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Abstract

In this paper we introduce the concept of s-monotone index selection
rule for linear programming problems. We show that several known
anticycling pivot rules like the minimal index-, last-in-first-out- and the-
most-often-selected-variable pivot rules are s-monotone index selection
rules. Furthermore, we show a possible way to define new s-monotone
pivot rules. We prove that several known algorithms like the primal
(dual) simplex- and MBU-simplex algorithms and criss-cross algorithm
with s-monotone pivot rules are finite methods. Therefore, one possible
research direction in the area of pivot algorithms might be to find s-
monotone index selection rules that have interesting properties either
from theoretical or from computational (for example larger flexibility
in pivot selection) viewpoint.

Keywords: linear programming problem, pivot algorithms, anti-
cycling pivot rules, s-monotone index selection rules.

2000 Mathematics Subject Classification: 49M35, 90C20.

1 Introduction

Let A ∈ IRm×n, c ∈ IRn, b ∈ IRm be matrix and vectors respectively, then

min cTx

Ax = b

x ≥ 0
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4 Zsolt Csizmadia and Tibor Illés

is a primal linear programming (P-LP) problem. While the dual linear pro-
gramming (D-LP) problem can be defined as follows

max bTy

ATy ≤ c

where x ∈ IRn and y ∈ IRm are primal- and dual decision vectors, respec-
tively.

Linear programming problems might be solved by applying pivot algo-
rithms. The finiteness of the pivot algorithms depend on the algorithms
property itself (pivot selection rule, anti-cycling strategy etc.).

Pivot based methods (like the simplex algorithm [6], MBU simplex algo-
rithm [1] or the criss-cross algorithm [15, 11, 12]) often features the following
similar principles:

1. The main flow of the algorithm is defined by a pivot selection rule
which defines the basic characteristics of the algorithm, tough the pivot
position defined by it is not necessary unique (see for instance [6, 10, 4]),
a series of ”wrong” choices may even lead to cycling [10, 4].

2. To avoid the possibility of cycling, an index selection rule is used
as an anti-cycling strategy (see for instance [3, 4, 13]), which may be
flexible [5, 7] but usually at several basis during the algorithm, it defines
the pivot position uniquely.

For several pivot algorithms – like simplex-, MBU simplex or criss-cross
algorithms –, proofs of finiteness are often based on the orthogonality theorem
[9, 2], considering a minimal cycling example [2], and following the movements
of the least preferred variable of the index selection rule [3, 14, 7, 8]. Examples
of such rules include

1. Pivot selection rules for (P-LP):

(a) Simplex [6] (Pivot column selection: negative reduced cost. Pivot
element selection: using ratio test. Preserving non negativity of
the right hand side.)

(b) MBU simplex [1] (Pivot column selection: negative reduced cost,
choosing driving variable. Pivot element selection: defining driving
and auxiliary pivots using primal and after that dual ratio tests.
Monotone in the reduced cost of the driving variable.)
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The s-Monotone Index Selection Rules 5

(c) Criss-cross [12] (Pivot column/row selection is based on infeasi-
bility – negative right hand side or negative reduced cost. Pivot
element selection: admissible pivot positions.)

2. Index selection rules:

(a) Bland’s minimal index rule

(b) last-in-first-out (LIFO)

(c) most-often-selected-variable (MOSV)

LIFO and MOSV rules for linear programming problems were first used by
S. Zhang [14] to prove the finiteness of the criss-cross algorithm with these
anti-cycling index selection rules. Bilen, Csizmadia and Illďż˝s [2] proved that
variants of MBU simplex algorithm are finite with both LIFO and MOSV
index selection rules, while Csizmadia in his PhD Thesis [5] showed that the
simplex algorithm is finite when the LIFO and MOSV are applied. These
results led to the joint generalization of the above mentioned anti-cycling
index selection rules.

Without loss of generality we may assume that the rank(A) = m. Let us
associate to (P-LP) the (primal) pivot tableau

A b

cT *

and let us assume that AB is an m ×m regular submatrix of the matrix A,
thus form a basis of the linear system Ax = b. In this case the (primal) basic
pivot tableau associated with the (P-LP) problem and basis AB is

A−1
B A A−1

B b

cT − cTBA
−1
B A −cBA

−1
B b

The variables corresponding to the column vectors of the basis AB are called
basic variables. The index set of basic and nonbasic variables will be denoted
by IB and IN , respectively. Let us introduce the following notations T =
A−1
B A, b̄ = A−1

B b, c̄ = c − cBA
−1
B A. Now we are ready to define (column)

vectors t(i) and tj with dimension (n+2), corresponding to the (primal) basic

Operations Research Reports No. 2010-02



6 Zsolt Csizmadia and Tibor Illés

tableau of the (P-LP) problem, where i ∈ IB and j ∈ IN , respectively, in the
following way:

(t(i))k = tik =

 tik if k ∈ IB ∪ IN
b̄i if k = b
0 if k = c

and

(tj)k = tkj =


tkj if k ∈ IB
−1 if k = j
0 if k ∈ (IN \ {j}) ∪ {b}
c̄j if k = c

where b and c denotes indices associated with vectors b and c, respectively.
Furthermore, we define t(c) and tb vectors in the following way

(t(c))k = tck =


c̄k if k ∈ IB ∪ IN
1 if k = c

−cTBA
−1
B b if k = b

and

(tb)k = tkb =


b̄k if k ∈ IB
−1 if k = b
0 if k ∈ IN

−cTBA
−1
B b if k = c

and from now on we assume that c is always a basic index, while b is always a
nonbasic index of the (P-LP) problem. Now we are ready to state the version
of the orthogonality theorem that we frequently use in the finiteness proof of
pivot algorithms that have anti-cycling index selection rules.

Result 1.1 (Orthogonality theorem, Klafszky and Terlaky, 1991). Let a (P-
LP) problem be given, with rank(A) = m and assume that IB′ and IB′′ are
two arbitrary bases of the problem. Then

(t′′(i))T t′j = 0

for all i ∈ IB′′ and for all j 6∈ IB′ .

The structure of this paper is organized in the following way: section 2
contains the necessary definitions that lead to the formal definition of the
class of s-monotone index selection rules. In section 3 we prove that some well-
known index selection rules like the minimal index, LIFO and MOSV belongs

Operations Research Reports No. 2010-02



The s-Monotone Index Selection Rules 7

to the new wider class of index selection rules. In section 4 we prove that well-
known pivot algorithms like the primal/dual simplex algorithm [6] and the
primal/dual monotonic-build-up simplex algorithm [1] with s-monotone index
selection rules are finite algorithms for solving linear programming problems.
Without proof, we mention that the criss-cross algorithm [12] is also finite
with s-monotone index selection rules. Some conclusions and further research
questions close our paper.

2 The s-monotone index selection rule

In this section, we introduce a general framework for proving the finiteness of
several pivot algorithms and index selection rule combinations mentioned in
the previous section.

Definition 2.1 (Possible pivot sequence). A sequence of index pairs

S = {Sk = (ik, ok) : ik, ok ∈ IN for some consequitive k ∈ IN},

is called a possible pivot sequence, if

(i) n = max{max
k∈IN

ik, max
k∈IN

ok} is finite,

(ii) there exists a (P-LP) with n variables and the rank(A) = m, and

(iii) (possibly infinite) pivot sequence, where the moving variable pairs of
(P − LP ) correspond to the index pairs of S.

The index pairs of a possible pivot sequence thus only required to comply
with the basic and nonbasic status. It is now easy to show that

Proposition 2.1. If a possible pivot sequence is not finite then there exists
a (sub)set of indices, I∗, that occur infinitely many times in S. �

Let us introduce the concept of pivot index preference.

Definition 2.2 (Pivot index preference). A sequence of vectors sk ∈ Nn is
called a pivot index preference of an index selection rule, if in iteration j, in
case of ambiguity according to a pivot selection rule, the index selection rule
selects an index with highest value in sj among the candidates.

The concept of s-monotone index selection rule aims to formalize a common
monotonicity property of several index selection rules.

Operations Research Reports No. 2010-02



8 Zsolt Csizmadia and Tibor Illés

Definition 2.3 (s-monotone index selection rules). Let n ∈ IN be given. An
index selection rule is called s-monotone, if

1. there exists a pivot index preference sk ∈ Nn, for which

(a) the values in the vector sj−1 after iteration j may only change for
ij and oj , where ij and oj are the indices involved in the pivot
operation,

(b) the values may not decrease.

2. For any infinite possible pivot sequence S and for any iteration j there
exists iteration r ≥ j such that

(a) the index with minimal value in sr among I∗ ∩ IBr
is unique (let

it be l), where IBr
is the set of basic indices in iteration r, and I∗

is the set of all indices that appear infinitely many times in S,

(b) in iteration t > r when index l ∈ I∗ occurs again in S for the first
time, the indices of I∗ that occurred in S strictly between Sr and
St have a value in st higher than the index l.

3 s-monotone index selection rules

In this section we prove the following

Theorem 3.1. The

1. minimal index rule,

2. the most-often-selected variable rule and

3. the last-in first-out index selection rule

are s-monotone index selection rules.

The proof of this theorem follows from the following observation and two
lemmas.

For the minimal index rule let us set each vector sk to be equal to the
vector (n, n− 1, . . . , 1)T . Then it is easy to show that the minimal index rule
is s-monotone.

