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Olivier Cailloux' Patrick Meyer! Vincent Mousseau*s
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Abstract

Multiple criteria sorting aims at assigning alternatives evaluated on sev-
eral criteria to predefined ordered categories. In this paper, we consider a well
known multiple criteria sorting method, ELECTRE TRI, which involves three
types of preference parameters: (1) category limits defining the frontiers be-
tween consecutive categories, (2) weights and majority level specifying which
coalitions form a majority, and (3) veto thresholds characterizing discordance
effects. We propose an elicitation procedure to infer category limits from
assignment examples provided by multiple decision makers. The procedure
computes a set of category limits and vetoes common to all decision mak-
ers, with variable weights for each decision maker. Hence, the method helps
reaching a consensus among decision makers on the category limits and veto
thresholds, whereas finding a consensus on weights is left aside. The inference
procedure is based on mixed integer linear programming and performs well
even for datasets corresponding to real-world decision problems. We provide
an illustrative example of the use of the method and analyze the performance
of the proposed algorithms.

Keywords: Multiple criteria analysis; Sorting methods; Preference elicitation;
Multiple decision makers.

1 Introduction

In this paper, we are interested in decision problems formulated as multicriteria
sorting problems, i.e., when a finite number of alternatives from a set A evaluated
on a set of criteria {g;,j7 € J} are to be assigned to one of k predefined ordered
categories ¢ € 3 K ... K ¢ < ... < ¢ (c1 being the worst category, and ¢ the
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best one). The assignment is done based on the comparison of the alternatives to
external norms, rather than by comparison of the alternatives to each other.

Several approaches have been proposed to address such multicriteria sorting prob-
lem [20, 13]. We consider a well know multiple criteria sorting method, ELECTRE
TRrrI [12,119, 21]. More precisely, we consider a variant of the ELECTRE TRI method
in line with the axiomatic work of Bouyssou and Marchant [1, 2]. This variant as-
signs alternatives using the alternatives’ performances and preferential parameters
of three types: profiles defining the category limits, weights specifying the impor-
tance of each criterion, and veto thresholds. To support specifying their preferences,
we suppose that the DMs are able to provide assignment examples, i.e. alternatives
(fictitious or real) associated to the categories the DMs think they belong to. Such
assignment examples can correspond to past decision records or be expressed directly
by DMs.

Most of the work on preference elicitation in Multicriteria Decision Aid focuses
on representing the preferences of a single decision maker (DM). We are interested
in elicitation procedures for multiple DMs that make it possible for each DM to
provide individual preference information in order to build a multiple criteria sorting
model accepted by each DM as representing the group preferences. We present
linear programs able to find, on the basis of assignment examples provided by DMs,
common profiles, shared among all the DMs, but allowing their weights (criteria
importance factors) to vary individually. This can be used as a first step towards
reaching an agreement on a preference model.

It is important to note that choosing a set of profiles may have different impacts
on the different DMs, in terms of the remaining latitude on the weights they each
may chose from. We therefore also propose a measure of the latitude that a DM has
in setting her weights when a profile has been fixed.

In this paper, three linear and mixed integer programs solving the following
problems are described.

ICL, or Infer Category Limits, finds, if possible, a set of profiles such that it is pos-
sible to satisfy the assignment examples of each DM using individual weights
and majority threshold parameters without using veto thresholds.

ICLV, or Infer Category Limits with Vetoes, finds, if possible, a set of profiles such
that it is possible to satisfy the assignment examples of each DM using indi-
vidual weights and majority threshold parameters and using veto thresholds if
necessary. This is a generalization of the first program but they are presented
in order of increasing complexity.

CWR, or Compute Weights Restrictions, having fixed a set of shared profiles,
computes a measure indicating the remaining latitude for each DM regarding
their possibility of choosing the weights ordering on the criteria.

These inference programs may be used in a process aiming to build a consensus by
progressively reaching a common preferential model. These tools should be combined
with other decision aiding tools, therefore allowing to build a comprehensive decision
aiding process.



