. [9]. However, they fo-
cus on revenue maximization and touch upon efficiency losses only
on the side by showing that revenue-optimal discrete bid levels
achieve better economic efficiency than equidistant levels. Though
the paper is more ambitious since it tries to solve the optimization
problem, a practical implementation requires complex numerical
calculations and at least a prior on the number of bidders. David
et al. [9] provide a Bayesian machine learning model, based on
closing prices of previous auctions, to compute revenue maximiz-
ing discrete bid levels when no ex-ante information on the number
of bidders and their distribution of valuations is available.

The earliest paper on discrete bid levels in continuous settings
that we could trace is by Chwe [4]. Chwe studies the impact on rev-
enue when discrete bids rather than continuous bids are used in
sealed-bid, first price auctions. He analyzes equilibrium bidding
strategies and shows that revenue with discrete bids is always
lower than with continuous bids. Yu [26] extends his equilibrium
analysis to English, Vickrey, and Dutch auctions.

Another stream of literature studies iterative auctions from the
viewpoint of preference elicitation. Determining one’s valuation
with a precision up to the last digit can be computationally
demanding, see for example Larson and Sandholm [16], Parkes
[20], and Sandholm [23]. In combinatorial auctions, the full revela-
tion of agents’ preferences may require a prohibitive amount of
communication, see for example Nisan and Segal [19]. Such consid-
erations lead to an interest in auctions where agents need not re-
veal their information entirely but only partially. One approach is
to limit communication in a sealed bid auction to a finite number
of possible bits, see Blumrosen et al. [2]. Another approach is incre-
mental elicitation of valuations in multiple rounds. It has been rec-
ognized that multi-round mechanisms can reduce the amount of
preferences that need to be revealed and reduce the amount of
computation and communication, compared to single-round
mechanisms advocated by the revelation principle, see Blumrosen
et al. [3] and Conitzer and Sandholm [6]. Incremental elicitation of
bidder valuations has been modeled by query auctions (see e.g.,
Conen and Sandholm [5]). In a query auction the auctioneer
sequentially queries the agents about specific aspects of their pref-
erences. As an answer to the query, an agent can choose one of a
finite set of actions. Through incremental querying, the auctioneer
gradually collects the information on agents’ valuations. By using a
query strategy in which previously revealed information guides
the selection of subsequent queries, elicitation is targeted towards
pertinent information. Incremental querying has been applied in
different settings (see e.g. Conen and Sandholm [5] and Grigorieva
et al. [13]) and it has been shown that only a small fraction of
agents’ valuation information needs to be revealed before the
(approximately) optimal allocation can be determined (Grigorieva
et al. [12], Hudson and Sandholm [15]).

When evaluating the effectiveness of elicitation we may gener-
ally care about the running time expressed by the number of que-
ries that are required to determine an optimal allocation
(Sandholm and Boutilier [24]). Since information about agents’
valuations becomes more refined with each query, a higher
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number of queries leads to a better allocation. Our proposed c-frac-
tion auction provides a framework that lets the auctioneer explic-
itly trade off the two goals.

The paper is organized as follows. Section 2 introduces the rules
of the c-fraction auction and Section 3 derives what we call the
bluff equilibrium. Section 4 addresses the probabilities by which
bidders make yes and no responses. In Section 5, the running time
of the auction is analyzed. Section 6 is devoted to the analysis of
the efficiency of the auction and remarks about the tradeoff be-
tween running time and efficiency. Section 7 provides some con-
cluding remarks.

2. The c-fraction auction

Suppose a single indivisible object is auctioned to a set
N = {1, . . . ,n} of players. The players have quasi-linear utilities.
We assume independent private valuations drawn from a common
continuous probability distribution with density f and cumulative
density F. The support of f belongs to Rþ. The minimum of this sup-
port is denoted by a and the supremum by b, where we allow b to
be infinite and assume that b strictly exceeds every possible valu-
ation.6 Since F may not be strictly increasing, it may not have an in-
verse. By F�1 : ½0;1Þ ! R we denote the function such that
F�1ðyÞ ¼maxfx 2 RþjFðxÞ ¼ yg.

Before the start of the auction there is a lottery that determines
an ordering of the players. Without loss of generality we assume
that this ordering is 1 � 2 � � � � � n � 1 � n. A player with a lower
ranking is called a predecessor.

The auction runs for a number of rounds. A round r is character-
ized by a payment pr, a query price qr, an upper bound ur, rand a set
of active players Ar. The payment specifies the price to be paid if an
active player wins in this round. The query price is used by the auc-
tioneer to ask the active players whether their valuation is larger
than or equal to the query price. Active players are queried publicly
in increasing order—player i before player i + 1—so that an active
player can observe the bids of his predecessors. In each round
the query price qr is chosen from the open interval (pr,ur), where
Round r Payment pr Query price qr Set of active players Ar Player 1 Player 2 Player 3 Player 4 Player 5

1 0 0.5 {1,2,3,4,5} yes yes no yes yes
2 0.5 0.75 {1,2,4,5} no yes – yes yes
3 0.75 0.875 {2,4,5} – no – yes no
ur is allowed to be infinite.
The initial set of active players is A1 = N. The auction starts with

p1 = a, u1 = b, and some q1 in (p1,u1). Given the current set Ar, the
payment pr, the query price qr, the upper bound ur, rand the bids
of players in round r, the characteristics of the next round r + 1
are defined as follows. If all active players submit a no bid, they
all remain active, i.e. Ar+1 = Ar, the payment remains the same,
and the upper bound is set to the previous query price, i.e. pr+1 = pr

and ur+1 = qr. If at least two active players submit a yes bid, all play-
ers that said yes remain active, the upper bound remains the same,
and the payment is set equal to the previous query price, i.e.
ur+1 = ur and pr+1 = qr. In both cases, as a function of the bounds, a
new query price qr+1 in (pr+1,ur+1) is determined in the way speci-
fied below. If only one active player submits a yes bid, the auction
stops, this player wins the auction, and pays pr. If such a moment
6 Requiring all valuations to be strictly smaller than b is a mild, though non-standard,
technical assumption that is helpful for some of our theorems. See also footnote 8.
does not occur, i.e. at least two players remain active forever, the
winner is determined according to the order of players: among
those players who remain active the player with the highest rank-
ing wins. The price the winner pays is equal to the limit of the se-
quence of payments ðprÞr2N that occur in the subsequent rounds in
the auction. Since the sequence of payments is increasing, this lim-
it is equal to the supremum of the payments, and is denoted by p1.