Operations Research Reports No. 2010-02



The s-Monotone Index Selection Rules 9

Lemma 3.2. The LIFO index selection rule is s-monotone index selection
rule.

Proof. Let us initiate the vector s to be the zero vector. In a pivot when
xik leaves and xok enters the basis in the kth iteration, the values of s are
modified to favor these variables:

s′i =

{
k if i ∈ {ik, ok},
si otherwise,

and assume that a possible pivot sequence S is generated using the pivot index
preference.

It is clear that the series of s vectors defined in such a way, form a pivot
index preference for the LIFO rule. Furthermore, it is obvious that the prop-
erties 1 (a) and 1 (b) of the s-monotone index selection rule are satisfied.

In case of an infinite possible pivot sequence and an arbitrary iteration j
either all the si, i ∈ I∗ ∩ IBj

values are already different or if some have the
same (initial) value, meaning they have not moved yet, then there should be
an iteration later when these variables move for the first time. Let us denote
that iteration by r when the last variable having index from I∗ moves for the
first time. Then for the vector sr 2 (a) holds. Property 2 (b) follows from the
definition of update for vector s.

Now, we are ready to prove that the most-often-selected variable rule is an
s-monotone index selection rule, too.

Lemma 3.3. The MOSV index selection rule is s-monotone index selection
rule.

Proof. Let the vector s be initialized as the zero vector. In a pivot when
xik leaves and xok enters the basis in the kth iteration, the values of s are
modified to increase the favor of these variables:

s′i =

{
si + 1 if i ∈ {ik, ok},
si otherwise,

and assume that a possible pivot sequence S is generated using the pivot
index preference that defines the pivot index preference for MOSV. Due to
the definition of the MOSV update, the properties 1 (a) and 1 (b) of the
s-monotone index selection rule is satisfied.

For any infinite possible pivot sequence, define I∗ as the set of indices
appearing infinitely many times in the sequence. Let us denote by INj

the

Operations Research Reports No. 2010-02



10 Zsolt Csizmadia and Tibor Illés

set of nonbasic indices for the jth iteration and let MN = INj
∩ I∗ and

MB = I∗ \MN . We define the numbers γi as follows:

γi =

{
si, if i ∈MN

si + 1, if i ∈MB

Let

P = {i ∈ I∗ | i ∈ arg min
k∈I∗

γk} and min
k∈I∗

γk = ρ.

We continue to update s according to the possible pivot sequence. Since
P ⊂ I∗, thus for any i ∈ P there exists such an iteration, when variable xi
enters the basis for the first time after iteration j. When this happens, we
delete its index from P, thus P := P\{i}. After finitely many iterations, such
a set P is obtained, for which | P |=| {l} |= 1. After this happens, let the first
iteration when variable xl enters be r. We show that in iteration r the choice
of xl is unique. Observe, that in this case sl = ρ, regardless whether xl was
moving in iteration j or not. Because of the pivot rule, ρ < si if i ∈ I∗ \ P
and since every variable with index i ∈ P \ {l} has at least once entered the
basis after iteration j and now is outside the basis, their values in s must be
at least ρ+ 2. On the other hand, if it was a basic variable in iteration j then
its s value is at least ρ+ 1. Thus 2 (a) also holds.

Since the variable xl enters the basis in iteration r, and every other variable
with index in I∗ entering the basis after xl already had a higher s value than
xl in basis IBr , according to the MOSV rule, thus 2 (b) also holds.

Analyzing the proofs of the previous two lemmas we can conclude that the 1
(a) and 1 (b) requirements of the definition of s-monotone index selection rule
are satisfied with the proper update strategy used to define the pivot index
preference. Proving property 2 (a) there are three important ingredients:
(i) the assumption that the pivot sequence is infinite, (ii) the finiteness of
the index set, and (iii) the monotone increasing property of the pivot index
preference, namely that for the vectors sk+1, sk ∈ IRn : sk+1 ≥ sk and
sk+1 6= sk hold for any iteration k ∈ IN. Property 2 (b) explains the changes
in the s-values of those variables that belong to the index set I∗ and have
moved between two consecutive moves of the least preferred variable. This
property depends strongly on the monotonicity of the pivot index preference
and on the property 2 (a), too.

Now, we are ready to introduce generalizations of the MOSV and LIFO
rules. Let us define these rules using their pivot index preferences.

Operations Research Reports No. 2010-02



The s-Monotone Index Selection Rules 11

Let the vector s be initialized as the zero vector. In a pivot when xik leaves
and xok enters the basis in the kth iteration, the values of s are modified to
increase the favor of these variables.

