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Abstract

In today’s business many companies have a complex distribution network with
several national and regional distribution centers. In this paper, we study an inte-
grated facility location and inventory allocation problem for designing a distribution
network with multiple national distribution centers (NDCs) and retailers. The key
decisions are where to locate the regional distribution centers (RDCs), how to as-
sign retail stores to RDCs and what should be the inventory policy at the different
locations such that the total network cost is minimized. We model our problem
using a Type-I (probability of stock-outs) service level measure.

This paper presents a continuous approximation (CA) model for solving the
problem described above. The model takes a nonlinear form and solution techniques
are developed using the theory of nonlinear programming. The main contribution
of this work lies in developing a refined CA modeling technique when the discrete
data cannot be modeled by a continuous function. Our methodology is illustrated
on a real life application of a leading US retailer. Numerical analysis suggests that
the total network cost is significantly lower in the case of the integrated model as
compared with the non-integrated model. It also shows that the regular CA ap-
proach leads to a solution which is inferior to the solution obtained by the modified
CA approach.

Keywords: Supply chain design; Inventory; Facility location; Allocation; Continuous
approximation model.

1 Introduction

Manufacturing outsourcing in the U.S. has never been stronger than it is today. Increased
outsourcing has led to significant changes in the design of the retail distribution network.
While the traditional distribution network had manufacturing plants supply goods to
retail stores directly, off-shore manufacturing has increased the network’s demand for
transportation and warehousing to deliver the goods. When the goods arrive at seaports
in the U.S., they must be consolidated by region at national (import) distribution cen-
ters. From these national distribution centers (NDCs), the goods are shipped to regional
distribution facilities (RDCs), from which they are delivered to retail stores. These re-
gional distribution facilities help pool risk by consolidating shipments from the import
distribution centers (DCs). Most companies have complex distribution networks with
several import and regional DCs. For example, Target, Inc. has 3 import warehouses, 22
regional distribution centers, and 1300 retail stores. Frito-Lay, Inc. operates its distribu-
tion network with 42 plants, one national DC, and 325 regional DCs (see Erlebacher et
al. (13)).

Companies in the U.S. spend approximately $14 billion per year on inventory interest,
insurance, taxes, depreciation, obsolescence, and warehousing. Their logistics activities
account for 15%-20% of the total cost of finished goods (Menlo, 2007). With such a huge
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inventory investment and the growing demand for warehouses, it is important to make
optimal decisions for facility locations and inventory allocation in a supply chain.

Inventory is a key driver of supply chain performance, which is measured in terms of
fill-rate and in-stock probability. It is for this reason that optimal inventory allocation
along the different levels of the supply chain is important. This problem is known as the
multi-echelon inventory problem (see Roundy (23); Deuermeyer et al. (11); Ganeshan
(15) for a detailed review). This body of literature assumes that distribution centers have
been located optimally between the manufacturer and the stores prior to the inventory
decisions, and hence ignores the facility location cost. The facility location-allocation
problem has been extensively studied (see Daskin (10); Drezner (12); Brandeau et al.
(4)). However, this body of literature ignores inventory allocation decisions at the DCs.

The two key decisions of facility location and inventory allocation are dependent
on each other. One of the key cost components for the facility location problem is
the transportation cost, which depends on the frequency of inventory replenishment at
different facilities. This replenishment frequency is a function of the inventory policy.
Similarly, the inventory allocation problem models the inventory cost at the distribution
center (DC) for a known value of demand served by each DC. This requires information
regarding which retailers are assigned to which DC.

The interrelations between the facility location and inventory policy problems suggest
that an integrated model with the facility, transportation costs, and inventory costs is
needed to solve network design problems. In spite of this well understood dependence,
most studies deal with these two problems individually because of the sheer complexity
of integrating them. The integrated problem takes a non-linear form and the number
of decision variables is enormous, making it computationally challenging to solve the
problem for a real network. The studies by Teo et al. (26) and Teo et al. (22) are the
only two papers we have found in the area of integrated logistic network design. Though
these models are very detailed, the problem is only solved on a small scale and it does
not account for supply uncertainty in the network.

Unlike previous studies, which use discrete models, this study adopts a continuous
approximation (CA) approach to model the supply network design problem. The key
idea under the CA approach is to define decision variables using continuous functions
and hence reduce the complexity of the problem. While the CA approach does not
determine the exact location of the distribution centers, it defines a service area for each
distribution center in terms of circular influence areas. Earlier studies by Newell (19) and
Dasci et al. (9) show that influence areas with central distribution nodes is a near optimal
solution. The goal of this study is to provide logistics network planners with a high level
solution for the integrated facility location and inventory allocation problem. To the best
of our knowledge, this problem area is new, and our work presents the most detailed
non-linear cost model. We propose a solution technique that preserves the interrelation
between facility and inventory decisions.

Most papers in the area of network design use a discrete model to formulate the
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problem. Discrete models provide managers with optimal solutions, but their data and
computational requirements increase tremendously as they try to capture real operational
networks. Also, data reliability and model accuracy decrease as the amount of data
increases. Continuous approximation could be a remedy to these shortcomings, as it
requires less data to generate closed or near-closed form solutions (Dasci et al. (9)).
Even though our modeling approach requires us to sacrifice the level of detail by replacing
discrete variables with smooth functions, the resulting model more closely depicts real
logistic networks.

The main purpose of this paper is to meet a three-fold goal: First, to highlight the
importance of integrating facility location decisions with inventory decisions. We show
that a non-integrated approach generates results that have a significantly higher total net-
work cost compared to an integrated approach. Second, to present a solution approach,
namely, continuous approximation, for solving the integrated facility location and inven-
tory allocation problems with non-homogenous data. Third, propose a methodology for
fine-tuning the continuous approximation technique when the input variables cannot be
approximated by a smooth function.

This paper presents a continuous approximation model for solving the network de-
sign problem and answers the following questions: (1) which RDC locations should be
open, (2) which retail store should be served from which RDC location, and (3) how
much inventory should be held at the RDCs and the NDCs? The motivation for this
approximation is that if we can cut down the size of data, then we can solve larger-scale
problems to get some meaningful insights. Our solution defines the input data in terms
of continuous functions and is capable of formulating these functions for a data set of any
size.

The objective function proposed in this paper minimizes the total logistic costs ex-
pressed as a sum of the inventory, facility, and transportation costs, and meets the desired
service level requirements at each inventory stocking level.

2 Literature Review

Integrated network design and inventory policy decisions

There are several papers in the area of integrated facility location and single location
inventory control. The research in this area considers distribution networks with a single
plant serving multiple retailers. The distribution center (DC) location and inventory
policy at the DC are both decision variables. It is assumed that each retailer has a
variable demand process. Since the addition of inventory terms makes the objective
function nonlinear, researchers have looked at approximations to linearize it.