For the c-fraction auction, where c 2 (0,1), the query price qr is
chosen as the maximal q for which

FðqÞ � FðprÞ
FðurÞ � FðprÞ

¼ c;

i.e. c is equal to the probability that a valuation belongs to the inter-
val (pr,qr] conditional on this valuation being in the interval (pr,ur].
For the uniform distribution for example it holds that
qr = pr + c(ur � pr). Equivalently, we can define

qr ¼ F�1ðð1� cÞFðprÞ þ cFðurÞÞ:

Consider the following strategy for player i having valuation vi. This
player says yes in round r if and only if

1. vi P qr, or
2. pr 6 vi < qr and no active predecessor of i said yes in round r.

In the second part of the definition, we mean by an active pre-
decessor of i in round r a player in Ar that is a predecessor of i. Be-
cause this part of the definition involves a certain amount of bluff,
we call this strategy the bluff strategy. Formally, the auction is gi-
ven by an extensive form game, the bluff strategy of player i is a
function from the set of decision nodes of player i to {yes,no},
and is denoted by bi. The following example illustrates how the
auction proceeds when all players follow the bluff strategy.

Example 1. Suppose five players, with valuations uniformly
distributed on [0,1), participate in the c-fraction auction, where c
is equal to 0.5. Players have the following private valuations: 0.43,
0.71, 0.38, 0.79, and 0.86. The auction proceeds as follows.
In the first round, player 1, having no predecessor and having a
valuation larger than p1, says yes. Every other player, having now
an active predecessor who said yes, says yes if and only if his valu-
ation is greater than or equal to q1 = 0.5. All players except player 3
say yes and therefore remain active. The payment and the query
price increase to 0.5 and 0.75, respectively. Since v1 < p2 player 1
says no in the second round. Now player 2 has no active predeces-
sor who said yes and since v2 P p2 he says yes. Players 4 and 5 say
yes since their valuations are larger than q2 = 0.75. Again the pay-
ment and the query price increase. In the third round player 2 says
no, player 4, having now no active predecessors who said yes, says
yes, rand player 5 says no. In this round there is only one yes deci-
sion, meaning that the auction ends. Player 4 wins the auction and
pays 0.75.
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Notice that the outcome in the example is not efficient-the win-
ner is not the player with the highest valuation. Later in the paper
we investigate how inefficient this auction is by analyzing the prob-
ability of an inefficient allocation and the expected loss of welfare.

3. Bluff equilibria

In this section we show that the profile of bluff strategies con-
stitutes an ex-post individually rational ex-post equilibrium called
the bluff equilibrium. An ex-post equilibrium is a strategy profile
such that, given any realization of valuations, the plan of action
prescribed to a bidder in the auction by his strategy is a best
response to the plans of action prescribed by the strategies of the
other bidders given their valuations. A strategy is ex-post individ-
ually rational if for every realization of valuations and for any
profile of actions of the player’s opponents, the strategy leads to
non-negative utility.

Proposition 3.1. The bluff strategy is ex-post individually rational.
Proof. Consider an arbitrary strategy profile where player i follows
his bluff strategy. If i is not the winner, then he has utility 0. Thus
assume that i is the winner. Note that i must be an active player in
all rounds of the auction, as only active players can become win-
ners. We show that pr 6 vi in each round r, which implies that i
has positive utility. By construction, pr 6 vi for r = 1. Suppose the
inequality holds up to round r. We show that it also holds in round
r + 1, or the auction ends in round r. There are two cases.

Case 1. A predecessor of i says yes in round r. To become the win-
ner, i must say yes as well. As i plays the bluff strategy, it
holds that vi P qr. Furthermore, we have that pr+1 = qr.

Case 2. No predecessor of i says yes in round r.When i says no, all
successors of i in Ar must also say no for i to be the win-
ner, so pr+1 = pr 6 vi. When i says yes and all successors
say no, the auction ends. When i says yes and one suc-
cessor says yes, either pr+1 = qr 6 vi or pr+1 = qr > vi. We
show that the latter case contradicts the assumption
that i is the winner. Note that i will say no in each future
round r0 where he is active, as v i < prþ1 6 qr0 . When any
other active player says yes in any future round r0, i will
not be the winner. When all other active players—and
there is at least one in round r + 1—keep saying no, the
set of active players stays the same in all future rounds.
In this case an active player with higher rank than i
wins. h
Theorem 3.2. The bluff strategy profile is an ex-post Nash
equilibrium.
7 Without the assumption that b strictly exceeds every possible valuation, the
running time would be infinite exactly when two or more bidders have valuation b.
Proof. Let v be a realization of valuations and fi be a strategy for
player i, i.e. a function from the set of decision nodes for player i
to {yes,no}. We show that fi is not a profitable deviation from bi

against b�i. Let h be the first decision node at which player i follow-
ing fi deviates from the bluff strategy, and let r denote the corre-
sponding round. (Obviously, if fi coincides with bi at all decision
nodes, fi is not a profitable deviation.) Notice that since we treat
v as given and apart from v there is no imperfect information,
the node h is well-defined. We consider two cases.