Generalized-last-in-first-out rule (GLIFO): Let us consider a strictly mono-
tone increasing sequence of positive rational numbers, namely for all k ∈ IN
indices pk+1 > pk hold.

s′i =

{
pk if i ∈ {ik, ok},
si otherwise,

It is quite easy to show that this slight modification of the pivot index
preference of LIFO rule will lead to an s-monotone index selection rule, too.
Namely, all the steps of the proof of Lemma 3.2, remains true; in fact after
each variable that moves at all has moved at least once the sequences defined
by GLIFO are the same as those by LIFO.

However, the generalization of MOSV define a significantly more general
class of pivot sequences. We can generalize the MOSV rule as well by modi-
fying its pivot index preference.

Generalized-most-often-selected-variable rule (GMOSV): Let us consider
a monotone increasing sequence of positive rational numbers, namely for all
k ∈ IN indices pk+1 ≥ pk hold.

s′i =

{
si + pk if i ∈ {ik, ok},
si otherwise,

However, to show that GMOSV is an s-monotone index selection rule we
need a slightly more careful analysis of the proof of Lemma 3.3.

The requirements 1 (a) and 1 (b) are simply satisfied because of the defi-
nition of the corresponding pivot index preference. Justifying 2 (a), we need
to modify the definition of γi introduced in the proof of Lemma 3.3, slightly.
Let

γi =

{
si, if i ∈MN

si + pj , if i ∈MB

since we would like to analyze the situation in the iteration j. Taking into
consideration the monotone increasing nature of the pk sequence we are able
to identify - after finitely many iterations - the least preferred variable xl in
some iteration r.

Showing the uniqueness of the choice of xl in the iteration r we need to
do only a slightly more careful analysis of the situation. It remains true, that

Operations Research Reports No. 2010-02



12 Zsolt Csizmadia and Tibor Illés

sl = ρ, regardless whether xl was moving in iteration j or not. Furthermore,
because of the monotone increasing nature of the pk sequence, ρ < si if
i ∈ I∗ \ P and since every variable with index i ∈ P \ {l} has at least once
entered the basis after iteration j and now is outside the basis, their values
in s must be at least ρ + pu + pv, where r > u, v > j. On the other hand, if
it was a basic variable in iteration j than its s value is at least ρ+ pu, where
r > u > j. Since pu ≥ pj and pv ≥ pj hold we have verified that 2 (a) also
holds.

Our last task is to show that 2 (b) holds as well. For this, let us collect all
available information, namely we know that at the iteration r the following
inequalities

srl < sri , ∀i ∈ I∗ \ {l}

hold and that stl = srl + pr. Let i ∈ I∗ \ {l} be the index of such variable xi
that has moved between the iteration r and t, at least once, for instance in
iteration k, where t > k > r holds. Then

sti ≥ sk+1
i = ski + pk ≥ ski + pr ≥ sri + pr > srl + pr = stl ,

thus 2 (b) is really satisfied.

Now we are ready to state our following result

Lemma 3.4. GLIFO and GMOSV index selection rules are s-monotone index
selection rule.

It is easy to check that when the sequence when pk = 1, for all k, then
GMOSV become MOSV, and that GMOSV is indeed a generalization of
MOSV (e.g. it allows for switching from MOSV to LIFO).

4 Finiteness of pivot algorithms with
s-monotone index selection rules

In this section we show that simplex-, MBU simplex- and criss-cross algo-
rithms with s-monotone index selection rules are finite for linear program-
ming problem. The proofs are based on the same ingredients: (i) assume
contrary that the algorithm is cycling, namely that there are variables that
enters/leaves bases infinitely many times, (ii) choose a minimal cycling ex-
ample and denote the indices of those variables that moves infinitely many
times by I∗, (iii) apply the 2 (a) and 2 (b) properties of the s-monotone index
selection rule and identify the unique, least preferred variable, (iv) follow its
moves, there are so-called almost terminal pivot tableaus corresponding to the

Operations Research Reports No. 2010-02
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iterations when the least preferred variable enters/leaves bases, (v) during a
cycle corresponding pairs of almost terminal tableaus should occur to com-
plete the cycle, however this contradicts to the orthogonality theorem. Thus,
in this framework, the only important step is to properly identify the almost
terminal tableaus and to read out from the row/column the sign structure
which will show the contradiction based on the orthogonality theorem. The
structure of the almost terminal tableaus for different pivot algorithms might
be slightly different.

4.1 The primal simplex algorithm with s-monotone
index selection rules

We show the important part of the proof (i.e. defining the almost terminal
tableaus and deriving the contradiction using the orthogonality theorem) for
the primal simplex algorithm first, therefore let us present the pseudo-code of
the simplex algorithm with s-monotone index selection rule.

Operations Research Reports No. 2010-02



14 Zsolt Csizmadia and Tibor Illés

The primal simplex algorithm with s-monotone index selection rules

Input: A ∈ Rm×n,b ∈ Rm, c ∈ Rn a feasible basis B, initialized s vector.
Output: An optimal solution, or a certificate that the solution is unbounded.

