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Abstract

In this paper we introduce the adaptive MMAP[K] arrival process and analyze the adaptive

MMAP[K]/PH[K]/1 queue. In such a queueing system, customers of K different types with Marko-

vian inter-arrival times and possibly correlated customer types, are fed to a single server queue that

makes use of r thresholds. Service times are phase-type and depend on the type of customer in ser-

vice. Type k customers are accepted with some probability ai,k if the current workload is between

threshold i− 1 and i. The manner in which the arrival process changes its state after generating a

type k customer also depends on whether the customer is accepted or rejected.

The solution method exists in reducing the joint workload and arrival process to a fluid queue

with r thresholds, the steady state of which is expressed using matrix analytic methods. The time

and memory complexity of this approach is also shown to be linear in the number of thresholds,

allowing us to study systems with thousands of thresholds.

Markovian multi-type queues with customer impatience form a subclass of the queues considered

in this paper. A numerical method to determine the probability of abandonment and the waiting

time distribution is provided if the patience distributions have finite support, while for general

customer impatience numerical examples show that accurate approximate results can be obtained

using a step-function approach. Numerical examples with adaptive sources that model certain types

of admission and congestion control are also included.
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1 Introduction

Traditional queueing systems have been widely used in the analysis of communication systems and a

substantial part of the literature has focused on queues without admission or congestion control. That

is, queues typically accept customers as long as there is room available and arrival processes typically do

not adapt their arrival rate based on feedback provided by the queue. Exceptions include queues with

customer impatience, as well as queues with workload dependent arrivals.

In this paper, we develop a fast numerical procedure to analyze a broad class of queueing systems

that support both admission and congestion control (though for some very particular cases explicit

results could be obtained as well). To this end, we introduce the adaptive MMAP[K] arrival process,

which generalizes the MMAP[K] process introduced in [14]. An MMAP[K] process is driven by an

underlying Markov chain that generates customers of K types, thus, inter-arrival times are correlated

as are the types of consecutive customers. Matching and fitting algorithms to represent workloads

as MMAP[K] processes were proposed in [15, 3]. The adaptive MMAP[K] process will differ from an

ordinary MMAP[K] as the evolution of the state of the underlying Markov chain depends on whether a

(type k) customer is accepted or rejected.

We introduce and analyze the adaptive MMAP[K]/PH[K]/1 queue, where the service times follow a

phase-type distribution that depends on the customer type (i.e., we have correlated service and inter-

arrival times). The queue also makes use of a set of r thresholds d1 to dr such that 0 = d0 < d1 < . . . <

dr < dr+1 = ∞. If the workload belongs to the interval (di−1, di] upon arrival of a type k customer, it

is accepted with some probability ai,k, for i = 1, . . . , r + 1 (and with probability a0,k if the workload is

zero).

If the probabilities ai,k do not increase in i for any choice of k and the arrival process is not adaptive,

this queue is equivalent to an MMAP[K]/PH[K]/1 queue with customer impatience, where the impatience

distribution is a general distribution with finite support. Discrete-time queues with Markovian arrivals

and general customer impatience have been analyzed in [20, 21]. In continuous time, the problem is

considerably harder and results have only appeared for an exponential amount of patience [2, 5] or a

deterministic amount [4]. We note that the arrival process in [2] is an adaptive Poisson process, which
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is a special case of the adaptive MMAP[K] process (see Section 2).

The per-type accept and reject rates as well as the waiting time distribution is obtained via the steady

state of the joint workload and arrival process. This process is a jump process as in [8], except that the

occurrence and jump sizes now also depend on the current workload. The steady state distribution of

this jump process is obtained by constructing a fluid queue with r thresholds and by applying a censoring

argument. The idea behind this construction was also applied in a discrete-time setting in [19] and in

continuous time in [8]. To obtain the steady state distribution of the constructed fluid queue, we can

directly apply the theorems established in [7] for a general fluid queue with r thresholds (except for some

minor adaptations regarding the boundary behavior). The main advantage of this approach, compared

to existing eigenvalue approaches (e.g., [16]), is that the stationary distribution is expressed in terms of

some boundary vectors and a set of exponentials of stable matrices (i.e., all their eigenvalues have non

positive real parts), which avoids numerical instability.

An important observation made in this paper is that the time and memory complexity of the linear

system that one needs to solve to obtain the boundary vectors of [7] can be made linear in the number of

thresholds r. This allows us to solve systems with thousands of thresholds. These latter systems are for

instance useful whenever we upper or lower bound a continuous impatience distribution by means of a

step function, in order to approximate the probability of abandonment or the waiting time distribution.

It should be clear that the class of queues considered in this paper has many applications. Section

5 discusses some examples in a communication network setting, other examples can be found in health

care. For instance, consider an emergency unit where patients are partitioned into K different classes

based on their condition. A patient waiting in the waiting room may decide to forgo the service because

he/she does not wish to wait any longer, which may result in a revenue loss. Further, the amount of

patience that a patient has may depend on his/her condition and may change over time. For instance,

given that a patient already waited a long time, he/she might be more willing to wait another 30 minutes.

As such the hazard rate of the patience distribution should increase over time, while the hazard rate of

the exponential distribution remains fixed over time. In such a system it is natural to provide priority

to the patients with the most urgent condition [18, 22], but it is equally important to have a means to
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estimate the impact of such a priority policy. After all, the lower priority customers may suffer because

of it. The queues presented in this paper can be used to assess the performance in case no priority rule

is installed and can therefore be used as a point of comparison when quantifying the impact of installing

a priority policy.

The paper is structured as follows. Sections 2 and 3 introduce the adaptive MMAP[K] arrival

process and its corresponding adaptive MMAP[K]/PH[K]/1 queue, respectively. Section 4 discusses the

steady state of the workload process, some of its main performance characteristics and the associated

computational complexity of the solution method. Finally, in Section 5 some numerical examples are

provided.

2 The adaptive MMAP[K] arrival process

A Markovian arrival process with marked customers (MMAP[K]), introduced in [14], is characterized by

a set of K + 1 square matrices D0, . . . , DK of order ma. The matrices D1 to DK are nonnegative, D0

has nonnegative off-diagonal entries, while the diagonal entries of D0 are negative and such that the row

sums of D =
∑K
k=0Dk are zero. Entry (i, j) of the matrix Dk, for k > 0, holds the rate at which type

k customers arrive, while the underlying Markov process (characterized by D) makes a transition from

state i to j. Entry (i, j) of D0, with i 6= j, holds the rate of having a state change from i to j without

an arrival occurring. The type k arrival rate λk clearly equals λk = θDke, where θ is the stochastic

invariant vector of D (i.e., θD = 0).