Nozick et al. (20) approximated the safety stock cost at each DC by a linear regression
function of the number of DCs, and uses this to estimate the inventory cost function. In
their model, inventory is stocked at the DC and replenished using a one-for-one policy.
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The fixed-charge facility location model defined in Daskin (10) uses the linear inventory
cost function to determine the least cost set of DC locations. Nozick et al. (21) extended
their previous model by adding service responsiveness and uncertainty in delivery time to
the DC. Service responsiveness is defined in terms of stock-outs and time-based delivery.
Stock-outs are incorporated in the safety stock function, while the time-based delivery
constraint is modeled explicitly as coverage distance.

Shen et al. (25) studied a distribution network in which some of the retailers are
allowed to act as distribution centers to achieve risk-pooling benefits in terms of inventory
cost savings. Their problem determines which retailers should serve as DCs and how much
inventory these stocking points should hold. The inventory model in their work is the
continuous review (Q, r) model with a Type-I service constraint. They reformulate the
nonlinear problem as a set-covering model, and propose a column generation algorithm
that can solve the problem exactly for two special cases in O(|n|2log|n|).

Miranda et al. (18) presented an integrated model for capacitated facility location
problem (CFLP) and inventory control decisions. Their model determines the location of
each distribution center based on the (Q, r) inventory policy at each DC location. Their
solution methodology involves a lagrangian relaxation and the sub-gradient method. In
another study, Erlebacher et al. (13) examined a distribution system design problem in
which customer demand is distributed uniformly along a grid network. They proposed a
two-stage heuristic procedure that fixes the number of DCs in the first stage to estimate
DC demand, which the second stage then uses to estimate the number of DCs.

More recently, Teo et al. (26) studied an integrated logistic network problem that
considers inventory cost for multiple echelons of inventory stocking locations. Their ap-
proach models the inventory cost at each DC and retailer. They use the convex inventory
minimization function proposed by Roundy (23) along with transportation and facility
costs, to formulate a MIP problem. They proposed a column generation technique to
solve their model. Their solution is solvable in O(nlog(n)) time, and is within 2% of the
optimal solution when the problem instance is small (20 warehouses and 100 retailers).
However, their model does not include demand or supply uncertainty. In another study,
Teo et al. (22) extended their previous model by adding safety stock terms to account
for demand variability. In our work, we solve the integrated logistic design (i.e., facility
location and inventory allocation) problem using two different approximation models for
a scenario with 284 retail stores representing the southeastern region of a major US retail
chains distribution network.

Data approximation for logistic network design

This line of research began to appear in the early 1970s in a seminal paper by Newell
(19) that uses data approximation techniques for warehouse location problem. Geoffrion
(16) studied a continuous model for warehouse location in which a warehouse serves de-
mand that is distributed uniformly over a plane. Erlenkotter (14) used a General Optimal
Market Area (GOMA) model to determine the optimal area served by a single production
point when the demand is assumed to be distributed uniformly. This was an extension of
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a previous study by Geoffrion (16) and Newell (19), with more detailed expressions for the
production cost. Rutten et al. (24) further refined the GOMA model by considering a dis-
tribution network and adding inventory cost terms. Burn et al. (5) studied a distribution
network with a single supplier and multiple customers. They proposed an analytic method
that uses the spatial density of customers to minimize the inventory and transportation
cost of freight. Their work considers two different distribution strategies, direct shipping
and peddling. Daganzo (8) presented continuum approximation techniques for the net-
work design problem, focusing in particular on vehicle dispatch scheduling. Langevin et
al. (17) presented an extensive review of continuous approximation models developed
for freight distribution problems. Dasci et al. (9) studied a production and distribu-
tion design problem using the continuum approximation technique. Their work explicitly
models facility costs by looking at the operational and acquisition cost components. The
model presented in their work is an extension of a continuous approximation model for
the facility design problem. However, their approach does not consider inventory costs.

Spatial Approximation

To the best of our knowledge, there are only two papers that study fine refinements
of the continuous space models. These refinements are necessary when the underlying
assumptions for the continuous models fail to hold. Blumenfeld et al. (3) studied logistics
planning models that use continuous space models under general conditions, i.e., by
relaxing the assumption of uniform density for stores. They developed an analytical
framework for estimating the transportation costs for distributing goods from a single
origin to multiple destinations, using clusters to account for dense customer destinations.
These clusters can be analyzed as sub-regions of the main region. Wang et al. (27) studied
spatial modeling and proposed smoothing techniques for non-homogeneous processes by
considering details at different levels of the distribution network. Their work proposes
fine refinements to the approximation models based on the level of detail captured by the
data. We present a two-phase approximation technique to solve the integrated facility
location and inventory allocation problem. The proposed approach captures the non-
homogeneity of input parameters discussed by Blumenfeld et al. (3) and Wang et al.
(27).

3 Total Network cost function

The network under study in this thesis is a three-level distribution system with retail
stores at level zero meeting demand of the end customers. The regional distribution
centers (RDCs) are located at level one to help consolidate shipments and pool risk. The
national distribution centers (NDCs) are located at level two and they help consolidate
shipments arriving from overseas manufacturers and deliver them to the RDCs. The
goods flow from the facilities at the higher level to the facilities at the lower level until
they reach level zero (see Figure 1). We will refer to this three-level network as a logistic
network in the rest of the analysis.
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Manufacturer
NDC

Level 2

RDCs

Level 1

Retail stores

Level 0

Figure 1: A Multi-Level Distribution Network

4 Assumptions

Before we model and solve the integrated facility location and inventory allocation prob-
lem, we want to make some assumptions around the network structure, demand pattern
and inventory replenishment policies. Our assumptions help us frame the different logis-
tics cost functions and hence create a practical model to analyze. These assumptions are
needed to simply the complex logistics model without sacrificing our understanding of the
problem. The simplified model structure also allows us to explore the different decision
issues in detail. Most of our assumptions are consistent with those used extensively in
the literature (see Ganeshan (15), Teo et al. (26), Dasci et al. (9)). The mathematical
model in this paper is developed around the following assumptions.

1. The distribution network under study is an arborescence network (see Figure 1) in
which each facility can serve multiple facilities in the lower level but can be served
by only one facility from the upper level.

2. The location of the NDC is known and fixed.

3. Demand per unit time for each store is an independent and identically distributed
Poisson process with rate λ.

4. Each product can be analyzed independent of other products. The demand for a
single product is considered in our study.
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5. The demand process at each RDC is a Poisson process as it is generated by the
demand coming from the stores in its influence area. There is no reorder cost at
the stores so that the demand at the store gets passed over to the RDC on a per
item basis.