Case 1. Let h be such that at least one predecessor of i in Ar has
said yes. If fi(h) = no and bi(h) = yes, the payoff of playing
fi is 0, while according to Proposition 3.1 the payoff of
playing the bluff strategy is at least 0. Consider the case
where fi(h) = yes and bi(h) = no. When player i says yes in
h, there are at least two players who say yes in round r.
The winning payment will be at least qr. Further, vi < qr

because bi(h) = no. Hence, the payoff of playing fi is
non-positive while the payoff of playing bi is 0.

Case 2. Let h be such that none of the predecessors of i in Ar has
said yes. If fi(h) = yes and bi(h) = no, we know that vi < pr.
Since the payment of the winner is at least pr, playing fi

leads to a non-positive payoff, while playing according
to bi guarantees a non-negative payoff. Consider the case
where fi(h) = no and bi(h) = yes, so vi P pr. Suppose that v
is such that all successors of i say no if i says yes. Then,
following bi, player i wins at a price pr while following
fi he might win at a price at least pr. Now suppose that
v is such that there is a successor j of i that says yes if
player i says yes. Since player j uses the bluff strategy,
he will also say yes when player i switches to no. But
then the payoff of playing fi would be 0 while the payoff
of playing bi is non-negative. h
Theorem 3.3. The allocation under the bluff equilibrium is not ex-
post efficient.
Proof. See the example in Section 2. h

We argue next that c-fraction auctions have a finite running
time under the bluff equilibrium for any realization of valuations.
Notice that this statement is stronger than just saying that we have
a finite running time almost surely. We also argue that when every
bidder plays according to his bluff strategy, in any round of the
auction there is at least one player who says yes.

Theorem 3.4. The bluff equilibrium has a finite running time for
every realization of valuations. Moreover, the query price increases
from round to round up to the moment where the winner is found.
Proof. We first claim that the winner of the auction, say player j,
says yes in every round of the auction. Suppose not, then let r be
the first round in which he says no. Now all players in Ar say no
in round r, since otherwise j cannot be the winner of the auction.
Either r = 1 or in round r � 1 player j said yes and so did all players
in Ar. If r = 1, then vj P p1 = a, so player j says yes, leading to a con-
tradiction. If in round r � 1 all players in Ar said yes, then so did a
player i with a predecessor in Ar, implying that vi P qr�1 = pr.
Observing a no from all his predecessors in round r, player i should
say yes in round r when following the bluff strategy, a contradic-
tion. We have shown that the winner of the auction says yes in
every round of the auction. It then follows that the query price
increases from round to round up to the moment where the winner
is found.

Suppose the valuation v is such that the running time of the
auction is infinite. Since by the previous paragraph the query price
increases from round to round, we have p1 = b. Since the winner of
the auction, say player j, says yes in every round r, we have for all
r 2 N, vj P pr, so vj P b, ra contradiction to our assumption that b
strictly exceeds every possible valuation.7 h

As a corollary to Theorem 3.4 we find an easy characterization
of the query price in round r.
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Corollary 3.5. In the bluff equilibrium it holds that
qr = F�1(1 � (1 � c)r), r 2 N.
4. Probability distribution of player actions

In this section we evaluate the probability of saying yes and
no by an active player under the bluff strategy. Knowing these
probabilities enables us to derive recursive formulas for the ex-
pected number of rounds and the expected number of queries
performed in the auction. Throughout this section, as well as
in remaining sections, it is assumed that every player uses the
bluff strategy.

Recall that in any round r of the c-fraction auction, the query
price qr is determined such that, conditional on vi belonging to
[pr,ur), the probability that vi is in [pr,qr) is equal to c. We define
ir = min{iji 2 Ar}—among the active players in round r the one with
the lowest ranking—and jr = min{iji 2 Ar, i – ir} —among the active
players in round r the one with the second lowest ranking.

Proposition 4.1. In the bluff equilibrium it holds that a player i 2 Ar

says yes in round r with probability 1 � c, except when i = i1 or [i = jr

and ir says no], in which case player i says yes with probability 1.
Proof. First let us observe that when player ir says no for the first
time, player jr says yes with certainty. Indeed, in all previous
rounds player ir said yes and since jr is active in round r also he said
yes in those rounds. Both the payment and the query price have
increased so that pr = qr�1. Since player jr follows the bluff strategy,
his previous yes decision implies that v jr P qr�1 ¼ pr . If in round r
player ir says no, player jr is in the situation where he does not have
an active predecessor with a yes decision and therefore says yes
whenever his valuation is not smaller than pr. It follows that after
a round r where player ir says no for the first time, he drops out, jr

says yes and ir+1 = jr. Otherwise, ir+1 = ir.
Next we determine the probability that player ir says yes in

round r. Having no active predecessor, player ir says yes if and only
if v ir P pr . Since p1 = a player i1 says yes with certainty in round 1.
For r > 1, we have that either ir = ir�1 or ir = jr�1. In both cases the
decision of player ir in round r � 1 was yes which happens if and
only if v ir P pr�1. Thus, the probability that ir says yes is equal to
Pðv ir P pr jv ir P pr�1Þ ¼ Pðv ir P qr�1jv ir P pr�1Þ ¼ 1� c. The last
equality holds because qr�1 satisfies

Fðqr�1Þ � Fðpr�1Þ
Fður�1Þ � Fðpr�1Þ

¼ c;

and Theorem 3.4 implies that ur�1 = b.
Next we determine the probability of saying yes in round r for

any player i 2 Arn{ir}. We distinguish two cases.
First, consider the case where player ir says yes in round r. From

the fact that i 2 Ar, it follows that player i said yes in round r � 1
which is the case if and only if vi P qr�1. In round r he says yes if
and only if vi P qr. Thus, Pðv i P qr jv i P qr�1Þ ¼ Pðv i P qr jv i P
prÞ ¼ 1� c. The last equality holds for the same reason as above.