The paper is structured as follows. Section 2] presents the sorting procedure used
in this article and reviews related elicitation procedures. A decision aiding process
illustrating the use of the proposed tools and their relation with existing ones is
described in Section [8I The mathematical programs implementing the suggested
tools are detailed in Sections ] to[6l Section [7] examplifies the usage of the tools on
an illustrative example. The algorithms performances are studied in Section [8 and
conclusions and future perspectives are presented in Section [

2 Electre Tri and related elicitation issues

The inference procedures presented in this paper are based on a variant of the
ELECTRE TRI sorting method. It uses the pessimistic assignment rule, without in-
difference or preference thresholds attached to criteria. Only a binary discordance
condition is considered, i.e. a veto forbids an outranking in any possible concordance
situation, or not. These simplifications, as compared to the original ELECTRE TRI
procedure, permit to model the assignments of the procedure as mixed integer con-
straints and are in line with the axiomatized model of ELECTRE TRI proposed by
Bouyssou and Marchant |1, 2].

2.1 Electre Tri method

We consider a finite set of alternatives A, a set of profiles B = {b, ...}, and a
finite set of criteria {g;,j € J}. A criterion g;,j € J, is a function from A U B
to R where g;(a) denotes the performance of the alternative a on the criterion
g;- The alternatives have to be sorted in k categories ¢y, ..., ¢, ordered by their
desirability (c; is the worst category, and ¢ is the best one). Each category ¢,
is defined by the performances of its lower profile b,_; and its upper profile by,
with b,_1,b, € B. The performances are supposed to be such that a higher value
denotes a better performance, and the performances on the profiles are supposed to
be non-decreasing, i.e. Vj € J,1 < h <k : g;(bp—1) < g;(bn).

To sort the alternatives, ELECTRE TRI defines an outranking relation > on the
set of alternatives such that an alternative a outranks an alternative b if and only
if a is considered at least as good as b. The pessimistic assignment rule assigns an
alternative a to the highest possible category ¢, such that the alternative outranks
the category’s lower profile b,_;. An alternative a outranks a profile b,_; if and
only if the coalition of criteria in favor of the assertion “a is at least as good as
bp—1” forms a majority and no criterion strongly opposes (has a veto against) that
assertion. The coalition of criteria in favor of a = b,_1, Va € A,1 < h < k, forms a
majority iff

Z U)jCj (CE, bh—l) > )\,

jet
where w; is the weight of criterion g; (with »>._;w; = 1), Cj(a,by—1) € {0,1},
and Cj(a,bp—1) = 1 & gj(a) > gj(bp—1), 0 otherwise. The result of the sum of
the weights of the criteria in support of the outranking is compared to a majority
threshold A € [0.5,1] defined by the decision maker along with the weights. If the



coalition is not a sufficient coalition, the alternative does not outrank the profile
br_1 and will therefore be assigned in a category below c¢y,.

Even when the coalition is strong enough, some criterion may veto the outranking
situation. This happens if g;(a) < v;l_l, where veto threshold U;’_l represents the
performance below which alternative a is forbidden to outrank profile b,_;, and thus
is forbidden to be assigned to the category ¢,. To summarize, the alternative a
outranks the profile b, ; (and therefore is assigned to at least the category c¢j) if
and only if > . ;w;Cj(a,bp—1) > A and Vj € J : gj(a) > v;.l_l.

In a case involving a single DM, the weights and majority thresholds (defining
the sufficient coalitions) and the category limits (the profiles) may be given directly
by her. However, this requires that the DM understands how these values will be
used. It is moreover a difficult process to directly ask the DM for these parameters.
The approach used here supposes that she provides assignment examples which are
used to infer the preferential parameters.

The situation is even more complex when several DMs are involved. As is clas-
sical, it is assumed that the order of the categories, the criteria to use, the perfor-
mances of the alternatives are consensual. There is no reason however to suppose
that all DMs a priori agree on the importance of the criteria and the majority thresh-
old to use or on the limits of the categories. Starting from assignment examples (not
necessarily consensual) provided by each DM, this paper presents algorithms to sup-
port a group of DMs to reach a consensus concerning these preferential parameters.