An adaptive MMAP[K] process is characterized by D0, a set of K diagonal matrices ∆(k), for k =

1, . . . ,K, and two sets of stochastic matrices P
(r)
k and P

(a)
k , for k = 1, . . . ,K. D0 plays the same role as

before, while entry (i, i) of ∆(k) is the rate at which a type k arrival occurs when the underlying chain is

in state i. When a type k arrival occurs, the new state of the underlying chain will depend on whether

the arrival is accepted into the system or rejected. If it is rejected the state becomes j with probability

(P
(r)
k )i,j , otherwise the state equals j with probability (P

(a)
k )i,j . Notice, if P

(r)
k = P

(a)
k for all k, we

have an ordinary MMAP[K] process with Dk = ∆(k)P
(a)
k and we can define the type k arrival rate λk

as before. Otherwise, we cannot define the arrival rate as this depends on whether arrivals are accepted

4



or not.

Example 1: The MMAP[K] process. As indicated above, if P
(r)
k = P

(a)
k for all k, we have an

ordinary MMAP[K] process with Dk = ∆(k)P
(a)
k . Any MMAP[K] arrival process is clearly also an

adaptive MMAP[K] process by setting ∆(k) = Dke and P
(a)
k = P

(r)
k = ∆(Dke)

−1Dk, where ∆(x) is a

diagonal matrix with x appearing on the main diagonal and e is a column vector of ones. In the above

definition, the i-th row of P
(a)
k is not properly defined if the i-th entry of Dke is equal to zero. In such

case any stochastic vector may be used instead as the i-th row of P
(a)
k .

Example 2: The adaptive Poisson process. The adaptive Poisson process of [2] is characterized

by L arrival rates λ1, . . . , λL and two stochastic matrices P and P ∗. These matrices are used in the

following manner. While the arrival process is in state i, the process behaves as a Poisson process with

rate λi, for i = 1, . . . , L. The state of the arrival process jumps from i to j with probability P ∗i,j if

a customer is rejected, and with probability Pi,j if a customer is accepted. Thus, the intensity of the

arrival process potentially changes with each arrival to the queue. We can model this arrival process

with our framework by setting ma = K = L, (D0)i,i = −λi, ∆
(k)
k,k = λk, P

(a)
k = P and P

(r)
k = P ∗.

Example 3: The adaptive Poisson process with background traffic. Consider the same arrival

process as in the previous example, but assume we also have a background process modeled as a MAP

process characterized by the size mb matrices (C0, C1) (a MAP is an MMAP[K] process with K = 1).

The background process in this example is not adaptive. Customers generated by the Poisson process

in state k are defined as type k customers, while the background customers are identified as type L+ 1;

hence, we have K = L+1 types of customers. The superposed process is an adaptive MMAP[K] process

with ma = mbL as the states are of the form (k, j) with k ∈ {1, . . . , L} and j ∈ {1, . . . ,mb}, where k

is the state of the adaptive Poisson source and j of the background process. The type k arrival rate in

state (k, j) is λk for k = 1, . . . , L. Thus, the diagonal entries of ∆(k) are given by λkek ⊗ e for k ≤ L

(where ek is the k-th column of the size L identity matrix and e has size mb). The state changes from

(k, j) to (k′, j) with probability Pk,k′ (P ∗k,k′) when a type k customer is accepted (rejected), for k ≤ L.
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As such P
(a)
k = P ⊗ I and P

(r)
k = P ∗ ⊗ I, for k = 1, . . . , L. The matrix

D0 =


−λ1 0

. . .

0 −λL

⊗ I + I ⊗ C0,

as the state jumps from (k, j) to (k, j′) at rate (C0)j,j′ for j 6= j′. Finally, as the background MAP is not

adaptive (cf. Example 1), ∆(L+1) has e⊗C1e on its main diagonal, while P
(a)
L+1 = P

(r)
L+1 = I⊗∆(C1e)

−1C1,

where ∆(x) is a diagonal matrix with x appearing on the main diagonal.

3 The adaptive MMAP[K]/PH[K]/1 queue

To determine whether a customer is accepted, several possibilities exist. We will focus on the case where

the current workload will decide whether a customer is accepted. We assume that the queue makes use

of r ≥ 0 thresholds d1, . . . , dr such that 0 = d0 < d1 < . . . < dr < dr+1 = ∞. Whenever the workload

x upon arrival belongs to the interval (di−1, di], a type k customer is accepted with probability ai,k, for

i = 1, . . . , r + 1. When x = 0, a type k arrival is accepted with probability a0,k. Whenever ai,k = 1 for

all i, the matrix P
(r)
k is irrelevant and for convenience we will define it equal to P

(a)
k .

The server will serve all the accepted customers in a first-come-first-served (FCFS) order, meaning

the workload observed upon arrival equals the waiting time. The amount of work required to serve a

type k customer follows a phase-type distribution with an order mk representation (αk, Sk). Hence, the

mean service time of an accepted type k customer equals αk(−Sk)−1e, which we denote as 1/µk.

Example 1: MMAP[K]/PH[K]/1 queue. Setting ai,k = 1 for all i and k, implies that all the

customers are accepted and we end up with an ordinary MMAP[K]/PH[K]/1 queue as in [14].

Example 2: MMAP[K]/PH[K]/1+D[K] queue. Assume we wish to associate a deadline d̄k to

the type k customers and without loss of generality let d̄1 ≤ . . . ≤ d̄K . Setting dk = d̄k and ai,k = 1 for

i ≤ k, then implies that a customer is accepted if his waiting time is at most d̄k. If we set d̄k = B for all

k, we are basically considering a queue that accepts new work as long as the workload is at most B.
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Example 3: A running example. In this example we consider a specific MMAP[K]/PH[K]/1+D[K]

queue that will be used as a running example in Section 4 to clarify matters. Furthermore, in Section

5.1 we will revisit this example, but replace the deterministic amount of patience of the type 1 customers

by a Weibull distribution to demonstrate the full potential of the solution method. Consider a 2-state

MMAP[2] process that generates arrivals at rate 0.3 in state one and 0.1 in state 2. 90% of the jobs

generated in state one are of type 1, while in state 2 both types occur with equal probability, i.e.,

∆(1) =

27/100 0

0 1/20

 , ∆(2) =

3/100 0

0 1/20

 .
We will refer to the type 1 jobs as short as their service time is exponential with mean 1 and to the type

2 jobs as long as their service is also exponential, but with a mean of 10. This implies that m1 = m2 = 1

and α1 = α2 = 1, while S1 = −1 and S2 = −1/10. The mean sojourn time in state 1 and 2 is 1000 and

100, respectively. Hence,

D0 =

−3/10− 1/1000 1/1000

1/100 −1/10− 1/100


and P

(a)
k = P

(r)
k = I as the source is not adaptive and the arrivals do not affect the underlying state

of the arrival process. The long jobs (i.e., type 2) are assumed to be patient, i.e., they never leave the

waiting room. Short jobs have a deterministic amount of patience equal to 50 and abandon the system

as soon as their waiting time exceeds 50. Thus, we have a system with a single threshold d1 = 50 and

ai,k = 1 for i = 0, 1, 2 and k = 1, 2, except for a2,1 which equals 0 (as type 1 customers are rejected if

the workload exceeds d1).