Begin
I−N := {i ∈ IN |c̄i < 0}.
While I−N 6= ∅ do

Let q ∈ {i ∈ I−N |c̄i < 0} be arbitrary with maximal value respect to s.
If tq ≤ 0 then

Stop: problem is unbounded, certificate is tq.
Else

Let ϑ := min
{

b̄i
tiq
| i ∈ IB , tiq > 0

}
be the value of the primal ratio test.

Let p ∈ IB arbitrary, such that
b̄p
tpq

= ϑ and with maximal value respect to s.

Endif
Pivot on (p, q).

Endwhile
The solution is optimal.

End.

It is easy to verify that in a minimal cycling example all the variables are
moving during a cycle and that the right hand side values are zeros (any
nondegenerate pivot would improve the objective). Thus the minimal cycling
example should be completely primal degenerate.

xl
+ 0

0
...

0
0
...

0
− ⊕ . . . ⊕

xl enters the basis in basis B′
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xk
xl + 0

K


+
...

+

0
...

0

L


	
...

	

0
...

0
−

xl leaves the basis B′′

Consider basis B′ of the minimal cycling example, when the least preferred
variable xl enters the basis. According to the column selection rule of the
simplex algorithm, the objective function row of the pivot tableau for basis
B′ has a negative entry for the nonbasic variable xl and nonnegative entries
for all other nonbasic variables. (This is the structure of our first almost
terminal pivot tableau.)

In a minimal cycling example, since every variable moves infinitely many
times, variable xl must leave the basis. Consider basis B′′ when xl leaves the
basis for the first time after B′. According to the s-monotone index selection
rule, the choice of the leaving variable is selected from those basic variables
that are least preferred, in our case xl is a such variable. (This defines our
second almost terminal pivot tableau.)

Consider the vector t′(c) corresponding to the objective function row for
basis B′ and the vector t′′k corresponding to the entering variable xk for basis
B′′. Let

K = {i ∈ IB′′ | t′′ik > 0} \ {l}, and L = {j ∈ IB′′ | t′′jk ≤ 0}.

Then

t(c)′T t′′k =
∑
i∈K

t′cit
′′
ik +

∑
j∈L

t′cjt
′′
jk + t′clt

′′
lk ≤ t′clt′′lk,

using that t′cj ≥ 0 and t′′jk ≤ 0 for all j ∈ L, and t′ci = 0 for all i ∈ K because of
the 1 (b) criterion, the values of s may not decrease, and those variables that
have moved since basis B′ have a greater value in s than variable xl. By the 2
(b) criterion of s-monotone index selection rule, the variables corresponding to
the index set K, have not moved since basis B′, thus have a corresponding zero

Operations Research Reports No. 2010-02



16 Zsolt Csizmadia and Tibor Illés

value in t′(c). Since t′cl < 0 and t′′lk > 0, we have t(c)′T t′′k < 0, contradicting
the orthogonality theorem. This proves that the primal simplex algorithm
with s-monotone index selection rules are finite.

4.2 The primal MBU simplex algorithm with s-monotone
index selection rules

The monotonic build-up simplex algorithm (MBU-SA) was introduced in [1].
It starts from a feasible basis and sets the feasibility of the dual variables
one by one, while maintaining the feasibility of the already feasible dual vari-
ables. Although primal feasibility may be violated in some bases generated by
the algorithm, primal feasibility is always restored when the selected driving
variable becomes feasible.

Operations Research Reports No. 2010-02
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The primal MBU simplex algorithm with s-monotone index
selection rules

Input: A ∈ Rm×n,b ∈ Rm, c ∈ Rn a feasible basis B.
Output: An optimal solution, or a certificate that the solution is unbounded.
Begin

Initialize vector s.
I−N := {i ∈ IN |c̄i < 0}.
While I−N 6= ∅ do

Let the driving variable s ∈ {i ∈ IN |c̄i < 0} be arbitrary.
While c̄s < 0 do

Let Ks = {i ∈ IB |tis > 0}.
If Ks = ∅ then Stop: problem is unbounded, certificate is ts.
Else

Let ϑ := min
{

b̄i
tis
|i ∈ Ks

}
the value of the primal ratio test.

Let r ∈ Ks arbitrary such that b̄r
trs

= ϑ and with maximal value respect to s.

Let θ1 := |c̄s|
trs

, and let J = {i ∈ IN |c̄i ≥ 0, tri < 0}.
If J = ∅ then
θ2 :=∞.

Else

θ2 := min
{

c̄i
|tri|
|i ∈ J

}
the value of the dual ratio test.

Let q ∈ J arbitrary such that θ2 =
c̄q
|trs| and with maximal value respect to s.