6. There is no lateral shipment of goods, i.e., movement of goods between facilities
in the same echelon. Moreover, each facility serves its immediate lower echelon
facilities via direct shipment.

7. We do not consider the pipeline inventory cost for units in transit from NDC to
RDC or from suppliers to the NDC.

8. Each RDC’s influence area is circular. It has been shown in the literature (Dasci et
al. (9)) that the shape of the service area has little impact on the optimal solution.
Moreover, each RDC is located in the center of the influence area.

9. The distances between the NDCs and the RDCs, and between the RDCs and the
retail stores are calculated using the Euclidean norm.

10. The contraints from capacity limitations at the NDCs and the RDCs are not con-
sidered.

11. The inventory policy at the RDCs and the NDCs is a continuous review policy.
Each RDC r implements the (Qr, rr) ordering policy, i.e., an order of Qr units is
placed everytime the inventory position 1 equals rr. The NDC n implements (Qn,
rn) policy, i.e., it orders Qn units everytime its inventory position equals rn.

12. Both RDC and NDC operate under a Type-I service level policy.

All the cost functions are modeled using a continuous approximation technique. The
key idea under this technique is to express the entire distribution network in terms of
smooth continuous functions. Let the distribution network under study be represented
by a continuous service area R, and the discrete store locations be expressed as a spatial
density function δ(x), x ∈ R. If the demand at the stores is expressed as a spatial density
function λ(x), x ∈ R, then the customer demand at each point x ∈ R can be expressed
as a product of the store density and the store demand density, and is given by λ(x)δ(x),
x ∈ R. It is argued in Daganzo et al. (6) that if the customer demand is a slow varying
function of x then the influence area of each RDC can be approximated by a circular
region and it is a slow varying function of x. Influence area in this analysis is a region
such that all the stores located within this region are served by the RDC located at the
center. Let Ar(x) be the influence area associated with RDC r. If we cover the entire
area of the distribution network with circular influence areas of size Ar(x), then the total
number of RDCs (Nr(x)) is given by

∫

R
(Ar(x))−1dx.

In our model, the components of the total network cost are calculated as follows:

1sum of on-hand and on-order inventory
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• Total Facility Cost: A fixed rent, Fr, is paid for opening and operating each RDC.
The total facility cost TF(x) is given by multiplying the facility cost of opening each
RDC with the number of RDCs; namely,

TF (x) = FrNr(x) (1)

• Inbound Transportation and Outbound Delivery cost: We consider two
components for the transportation cost-outbound and inbound costs. For the RDC,
the outbound cost is the cost of shipping goods to the retailers located within its
influence area. Inbound cost is the cost of sending shipments from the NDC to the
RDC. For the NDC, the outbound cost is the same as inbound cost for the RDC.
The inbound cost from the outside supplier is not modeled explicitly at the NDC.
Instead this cost is factored in the reorder cost at the NDC. Each transportation
cost component consists of a fixed cost and a variable cost. The fixed component
of cost can be associated with managing the fleet, drivers, etc. The variable cost is
the cost per item.

Let Cf be the fixed cost per inbound shipment and Cv be the variable cost per item
for each inbound shipment. Then the total inbound transportation cost, TIT(x), is
given by:

TIT (x) = (Cf + CvQr(x))

(

ξE[Dr(x)]

Qr(x)

)

Nr(x) (2)

where (Cf+CvQr(x)) is the transportation cost incured in a single inbound shipment
to a single RDC. The expected demand faced by RDC r is given by E[Dr(x)], ξ
is the length of the planning horizon and E[Dr(x)]/Qr(x) is the expected number
of inbound shipments to a single RDC during the planning horizon. Nr(x) is the
number of RDCs in the distribution network.

Let Cl be the delivery cost per mile per item and fr be the constant that depends
on the distance metric and shape of the RDC service region (see Daganzo, Dasci et
al. (8, 9)). Then the total outbound local delivery cost, TOT(x), is given by

TOT (x) = Cl(fr

√

Ar(x))(ξλ(x)δ(x)R) (3)

where R is the area of the distribution network, Ar(x) is the influence area for RDC
r, while λ(x) is the demand rate at each store during the planning horizon and δ(x)
is the store density function for x ∈ Ar(x). The total customer demand during
the planning horizon (ξ) in the service area R is given by

∫

R
ξλ(x)δ(x)dx. Since

λ(x)δ(x) is a slow varying function of x ∈ R, we get
∫

R
ξλ(x)δ(x)dx = ξλ(x)δ(x)R.

The average outbound distance traveled by each item is given by fr

√

Ar(x) (see
Dasci et al. (9)).

• Average Inventory cost for RDC: Each RDC r orders in batches of Qr(x) and
there is a reorder cost, Rr(x), associated with each batch. The total reorder cost,
TRr(x), for all the RDCs over the planning horizon is given by

TRr(x) = Nr(x) (Rr(x))

(

E[Dr]

Qr(x)

)

(4)
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Average inventory at the RDC is given as the sum of the cycle inventory Qr(x)/2 and
safety inventory (Zαr

√

V ar[Dr,LT ]). where V ar[Dr,LT ] = µrV ar[Dr] + σr
2E[Dr]

2

and E[Dr,LT ] = µrE[Dr], µr and σr
2 are the mean and the variance of the total

order replenishment time respectively and αr is the stock-out probability. Let hr

be the RDC inventory holding cost per item over the planning horizon ξ. Then the
total RDC inventory holding cost, TIr(x), is given by

TIr(x) = hrNr(x)

(

Qr(x)

2
+ Zαr

√

V ar[Dr,LT ]

)

+ TRr(x) (5)

• Average Inventory cost for NDC: Each NDC n orders in batches of Qn(x) and
there is a reorder cost, Rn(x), associated with each batch. The reorder cost for each
NDC, TRn(x), over the planning horizon is given by

TRn(x) = Rn(x)

(

E[Dn(x)]

Qn(x)

)

(6)

where E[Dn(x)] is the total expected demand at the NDC during the planning hori-
zon and is given by ξλ(x)δ(x)R. Define the cycle inventory and safety inventory for
the NDC as Qn(x)/2 and Zαn

√

V ar[Dn,LT ] where V ar[Dn,LT ] =
∑

r(λ(x)δ(x)Ar(x))µn)/(Qr(x))2

(see Deuermeyer et al. (11)), µn is the expected lead time and αn is the service
level at the NDC. Let hn be the inventory holding cost per item during the planning
horizon ξ. Then the total NDC inventory holding cost is given by TIn(x) as

TIn(x) = hn

(

Qn(x)

2
+ Zαn

√

V ar[Dn,LT ]

)

+ TRn(x) (7)

The cost expression derived in this section are in terms of each point x in the service
region R. The total cost for the entire region is given by