2.2 Review of Electre Tri elicitation procedures

Previous works aiming to infer preferential parameters for the ELECTRE TRI proce-
dure on the basis of assignment examples exist, but they often involve a single DM.
Mousseau and Stowiriski [18] suggest to find the ELECTRE TRI preference model
parameters on the basis of assignment examples given by a decision maker, using
non linear optimization. A linear program has been proposed in order to find the
importance coefficients only, the other parameters being supposedly known [17]. In
The and Mousseau [22], the parameters to be found by the model are the category
limits, considering other parameters as fixed. This is done using a mixed integer
formulation as well. In Dias et al. [10], the synergy between two approaches is dis-
cussed: the first approach suggests to infer the preference model parameters from
assignment examples; the second one consists in computing robust assignments from
a set of given constraints [11,19]. When the DM provides an inconsistent set of as-
signment examples (i.e. assignment examples that do not match ELECTRE TRI),
Mousseau et al. [16] propose algorithms to compute which subset of assignment
examples should be removed to restore consistency. This method has then been
extended to relax assignments examples instead of removing them [15].

While the above approaches target a unique DM, Damart et al. [7] propose a
method involving a group of DMs. This is done by iteratively constructing both in-
dividual preference models and a collective preference model representing the group
consensus using informations given by the DMs on some assignment examples.

A summary of the main features of elicitation procedures proposed in the lit-
erature is proposed in Table [Il For each article, the second column indicates the



Article input output

MS98 [18] i P, W (non-linear)

MFNOL [17] iP W

NMO00 [22] LW P

DMFC02 [10] i robust model (P, W), robust assignments
MDFGCO03 [16]  * examples to remove to restore consistency
MDF06 [15] i examples to relax to restore consistency
DDMO7 [7] g, P progressive collective model (W)

ICL (this article) g¢ collective model (P)

Table 1: inference procedures for ELECTRE TRI

expected input of the main tool proposed in the article, the last one shows its output.
i designates assignment examples from a single DM, i* designates possibly incon-
sistent assignment examples from a single DM, ¢ is a group of DMs’ assignment
examples, P is a set of profiles evaluations, W is a set of weights. The computations
are based on linear (or mixed integer and linear) programming, except for the first
one.

3 Use of the proposed tools in a decision aiding
process

The tools developed in this paper constitue only a part of the toolbox at an analyst’s
disposal to support a group of decision makers. Such toolbox includes other research
results such as those summarized in Table [II This section presents an example
decision aiding process in order to illustrate where our algorithms apply and how
they combine with these other tools. This process targets obtaining a consensual
group sorting model.

Our example process comprises two main parts. The first part deals with ob-
taining consensual group profiles, matching individual assignment examples when
associated with individual weights and majority threshold. As a second part, start-
ing from these profiles, consensual weights and majority threshold must be obtained
in order to reach a group preference model.

The following steps may be followed to obtain consensual group profiles.

e Obtain individual assignment examples.

e Search for shared profiles with individual weights via the ICL program of this
article.

e If no solution is found, possibly allow the search algorithm to return solutions
including veto thresholds through the use of the ICLV program of this article.
An other possibility is to use MDFGCO03 (cf. Table[d]) to suggest a change of
assignment examples in order to remove inconsistencies, considering the group
as an individual.



e When a solution is found, compute the remaining lattitude of each DM re-
garding the setting of the weights, i.e. to exclude a possibly too restrictive or
too unfair solution, thanks to the CWR algorithm of this paper.

e Finally, ask the DMs if the choice of the profiles and the resulting constraints
on their weights is satisfactory. If not, run the ICL or ICLV program again
with supplementary constraints.

Once a solution has been found for consensual profiles, consensual weights and
majority threshold must be obtained. Note that at this stage it is possible that
the choice of profiles implies that no consensual weights may be found matching all
assignment examples for all DMs. In this case, DDMO07 could be applied (cf. Table
). This method proposes to progressively build a consensual preference model
representing a group of DMs preferences starting from consensual profiles values
and assignment examples. This is done by progressively integrating some assignment
examples into a “group” assignment examples set, possibly by asking some DMs to
change their assignment examples when necessary. Describing the method in details
is outside the scope of this paper and we refer the reader to the relevant article [7].