Secondly, consider the case where player ir says no in round r.
As we have already shown, player jr says yes with certainty. For any
player i 2 Arn{ir, jr}, the situation is the same as in the previous case
and thus such a player i says yes with probability 1 � c. h

Due to the query price setting rule of the c-fraction auction,
Proposition 4.1 holds regardless of the distribution from which val-
uations are drawn. Moreover, the probability of saying yes or no by
an active player does not depend on the round with the exception
of round 1. This enables us to derive recursive formulas for the ex-
pected number of rounds and the expected number of queries per-
formed in the auction.
5. Running time of the auction

In this section we investigate the expected running time of the
c-fraction auction if the bluff strategies are played. We analyze two
measures, namely the expected number of rounds and the ex-
pected number of queries performed in the auction before the win-
ner is found. As a query we consider each separate question of the
auctioneer to an active player. For both measures, we first derive a
recursive formula and then give an upper bound for the function
defined by this formula.

5.1. The expected number of rounds

Let ec(k) be the expected number of rounds of the auction with k
active players, given that the decision of the active player with the
lowest ranking is yes in the current round, and let e�cðkÞ be the ex-
pected number of rounds given that this decision is no.

Consider round r with n active players and suppose that the
decision of player ir in the current round is yes. The current round
contributes 1 to ec(n). Now let us compute the expected number of
remaining rounds. If all active players apart from player ir say no,
the auction stops after this round. If k, where 1 6 k 6 n � 1, r active
players apart from player ir say yes, then the auction continues
with k + 1 active players. Using Proposition 4.1, the probability of
this situation given the yes decision of player ir is

n� 1
k

� �
ð1� cÞkcn�1�k. In the next round player ir+1 = ir says yes

or no with probability 1 � c and c respectively. Thus if k active
players apart from player ir say yes in round r, the expected number
of remaining rounds is equal to ð1� cÞecðkþ 1Þ þ ce�cðkþ 1Þ. Hence,
for any n P 2,

ecðnÞ ¼ 1þ
Xn�1

k¼1

n�1
k

� �
ð1� cÞkcn�1�k ð1� cÞecðkþ 1Þ þ ce�cðkþ1Þ

� �
:

ð1Þ
Proposition 4.1 states that if player ir+1 says no, player jr+1 says yes
with certainty, which causes player ir+1 to drop out of the auction.
For k > 1 this yields e�cðkþ 1Þ ¼ ecðkÞ, as the expected number of
rounds with player ir+1 saying no is equal to the expected number
of rounds without this player and the player with lowest rank
among the remaining k players saying no. Observe that e�cð2Þ ¼ 1
as exactly one of the two players says yes.

We denote Pn
k ¼

n
k

� �
ð1� cÞkcn�k and rewrite Eq. (1) as follows:

ecðnÞ ¼ 1þ
Xn�1

k¼1

Pn�1
k ð1� cÞecðkþ 1Þ þ ce�cðkþ 1Þ
� �

¼ 1þ ð1� cÞ
Xn�2

k¼1

Pn�1
k ecðkþ 1Þ þ ð1� cÞPn�1

n�1ecðnÞ

þ c
Xn�1

k¼2

Pn�1
k e�cðkþ 1Þ þ cPn�1

1 e�cð2Þ

¼ 1þ ð1� cÞ
Xn�2

k¼1

Pn�1
k ecðkþ 1Þ þ ð1� cÞnecðnÞ

þ c
Xn�1

k¼2

Pn�1
k ecðkÞ þ ðn� 1Þð1� cÞcn�1

¼ 1þ ð1� cÞnecðnÞ þ ðn� 1Þð1� cÞcn�1

þ ð1� cÞ
Xn�1

k¼2

Pn�1
k�1ecðkÞ þ c

Xn�1

k¼2

Pn�1
k ecðkÞ

¼ 1þ ð1� cÞnecðnÞ þ ðn� 1Þð1� cÞcn�1

þ
Xn�1

k¼2

ð1� cÞPn�1
k�1 þ cPn�1

k

h i
ecðkÞ

¼ 1þ ð1� cÞnecðnÞ þ ðn� 1Þð1� cÞcn�1 þ
Xn�1

k¼2

Pn
kecðkÞ:



Table 1
The expected number of rounds ec(n) in the c-fraction auction.

n c

1/10 1/8 1/6 1/4 1/3 1/2 2/3 3/4 5/6 7/8 9/10

2 5.737 4.733 3.727 2.714 2.200 1.667 1.375 1.267 1.171 1.127 1.101
3 8.901 7.230 5.555 3.873 3.021 2.143 1.663 1.483 1.319 1.240 1.193
4 11.273 9.102 6.927 4.742 3.638 2.505 1.891 1.660 1.446 1.341 1.277
5 13.172 10.600 8.024 5.437 4.131 2.794 2.076 1.807 1.557 1.431 1.353
6 14.753 11.848 8.938 6.016 4.542 3.035 2.230 1.931 1.654 1.512 1.423
7 16.109 12.918 9.721 6.513 4.895 3.241 2.361 2.037 1.738 1.584 1.486
8 17.296 13.854 10.407 6.947 5.203 3.421 2.475 2.129 1.813 1.650 1.545
9 18.350 14.686 11.016 7.334 5.477 3.581 2.576 2.211 1.879 1.709 1.598