∫

R
(TNC(x))dx, where TNC(x)

is the total network cost and is given by the sum of the facility, transportation and
inventory cost functions. Each expression for the various cost components captures fine
details of the network geometry. We can now define our integrated facility location and
inventory allocation problem as

minimize

∫

R

(TNC(x))dx =

∫

R

(TF (x) + TIT (x) + TOT (x) + TIr(x) + TIn(x))dx (8)

s.t.
∑

r

Ar(x) = R (9)

Qn(x) ≥ 0 ∀ n (10)

Qr(x) ≥ 0 ∀ r (11)

Ar(x) ≥ 0 ∀ r (12)

Qn(x), Qr(x), Ar(x) ∈ Z+ (13)
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where Qn(x), Qr(x), Ar(x) are the decision variables in this problem. Equation (9) is
the area coverage constraint. It ensures that the entire service region is covered by the
sum of the RDC influence areas. Equation (10), (11) and (12) are the non-negativity
constraints for the decision variables. Equation (13) guarantees integer values for Qn(x),
Qr(x) and Ar(x).

Note that any feasible solution, (Ari
, Q, Qn) for the optimization problem defined

above should be strictly greater than 0. However, adding the equality condition in con-
straints (10), (11) and (12) does not change the solution. It follows from the observation
that when (Ari

, Q, Qn) = (0, 0, 0), the value of the objective function explodes (tends
to infinity). Any feasible solution to the optimization problem above will be away from
(0, 0, 0), so adding this point to the constraint set does not change the nature of the
problem.

5 Solution Methodology - Two-phase approximation

model

We now describe a two-phase approximation technique that used to solve the facility
location and inventory allocation problem modeled in the previous section. Two-phase
approximation in a extension to the continuous approximation (CA) approach (see Da-
ganzo (8)). This extension is applicable when discrete data cannot be approximated with
a smooth function as seen in the distribution network under study in this work (see Fig-
ure 2). The distribution network given in figure 2 shows the store locations for a leading
automotive company in US. Clearly the store density in this figure is a non-homogenous
Poisson process. This violates the slow varying property for the input function that is
key for the analysis using the CA technique. A more detailed analysis of the store density
data suggests that there are smaller areas over which these functions are smooth. Thus
the main idea for a two-phase approximation method is to divide the network into smaller
regions over which the discrete variable can be modeled using the slow varying functions.
In phase-I the network is divided into smaller regions such that the distribution of store
density over these sub-regions satisfy the slow varying property. The problem is modeled
over the sub-regions using the cost functions described in ***section 3 and it is solved
using the CA approach in phase-II.

5.1 Phase-I approximation: NDC Service Area and Grid Cover-

Couple Approach

A Grid Cover-Couple approach is used to partition the service region into sub-regions.
Suppose there are n NDCs in the service region. It is reasonable to assume that the total
demand over the service region R is distributed equally amongst the NDCs. This problem
of assigning equal demands to each NDC is a special case of the classic Transportation
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Figure 2: Example of a Supply chain.

problem (see Appendix). The costs in this problem are modeled in terms of the distance
from the NDC and a solution can be obtained by a greedy heuristic.

Let (A1, A2, ....An) be the areas corresponding to the NDC partitions obtained after
solving the assignment problem. The next step is to design a grid cover for each of these
NDC sub-regions. It is this grid-cover that helps divide each NDC partition into regions
with slow varying functions. A mesh of equal sized squares is designed to cover each NDC
partition. The geometry of the square-mesh is an important decision and needs to satisfy
the following conditions: 1) the smallest level of detail is captured at the county2 level
and 2) within each grid square the demand is slow varying. A trial and error method is
used to choose a feasible size for the grid, e.g., we can look at all the county level demands
and choose a county with the most variable demand. A square grid cover is designed for
this county such that the store density within each grid is nearly constant. Choose the
size of this square grid to form a grid cover for the entire NDC partition. This idea is
illustrated in Figure 3. Note that a density can be assigned to each square on the grid
because the store density for each county is known and county is the lowest level of detail
captured by this grid-cover model.

Within each NDC partition, there are grids and each grid has a density associated
with it. The grids with similar densities can be clustered together to form areas over
which the store density function is slow varying. In order to form the clusters, a tolerance
limit for similarity needs to be specified. The tolerance limit defines the amount of

2The term county is used in 46 of the 50 states of the United States for the tier of state government
authority immediately below the statewide tier and above the township tier, in those states that sub-
divided counties into civil townships.
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Figure 3: Grid Cover

Figure 4: NDC sub-region.
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Figure 5: Coupling.

variability in the store density data that is acceptable while treating them as similar. Let
ǫ be the desired tolerance limit. This means that the grids with density at most ǫ apart
are considered similar. Choice of ǫ depends on the store density pattern in the existing
distribution network. Using the tolerance limit the entire NDC sub-region is covered with
clusters. Figure 4 and Figure 5 illustrate this idea. Clusters (Cj1 , Cj2 , ....Cji

) exist within
each NDC region Ai such that the store density is nearly constant over each cluster.

5.2 Phase-II approximation: RDC Influence Area using CA ap-

proach

The phase-I approximation divides the service region R into NDC partitions (sub-regions)
(A1, A2, ....An) and each partition Ai has clusters (Cj1 , Cj2 , ....Cji

) with slow varying de-
mand. The CA technique can be used to model and solve the facility location and
inventory allocation problem over each cluster within the NDC partition. The optimiza-
tion model developed in chapter 3 is used for modeling the total logistic costs in each
cluster. The solution to this optimization problem will give the size of the circular influ-
ence area for each RDC (see Figure 6 for an illustration) and the optimal values of (Q, r)
parameters for the RDC and the NDC. Further, using the size of the optimal influence
area along with the information on the area for each cluster, the total number of RDCs
in each cluster can be calculated. The total number of RDCs in the entire NDC partition
is obtained by summing over the number of RDCs in each cluster.
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Retail store

RDC

Figure 6: Influence area for a RDC

5.3 Continuous Approximation Model

Let us focus on a given NDC partition, say An, and suppose (Cn1
, Cn2

, ....CnN
) be the

clusters within An that are obtained using the grid cover-couple approach. Let Ari
(x) be

the size of the influence area for each RDC in cluster Cni
. The integrated facility location

and inventory allocation problem is given by P(1):

P(1) Minimze

TNC(x) =
N

∑

i=1

(

Cni

Ari
(x)

)

Fr +
N

∑

i=1

(Cf + CvQri
(x))

(

ξλ(x)δi(x)Cni

Qri
(x)

)

+
N

∑

i=1

(

Clfr

√

Ari
(x)ξλ(x)δi(x)Cni

+ Rr

(

ξλ(x)δi(x)Cni

Qri
(x)