Example 4: MMAP[K]/PH[K]/1+G[K] queue. Assume the type k customers are impatient and

their patience distribution has a finite support Ck. We can model this system by defining the set of

thresholds d1, . . . , dr as the union of the supports Ck for all k and ai,k as the probability that the

patience of a type k customer is at least di. When the patience distribution is continuous, we can still

generate approximate results by replacing the continuous distribution with a step function. In Section

5.1 we will demonstrate this approach by approximating the Weibull distribution with a step-function

consisting of as many as 214 steps. Prior work on continuous time queues with Markovian arrivals and
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customer impatience was mostly limited to the case where the amount of patience is exponential [5, 2].

Example 5: beyond customer impatience. As long as the probabilities ai,k are non-increasing as

a function of i, for all k, the system can be regarded as a queue with customer impatience, otherwise the

queue no longer belongs to the class of MMAP[K]/PH[K]/1+G[K] queues. For instance, when r = 1,

d1 = 100, a1,k = 0 and a2,k = 1, for some k, we only accept a type k customer when the workload is

larger than 100.

4 Workload process and steady-state solution

We define a Markov process (Vt, Zt)t≥0 by observing the workload Vt, called the level, and the state

of the arrival process Zt at time t. As usual, the workload is defined as the remaining duration of

the busy period, provided that no new arrivals occur. The state space of the process (Vt, Zt)t≥0 is

V = {(x, j)|x ≥ 0, j = 1, . . . ,ma}, meaning the level Vt is a continuous variable and Zt has a finite range.

As the level Vt represents the workload, it decreases linearly at rate 1 as long as no new customers arrive,

while it makes upward jumps at the arrival epochs. More specifically, as type k arrivals in state (x, j)

occur at rate ∆
(k)
j,j and αk exp(Sku)sk, with sk = (−Sk)e, represents the phase-type density that the

amount of work required by a type k arrival equals u, we find that the jump rate from state (x, j) to

(x′, j′) with x′ ∈ (x+ u, x+ u+ du) is given by

K∑
k=1

∆
(k)
j,j ai,k(P

(a)
k )j,j′(αk exp(Sku)sk)du+ o(du), (1)

when x ∈ (di−1, di], for i = 1, . . . , r + 1 (and i = 0 if x = 0). Indeed, ai,k(P
(a)
k )j,j′ represents the

probability that the type k customer is accepted and the state of the arrival process changes from j to

j′ as a result. The process also jumps from state (x, j) to (x, j′) when the arrival process jumps from

state j to j′ without generating an arrival or while generating an arrival that is rejected. Hence, the

jump rate from state (x, j) to (x, j′), with j′ 6= j, equals

(D0)j,j′ +

K∑
k=1

∆
(k)
j,j (1− ai,k)(P

(r)
k )j,j′ . (2)

The process (Vt, Zt)t≥0 is a jump process as in [8], however, in our case the rate at which the jumps
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occur as well as the jump sizes are not independent of the current level x of the process. In order to

obtain the steady state density of the process (Vt, Zt)t≥0, we construct a fluid queue from this jump

process by replacing the immediate upward jumps of size h by intervals of length h during which the

level increases linearly at rate 1. The resulting fluid queue is a fluid queue with thresholds as discussed

in [7]. As a result, an expression for the steady state of the Markov process (Vt, Zt)t≥0 can be obtained

from the steady-state of the fluid queue with thresholds using a censoring argument (that eliminates the

periods during which the level increases).

Running example continued: For Example 3 introduced in Section 3 the state space V of the jump

process (Vt, Zt)t≥0 is given by {(x, j)|x ≥ 0, j = 1, 2}. A jump from state (x, j) to (x, j′), with j′ 6= j,

can only occur when the arrival process jumps from state 1 to 2 (at rate 1/1000) or vice versa (at rate

1/100). This is in agreement with (2) as P
(r)
k = I for k = 1, 2. Upward jumps correspond to arrivals that

are accepted and these add an exponential amount of work with µ1 = 1 and µ2 = 1/10. If x ≤ 50, both

types are accepted, meaning the rate of jumps from (x, j) to (x′, j), with x′ ∈ (x+u, x+u+ du), equals

0.27 exp(−µ1u)du + 0.03µ2 exp(−µ2u)du + o(du) for j = 1 and 0.05(exp(−µ1u) + µ2 exp(−µ2u))du +

o(du) for j = 2. For x > 50, only type 2 customers are accepted and the rate therefore reduces to

0.03µ2 exp(−µ2u)du+ o(du) for j = 1 and to 0.05µ2 exp(−µ2u)du+ o(du) for j = 2.

4.1 Construction of the fluid queue with thresholds

A fluid queue with r thresholds 0 = d0 < d1 < d2 < . . . < dr < dr+1 = ∞ and a set of phases

S = S+ ∪ S−, is fully characterized by F
(0)
−−, F

(0)
−+ and the r + 1 matrices F (1) to F (r+1), where F (i) is

partitioned as

F (i) =

 F
(i)
++ F

(i)
+−

F
(i)
−+ F

(i)
−−

 ,
F

(i)
ab describes the rate of change between the phases in Sa and Sb when the level x ∈ (di−1, di], for

a, b ∈ {+,−} and F
(0)
−b describes the rate of change between the phases in S− and Sb when the level x

equals zero. We denote m− and m+ as the cardinality of the set S− and S+, respectively. Whenever

the phase of the queue is part of S+ (S−), the level x increases (decreases) at rate one (while it remains
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zero if x = 0 and the phase is in S−).