Note that it is also possible to search, as a single step, for shared profiles and
consensual weights and majority thresholds respecting all assignment examples and
other a priori constraints (the veto thresholds). This can be done using a simple
modification of the ICL program, or of the ICLV program, which would use shared
weights and majority thresholds instead of individual ones. If a consensual solution
is found at this stage which satisfies all DMs, the problem is solved and there is no
need to use the divide and conquer approach suggested here. However, it should be
noted that it is possible that no consensual preference model exists able to reproduce
all assignment examples, whereas finding consensual profiles with individual weights
and majority thresholds is less constraining. Moreover, concentrating on first ob-
taining consensual profiles, then searching for the rest of the model parameters,
simplifies the problem by dividing it into two easier problems. Finally, it should be
remarked that no proposal for group decision aiding process using an ELECTRE TRI
model aiming at finding at the same time all the model parameters for the whole
group on the basis of assignment examples has ever been published, to the best of
our knowledge.

It should be noted that we consider the consensual elicitation of a sorting model
in a perspective in which DMs are ready to discuss their assignment examples and
possibly accept to revise their preferences during the construction of the common
model. It is particularly relevant when the initial assignment examples of all DMs
cannot be represented simultaneously in the sorting model.

4 Inferring category limits

Having a set of alternatives A* used as assignment examples, a set of criteria indices
J, the evaluations of the alternatives g;(a),Va € A*, j € J, the number of categories
k, a set of DMs L, assignment examples E', the Infer Category Limits (ICL) program
determines the performances of profiles g;(b,),Vj € J,1 < h < k — 1 shared among



the DMs, together with individual weights wé» and majority thresholds \!, matching
all assignment examples. For each DM [ € £, the set of examples E' is a set of
pairs (a,h),a € A*,1 < h < k specifying that the alternative a is assigned to the
category ¢, by [. Supplementary to the three main types of decision variables, namely
profiles, weights, majority thresholds, the MIP also defines the following variables.
The binary variables C;(a,by),Va € A*,j € J,1 < h < k — 1 represent the partial
concordance indices such that Cj(a,b,) = 1 if and only if the performance of the
alternative a on the criterion j is at least as good as the performance of the profile
by. The continuous variables o;(a, by) represent the weighted partial concordance
indices, they are such that o;(a,b,) = w; if Cj(a,by) = 1, 0;(a,b,) = 0 otherwise.
Finally, a slack variable s > 0 is used in the objective function.

Hereafter we present a mathematical program finding adequate profiles without
using veto thresholds. The case where veto thresholds are allowed is considered in
Section [Gl

4.1 Constraints

To make sure the solution matches the assignment examples, we must ensure the
following is satisfied:

VieL:Y(a,h)eE h>1: > wh > N, and (1)
j€J:g5(a)>g; (brh—-1)
Vie L£:Y(a,h)e E' h<k: > wh< A (2)

j€J:gj(a)>g;(bn)
Equations (Il) ensure that the example alternative is assigned to a category at least
as good as ¢y, and () make sure that it is assigned to a category not better than
¢p. In order to ensure this, variables Cj(a,by,) and o%(a,b,) are defined. Binary
variables Cj(a,by,), indicating whether g;(a) > g¢;(by) holds, are defined with the
following constraints, Vj € Jja € A*,1 < h <k —1.

T 0i(@) = g5(00)) < Oyl bn) < =2(05(0) — g5(0n)) + 1

The constant M is an arbitrary big value ensuring that —1 < ﬁ(gj(a) —g;(by)) < 1.
These constraints ensure that g;(a) > g;(b,) = Cj(a,by,) = 1, and that g;(a) <
g;(bn) = Cj(a,by) = 0. Indeed, if g;(a) —g;(bn) > 0, 77(g;(a) — g;(bp)) +1 > 1, thus
Cj(a,by) < 17(gj(a) — g;(bp)) + 1 is necessarily satisfied (independently of the value
of Cj(a,by)), and 0 < 2(g;(a) — g;(by)) < 1, thus Cj(a,by) is constrained to one.
Similarily, if g;(a) —g;(bn) < 0, =1 < 22 (g;(a) —g; (b)) < 0 thus --(g;(a) —g;(by)) <
Cj(a, by) is necessarily satisfied, and 0 < 55(g;(a) — g;(bp)) +1 < 1 thus C;(a, by,) is
constrained to zero.