10 19.299 15.435 11.565 7.681 5.724 3.726 2.667 2.283 1.939 1.762 1.647
20 25.647 20.443 15.233 10.006 7.373 4.690 3.275 2.760 2.312 2.102 1.971
30 29.417 23.418 17.412 11.387 8.353 5.264 3.637 3.048 2.524 2.281 2.140
40 32.109 25.541 18.967 12.372 9.052 5.673 3.894 3.255 2.681 2.406 2.249
50 34.203 27.194 20.177 13.140 9.596 5.991 4.095 3.414 2.808 2.508 2.333
60 35.918 28.547 21.168 13.768 10.042 6.252 4.260 3.543 2.913 2.595 2.405
70 37.370 29.693 22.007 14.299 10.419 6.472 4.399 3.652 3.002 2.672 2.469
80 38.628 30.686 22.735 14.760 10.746 6.664 4.520 3.747 3.077 2.740 2.527
90 39.740 31.563 23.377 15.167 11.035 6.833 4.627 3.831 3.143 2.801 2.580

100 40.735 32.348 23.952 15.532 11.294 6.984 4.722 3.907 3.201 2.855 2.629
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This can be rewritten to

½1� ð1� cÞn�ecðnÞ ¼ 1þ ðn� 1Þð1� cÞcn�1

þ
Xn�1

k¼2

n

k

� �
ð1� cÞkcn�kecðkÞ: ð2Þ

This formula is valid for any n P 2.
Now notice that since in the first round player i1 says yes with

certainty, the expected number of rounds of the auction with n
players is equal to ec(n). Thus, using Formula 2, we can compute
the expected number of rounds in the auction of n players. Plug-
ging in n = 2 yields ecð2Þ ¼ 1þcð1�cÞ

cð2�cÞ . All other values can be deter-
mined recursively. Table 1 presents the computational results for
different values of c in the auction with up to 100 players. Notice
that the bisection character of the c-fraction auction guarantees a
remarkably low number of rounds. For instance, with 100 bidders
and c = 1/2, the auction terminates in less than 7 rounds on
average.

Fig. 1(a) shows how for a fixed value of c the expected number
of rounds increases in the number of players who participate in the
auction. Furthermore, Fig. 1(b) demonstrates how for a fixed num-
ber of players the expected number of rounds decreases as c
increases.

We show next that the expected number of rounds of the auc-
tion is bounded from above by a function that is logarithmic in the
number of players. We determine this bound for c 6 1/2, since the
Fig. 1. The expected number of rounds (a) for different fixed
bound for �c ¼ 1=2 is also valid for c > 1/2. First, we introduce some
notation and several lemmas.

For any n P 2, define Dn ¼
Qn

k¼1
1

1�ð1�cÞk
. Also, define E2 ¼ 1þcð1�cÞ

cð2�cÞ
and, for any n > 2,

En ¼ 1þ ðn� 1Þð1� cÞcn�1 þ
Xn�1

k¼2

n

k

� �
ð1� cÞkcn�kEk:
Lemma 5.1. For any n P 2, ec(n) < En � Dn.
Proof. The proof is by induction on n. The basis of the induction is
trivial since ec(2) = E2 and D2 > 1. Suppose that ec(k) < Ek � Dk is true
for any 2 6 k 6 n � 1. Notice that Dn > Dn�1 > � � � > D2 > 1. Thus,
using the recursive formula for ec(n) and the induction hypothesis,

½1�ð1�cÞn�ecðnÞ¼1þðn�1Þð1�cÞcn�1þ
Xn�1

k¼2

n

k

� �
ð1�cÞkcn�kecðkÞ

<1þðn�1Þð1�cÞcn�1þ
Xn�1

k¼2

n

k

� �
ð1�cÞkcn�kEkDk

<1þðn�1Þð1�cÞcn�1þ
Xn�1

k¼2

n

k

� �
ð1�cÞkcn�kEkDn�1

<Dn�1 1þðn�1Þð1�cÞcn�1þ
Xn�1

k¼2

n

k

� �
ð1�cÞkcn�kEk

" #

¼En �Dn�1;
values of c; (b) for different fixed numbers of players.



Fig. 2. The ratio between the upper bound from Theorem 5.4 and the results from Table 1.
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which completes the proof. h

Now we find bounds on Dn and En.

Lemma 5.2. For any n P 2;Dn < e
1�c
c2 .
Proof. We have to show that ln Dn <
1�c
c2 . Let us define k ¼ 1

1�c.
Notice that since 0 < c < 1 it holds that k > 1.

We have

ln Dn ¼ ln
Yn

k¼1

kk

kk � 1

 !
¼
Xn

k¼1

½ln kk � lnðkk � 1Þ� 6
Xn

k¼1

@x ln xjx¼kk�1

¼
Xn

k¼1

1
kk � 1

<
Xn

k¼1

1
kk � kk�1 ¼

1
k� 1

Xn

k¼1

1
kk�1 <

1
k� 1

X1
k¼0

1
kk

¼ k

ðk� 1Þ2
¼ 1� c

c2 ;

where the first inequality holds because of the concavity of ln. h
Lemma 5.3. For any n P 2 and any c 6 1
2, En < 1 + loga n, with base

a ¼ 1
1�c.
Proof. The proof is by induction on n. The basis of the induction
holds since 1þcð1�cÞ

cð2�cÞ < 1þ loga2 for any c 6 1
2. Suppose Ek < 1 + logak

for any 2 6 k 6 n � 1. Using the induction hypothesis,

En ¼ 1þ ðn� 1Þð1� cÞcn�1 þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�kEk

< 1þ ðn� 1Þð1� cÞcn�1 þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�kðlogakþ 1Þ

< 1þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�klogakþ

Xn�1

k¼1

n
k

� �
ð1� cÞkcn�k

< 2þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�klogak:

Since the logarithm with base a ¼ 1
1�c is concave, we know that if

kk P 0 and
Pn

k¼0kk ¼ 1, then
Xn

k¼0

kklogaðxkÞ 6 loga

Xn

k¼0

kkxk

 !
:

So let us take kk ¼
n
k

� �
ð1� cÞkcn�k for k = 0, . . . ,n and take

x0 = xn = 1, xk = k for any 1 6 k 6 n � 1.
Then

En < 2þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�klogak

¼ 2þ
Xn

k¼0

n

k

� �
ð1� cÞkcn�klogaðxkÞ

6 2þ loga

Xn

k¼0

n
k

� �
ð1� cÞkcn�kxk

" #

¼ 2þ loga

Xn�1

k¼1

n
k

� �
ð1� cÞkcn�kkþ cn þ ð1� cÞn

" #

6 2þ loga

Xn�1

k¼1

n
k

� �
ð1� cÞkcn�kkþ nð1� cÞn

" #

¼ 2þ loga

Xn

k¼0

n
k

� �
ð1� cÞkcn�kk

" #

¼ 2þ loga ð1� cÞn½ � ¼ 1þ logan:

The last inequality holds since for any c 6 1
2 and any n P 2 it holds

that cn + (1 � c)n
6 2(1 � c)n

6 n(1 � c)n. h

A final immediate consequence of Lemmas 5.1–5.3 is the
following theorem.

Theorem 5.4. For any c 6 1
2 and any n P 2; ecðnÞ 6 e

1�c
c2 log 1

1�c
nþ 1

� �
.

Since ecðnÞ < e�cðnÞ when c > �c, the upper bound for �c ¼ 1
2 is also

valid for any c > 1
2.

We have shown that the expected number of rounds of the c-
fraction auction is bounded from above by a function that is loga-
rithmic in the number of players. Furthermore, a comparison of the
bound with the computed results shows that for a fixed value of c
the ratio between the bound and the computed result is approxi-
mately constant as a function of n, implying that the bound has
approximately the correct order of magnitude. Fig. 2 shows the



Table 2
The expected number of queries bc(n) in the c -fraction auction.

n c

1/10 1/8 1/6 1/4 1/3 1/2 2/3 3/4 5/6 7/8 9/10

2 11.474 9.467 7.455 5.429 4.400 3.333 2.750 2.533 2.343 2.254 2.202
3 21.790 17.779 13.759 9.718 7.674 5.571 4.442 4.029 3.666 3.496 3.396
4 32.027 26.013 19.988 13.935 10.879 7.752 6.094 5.495 4.972 4.727 4.582
5 42.217 34.200 26.171 18.109 14.044 9.897 7.717 6.938 6.264 5.949 5.762
6 52.375 42.356 32.323 22.254 17.181 12.017 9.320 8.365 7.545 7.162 6.936
7 62.511 50.490 38.454 26.378 20.298 14.120 10.908 9.778 8.815 8.368 8.104
8 72.630 58.607 44.568 30.487 23.401 16.211 12.484 11.180 10.078 9.568 9.268
9 82.735 66.711 50.669 34.583 26.492 18.291 14.051 12.575 11.333 10.763 10.427

10 92.830 74.804 56.761 38.670 29.575 20.363 15.611 13.962 12.582 11.952 11.582
20 193.465 155.430 117.372 79.251 60.124 40.845 31.016 27.653 24.893 23.679 22.985
30 293.842 235.802 177.735 119.597 90.451 61.132 46.258 41.203 37.070 35.264 34.248
40 394.111 316.068 237.995 159.843 120.684 81.336 61.430 54.691 49.201 46.802 45.457
50 494.320 396.274 298.196 200.035 150.865 101.495 76.563 68.144 61.307 58.319 56.644
60 594.492 476.443 358.361 240.192 181.014 121.626 91.673 81.574 73.394 69.825 67.820
70 694.637 556.587 418.501 280.325 211.140 141.736 106.766 94.989 85.468 81.320 78.989
80 794.763 636.711 478.622 320.440 241.249 161.832 121.847 108.394 97.531 92.809 90.152
90 894.874 716.820 538.729 360.542 271.345 181.916 136.918 121.790 109.586 104.290 101.311

100 994.973 796.918 598.825 400.633 301.431 201.992 151.981 135.180 121.634 115.766 112.466
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ratio between the upper bound from Theorem 5.4 and the results
from Table 1 for up to 64 bidders and different values for c. The
ratio increases for large c > 1

2, as we use the bound for c ¼ 1
2, but

is almost constant for c 6 1
2, independent of n.

5.2. The expected number of queries

Let bc(k) be the expected number of queries of the auction with
k active players, given that the decision of the active player with
the lowest ranking is yes in the current round, and let b�cðkÞ be
the expected number of queries given that this decision is no.
Notice that in a round with k active players, k queries are
performed. Following the same argument as we used for determin-
ing the formula for the expected number of rounds, we find that for
any n P 2

bcðnÞ¼nþ
Xn�1

k¼1

n�1
k

� �
ð1�cÞkcn�1�k ð1�cÞbcðkþ1Þþcb�cðkþ1Þ

� �
: ð3Þ

Again, notice that when player ir+1 = ir says no, r player jr+1 says yes
with certainty, which causes player ir+1 to drop out of the auction.
Thus, b�cð2Þ ¼ 2 and for all k P 2 it holds that b�cðkþ 1Þ ¼ 1þ bcðkÞ.