Endif
If θ1 ≤ θ2 then

Pivot on (r, s), (driving pivot).
Else

Pivot on (r, q), (auxiliary pivot).
Endif

Endif
Endwhile

Endwhile
The solution is optimal.

End

To establish the correctness of the algorithm, we repeat the key theorems
proved in [1]. We will call a pivot in the column of the driving variable a
driving pivot, while any other pivot an auxiliary pivot.

First, we state the theorem of Anstreicher and Terlaky [1] about the aux-
iliary pivots and their effects.

Operations Research Reports No. 2010-02



18 Zsolt Csizmadia and Tibor Illés

Result 4.1 (Anstreicher and Terlaky, 1994). Consider any pivot sequence
produced by the primal MBU simplex algorithm corresponding to an initial
feasible basis and the choice of a driving variable xs. Then following an
auxiliary pivot, the next basis produced by the algorithm has the following
properties:

1. c̄s < 0,

2. if b̄i < 0, then tis < 0,

3. max
{
b̄i
tis
| b̄i < 0

}
≤ min

{
b̄i
tis
| tis > 0

}
.

It may happen that auxiliary pivot destroys primal feasibility. Next result
of Anstreicher and Terlaky [1] states that the primal feasibility is restored
after a driving pivot.

Result 4.2 (Anstreicher and Terlaky, 1994). Whenever the primal MBU
simplex algorithm performs a driving pivot, the next basis is primal feasible.

Based on the previous theorems, we may state that the MBU algorithm is
well-defined, [1].

Note that if the problem is both primal and dual nondegenerate, then
finiteness is ensured by the fact that similarly to the simplex method, the
objective function strictly increases in each iteration [1].

In the original paper [1], lexicography was used to ensure finiteness for
degenerate problems. In this section, we prove that the algorithm is finite
whenever s-monotone pivot rules are applied. First, we need to examine some
further properties of the algorithm.

Lemma 4.1. Both driving- and auxiliary pivots may only increase the reduced
cost of the driving variable.

Proof. A driving pivot makes the dual infeasible driving variable dual feasi-
ble, while an auxiliary pivot increases the reduced cost of the driving variable
without making it nonnegative, or leaves it unchanged. (Follows from the
Theorem 4.1.)

The next lemma states a further monotone property of the primal MBU
simplex algorithm.

Lemma 4.2. In any sequence of auxiliary pivots generated by the algorithm

for driving variable xr, the value max
{
b̄i
tis
| b̄i < 0

}
never decreases.

Operations Research Reports No. 2010-02



The s-Monotone Index Selection Rules 19

Proof. Note that the third condition of Theorem 4.1 holds for any sequence
of auxiliary pivots (see proof in [1]), thus

max

{
b̄i
tis
| b̄i < 0

}
≤ min

{
b̄i
tis
| tis > 0

}
(1)

always holds. Observe, that by the primal ratio test carried out by the al-
gorithm, for an auxiliary pivot made on position (r, q), the minimal ratio of

min
{
b̄i
tis
| tis > 0

}
is obtained, i.e.

b̄r
trq

= min

{
b̄i
tis
| tis > 0

}
.

If we denote the tableau after the pivot on trq by T̂ and the new right hand

side by b̂, then

t̂rq =
trq
trq

= 1, b̂r =
b̄r
trq

< 0,
b̂r

t̂rq
=

b̄r
trq

since trq < 0 and b̄r > 0, thus since the auxiliary pivot is carried out on a
negative pivot element, the new right-hand side value for index r becomes
negative, while the ratio of the right-hand side and the pivot element remain
the same. This means in the next iteration this ratio occurs in the left-hand
side of (1).

Before examining a possible cycling example, we need a technical-type
lemma. This lemma plays a fundamental role in the proof of finiteness with
s-monotone pivot rules.

Lemma 4.3. Let a, b,Θ ∈ R such that b 6= 0 and a
b = Θ. Let c, d, λ ∈ R such

that d · λ 6= 0 and b+ λd 6= 0. Then if a+λc
b+λd = Θ, then c

d = Θ.

Proof.

a+ λc

b+ λd
= Θ

a+ λc = Θ(b+ λd)

Θ + λ
c

b
= Θ

(
1 + λ

d

b

)
c

b
= Θ

d

b
c

d
= Θ.
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We are ready to prove that the MBU simplex algorithm with s-monotone
pivot rules is finite. Our proof is based on contradiction. Let us consider a
minimal example, for which the algorithm is not finite. As usual, since the
number of possible bases is finite, the algorithm must visit the same basis in-
finitely many times. It is clear, that because of minimality, in such an example
each variable moves infinitely many times, with the possible exception of one
single variable, which may remain an infeasible driving variable throughout
the whole cycle.