—

O';-(CL, bh) < w]
_ U;-(a, bp) >0
VieL,jeJac A\, 1<h<k-1: l (3)
oj(a,bn) < Cj(a, by
O';-(a, bh) > C'j(a, bh) + w§ — 1.



0N . .
u N v I

0 1 Cj(a, bh)

Figure 1: constraining U;-(a, by) to the appropriate value

Constraints ([3) are used to define the variables o' (a,by) representing the sum
of the support for saying that a is at least as good as by, i.e. the value aé»(a, by) =
w}C;(a, by), while avoiding using a non-linear expression [14]. The dotted parallel-
ogram in Fig. [Il represents the possible values for a;-(a, by) depending on the value
of Cj(a,by) as defined by the constraints above. As Cj(a,bs) can only take values
zero or one, the figure shows that aé- (a,bp) is constrained to the appropriate value,
namely zero or w;.

At this point, referring to Equations (I)) and (), we have that }°._; 0%(a,by) =

Zjej;gj(a)zg.(bh) wé-. To ensure satisfaction of the assignment examples, suffices thus
to add the fzollowing constraints.
Vi€ LV(a,h) € B h>1:) ok(a,b) = N, (4)
jed
Vi€ L,V(a,h) € E'h <k olaby) < N (5)
jed

Finally, the constraints ) jeqw; =1, VI € L, are added, and the following con-
straints are used to ensure a correct ordering of the profiles defining the categories,
Vi€ J2<h<k—1:g;bn1) < g;(bn)

4.2 Objective function

In order to maximize the separation between the sum of support and the majority
thresholds, a slack variable s is introduced in Constraints () and (5]) to be maximized
as an objective function (see Program [I]).

Having a set of alternatives A*, a set of criteria indices J, the evaluations of
the alternatives g;(a),Va € A*,j € J, the number of categories k, a set of DMs
L, assignment examples E', determine the performances of the profiles g;(by,),Vj €
J,1 < h <k —1, together with individual weights w! and majority thresholds A',
maximizing s subject to the constraints provided in Program [Il Strict inequalities
have been transformed to large inequalities using a constant value ¢ defined as an
arbitrary small positive value. The constant M is an arbitrary big value. The



Mazx s s.t.

(Viecl: S wl=1.)
jed
VJ € J,Qghgk‘—l : gj(bh_l) Sg](bh)
1
ViedJae A\ 1<h<k-1: M((gj(a) —gi(bn)) +¢) < Cj(a,by).
1
VieJace A 1<h<k-—1: Cjla,br) < 7(g5(a) = g(ba)) + 1. ¢ (E)
O';-(CL, bh) < wé
‘ ot(a,by) >0
VieLl,jeJac A", 1<h<k-1: l
ai(a,by) < Cj(a, by)
ot (a,bp) > Cj(a,by) + w’ — 1. |
Vi e £, ¥(a,h) € B h <k - > chlaby) +s< N —e
jed
Vi€ L£,Y(a,h) € E',h > 1: ZU;-(CL, bho1) > A+ s.
\ jeJ

Program 1: ICL

variables Cj(a,by),Vj € J,a € A*,1 < h < k — 1, are binaries and the other ones
are real.

5 Inferring category limits with vetoes

Suppose now that the DMs are ready to accept veto thresholds in the individual
preference models, i.e. when searching for common profiles, it is deemed acceptable
to use shared veto thresholds to satisfy the individual assignment examples. This
can enable to find common profiles in situations where it would not be possible to
satisfy all examples without vetoes. This is the aim of the Infer Category Limits
with Vetoes (ICLV) program.

This ICLV program can be seen as a generalization of the previous one, except for
the change in the objective function, as it tries to find solutions having zero vetoes.
However, we chose to present the programs in an increasing order of complexity.
For simplicity, we also consider that the DMs share the vetoes. The same approach
would be applicable for searching individual vetoes, with an objective function that
could e.g. minimize the number of individual vetoes used or minimize the number
of DMs using some vetoes. Sharing the vetoes also reduces the number of binary
variables and reduces the risk that the resulting preference model would overfit the
provided data.