Next, we introduce the fluid queue with r thresholds obtained by replacing the upward jumps of

(Vt, Zt)t≥0 by intervals of the appropriate length during which the level increases linearly at rate one.

When the level decreases the fluid queue behaves as (Vt, Zt)t≥0, as such the set S− of phases during

which the fluid decreases at rate 1 is of size m− = ma, the number of states of the arrival process.

Periods during which the level increases correspond to the upward jumps of (Vt, Zt)t≥0. The amount

of work added during these jumps follows some phase-type distribution characterized by an order mk

representation (αk, Sk), for some k ∈ {1, . . . ,K}. Therefore, we keep track of the type k of the customer,

the work of which we are adding, as well as the phase v of its phase-type distribution. Furthermore,

while the fluid increases we also keep track of the state j of the adaptive MMAP[K] arrival process.

Thus, S+ = {(k, v, j)|k = 1, . . . ,K, v ∈ {1, . . . ,mk}, j = 1, . . . ,ma} is the set of phases during which the

fluid increases at rate 1 and its cardinality m+ equals ma

∑K
k=1mk.

As the fluid queue evolves identical to the jump process when level of the fluid queue decreases,

Equation (2) yields

F
(i)
−− = D0 +

K∑
k=1

∆(k)P
(r)
k (1− ai,k),

where the dependency on i ∈ {0, . . . , r + 1} is caused by the presence of the probabilities ai,k. When

a type k arrival is accepted, the jump process (Vt, Zt)t≥0 jumps from some state (x, j) to some state

(x′, j′). The fluid queue however will jump from phase j ∈ S− to phase (k, v, j′) ∈ S+, where v will be

determined by the vector αk. Due to Equation (1), we can write this in matrix form as

F
(i)
−+ =

K∑
k=1

((0, . . . , 0, αk, 0, . . . , 0)⊗∆(k)P
(a)
k )ai,k,

where the number of zeros appearing before and after αk equals
∑k−1
j=1 mj and

∑K
j=k+1mj , respectively.

Next assume we are adding the work generated by a type k arrival, meaning we are in some state

(k, v, j′) ∈ S+. The state j′ will remain frozen as long as the fluid increases, because the upward jumps

of (Vt, Zt)t≥0 are instantaneous. The threshold values d1, . . . , dr do not affect the evolution of the fluid

queue either, only the matrix Sk does as (Sk)v,v′ reflects the jump rate from (k, v, j′) to (k, v′, j′). Hence,
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F
(i)
++ does not depend on i and equals

F
(i)
++ =


S1 0

. . .

0 SK

⊗ I,

where I is a size ma identity matrix that reflects the fact that the state of the arrival process remains

frozen. Similarly, a jump from phase (k, v, j′) ∈ S+ to phase j′ ∈ S− occurs with rate (sk)v, yielding

F
(i)
+− =


s1

...

sK

⊗ I,

where I is the size ma identity matrix.

Running example continued: For Example 3 introduced in Section 3 the set S− contains only two

phases, while S+ contains 4 elements being (1, 1, 1), (1, 1, 2), (2, 1, 1) and (2, 1, 2) as m1 = m2 = 1. The

matrices F
(i)
−− and F

(i)
−+ are given by

F
(0)
−− = F

(1)
−− = D0, F

(2)
−− =

−3/100− 1/1000 1/1000

1/100 −1/20− 1/100


and

F
(0)
−+ = F

(1)
−+ =

27/100 0 3/100 0

0 1/20 0 1/20

 , F
(2)
−+ =

0 0 3/100 0

0 0 0 1/20


as type 1 customers are not accepted when x > d1 = 50. Due to the exponential service requirements

we see that

F
(i)
++ =



−1 0 0 0

0 −1 0 0

0 0 −1/10 0

0 0 0 −1/10


, F

(i)
+− =



1 0

0 1

1/10 0

0 1/10


,

for i = 0, 1, 2.
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4.2 Steady-state distribution of the workload process

For reasons of completeness, we start by restating a special case of the main theorem in [7]. Let π(x), for

x > 0, be the steady state density vector of level x of the fluid queue and write π(x) as (π−(x), π+(x))

for x > 0. For x = 0, denote p−(0) as the steady state probability mass vector of the fluid queue

corresponding to level 0 with a phase in S− and π+(0) as the steady state density of level 0 with a phase

in S+. Further, let ξ(i) = (ξ
(i)
− , ξ

(i)
+ ) be the unique stochastic invariant vector of F (i), then the following

theorem is due to [7]. In fact, F
(0)
−− = F

(1)
−− and F

(0)
−+ = F

(1)
−+ in [7], but it is not hard to see that the

result remains valid in case these equalities no longer hold.

Theorem 1 The fluid queue with thresholds 0 = d0 < d1 < . . . < dr < dr+1 = ∞ is positive recurrent

if ξ
(r+1)
+ e < ξ

(r+1)
− e. Moreover, if ξ

(i)
− e 6= ξ

(i)
+ e for i = 1, . . . , r, its steady state density π(x) can be

expressed as

(π+(x), π−(x)) = π+(dr)e
K(r+1)(x−dr)[I,Ψ(r+1)],

for x > dr and

(π+(x), π−(x)) = (π+(di−1)N
(i)
1 + π−(di)N

(i)
3 )eK

(i)(x−di−1)[I,Ψ(i)] +

(π+(di−1)N
(i)
2 + π−(di)N

(i)
4 )eK̂

(i)(di−x)[Ψ̂(i), I],

for x ∈ (di−1, di) and i = 1, . . . , r, where

N (i) =

 N
(i)
1 N

(i)
2

N
(i)
3 N

(i)
4

 =

 I eK
(i)biΨ(i)

eK̂
(i)biΨ̂(i) I


−1

,

and bi = di − di−1.

The matrices K(i), Ψ(i) and U (i), for i = 1, . . . , r+1, appearing in the above theorem can be computed

as follows. Ψ(i) is the smallest non-negative solution to the algebraic Riccati equation

F
(i)
+− + Ψ(i)F

(i)
−− + F

(i)
++Ψ(i) + Ψ(i)F

(i)
−+Ψ(i) = 0.

The matrices K(i) and U (i) are then readily obtained from Ψ(i) as

K(i) = F
(i)
++ + Ψ(i)F

(i)
−+, U (i) = F

(i)
−− + F

(i)
−+Ψ(i).