Lemma 4.4. Let us assume that we would like to solve a minimal cycling
example using primal MBU simplex algorithm. The following properties hold:

1. Any basis generated by the algorithm is dual degenerate for all variables
except one single variable. This variable remains the same throughout
the algorithm and never enters the basis.

2. All variable moves infinitely many times, except one, which never enters
the basis.

3. No driving pivot is made.

4. The primal ratio test always yields the same value. Furthermore, in
any basis generated by the algorithm, for the column r of the driving
variable, the ratio b̄i

tir
is the same for all i, where tir 6= 0.

Proof. By Lemma 4.1, a pivot made in a nondegenerate column strictly
increases the value of the driving variable. Observe, that while a pivot in a
nondegenerate column leaves the column of the short pivot tableau nonde-
generate, a degenerate pivot doesn’t change the row of the objective function
in the tableau.

It is easy to see, that in a cycling example, there exists an infeasible driving
variable xr that never becomes feasible, thus once this variable is selected
for the role of a driving variable, only auxiliary pivots are made. Because
the problem is a minimal cycling example, all other variables should move
infinitely many times. However, by the observation made above, namely that
c̄i = 0 for all i 6= r, so it follows that 1 holds.

Statements 2 and 3 follow immediately from 1.

Since the driving variable never changes, by Theorem 4.1 and Lemma 4.2,
the value of the ratio test becomes a constant value after finitely many itera-
tions. By the technical Lemma 4.3, it yields that the ratio must be the same
for any basis generated by the algorithm.
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By Lemma 4.4, a minimal cycling example contains a single infeasible dual
variable selected as driving variable. Furthermore, both the primal and dual
ratio tests are trivial, and the selection of indices is solely based on the index
selection rule. Let xr be the driving variable. Consider now variable xl with
basis B′ as described in the second criterion of s-monotone index selection
rules, and let B′′ be the basis when xl leaves the basis after B′ for the first
time. (Observe, that since the driving variable never enters the basis, l 6=
r.) Using the observations stated in Lemma 4.4, the almost terminal pivot
tableaux for bases B′ and B′′ have a sign structure as presented in Figure 1.

xr xl
∗
...

∗
xk + − ⊕ . . . ⊕ ∗

∗
...

∗
− 0 0 . . . 0

xl becomes basic in basis B′

xr
xl + ∗

K


+
...

+

∗
...

∗

L


	
...

	

∗
...

∗
− 0 . . . 0

xl becomes nonbasic in basis B′′

Figure 1: Almost terminal pivot tableaux for the MBU simplex algorithm.

We are ready to prove that the algorithm is finite.

Theorem 4.5. The MBU simplex algorithm with s-monotone index selection

Operations Research Reports No. 2010-02



22 Zsolt Csizmadia and Tibor Illés

rule is finite.

Proof. Let us assume the contrary, and consider a minimal cycling example
with entering variable xl and leaving variable xk in basis B′ described in
the second criterion of s-monotone index selection rules, and basis B′′ when
variable xl leaves the basis for the first time after B′.

Consider vector t′(k) for basis B′ and vector t′′r for basis B′′. Let

K = {i ∈ IB′′ | t′′ir > 0} \ {l}, and L = {j ∈ IB′′ | t′′jr ≤ 0}.

Then

t(k)′T t′′r =
∑
i∈K

t′kit
′′
ir +

∑
j∈L

t′kjt
′′
jr + t′krt

′′
rr + t′klt

′′
lr ≤ t′krt′′rr + t′klt

′′
lr,

using that t′kj ≥ 0 and t′′jr ≤ 0 for all j ∈ L, and t′ki = 0 for all i ∈ K because
by the first criterion, the values of s may only increase, and those variables
that have moved since B′ have a greater value in s than variable xl. By the
third criterion of s-monotonicity, these variables have not moved since basis
B′, thus have a corresponding zero value in t′(c). Since t′kl < 0 and t′′lr > 0,

furthermore t′kr > 0 and t′′rr = −1, we have t(k)′T t′′r < 0, contradicting the
orthogonality theorem.

Similar arguments lead to the finiteness proofs of the dual simplex and dual
MBU simplex algorithms with s-monotone index selection rule. The finiteness
proof of the criss-cross algorithm with s-monotone index selection rule is only
slightly different from the previous results. Important details of the finiteness
proof for special s-monotone index selection rules can be found in [7, 11, 12].
Thus we can state the following quite general finiteness result of several pivot
algorithms.

Theorem 4.6. The primal (dual) simplex- and MBU simplex algorithms and
the criss-cross algorithm with s-monotone index selection rules are finite for
linear programming problems.