The mathematical program is based on the previous one, with a few additions
and changes. The veto situations are modeled as follows: a veto threshold U;-)h (a
variable in our problem) is associated with each criterion j € J and profile index



1 < h < k—1. We also need binary variables V;(a,by),Vj € J,a € A*,1 <h < k-1,
equal to one iff there is a veto situation between a and b,. When for any criterion
and profile the evaluation g;(a) is lower than the corresponding v?h veto threshold,
the alternative may not outrank the profile.

5.1 Additional constraints

Constraints are used to keep the vetoes lower than the corresponding profile: Vj €
J,1<h<k-1, U?h < g;(by). The veto thresholds also have to be correctly ordered:

Vjie J2<h<k- 1,1)?’1‘1 < v;?h. Binary variables Vj(a,by,) are defined so that
Vi(a,by) equals one iff g;(a) < U?h, VieJace A, 1<h<k-1:
b

bh h
v —g;(a) v —gila) —¢
%S‘/j(a,bh)g 2 it

+ 1.

Constraints ({@]), (B) must be redefined to take the vetoes into account when
matching assignment examples.

Vi€ LV(ah) € B h<k:Y ob(aby) <N+ Vila by, (6)
jeJ jeJ

VieLV(a,h) € B h>1:) oh(a,byoy) = N+ Vila,byy), (7)
jeJ jeJ

where » . ; Vj(a,by) accounts for the existence of a veto situation between a and
by. Indeed in constraint (@), the term >, Vj(a,by) guarantees that a does not
outrank b, when a veto intervenes, whatever the coalition of criteria in favor of such
outranking. A similar reasoning holds for constraint ([7).

To minimize the number of vetoes used, a binary variable V; is defined for each
criterion. The variable equals one iff a veto is used for this criterion:

ViedJac A"\ 1<h<k—1:V;>V;(a,by).

5.2 Objective function

In most situations it is reasonable to find a solution involving the least possible
number of vetoes: allowing too many veto thresholds to be used may lead to an
over-fitting of the model with ad-hoc veto thresholds. The objective function should
then be to minimize the sum of the V; variables:

Min Y V;.
jedJ

An alternative could be e.g. to minimize the number of situations where a veto is
used.
Program [ presents a synthesis of the ICLV program.

10



Miny ., Vst

Vi€ L, ¥(a,h) € E',h <k :
Vie L£,Y(a,h) € E' h > 1:

VieJ1<h<k-1:

( set (F) of constraints from Program [

Zaé-(a, by) < A+ ZVj(a, by) — €.

JjeJ jeJ
> ob(a,bha) = XN+ Vila, bu).
Jje€J jeJ

v < g;(bn).

Vi€J2<h<k—1: vt <ol
. v — gi(a)
VieJae A 1<h<k—1: Vila.by) = =7
bn
v" —gjla) —¢
VieJac A\ 1<h<k-1: Vi(a,by) < -2 g]M() + 1.
\VjeJacA 1<h<k-1: V> Vi(a, by).

Program 2: ICLV

6 Computing weights restriction

For each DM, fixing the common profiles induces constraints on her weights. Indeed,
once the profiles are inferred by ICL (or ICLV), her assignment examples express a
set W' of constraints on the weights w! and majority threshold \.

Wh={(w;,7 € J,\)} |¥(a,h) € E' :a = b1 A—a = by}

It is possible to define, on the basis of W', an importance relation >! on J as follows,
vj17j2 S J:
7 D! Jo & Wy, > ij,V(wj,j e J )\) c wt.

This relation >! expresses, for a given DM [, the comparisons of criteria weights
which hold for all weight vectors compatible with her assignment examples, consid-
ering the common profiles. It results from its definition that ! is a partial order.
The incompleteness of this relation should be understood in the following way: pairs
of criteria (ji, jo) that are not in this relation correspond to criteria such that there
exists (w;,j € J,A) € W! with w;, > wj, and (w},j € J,X) € W' with w), > w},.
In such a case, W' does not specify how w;, and w;, compare.