12



Additionally, one also needs these matrices for the level reversed process (for i = 1, . . . , r), denoted as

K̂(i), Ψ̂(i) and Û (i). Hence,

F
(i)
−+ + Ψ̂(i)F

(i)
++ + F

(i)
−−Ψ̂(i) + Ψ̂(i)F

(i)
+−Ψ̂(i) = 0,

and

K̂(i) = F
(i)
−− + Ψ̂(i)F

(i)
+−, Û (i) = F

(i)
++ + F

(i)
+−Ψ̂(i).

Efficient algorithms to solve algebraic Riccati equations are briefly discussed in Appendix A.

Let θ(i), for i = 1, . . . , r + 1, be the stochastic invariant vector of

D0 +

K∑
k=1

∆(k)(P
(a)
k ai,k + P

(r)
k (1− ai,k))

and define ρ(i) =
∑K
k=1

ai,k
µk
θ(i)∆(k)e as the load in the i-th region (di−1, di).

Theorem 2 The Markov process (Vt, Zt)t≥0 is positive recurrent if ρ(r+1) < 1.

Proof: Due to Theorem 1, the fluid queue that was constructed from (Vt, Zt) is positive recurrent if

ξ
(r+1)
+ e < ξ

(r+1)
− e, where ξ(r+1) = (ξ

(r+1)
+ , ξ

(r+1)
− ) is the invariant vector of F (r+1). It is not hard to show

that ξ(i), the invariant vector of F (i), is proportional to(
K∑
k=1

ai,k
µk

((0, . . . , 0, βk, 0, . . . , 0)⊗ θ(i)∆(k)P (k)
a ), θ(i)

)
,

where βk is the stochastic invariant vector of Sk − Skeαk. Hence, ξ
(i)
+ e < ξ

(i)
− e is equivalent to ρ(i) < 1,

for i = 1, . . . , r + 1. 2

Let π̄(x), for x > 0, be the steady state density at level x of the Markov process (Vt, Zt)t≥0. For

x = 0, denote p̄−(0) as the steady state probability mass vector corresponding to level 0 with a phase in

S− and π̄+(0) the steady state density of level 0 with a phase in S+.

Theorem 3 If ρ(i) 6= 1 for i = 1, . . . , r, and ρ(r+1) < 1, the steady state density π̄(x) of the Markov

process (V (t), Z(t))t≥0 can be expressed as

c̄π̄(x)/c = π+(dr)e
K(r+1)(x−dr)Ψ(r+1), (3)

13



for x > dr and

c̄π̄(x)/c = (π+(di−1)N
(i)
1 + π−(di)N

(i)
3 )eK

(i)(x−di−1)Ψ(i) + (π+(di−1)N
(i)
2 + π−(di)N

(i)
4 )eK̂

(i)(di−x), (4)

for x ∈ (di−1, di) and i = 1, . . . , r, where N
(i)
j , for j = 1, . . . , 4, is defined as in Theorem 1.

Finally, the density vectors obey c̄π̄(di) = cπ+(di), for i = 1, . . . , r, c̄π̄+(0) = cπ+(0) and the

probability mass p̄−(0) is found as c̄p̄−(0) = cp−(0), where c, c̄ ≥ 1 are normalizing constants.

Proof: If we censor the fluid queue on the time epochs during which the level is not increasing, we

end up with a new stochastic process that has the same stationary distribution as the Markov process

(Vt, Zt)t≥0, as a result the theorem is immediate from Theorem 1. 2

Remark 1: The use of two normalizing constants c and c̄ may appear redundant, in fact only c̄ needs

to be computed. This can be understood by noting that the computational method of [7] to determine

the steady state of a fluid queue with thresholds, computes the densities cπ(x) and normalizes these

by c. As we are interested in the steady state of the jump process (Vt, Zt)t≥0, which is obtained by

censoring the fluid queue, the normalization constant c is of no use to us. Instead we normalize by

another constant denoted as c̄.

Remark 2: Whenever ρ(i) equals one for some i, the matrices N
(i)
j , for j = 1, . . . , 4, are not properly

defined as N (i) is singular in this case (see [6, Section 4]).

4.3 Computational complexity

Apart from computing the matrices Ψ(i), K(i), Ψ̂(j) and K̂(j), for i = 1, . . . , r + 1 and j = 1, . . . , r, as

discussed in Appendix A, we also need to determine the probability vector cp−(0), the density cπ+(0), the

densities cπ(di) = c(π−(di), π+(di)), for i = 1, . . . , r, and the normalizing factor c̄. For the computation

of cp−(0), cπ+(0) and c̄ we refer to Appendix B. The density vectors cπ(di) = c(π−(di), π+(di)), for

14



i = 1, . . . , r are the unique solution to the following set of linear equations [7][Theorem 3.4]:

cπ−(dr) = cπ+(dr)Ψ
(r+1)

cπ+(di) = cπ+(di−1)Λ
(i)
++ + cπ−(di)Ψ̂

(i)
−+

cπ−(di) = cπ+(di)Ψ
(i+1)
+− + cπ−(di+1)Λ̂

(i+1)
−−

where the second equation is valid for i = 1, . . . , r and the third for i = 1, . . . , r − 1. An expression

for the matrices Λ
(i)
++, Ψ̂

(i)
−+, Ψ

(i)
+− and Λ̂

(i)
−− is also provided in Appendix B. Solving this system with

standard numerical techniques would imply that the time complexity is cubic in rm, where m is the

number of phases of the fluid queue. In this section we introduce an algorithm for solving this system

such that the time complexity grows as rm3, while the memory occupancy grows as rm2.

If we define the following matrices

Ai,i =

 0 Ψ̂
(i)
−+

Ψ
(i+1)
+− 0

 , Ai,i+1 =

 0 0

0 Λ
(i+1)
++

 ,
for i = 1, . . . , r − 1 and

Ai,i−1 =

 Λ̂
(i)
−− 0

0 0

 , Ar,r =

 0 Ψ̂
(r)
−+

Ψ(r+1) 0

 ,
for i = 2, . . . , r, we find that π = c(π(d1), . . . , π(dr)) is the unique solution of the linear system of the

form

π = πA+ (0, . . . , 0, π+(0)Λ
(1)
++, 0, . . . , 0),

where we have m− zeros appearing before π+(0)Λ
(1)
++ and A can be written as

A =



A1,1 A1,2 0

A2,1
. . .

. . .

. . .
. . . Ar−1,r

0 Ar,r−1 Ar,r


.