))

+
N

∑

i=1

hr

(

Cni

Ari
(x)

)(

Qri
(x)

2
+ ssri

(x)

)

+
Rn

Qn

N
∑

i=1

(ξλ(x)δi(x)Cni
) + hn (Qn(x) + ssn(x))
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subject to

Qri
(x) ≥ 0 ∀ ri

Ari
(x) ≥ 0 ∀ ri

Ari
≤ Cni

∀ ri

Qn(x) ≥ 0

Qri
(x),

Cni

Ari
(x)

, Qn(x) ∈ Z+ (14)

where ssri
(x) = Zαri

√

µr (λ(x)δi(x)Ari
(x)) + (σr)2(λ(x)δi(x)Ari

(x))2

ssn(x) = Zαn

√

√

√

√

(

µn

N
∑

i=1

λ(x)δi(x)Cni
(x)

(Qri
(x))2

)

(15)

Note that the problem P(1) is nonlinear in the objective function. Also the objective
function does not exhibit any convex or concave behavior. The expressions for safety
stock at the RDC and the NDC (ssr(x), ssn(x)), and the reorder cost term at the NDC
make the objective function hard to evaluate. It is possible, however, to define a lower
bound on the TNC(x) function which makes the ssr(x) term linear. We will show that
even with the presence of the nonlinear term it is possible to decompose the problem for
each cluster and get a solution.

Remark: Since each cluster within a given NDC partition has slow varying demand,
we can ignore the dependance of all continuous function on parameter x. For the rest of
this study, the variables are represented as Ari

, Qri
, Qn, λ and δ.

For analyzing the problem it is assumed that the RDCs within the same cluster Cni

order the same quanity Qri
from the NDC. However, different RDCs in different clusters

can order different quantities. A key challenge in the case of unequal Qri
is to how to

define Qn in terms of Qri
. In this case, Qn is defined as f(Qri

). As an initial guess, f(Qri
)

can be defined as
∑N

i=1 Qri
. A lower bound is obtained for the problem using result 4.1.

The objective function of the lower bound problem PU is non-linear in Ari
(x), Qri

and
Qn but it is possible to decompose the problem over the N clusters.

Result 4.1: A lower bound on the TNC(x) function in problem P(1) can be obtained
by using the following relation.

√

µrλ(x)δi(x)Ari
(x) + (σr)2(λ(x)δi(x)Ari

(x))2

> σr(λ(x)δi(x)Ari
(x)) − µr

2σr

[Proof of Result 4.1]: Follows from the monotone property (see appendix) where
a = µr, b = (σr)

2, x = λ(x)δi(x)Ari
(x)
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Problem PU : Minimize

τ(A,Q, Qn) =
N

∑

i=1

(

Cni

Ari

)

Fr +
N

∑

i=1

(Cf + CvQri
)

(

ξλδiCni

Qri

)

+
N

∑

i=1

Clfr

√

Ari
ξλδiCni

+ Rr

N
∑

i=1

(

ξλδiCni

Qri

)

+
N

∑

i=1

(

Cni

Ari

)

hr

(

Qri

2

)

+
N

∑

i=1

(

Cni

Ari

)

hrZαri

(

σrλδiAri
− µr

2σr

)

+ hn





Qn

2
+ Zαn

√

√

√

√

N
∑

i=1

µnλδiCni



 +
N

∑

i=1

(

Rn
ξλδiCni

Qn

)

subject to

Qri
≥ 0 ∀ ri

Ari
≥ 0 ∀ ri

Qn = f(Qri
)

Qri
,
Cni

Ari

, Qn ∈ Z+ ∀ ri

where A is the same n-dimensional row vector defined before and Q is the n-dimensional
row vector defined by Q = [Qr1

, Qr2
, ..., QrN

]. Note that for any value of (A,Q, Qn), the
value of the objective function τ([A,Q, Qn) obtained by solving PU is strictly less than
the value of the objective function TNC for the original problem P (1).

The objective function τ(A,Q, Qn) is analyzed for possible convex or concave behavior
using properties of the hessian matrix (see Theorem 4.1 and 4.2).

5.4 Multi-variate Optimization

Before we present the analyis for the integrated facility location and inventory allocation
problem, it is important to familiarize the reader with some definitions and theorems from
multi-variate optimization (see (Bazaraa et al. (2)). These theorms will be used in the
next two sections to understand the behavior of the objective function. It is important
to understand the convex or concave behavior of the objective function and understand
whether the stationary points correspond to the local or global optimum.

Definition 4.1: Let f be a twice differentiable function. Then the Hessian matrix of

16
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f is given by (Bazaraa et al. (2), pg. 90):

H(~x) =















∂2f(~x)
∂x1

2

∂2f(~x)
∂x1x2

... ∂2f(~x)
∂x1xn

∂2f(~x)
∂x2x1

∂2f(~x)
∂x2

2 ... ∂2f(~x)
∂x2xn

. . ...

. . ...
∂2f(~x)
∂xnx1

∂2f(~x)
∂xnx2

... ∂2f(~x)
∂xn

2















Definition 4.2: Given a symmetric matrix A

A =

[

a b
c d

]

A is positive semidefinite iff ad − bc ≥ 0

Theorem 4.1 (Bazaraa et al. (2), pg. 96-97): Let

H =

[

h11 qt

q G

]

where q =0 if h11 = 0 and, otherwise, h11 > 0. Perform elementary Gauss-Jordon
operations using the first row of H to reduce it to the following matrix in either case:

H =

[

h11 qt

0 Gnew

]

Then, Gnew is a symmetric (n-1)x(n-1) matrix, and H is positive semidefinite if and only
if Gnew is positive semidefinite. Moreover, if h11 > 0, then H is positive semidefinite if
and only if Gnew is positive semidefinite.

Theorem 4.2 (Bazaraa et al. (2), pg. 91): Let S be a nonempty open convex set and
let f : S ⇒ E1 be twice differntiable on S. Then, f is convex if and only if the Hessian
matrix is positive semidefinite at each point in S.

Theorem 4.3 (Bazaraa et al. (2), pg 134): Suppose that f : En −→ E1 is twice
differentiable at x. If ▽f (x) = 0 and H(x) is positive definite, then x is a strict local
minimum.

5.5 Solution Procedure

The stationary point for the objective function τ satisfies the following equations (see
appendix for derivation of the stationary point).