The Compute Weights Restriction (CWR) program aims at computing > for
each DM [ € £. In order to compute the relation !, we search, for each ji, j» € J,
for a feasible solution to a linear program matching all assignment examples of DM
[ and with a supplementary constraint w§- < w§-2. This is a linear program involving
no binary variables because at this stage the profiles values are known. If that linear
program has no feasible solution, criterion j; is more important than criterion js,
V(wj,j € J,\) € W' thus j; > jo. On the contrary, if the linear program has a
feasible solution, j; >! j, does not hold.

11



Once the common profiles have been computed using ICL or ICLV programs,
it is necessary that each DM accepts the weight restrictions induced by the choice
of the common profiles. The relation >! is presented to each DM [ for validation.
Although the validation of >! by the DM [ does not guarantee the acceptance of
W' we consider that, if ! is validated by the DM, she accepts the constraints on
weights W' imposed by the choice of the profiles. Indeed, it would be illusory to ask
the DM to validate W' per se.

If for a pair of criteria ji, j» such that j; > jo, the DM considers that criterion
Jjo is more important than j;, it is necessary to reconsider the choice of the profiles
and recompute new profiles using ICL or ICLV programs including a new constraint:
wéé > w;l‘

7 Illustrative example

Let us illustrate the method on the following hypothetical scenario. (Another illus-
trative example in a risk setting context can be found in [6].) A government board
has the responsibility to choose which research project to finance among a list of
research proposals. This board wants to establish a systematic procedure to be able
to assign research proposals into three categories: those projects that are considered
very good and should be funded (category Good); projects that are good and should
be funded if supplementary budget can be found (category Average); projects that
are of low quality and should not be funded (category Bad). The four members of
the board agree to use the following six criteria.

sq The project’s scientific quality, evaluated on a 5-point ordinal scale.
wq The proposal’s writing quality, evaluated on a 5-point ordinal scale.

ad The proposal’s adequacy with respect to the government priorities, evaluated
on a 3-point ordinal scale.

te The experience of the researcher teams submitting the project, evaluated on
a 5-point ordinal scale.

ic Whether the proposal includes international collaboration, a binary assess-
ment.

ps The researchers’ publication score evaluated by an aggregate measure of the
total quality of publications of the researchers involved in the proposal (eval-
uated on a [0,100] scale).

We suppose that each DM provides 30 assignment examples. A partial list of
these assignment examples is provided in Table [2 and Table [ lists the performances
of the corresponding projects.

Using the assignment examples, the ICL program is used to find profiles shared
by the DMs which match their individual assignment examples. However, with these
assignment examples no solutions can be found: when using no vetoes, there is no
common set, of profiles that satisfies the examples of the four DMs. As a second try,
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DM 1 | DM 2 | DM 3 | DM 4

Prj1 — Average | Prj31 — Good |Prj61 — Bad |Prj91 — Bad
Prj2 — Good Prj32 — Bad |Prj62 — Good | Prj92 — Bad
Prj3 — Good Prj33 — Bad |Prj63 — DBad |Prj93 — Bad

Figure 2: Some assignment examples given by the DMs

sq wq ad te ic ps
Prj 1 1 5 1 5 0 72
Prj 2 5 4 1 5 1 6
Prj 3 5 4 3 5 1 50
Pry31 4 5 3 5 0 98
Prj32 5 3 1 1 1 65
Prj33 3 12 1 0 53
Prj 61 2 3 2 2 0 62
Prj62 5 5 1 4 1 67
Prj63 b5 2 2 1 1 9
Prjo1 3 11 1 0 89
Prj92 1 1 2 1 0 12
Prj93 1 3 3 2 0 40

Figure 3: Performances of some alternatives used as assignment examples

the ICLV program is used in order to see whether a solution may be found when
considering preference models with shared veto thresholds. The ICLV program shows
that it is possible to reproduce all assignment examples with common profiles and
one single veto on criterion sq, v;’; = 2. The results are provided in Table 2l Table
[8] shows for each DM a possible set of weights matching their assignment examples
with the common profiles and the veto threshold.