This allows us to make use of the following algorithm to compute the vectors cπ(di), for i = 1, . . . , r:

Theorem 4 Define the matrices Ãi,i recursively as Ã1,1 = A1,1 and

Ãi,i = Ai,i +Ai,i−1(I − Ãi−1,i−1)−1Ai−1,i,
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for i = 2, . . . , r. Further, let c̃1 = (0, . . . , 0, π+(0)Λ
(1)
++) and for i = 2, . . . , r let

c̃i = c̃i−1(I − Ãi−1,i−1)−1Ai−1,i.

Then, cπ(dr) = c̃r(I − Ãr,r)−1 and for i = r − 1, . . . , 1 we have

cπ(di) = (c̃i + cπ(di+1)Ai+1,i) (I − Ãi,i)−1.

Proof: The equations above can be obtained by repeated substitution. A similar approach was also

used in [24] for the policy evaluation step of a Markov decision process skip-free in both directions. 2

Taking the above algorithm and the computational procedures outlined in Appendix A and B into

account, we find that the overall time (memory) complexity is linear in the number of thresholds r and

cubic (square) in m = ma(1 +
∑K
k=1mk), the number of phases of the fluid queue.

4.4 Waiting time distributions and probabilities of abandonment

Define the probability vectors p̄−(x) = p̄−(0) +
∫ x
y=0

π̄(y)dy, for x > 0. Due to Theorem 3 we find

c̄p̄−(x)

c
=

c̄p̄−(di−1)

c
+ (π+(di−1)N

(i)
1 + π−(di)N

(i)
3 )A(i)(x)Ψ(i) +

(π+(di−1)N
(i)
2 + π−(di)N

(i)
4 )Â(i)(x) (5)

for x ∈ (di−1, di] and i = 1, . . . , r, (where A(i)(x) and Â(i)(x) are defined in Appendix B), while

c̄p̄−(x)

c
=
c̄p̄−(dr)

c
+ π+(dr)(−K(r+1))−1(I − eK

(r+1)(x−dr))Ψ(r+1), (6)

for x > dr.

Theorem 5 The probability P [Wk ≤ x] that an accepted type-k customer has a waiting time of at most

x, can be computed as

P [Wk ≤ x] =
1

λ
(a)
k

p̄−(0)a0,k +

i−1∑
j=1

(p̄−(dj)− p̄−(dj−1))aj,k + (p̄−(x)− p̄−(di−1))ai,k

∆(k)e, (7)

for x ∈ [di−1, di) (with d0 = 0 and dr+1 =∞) and i = 1, . . . , r + 1, where the type-k accept rate

λ
(a)
k =

(
p̄−(0)a0,k +

r+1∑
i=1

(p̄−(di)− p̄−(di−1))ai,k

)
∆(k)e

and the type-k arrival rate λk = p̄−(∞)∆(k)e.
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Proof: The probability that an accepted type k customer has a waiting time of at most x can be

computed as the accepted arrival rate of the type k customers that find a workload of at most x upon

arrival, divided by the total accepted arrival rate of the type k customers. Therefore, the result follows

from Theorem 3. 2

5 Numerical Examples

5.1 Queues with customer impatience

In the first example, we revisit Example 3 of Section 3, but to make things more challenging, we now

assume the patience of a short job follows a Weibull distribution with parameters (k, λ), where λ is

set such that its mean is 50. Hence, k = 1 results in an exponential amount of patience, when k > 1

customers become less patient as time passes (i.e., they have an increasing hazard rate) and k < 1 implies

that the hazard decreases which results in a heavy tail.

The Weibull distribution is clearly a continuous distribution, i.e., it is not a finite support distribution.

To make use of our framework, we will approximate it with a finite support distribution and gradually

increase the number of support points to as many as 214 = 16384. Recall, the time and memory

complexity of this method is linear in the number of thresholds, which allows us to solve systems with

as many as 214 thresholds in less than 30 seconds on a 3.33 GHz CPU (and 4 Gbyte of RAM), where

approximately 8 seconds was required to solve the 215 algebraic Riccati equations (for which m− = 2

and m+ = 4). Denote X as the (Weibull) patience distribution and consider the following two manners

to position the thresholds. The linear (lin) positioning defines the values of the r thresholds di such

that P [X > di] = (r + 1− i)/(r + 1), for i = 1, . . . , r (with d0 = 0 and dr+1 =∞). The quadratic (qdr)

positioning sets di such that P [X > di] = (r + 1− i)2/(r + 1)2, for i = 1, . . . , r.

We also consider two possibilities for the abandonment probabilities ai,1 (notice, ai,2 = 1 as the long

jobs are patient). The first, called the Round up, sets ai,1 = P [X > di], for i = 1, . . . , r + 1. In the

second mode, termed Round down, we set ai,1 = P [X > di−1], for i = 1, . . . , r + 1. In both modes a0,1

equals one. Thus, these two approaches approximate the Weibull rejection probabilities by means of a
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mode, r k = 0.5 k = 1 k = 2 k = 4 k = 8

lin qdr. lin qdr. lin qdr. lin qdr. lin qdr.

up, 26 .20064 .20257 .10077 .10424 .05153 .05715 .03265 .03968 .02668 .03438

up, 210 .19738 .19751 .09703 .09724 .04630 .04660 .02611 .02652 .01937 .01984

up, 214 .19718 .19718 .09681 .09682 .04602 .04604 .02574 .02576 .01892 .01895

down, 214 .19715 .19714 .09677 .09676 .04599 .04597 .02570 .02569 .01889 .01889

down, 210 .19694 .19682 .09655 .09635 .04578 .04561 .02558 .02548 .01883 .01879

down, 26 .19368 .19165 .09306 .09025 .04338 .04157 .02429 .02346 .01825 .01798

Table 1: Probability of abandonment for type 1 jobs for a Weibull distribution with k = 0.5 to 8 and

mean 50 for r = 64, 1024 and 16384 support points

step function. In the first case the steps are above the Weibull curve, while in the latter approach they

are below. We therefore expect that the Round up mode will overestimate the rejection probability,

while the Round down mode is expected to result in an underestimation.

Table 5.1 shows the resulting probability of abandonment of the short jobs for various k values,

where the number of support points considered equaled 64, 1024 and 16384. As expected, the results

of the Round up are above those of the Round down and both seem to converge to one another as the

number of support points r increases, for both the linear and quadratic positioning of the thresholds.

This indicates that a fairly accurate estimate of the probability of abandonment can be obtained if many

support points are used, where the linear positioning provides a slightly better accuracy for a fixed r.

The abandonment probability decreases with increasing k as the patience distribution becomes more

deterministic.