Ari
=

(

2Fr + hrQri
− hrZαi

µr

2σr

Clfrξλδi

)2/3

(16)

17
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Qn =

√

√

√

√

(

2Rn

∑N
i=1 ξλδiCni

hn

)

(17)

Qri
=

√

2Ari

(

(Cf + Rr + (Rn/Qn)) ξλδiCni

Cni
hr

)

(18)

A solution procedure for the partially unconstrained problem, one that ignores the
integer value constraint (Qri

,
Cni

Ari

, Qn ∈ Z+, i = 1,2,...,N) and the linkage constraint

between Qn and Qri
(Qn =

∑N
i=1 Qri

), is derived first. The solution generated using
the iterative procedure is checked for compatibility with the convex region inequalities
(Result 4.5). If the inequalities are satisfied then the solution is a near optimal solution
for problem PU , else a Response Surface method is used to generate a good solution for
the problem.

The steps for the iterative procedure are explained below:

1. Fix k = 0, Qk = [1,1,...,1].

2. Calculate Ari
, i = 1,2,..N, using equation (16).

3. Use the value of Ari
, i = 1,2,..N, in equation (17) to get Q = Qri

and calculate Qn

using (18). Iterate between the values of Q and Qn till it converges.

4. If Q = Qk, Stop go to step 5. Else k = k + 1, and Qk = Q repeat Step 2.

5. If all Ari
are integers, go to step 6, else for all non-integer Ari

get all possible
combinations of ⌈Ari

⌉ and ⌊Ari
⌋. For each set of new Ari

, get Q and Qn using step
(3).

6. Adjust Q to get the nearest integer values. Adjust Qn such that Qn =
∑N

i=1 Qri
.

Evaluate the objective function at each set of values of Ari
, Q and Qn. The set

corresponding to the minimum value is the solution.

5.6 Response Surface Analysis

The optimal solution (A, Q and Qn) obtained by solving problem PE abd PU is sub-
stituted in the original objective function TNC to get a feasible solution for problem
P(1). It would be interesting to see how the value of the objective function changes in
the neighborhood of (A, Q and Qn). To carry out this analysis a statistical technique is
used, and explained in detail. The Response Surface technique as a tool that is used to
improve the feasible solution. The basic idea in this method is to perturb the values of all
the decision variables around the optimal values obtained so far and generate a response
curve for the original TNC function.

18
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A factorial experiment is designed with 2N + 1 variables where N is the number of
zones within a given NDC partition. There are N variables corresponding to the RDC
influence area, N variables for the order quanity for the clusters and one variable for
the unknown k. Since running a 22N+1 experiment can get very time consuming and
expensive, a fractional factorial experiment (FFE) of the form 2(2N+1)−p is considered.
In a FFE, (2N + 1) − p variables are fixed and these variables are used to generate the
remaining p from them. An experiment is set up using this information for two levels-
high (1) and low (-1). The experiment data is then transformed to match the original
scale of the variables. The objective function is evaluated at each of the design points and
we try to fit a regression model (linear or nonlinear) to it. This regression equation is an
estimate of the Response surface. The nature of the surface is inspected by using the first
and second order conditions (i.e., by taking the first and the second order derivatives)
and an optimal value for the decision variables is calculated using this information.

5.7 Equal Reorder Quantity Q

It is a common practice in multi-echelon inventory studies to assume that the reorder
quantity Qri

is the same across all retailers (see Deuermeyer et al. (11), Ganeshan (15)).
For the case when Qri

= Q holds, the reorder quantity at the warehouse, Qn, is expressed
as an integer multiple of Q. For the first part of the analysis (case 1), we assume that
Qri

= Q at all the RDCs and Qn = kQ for the NDC. The solution procedure for solving
the problem under Equal Reorder Quantity case is similar to the one discussed under
Unequal Reorder Quantity case.

The stationary point for the objective function φ(A, Q,Qn) is given by equations (19),
(20) and (21) (for details see appendix ):

Ari
=

(

2Fr + hrQ − hrZαi
µr

σr

Clfrξλδi

)2/3

(19)

k =
1

Q

√

√

√

√

(

2Rn(
∑N

i=1 ξλδiCni
)

hn

)

(20)

Q =

√

√

√

√

√





∑N
i=1

(

Cf + Rr + Rn

k

)

ξλδiCni

∑N
i=1

hrCni

2Ari

+ hnk
2



 (21)

6 Discussion

The integrated model is compared with the non-integrated model and the average model.
The non-integrated model is the one where the facility location and inventory decisions

19
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are made in isolation of each other. The model is first solved for the optimal influence
area using information on the facility location cost and the transportation cost. Using
this value of the influence area in the inventory and transportation cost functions, the
optimal inventory decisions are made.

The average model is where the entire distribution region is assumed to be a smooth
continuous region. It is also assumed that the store density and demand density functions
are smooth over this region. In this model, the store density function for the entire region
is defined by the average value of individual store densities, i.e, each δi = δ =

∑N
i=1

δi

N
.

Then,
∑N

i=1 Cni
is replaced by R, size of the entire distribution network. The decision

variables in this case are Ar, Q and k.

6.1 Stationary point for the non-integrated problem- equal Q

case

Ari
=

(

2Fr

Clfrξλδi

)2/3

k =
1

Q

√

√

√

√

(

2Rn

hn

)

(

N
∑

i=1

ξλδiCni

)

Q =

√

√

√

√

√





∑N
i=1

(

Cf + Rr + Rn

k

)

ξλδiCni

∑N
i=1

hrCni

2Ari

+ hnk
2





6.2 Stationary point for the integrated model using averages

Ar =

(

2Fr + hrQ − hrZαr µr

σr

Clfrξλδ

)2/3

k =
1

Q

√

(

2Rn

hn

)

(

ξλδR
)

Q =

√

√

√

√

(

(

Cf + Rr + Rn

k

)

ξλδR
hrR

2Ar
+ hnk

2

)

The analysis for the integrated facility location and inventory allocation problem sheds
light on some important issues. Some of the key observations are listed below.

Observation 1. Optimal size of the RDC influence area is a function of order up to
level Qr. Thus, it is important to incorporate the inventory decisions into the network

20
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Table 1: Store density and Average distance data
GA FL TN AL KY VA NC SC

Store
Density 0.0059 0.0039 0.0038 0.002 0.0052 0.0471 0.0041 0.0019

design problem. Since the decision variables do not have a closed form expression a
numerical iterative procedure is used to get a solution.

Observation 2 It is assumed in the above analysis that each cluster can be analyzed
separately. This can only happen when a NDC serving different clusters reviews their
inventory position periodically. In this case, the inventory policy at the NDC is a periodic
review (T, r, nQ) policy (1). The study of the NDC periodic review policy and its impact
on the network design is left for the future work.

7 Numerical illustration

For the numerical study in this chapter, the distribution network for a leading US retailer
is considered. The entire US mainland has five sub-regions, namely, south-eastern, south-
western, north-eastern, north western and mid-west. The distribution network has a
total of five NDCs each serving one of the sub-regions. The numerical analysis of this
section is carried out using data for the southeastern (SE) region with the NDC located at
Savannah, GA. Table 1 gives the store density for the eight states served by the Savannah
DC. Clearly there is a significant amount of variation in the store density data across
states.