Recall that Pn
k ¼

n
k

� �
ð1� cÞkcn�k. Using the facts that b⁄(2) = 2

and b⁄(k + 1) = b(k) + 1 for all k P 2, we get from (3) that

bcðnÞ¼nþ
Xn�1

k¼1

Pn�1
k ð1�cÞbcðkþ1Þþcb�cðkþ1Þ
� �

¼nþð1�cÞ

�
Xn�2

k¼1

Pn�1
k bcðkþ1Þþð1�cÞPn�1

n�1bcðnÞþc
Xn�1

k¼2

Pn�1
k b�cðkþ1Þ

þcPn�1
1 b�cð2Þ¼nþð1�cÞ

Xn�2

k¼1

Pn�1
k bcðkþ1Þþð1�cÞnbcðnÞ

þc
Xn�1

k¼2

Pn�1
k bcðkÞþ1½ �þ2ðn�1Þð1�cÞcn�1¼nþð1�cÞnbcðnÞ

þ2ðn�1Þð1�cÞcn�1þð1�cÞ
Xn�1

k¼2

Pn�1
k�1bcðkÞþc

Xn�1

k¼2

Pn�1
k bcðkÞ

þc
Xn�1

k¼2

Pn�1
k ¼nþð1�cÞnbcðnÞþ2ðn�1Þð1�cÞcn�1

þc�cn�ðn�1Þð1�cÞcn�1þ
Xn�1

k¼2

ð1�cÞPn�1
k�1þcPn�1

k

h i
bcðkÞ

¼nþð1�cÞnbcðnÞþðn�1Þð1�cÞcn�1þc�cnþ
Xn�1

k¼2

Pn
kbcðkÞ:
Rewriting yields, for any n P 2,

1� ð1� cÞn
� �

bcðnÞ ¼ nþ ðn� 1Þð1� cÞcn�1 þ c � cn

þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�kbcðkÞ: ð4Þ

Now notice that since in the first round player i1 says yes with cer-
tainty, the expected number of queries in the auction of n players is
equal to bc(n). Thus using (4) we can compute the expected number
of queries performed in the auction with n players. Substituting in
n = 2 yields bcð2Þ ¼ 2þ2cð1�cÞ

cð2�cÞ . All other values can be determined
recursively. Table 2 presents the computational results for different
values of c in the auction with up to 100 players. Again, the c-frac-
tion auction needs only very few queries to allocate the object. For
instance, with 100 bidders and c = 1/2, the auction needs less than
202 queries on average, surprisingly little if one realizes that 100
is the absolute minimum with 100 bidders.

Fig. 3(a) demonstrates that for a fixed value of c, the expected
number of queries increases in the number of players participating
in the auction. Fig. 3(b) shows that for a fixed number of players,
the expected number of queries decreases as c becomes larger.

We show next that the expected number of queries is bounded
from above by a function that is linear in the number of players. To
prove this we introduce some notation and several lemmas.

Define B2 ¼ 2þ2cð1�cÞ
cð2�cÞ and, for any n > 2,

Bn ¼ nþ ðn� 1Þð1� cÞcn�1 þ c � cn þ
Xn�1

k¼2

n

k

� �
ð1� cÞkcn�kBk:

Recall that Dn ¼
Qn

k¼1
1

1�ð1�cÞk
.

Lemma 5.5. For any n P 2, bc(n) 6 Bn � Dn.
Proof. The proof is identical to the proof of Lemma 5.1 if we
replace ec(k) by bc(k) and Ek by Bk for all 2 6 k 6 n. h

From Lemma 5.2 we know that for any n P 2, Dn 6 e
1�c
c2 . We find

now a bound on Bn.

Lemma 5.6. For any n P 2, Bn 6
2
c þ 1

2

� 	
ðnþ 1Þ.
Proof. The proof is by induction on n. The basis of the induction
holds since it can be easily shown that B2 < 3 2

c þ 1
2

� 	
. Now suppose

that Bk 6
2
c þ 1

2

� 	
ðkþ 1Þ for any 2 6 k 6 n � 1. Using the induction

hypothesis,
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Fig. 3. The expected number of queries (a) for different fixed values of c; (b) for different fixed numbers of players.
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Bn ¼ nþ ðn� 1Þð1� cÞcn�1 þ c � cn þ
Xn�1

k¼2

n
k

� �
ð1� cÞkcn�kBk
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The last inequality holds since n P 2. h

A final immediate consequence of Lemmas 5.2, 5.5, 5.6 is the fol-
lowing theorem.

Theorem 5.7. For any integer n P 2, bcðnÞ 6 e
1�c
c2 2

c þ 1
2

� 	
ðnþ 1Þ.

We have shown that the expected number of queries is bounded
from above by a function that is linear in the number of players.
Again, a comparison of the bound with the computed results sug-
gests that this bound is not tight. It can be easily checked that for
a fixed value of c the ratio between the bound and the computed re-
sult is approximately constant as a function of n, implying that the
bound is likely to have the correct order of magnitude.

6. Efficiency of the auction

In this section we investigate the efficiency of the c-fraction
auction when the bluff equilibrium is played. In particular, in the
following two subsections, we compute the probability of ineffi-
cient allocation and the expected loss of welfare.

6.1. The probability of inefficient allocation

We derive a recursive formula for the probability of inefficient
allocation and give an upper bound for this probability using the
recursive formula. We denote the probability that the auction with
n players terminates in an inefficient allocation by Pc(n).

A first important observation is that the c-fraction auction with
k players having valuations drawn from F conditional on these val-
uations being greater than or equal to F�1(c) has exactly the same
structure as the original c-fraction auction with k players having
valuations drawn from F. For both cases, the probability of an inef-
ficient allocation under the bluff equilibrium is the same.