Figure 1 depicts the waiting time distribution of the type 1 customers for k = 0.5 and k = 8 for

various r values (where we zoomed in on the tail for the k = 8 case). For k = 0.5, the distribution for

the type 2 customers is also shown and we find that the round up and down curves are close to each

other even for a small number of support points (256 for type 1 and 16 for type 2), using the linear

threshold positioning. For k = 8, the linear positioning has difficulty matching the tail of the type 1
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Figure 1: Waiting time distribution for type 1 (and 2) jobs for k = 0.5 and k = 8 for various r values

waiting time distribution mostly due to the location of the last threshold dr. The quadratic positioning

performs substantially better with respect to capturing the tail behavior as both r = 16384 curves nearly

coincide.

5.2 Adaptive Poisson source with background traffic

We continue by demonstrating our approach on a buffer fed by an adaptive Poisson process that is

multiplexed with a non-adaptive background process as in Example 3 of Section 2. We assume that all

the packets have a mean length of 1, meaning the mean arrival rate equals the load. The background

process is a 2 state MAP characterized by

C0 =

 −0.2 0

0 −0.5

 , C1 =

 0.2(1− pc) 0.2pc

0.5pc 0.5(1− pc)

 ,
with pc = 1/1000. In other words, the background process alternates between periods with an arrival

rate of 0.2 and 0.5, where the mean duration of a period is 1000 arrivals. Thus, the mean arrival rate

of the background source is 2/7. The adaptive Poisson process has four arrival rates λ1 to λ4 and these

equal 0.3, 0.45, 0.6 and 0.75. In other words, when the background source is in state 1, a rate λ of 0.75

seems appropriate to achieve a good utilization with a limited loss, while λ = 0.45 is more appropriate

if the background source is in state 2. The adaptive Poisson source is assumed to decrease its rate

immediately when a packet is rejected. When a packet is accepted, the Poisson source will increase its
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Figure 2: Accept and reject rate of the adaptive Poisson source as a function of the threshold B for

pup = 1 to pup = 10−5 in a queue with a single threshold at B

rate, but only with some probability pup, hence P and P ∗ are given by

P =



1− pup pup 0 0

0 1− pup pup 0

0 0 1− pup pup

0 0 0 1


, P ∗ =



1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0


.

Notice, the adaptive Poisson source does not alter its rate when a background packet is accepted/rejected.

We start by assuming that the buffer uses a single threshold B and that a packet is accepted if and only

if the current workload is at most B. In order to focus on the arrival rates, we assume that all packets

have an exponential duration (with mean 1), but different phase type distributions could be used as well

(we can even make the service time dependent on the rate of the adaptive source as we associated a

customer type to each rate).

Figure 2 shows the accept and reject rate of the adaptive Poisson source as a function of B for various

pup values. As expected the accept rate, i.e., throughput, increases as B and pup increase, while the reject

rate decreases with B and increases with pup. In other words, when pup is large, the adaptive source

becomes very aggressive which results in a high accept rate at the expense of many rejects. Lowering pup

reduces the number of rejects, but also the throughput. The key value in selecting pup is clearly related

to the rate at which the background traffic changes between both states (that is, every 1000 arrivals on
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Figure 3: Accept and reject rate of the adaptive Poisson and background source as a function of the

threshold d1 for pup = 1 to pup = 10−3 in a queue with 10 equidistant thresholds with d10 = 50

average), as the adaptive source should be able to change its rate sufficiently fast in order to adapt itself

to the non-adaptive background source. The loss rates of the background source, not shown here, were

quite similar to the reject rates of the adaptive source.

Next, we consider a setup with r = 10 equidistant thresholds where the first threshold is positioned

at d1 and the last at d10 = 50. We further assume that background jobs are only rejected when the

workload is above d10, while a packet from the adaptive source is rejected with probability i/10 when

the workload is part of (di, di+1], with d0 = 0 and d11 = ∞. Hence, the adaptive customers can be

regarded as impatient with a uniform discrete distribution for their amount of patience.

Figure 3 shows the success and reject rates for the adaptive source, as well as the reject rate of the

non-adaptive traffic, as a function of d1 for various pup values. For pup = 0.1, we see that introducing

10 thresholds with d1 = 20 causes a limited reduction in the accept rate of the adaptive source (and a

slightly increased reject rate), while the loss rate of the background source improves dramatically.

5.3 Policing in-profile and out-of-profile traffic

The last example considers a superposition of N sources. Each source behaves as a Poisson source with

rate λ1 = ρ/N , but occasionally augments its rate by λ2 for some time. During the periods where

the rate equals λ1 + λ2, we mark each packet as being out-of-profile with probability λ2/(λ1 + λ2).
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The superposition of these N sources is fed to a queue that makes use of r equidistant thresholds

and in-profile packets are always accepted unless the workload exceeds dr. Out-of-profile packets are

rejected with probability i/(5r− 4i) when the workload is part of (di, di+1] for i = 0, . . . , r (with d0 = 0

and dr+1 = ∞). Notice, the reject probability is convex in i (as in a queue that uses random early

detection [9]). The sources are not adaptive, i.e., P
(a)
k = P

(r)
k = I. The remaining parameters of the

MMAP[K]/PH[K]/1+G[K] queue are as follows: K = 2, m = N + 1 (as it suffices to keep track of the

number of sources generating traffic at rate λ1 + λ2) and

D0 =



−ρ

−ρ− λ2
. . .

−ρ−Nλ2


+



−Nri Nri

rd
. . .

. . .

. . .
. . . ri

Nrd −Nrd


,

where ri and rd are the rates at which a source increases or decreases its arrival rate, respectively. The

matrix ∆(1) = ∆(ρ, . . . , ρ), while ∆(2) = ∆(0, λ2, . . . , Nλ2).

Figure 4 depicts the reject probability for a system with r = 10 thresholds, N = 10 sources, ρ = 0.85,

λ2 = 0.05, ri = 1/300 and rd = 1/1000. Two types of service are considered: an Erlang-5 distribution

(with mean=1 and SCV=1/5) and a Coxian distribution with rates 2 and 1/5 with p1 = 1/10 (i.e., it has

a mean=1 and SCV=5). The total accepted rate increased from 0.951 for d1 = 1 to 0.957 for d1 = 50 for

an SCV=1/5 and from 0.917 to 0.924 for an SCV=5. Thus, for d1 small, most of the in-profile packets

are accepted, while the throughput exceeds 0.85 by allowing some out-of-profile traffic.