For a fixed value of the inventory parameters Q and Qn, the number of RDCs increase
(decrease) with an increase (decrease) in the store density. Similarly, for a fixed number
of RDCs, increase or decrease of the store density changes the value of the inventory
parameters Q and Qn. Thus, the density function affects the facility, transportation and
inventory cost.

7.1 Comparison between Integrated, Non-integrated and Aver-

age case

The results for the integrated, non-integrated and average version of the facility location
and inventory allocation problem under equal Qri

s are presented in table 2 and figure
7. The integrated case is the one with the minimum value of total network cost. For
this example observe that the TNC is 6.6% higher in the case of non-integrated problem
and 44% higher for the average case (see Table 2). These results justify the need for a
two-phase approxiation approach.

A focus on the total costs (i.e. the total network cost minus the total inventory cost at
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Table 2: Comparison between the three cases for equal Q
Case 1 Case 2 Case 3

Integrated Non-Integrated Average
RDC 9 22 7
TIr 3545330 4015240 4966090
TIn 1058490 1058470 1319280
TF 90000 220000 70000
TIT 2682650 2994400 3916000
TOT 858030 494390 1608130
TNC 8234370 8782490 11879500
Qr 2564 1640 3623
Qn 27 42 24

the NDC) for the RDCs in each zone show an interesting trend. Although total network
cost for the integrated case is less than that for the non-integrated case, there could be
zones for which the later case yields a lower total cost. In particular, for this example
zones 3, 4, 5 and 8 have a lower total cost in the non-integrated case (see figure 8). If
this problem was modeled with a decentralized decision maker, then these zones have
no incentive to participate in an integrated activity. This opens a new direction for our
research where game theory can be used. This interesting research proposal is left for
future work.

Observe that the safety stock at each store in the integrated case is greater than
that for the non-integrated case (see figure 9). This may look counter intuitive initially.
However, a careful inspection shows that each zone has fewer RDCs in the integrated
case. As the number of RDCs increases, the safety stock at each RDC decreases. This
result is quite unlike the Square Root law which says that the total inventory in a system
is proportional to the square root of the number of locations at which a product is stocked
(see Chopra et al. (7)). The reason for this is while applying the square root law we
observe that reducing the number of RDCs reduces the risk by pooling demand variability.
But in our model, both the demand and supply variability are taken into account at the
RDCs. Reduction in the number of RDCs means more inbound shipments to each RDC
and thus more supply variability. Hence when both types of variabilities are taken into
account it is possible to see this reverse relation between the number of RDCs and safety
stock. Thus, each zone in the integrated problem has a higher value for total safety stock
and reorder point as compared to each zone under the non-integrated case. A zonewise
comparison of the safety stock in each zone in presented in figure 10.
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Figure 7: Total Network Cost

Figure 8: Total cost for each zone.
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Figure 9: Safety stock for each store zone-integrated vs non-integrated

Figure 10: Safety stock for each zone-integrated vs non-integrated
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8 Appendix

The following monotone property is used to replace the objective function with another
function that is a lower bound on the original function.

Monotone property (see Appendix): If a and b are positive numbers and x > 0, then

√
ax + bx2 >

√
bx − a

2
√

b

The following monotone property is used to replace the objective function with an-
other function that is a lower bound on the original function.

Unequal Reorder Point

The Hessian matrix corresponding to the function τ is given by:

H =





































a1,1 0 ... 0 a1q1 0 ... 0 0
0 a2,2 ... 0 0 a2q2 ... 0 0
. . ... . . . ... . 0
. . ... . . . ... . 0
0 0 ... an,n 0 0 ... anqn 0
q1a1 0 ... 0 q1,1 0 ... 0 q1,N+1

0 q2a2 ... 0 0 q2,2 ... 0 q2,N+1

. . ... . . . ... .

. . ... . . . ... .
0 0 ... qnan 0 0 ... qn,n qn,N+1

0 0 ... 0 qN+1,1 qN+1,2 ... qN+1,n qN+1,N+1





































where

ai,i =
∂2τ

∂Ari

2 , qi,i = ∂2τ
∂Qri

2 , qN+1,N+1 =
∂2τ

∂Qn
2

aiqi =
∂2τ

∂Ari
∂Qri

, qiai = ∂2τ
∂Qri

∂Ari

qN+1,i =
∂2τ

∂Qn∂Qri

qi,N+1 =
∂2τ

∂Qri
∂Qn

, aiqN+1 = ∂2τ
∂Ari

∂Qn
, qN+1ai =

∂2τ

∂Qn∂Ari

i = 1, 2..., N
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First order conditions for finding the stationary point:

∂τ

∂Ari

= − 1

(Ari
)2

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

+
ClfrξλδiCni

2
√

Ari

= 0

∂τ

∂Qri

= − [Cf + Rr + (Rn/Qn)]

(

ξλδiAri

Q2
ri

)

+

(

hrCni

2Ari

)

= 0

∂τ

∂Qn

=
hn

2
− 1

Q2
n

∑N
i=1 RnξλδiCni

Qi

= 0

First and second order derivatives for the objective function τ([Ari
], [Qri

], Qn)

∂τ

∂Ari

= − 1

(Ari
)2

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

+
ClfrξλδiCni

2
√

Ari

∂2τ

∂Ari

2 =
2

(Ari
)3

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

− ClfrξλδiCni

4Ari

3/2

∂2τ

∂Qri
∂Ari

=
−hrCni

2Ari

2

∂2τ

∂Qn∂Ari

= 0

∂τ

∂Qri

= − [Cf + Rr + (Rn/Qn)]

(

ξλδiAri

Q2
ri

)

+

(

hrCni

2Ari

)

∂2τ

∂Qri

2 = 2 [Cf + Rr + (Rn/Qn)]

(

ξλδiAri

Q3
ri

)

∂2τ

∂Ari
∂Qri

=
−hrCni

2Ari

2

∂2τ

∂Qn∂Qri

=
RnξλδiCni

Q2
nQ

2
i
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∂τ

∂Qn

=
hn

2
− 1

Q2
n

∑N
i=1 RnξλδiCni

Qi

∂2τ

∂Qn
2 =

2

Q3
n

∑N
i=1 RnξλδiCni

Qi

∂2τ

∂Ari
∂Qn

= 0

∂2τ

∂Qri
∂Qn

=
RnξλδiCni

Q2
nQ2

i

[Proof: τ(A, Q, Qn) is a biconvex function]

(1) For a given value of Qri
, i = 1,2,..N, and Qn, τ(A) is a convex function.