Consider the case where the valuation of all players is smaller
than F�1(c). The probability of this event is cn. In this case player
i1 is the only player saying yes, rand therefore receives the object.
The auction is only efficient if the player with the lowest ranking
has the highest valuation, which happens with probability 1/n.
Thus this case contributes ((n � 1)/n)cn to Pc(n). Next consider
the case where k P 1 players have valuations larger than or equal
to F�1(c) and n � k players have valuations smaller than F�1(c),

which happens with probability n
k

� �
cn�kð1� cÞk. For k = 1 the auc-

tion is efficient, so this case adds zero to Pc(n). Consider the case
where k > 1. Either player i1 has a value below F�1(c), responds
no in round 2, and inefficiency among the remaining k bidders
takes place with probability Pc(k). Or player i1 has a value greater
than or equal to F�1(c), in which case the auction starts in round
2 with k bidders having a value greater than or equal to F�1(c)
and inefficiency takes place with probability Pc(k). We find that

PcðnÞ ¼
n� 1

n
cn þ

Xn

k¼2

n

k

� �
cn�kð1� cÞkPcðkÞ:

A direct evaluation of the recursive formula yields that
Pcð2Þ ¼ 1

2 � c
2�c. For n > 2, rewriting leads to

½1� ð1� cÞn�PcðnÞ ¼
n� 1

n
cn þ

Xn�1

k¼2

n

k

� �
cn�kð1� cÞkPcðkÞ: ð5Þ

A direct computation of this expression for different combinations
of n and c gives the values that are plotted in Fig. 4.

The recursive formula can also be used to derive the following
upper bound on Pc(n).

Theorem 6.1. For all n 2 N, Pc(n) < c.
Proof. The proof is by induction on n. The basis of the induction
holds since Pc(1) = 0 and Pcð2Þ ¼ 1

2 � c
2�c < c. Suppose that n P 3

and Pc(k) < c for all 1 6 k 6 n � 1. Then
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< c:
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The first inequality holds by the induction assumption and the fact
that n�1

n < 1. The last inequality holds since n P 3. h

This theorem shows in particular that by choosing an appropri-
ate fraction c in the auction we can make the probability of ineffi-
ciency as small as we like, independent of the number of players!
Also Fig. 4 shows that the probability of inefficient allocation is
quite independent from the number of players.

When we assume c < 1
2 , it can be shown by the same chain of

arguments that PcðnÞ 6 1
2 c for all n 2 N.

6.2. The expected loss of welfare

The welfare of an auction is equal to the valuation of the winner
of the auction. Given v, the maximum welfare is max{viji 2 N}. The
expected loss of welfare, denoted by Lc(n), is the expected value of
the difference between the maximum welfare and the valuation of
the winner. To estimate the value of Lc(n), we simulated the c-frac-
tion auction and ran it for valuations uniformly and independently
drawn from the interval [0,1). For each combination of the value c
and the number of players n, we ran 10,000 trials. Fig. 5 shows the
99% confidence interval for the expected loss of welfare. It is inter-
esting to notice that the maximum expected loss does not occur
when the number of players is minimal.

For a distribution function F, we define cðcÞ 2 Rþ by

cðcÞ ¼ sup
r2N
fF�1ð1� ð1� cÞrÞ � F�1ð1� ð1� cÞr�1Þg;

so c(c) measures the maximal difference between the query price qr

and the payment pr that can occur in an auction. We restrict
ourselves to distributions for which c(c) is finite. It is easily verified
that for the uniform distribution c(c) is equal to c and for the expo-
nential distribution with parameter k we have c(c) = �(ln (1 � c))/k.

Theorem 6.2. For all n 2 N, Lc(n) < c(c)c.
Proof. Let r be the round in which the winner of the auction is
found. The winner said yes in round r, so has a valuation at least
equal to pr. Since all other players say no in round r or before, they
have a valuation strictly less than qr. The welfare loss is therefore
bounded above by qr � pr, rand therefore by c(c). Hence, Lc(n) 6
c(c) � Pc(n). Applying the result of Theorem 6.1 completes the
proof. h

Many distributions have the feature that limc;0 c(c) = 0, r for
instance the exponential distribution with parameter k, rand any
distribution with compact support like the uniform distribution.
For such distributions, by choosing an appropriate fraction c in
the auction, we can limit the expected loss of welfare to an arbi-
trarily chosen level, independent of the number of players!
6.3. Tradeoff between efficiency and running time

From the analysis in this and the previous section, we derive the
following relation between the value of c, the level of efficiency,
and the running time. For a fixed number of players, a smaller frac-
tion c leads to a lower expected loss of welfare and a lower prob-
ability of inefficient allocation. But at the same time it leads to a
higher expected number of rounds and queries. Thus, increasing
running time is a price that we have to pay for increasing the level
of welfare. Depending on the priorities of the auctioneer, he may
trade off welfare against running time.

Fig. 6 shows the relationship between the expected running
time and the probability of an inefficient allocation for several val-
ues of n. These relations are built on computational results based
on the recursive formulas 2, 4, and 5. Fig. 6(a) shows for every
n = 5, 10, 20, rand 30, r a part of the curve {(ec(n),Pc(n)jc 2 (0,1)}.
In accordance with our bounds, it shows that for a fixed probability
of inefficiency (vertical axis), we need a number of rounds (hori-
zontal axis) that is logarithmically increasing in the number of bid-
ders, using each time roughly the same c. Fig. 6(b) shows for every
n = 5, 10, 20 and 30 a part of the curve {(bc(n),Pc(n)jc 2 (0,1)}. For a
fixed probability of inefficiency, the number of rounds is now
increasing linearly in the number of bidders.
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7. Concluding remarks

We have shown that c-fraction auctions provide an easy way of
trading off efficiency versus running time of a single item auction.
Bluff strategies form an ex-post equilibrium of these auctions. Da-
vid et al. [9] proposed a slightly different ascending price query
auction. Truthful reports to the queries form an ex-post equilib-
rium in that auction. We expect that choosing increments in their
auction in the same way as they are chosen in the c-fraction auc-
tion provides similar bounds on the number of rounds, number
of queries, and efficiency losses. Setting increments dynamically
according to the c-fraction rule is thus an easy to implement meth-
od that leads to auctions that dominate rules-of-thumb approaches
like fixed increments or fixed-percentage increments, as for exam-
ple described in McAfee et al. [17], in all relevant dimensions.
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