In this way we unified several finiteness proofs [1, 2, 3, 7, 11, 12, 14] for the
primal (dual) simplex- and MBU simplex- and criss-cross algorithms for linear
programming problems. Furthermore, it is easy to show that the variants
of MBU simplex- [2] and criss-cross [9] algorithms with s-monotone index
selection rules are finite for the linear feasibility problems, too.
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5 Conclusions and further research

Finiteness of the most known pivot algorithms depend on the anti-cycling
pivot rules (see [4, 6, 10, 13]). In this paper we have shown that several
known index selection rules (minimal index, LIFO, MOSV) possess same
monotonicity type property, that has been captured by our new concept,
the s-monotone index selection rules. Furthermore, we have introduced new,
general anti-cycling pivot rules (GLIFO and GMOSV). We have unified the
finiteness proof of some well-known pivot algorithms with s-monotone index
selection rules.

Our new concept of s-monotone index selection rules and the related finite-
ness proofs show that anti-cycling pivot rules might leave some freedom of
selecting the leaving/entering variable, especially at the initial phase of the
computations. However, it is required even from the most flexible anti-cycling
pivot rule, to build up an order among the variables at least in such a way
that the selection of the least preferred variable become unique at some point
of the computation. Form this follows that some strategies of selecting enter-
ing variable won’t fulfill this requirement. However, we see some chances to
compromise between two different goals: (i) decreasing the objective function
in a greedy way, and (ii) guarantee the finiteness of the algorithm.

Suppose that we want to apply the steepest edge rule for selecting the enter-
ing variable and the ratio test for selecting the leaving variable in the (primal)
simplex algorithm. Both in the selection of entering or/and leaving variable
we might have multiple choices. It is known that the simplex algorithm with
the steepest edge rule might cycling, due to primal degeneracy. Our sug-
gestion for resolving such situation is the following: keep in mind that you
want to have a finite pivot algorithm and apply the steepest edge rule if you
have multiple choices for entering variables. Let us formalize a GLIFO and
GMOSV index selection rule based on these ideas.

GLIFO with steepest edge index selection rule. Let us assume that
s0 = 0. In the kth iteration let

Ck−1 = {i ∈ IN : c̄i < 0}, ρ = min
i∈Ck−1

sk−1,i and Sk−1 = {i ∈ Ck−1 : ρ = sk−1,i}.

If | Sk−1 |= 1 then we have no choice, the index of the entering variable is
uniquely determined by finding the least preferred variable. However, until
the order among variables - that reflects the previous iterations - is built, we
might have | Sk−1 |> 1 and we can select the entering variable by using the

Operations Research Reports No. 2010-02



24 Zsolt Csizmadia and Tibor Illés

steepest edge index selection rule applied on Sk−1 only. Let

γ = − min
i∈Sk−1

c̄i
‖ti‖

,

then we can define

pk =

{
pk + δ if pk−1 ≥ γ,
γ if pk−1 < γ,

where δ > 0 is a given number. The sequence pk satisfies the strictly mono-
tonic increasing property, therefore we can use it to define, the new values of
sk as follows

sk,i =

{
pk if i ∈ {ik, ok},
si otherwise.

Similarly we can define GMOSV with steepest edge index selection rule.
The main difference is that in the definition of the sequence pk, the number
δ might be zero as well. Furthermore, the rule for updating the sk values is
exactly the same as in the general case for GMOSV.

In many implementations of the simplex algorithm, small random pertur-
bations are used instead of index selection methods to ensure finiteness of the
algorithm. One possible practical application of the ideas in this paper might
be the simplex algorithms with arbitrary precision real number representa-
tions, where perturbation is impractical.

Acknowledgements. This research has been supported by the Hungar-
ian National Research Fund OTKA No. T 049789. Research of Tibor Illés
has been partially supported by the project ”Simulation and optimization:
basic research in numerical mathematics” sponsored by the frame TAMOP
4.2.2, Hungarian National Office of Research and Technology with the finan-
cial support of the European Union from the European Social Fund.

Tibor Illés acknowledges the research support obtained from Strathclyde
University, Glasgow under the John Anderson Research Leadership Program.

References

[1] K. M. Anstreicher and T. Terlaky. A monotonic build-up simplex algo-
rithm for linear programming. Operations Research, 42(3):556–561, 1994.

Operations Research Reports No. 2010-02



The s-Monotone Index Selection Rules 25

[2] F. Bilen, Zs. Csizmadia, and T. Illés. Anstreicher-terlaky type monotonic
simplex algorithms for linear feasibility problems. Optimization Methods
and Softwares, 22(4):679–695, 2007.

[3] R.G. Bland. New finite pivoting rules for the simplex method. Mathemat-
ics of Operations Research 2:103-107, 1977.
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of Sciences, Budapest, Hungary, 2007. www.cs.elte.hu/∼csisza

[6] G.B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princenton, New Jersey, 1963.
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