∂2τ

∂Ari

2 > 0 ⇔ 2

(Ari
)3

[

Cni
Fr +

(

Cni
hrQri

2

)

−
(

hrZαi
µr

2σr

)]

>

ClfrξλδiCni

4Ari

3/2

⇔ Ari
< 42/3

[

Fr + hrQri
− (hrZαi

µr/σr)

Clfrξλδi

]2/3

which holds for all values of Ari
satisfying the stationary condition

Ari
=

[

Fr + hrQri
− (hrZαi

µr/σr)

Clfrξλδi

]2/3

(1) For a given value of Ari
, i = 1,2,..N, τ(Q, Qn) is a convex function.

H =

















q1,1 0 ... 0 q1,N+1

. q2,2 ... 0 q2,N+1

. . ... . .

. . ... . .

. . ... qn,n qn,N+1

qN+1,1 qN+1,2 ... qN+1,n qN+1,N+1

















where H is the hessian matrix for τ(Q, Qn). Using theorem 4.1 and 4.2, τ(Q, Qn) is
convex iff H is positive definite.

H is positive definite iff

∣

∣

∣

∣

∣

qN,N qN,N+1

qN+1,N qN+1,N+1 −
∑N

i=1
qN+1,i

qi,i
qi,N+1

∣

∣

∣

∣

∣

> 0
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|H| = qN,N

(

qN+1,N+1 −
N

∑

i=1

qN+1,i

qi,i

qi,N+1

)

− qN,N+1qN+1,N

= 2γ

(

ξλδNArN

Q3
rN

)

[

2

Q3
n

∑N
i=1 RnξλδiCni

Qi

(

1 − Rn/Qn

γ

)

]

where γ = (Cf + Rr + Rn/Qn)

|H| > 0 because (Rn/Qn)/γ < 1

Equal Reorder Point (1) First order conditions for deriving the stationary point for
function φ(A,Q, k)

∂φ

∂Ari

=
ClfrξλδiCni

2Ari

1/2
− 2Cni

Fr + Cni
hrQ − (Cni

hrZαr
µr/σr)

2Ari

2 = 0

∂φ

∂Q
=

N
∑

i=1

(

hrCni

2Ari

)

+
hnk

2

− (
∑N

i=1(Cf + Rr + Rn/k)ξλδiCni
)

Q2
= 0

∂φ

∂k
=

hn

2
−

∑N
i=1 RnξλδiCni

Qk2 = 0

The Hessian matrix corresponding to the function φ is given by:

H =





















a1,1 0 ... 0 a1q 0
0 a2,2 ... 0 a2q 0
. . ... . . .
. . ... . . .
0 0 ... an,n anqn 0
qa1 qa2 ... qaN qq qqn

0 0 ... 0 qnq qnqn





















where

ai,i =
∂2φ

∂Ari

2 , qq = ∂2φ
∂Q2 , qnqn =

∂2φ

∂k2

aiq =
∂2φ

∂Ari
∂Q

, qai = ∂2φ
∂Q∂Ari

qnq =
∂2φ

∂k∂Q

qqn =
∂2φ

∂Q∂k
, aiqn = ∂2φ

∂Ari
∂k

, qnai =
∂2φ

∂k∂Ari

i = 1, 2..., N

Convex region for φ(A,Q, k)
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Using theorem 4.2, φ(A,Q, k) is convex iff the hessian matrix of φ is positive semidef-
inite. And from theorem 4.1, hessian matrix of φ is positive definite for values of (A,Q, k)
satisfying

[]

|G| =

∣

∣

∣

∣

∣

(

∂2φ
∂Q2 −

∑N
i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari
2

∂2φ
∂Ari

∂Q

)

∂2φ
∂Q∂k

∂2φ
∂k∂Q

∂2φ
∂k

2

∣

∣

∣

∣

∣

> 0 and

(

∂2φ

∂Q2
−

N
∑

i=1

∂2φ/∂Q∂Ari

∂2φ/∂Ari

2

∂2φ

∂Ari
∂Q

)

> 0

First and second order derivatives for the function φ(A,Q, k)

∂φ

∂Ari

=
ClfrξλδiCni

2Ari

1/2
− 2Cni

Fr + Cni
hrQ − (Cni

hrZαr
µr/σr)

2Ari

2

∂φ2

∂Ari

2 = −ClfrξλδiCni

4Ari

3/2
+

2Cni
Fr + Cni

hrQ − (Cni
hrZαr

µr/σr)

2Ari

3

∂φ2

∂Q∂Ari

= −Cni
hr

2Ari

2

∂φ2

∂Qn∂Ari

= 0

∂φ

∂Q
= −

∑N
i=1(Cf + Rr + Rn/k)ξλδiCni

Q2
+

N
∑

i=1

(

hrCni

2Ari

)

+
hnk

2

∂2φ

∂Q2 = 2

(

∑N
i=1(Cf + Rr + Rn/k)ξλδiCni

Q3

)

∂2φ

∂Ari
∂Q

= −hrCni

2A2
ri

∂2φ

∂k∂Q
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2

∂φ

∂k
=

hnk

2
−

∑N
i=1 RnξλδiCni

Qk2

∂2φ

∂k2 = 2

(

∑N
i=1 RnξλδiCni

Qk3

)

∂2φ

∂Ari
∂k

= 0

∂2φ

∂Q∂k
=

∑N
i=1 RnξλδiCni

Q2k2 +
hn

2
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[(2) For a fixed vector A, the hessian matrix of φ(A, Q, k) is positive semidefinite.]

∂2φ

∂Q2 = 2

(

∑N
i=1(Cf + Rr + Rn/Qn)ξλδiCni

Q3

)

∂2φ

∂k∂Q
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2

∂2φ

∂k2 = 2

(

∑N
i=1 RnξλδiCni

Qk3

)

∂2φ

∂Q∂k
=

N
∑

i=1

RnξλδiCni

Q2k2 +
hn

2

|H| =

[

∂2φ
∂Q2

∂2φ
∂k∂Q

∂2φ
∂Q∂k

∂2φ
∂k

2

]

30



REFERENCES ISyE Technical Report J-09-01

|H| =

(

2

∑N
i=1 RnξλδiCni

Qk3

) (

2

∑N
i=1 RnξλδiCni

kQ3

)

+

(

2
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i=1 RnξλδiCni

Qk3

) (

2

∑N
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Q3

)
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Q2k2 +
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2
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Q2k2 +
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2

)
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(
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)2
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2
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)
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(
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[

4

Q2k

N
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− h2
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4

For k =
1

Q

√

2Rn

∑N
i=1 ξλδiCni

hn

|H| =
3h2

n

4
+

k(Cf + Rr)h
2
n

Rn

− h2
n

2
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4

=
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2
n
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> 0 always
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