A Appendix

To find the smallest non-negative solution Ψ and Ψ̂ of the algebraic Riccati equation

F+− + ΨF−− + F++Ψ + ΨF−+Ψ = 0,

and its dual (i.e., for the level-reversed queue)

F−+ + Ψ̂F++ + F−−Ψ̂ + Ψ̂F+−Ψ̂ = 0,
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Figure 4: Reject rates of the in-profile and out-of-profile packets as a function of the the threshold d1 in

a queue with 10 equidistant thresholds with d10 = 50

we make use of the Structure-preserving Doubling Algorithm (SDA) discussed in [13]. The SDA al-

gorithm works as follows. First define A = −F++, B = F+−, C = F−+ and D = −F−−. Next, set

γ = max{maxi aii,maxi dii} and let Aγ = A + γI and Dγ = D + γI. Further, let Wγ = Aγ − BD−1γ C

and Vγ = Dγ − CA−1γ B. Next, the SDA algorithm initializes E0, F0, G0 and H0 as E0 = I − 2γV −1γ ,

F0 = I − 2γW−1γ , G0 = 2γD−1γ CW−1γ and H0 = 2γW−1γ BD−1γ . Finally, the iteration

Ek+1 = Ek(I −GkHk)−1Ek,

Fk+1 = Fk(I −HkGk)−1Fk,

Gk+1 = Gk + Ek(I −GkHk)−1GkFk,

Hk+1 = Hk + Fk(I −HkGk)−1HkEk,

guarantees that Gk and Hk converges quadratically1 to Ψ and Ψ̂, respectively. The iteration is repeated

until min(‖Ek‖1 , ‖Fk‖1) < 10−15.

The computation time of SDA can be further reduced by means of the ADDA algorithm [23], which

uses the same iteration as SDA, but initializes E0, F0, G0 and H0 using two parameters α = maxi aii

1Except for the null-recurrent case, which never occurs in our case as ρ(i) 6= 1 for all i.
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and β = maxi dii. For the examples presented in Section 5.1 ADDA reduced the computation time of

SDA by 5 to 7 percent (where we rescaled Ek and Fk after each iteration to avoid overflows as indicated

in Remark 3.1 of [23] and used ‖Ek‖1 ‖Fk‖1 < 10−15 as a stopping criteria). The somewhat limited gain

of ADDA can be understood by noting that α and β do not differ too much in this numerical example.

Alternatively, an algebraic Riccati equation can be solved using the approach taken in [17], which

constructs a Quasi-Birth-Death (QBD) Markov chain such that Ψ can be recovered from the well-known

G matrix. To solve this QBD any algorithm with quadratic convergence such as cyclic or logarithmic

reduction [1] can be used and the runtime of these algorithms can be further reduced by exploiting the

internal structure of the matrices characterizing the QBD (e.g., see [12]). Finally, an algebraic Riccati

equation can also be solved with quadratic convergence using the Newton iteration [11], which requires

the solution of a Sylvester matrix equation [10] of the form AX +XB = C during each iteration. Even

when exploiting the internal structure, both the QBD-based approach and the Newton iteration typically

require slightly more than twice as much time as the SDA algorithm.

B Appendix

To compute the densities cπ(0) and cπ(di), for i = 1, . . . , r, one first computes the first passage probability

matrices

Ψ
(i)
+− = (Ψ(i) − eÛ

(i)biΨ(i)eU
(i)bi)(I − Ψ̂(i)eÛ

(i)biΨeU
(i)bi)−1 (8)

Ψ̂
(i)
−+ = (Ψ̂(i) − eU

(i)biΨ̂(i)eÛ
(i)bi)(I −Ψ(i)eU

(i)biΨ̂(i)eÛ
(i)bi)−1 (9)

Λ
(i)
++ = (I −Ψ(i)Ψ̂(i))eÛ

(i)bi(I −Ψ(i)eU
(i)biΨ̂eÛ

(i)bi)−1 (10)

Λ̂
(i)
−− = (I − Ψ̂(i)Ψ(i))eU

(i)bi(I − Ψ̂(i)eÛ
(i)biΨeU

(i)bi)−1. (11)

Additionally, one needs to compute Π
(1)
+− using Π

(r+1)
+− = Ψ(r+1) and

Π
(i)
+− = Ψ

(i)
+− + Λ

(i)
++Π

(i+1)
+− (I − Ψ̂

(i)
−+Π

(i+1)
+− )−1Λ̂

(i)
−−,

for i = r, . . . , 1. Analogue to [7][Theorem 3.4], the vector cp−(0) is given by

cp−(0)(F
(0)
−− + F

(0)
−+Π

(1)
+−) = 0
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with cp−(0)e = 1 and the density cπ+(0) as cp−(0)F
(0)
−+. Finally, having obtained the vectors c(π−(di), π+(di))

as indicated in Section 4.3, for i = 1, . . . , r, the normalizing constant c̄ can be computed as

c̄ = 1 + cπ+(dr)(−K(r+1))−1e+ c

r∑
i=1

(π+(di−1)N
(i)
1 + π−(di)N

(i)
3 )A(i)(di)Ψ

(i)e+

c

r∑
i=1

(π+(di−1)N
(i)
2 + π−(di)N

(i)
4 )Â(i)(di)e, (12)

where the matrices A(i)(x) and Â(i)(x), for i = 1, . . . , r can be expressed as

A(i)(x) =

∫ x

y=di−1

eK
(i)(y−di−1)dy = 1{ρ(i)>1}(x− di−1)v(i)u(i) +

(1{ρ(i)<1}(−K(i))−1 + 1{ρ(i)>1}(−K(i))#)(I − eK
(i)(x−di−1)), (13)

for x ∈ (di−1, di], where u(i) and v(i) are the left and right eigenvector corresponding to the eigenvalue 0

of the singular matrix K(i) (if ρ(i) > 1), such that u(i)e = 1 and u(i)v(i) = 1 and M# denotes the group

inverse of the matrix M . Similarly,

Â(i)(x) =

∫ x

y=di−1

eK̂
(i)(di−y)dy = 1{ρ(i)<1}(x− di−1)v̂(i)û(i) +

(1{ρ(i)>1}(−K̂(i))−1 + 1{ρ(i)<1}(−K̂(i))#)(eK̂
(i)(di−x) − eK̂

(i)bi), (14)

for x ∈ (di−1, di], where û(i) and v̂(i) are the left and right eigenvector corresponding to the eigenvalue

0 of the singular matrix K̂(i) (if ρ(i) < 1), such that û(i)e = 1 and û(i)v̂(i) = 1.
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