The shared profiles together with the veto threshold provide the group of DMs
with a shared understanding of the scales of the criteria on which the alternatives
are evaluated. The profiles values divide the evaluation scale for each criterion into
a partition of three intervals. For example, on criterion sq, the shared preference
model is such that an alternative having a value in [0, 3] on that criterion will be
considered by that criterion as being not worth more than the worst category. A
value in [3,5] will permit that alternative to be considered to be worth category
Average, but not more, and only the value 5 makes the alternative worth category
Good from the point of view of that criterion.

The veto threshold on criterion sq induces an other partition of the evaluation
scale of that criterion. It divides the space of the values on this criterion between
those alternatives having a value in [0, 2] and those having at least 2. Alternatives
having a value of 0 or 1 as a scientific quality are forbidden, because of that veto,
to access the best category.

Such interpretations of the profiles and veto threshold is important for DMs to
understand whether the set of profiles and veto threshold adequately represent the
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Profile sq wq ad te ic ps

by 3 4 1 3 0 22
by 5 4 3 4 2 27
™ - - - - - -
VP2 2 - - - - -

Table 2: Inferred profiles and veto.

DM sq wq ad te ic ps A
DM 1 0 02 02 04 0 0.2 0.5
DM 2 0 02 02 04 0 0.2 0.5
DM3 0 02 02 03 03 0 06
DM4 02 02 02 04 0 0 05

Table 3: A set of weights and majority thresholds, as found by the ICLV program,
matching assignment examples of each DM when used together with the inferred
profiles and veto.

frontier between categories.

Before presenting the computed set of profiles and veto threshold, it is informative
to compute, for each DM, the constraints on the weights imposed by the choice of
the common profiles and veto. These restrictions as found by the CWR program
are provided in Fig. [l

It may be seen that a consensus on the weights cannot be readily found using
these profiles as DM 3 has criterion ps necessarily more important than criterion
sq while the others implicitely compare these two criteria in the reverse way. Im-
posing that all DMs compare ps and sq in the same way in terms of importance in
ICLV leads to an infeasible program, i.e. there does not exist shared profiles and ve-
toes satisfying all assignment examples with individual weights with the additional
constraint concerning ps and sq.

At this point, the profiles and veto are accepted by all DMs as adequate. Accept-
ing these profiles and veto, the DMs are aware that they disagree on the winning
coalitions, in particular on the relative importance of ps and sq as show in Fig. [l

Having accepted the shared profiles and veto implies that DMs accept the par-
titions of the scales of criteria induced by the profiles and the veto as a meaningful
representation of category limits. In order to obtain a common preference model, a
common set of weights and majority threshold values should be reached. As has been
seen already, no set of weight and majority threshold satisfy all DMs assignment ex-
amples. It is thus necessary for the DMs to discuss about some of the assignment
examples they disagree on. This may lead DMs to change their assignments. The
method proposed by Damart et al. [7] may be used to iteratively build consensual
weights among the group of DMs. We describe here the beginning of this process.
First, for each DM, considering its 30 assignment examples and the chosen profiles
and veto, it is possible to compute the possible assignments of the remaining 60
collective assignments: suffices to search, for each alternative a and category CY, if
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@ DM 1 @ DM 2

Figure 4: The restrictions on the weights imposed by the choice of the common
profiles, for each DM. An arrow from a criterion j to a criterion j’ states that the
choice of these profiles implies a strictly greater weight for 7 than for j' for this DM.

sq wq ad te ic ps

by 3 4 1 3 0 22
by 5 4 3 4 2 27
b - - - - - -
Vb2 2 - - - - -
weights  0.09 0.18 0.18 0.37 0.09 0.09
A=0.5

Table 4: Final profiles, veto, weights and majority threshold.

there exists a preference model with the shared parameters values which satisfies
the 30 assignment examples of that DM and assigns a to C},.

Computing these robust assignments show that consensus do exist for some al-
ternatives from the example set, while other alternatives show disagreements. For
example, it appears that Prj 1 may consensually be placed into category Average:
this statement does not conflict with any of the four DMs examples. However, Prj 90
may not be consensually placed into any category. Three of the four DMs would as-
sign Prj 90 to category Good while DM 3 assigns it to category Average. The group
of DMs may discuss on their different opinions about Prj 90, and it may happen
that DM 3 changes his mind and agrees with the group to assign Prj 90 to category
Good. The process sugested by Damart et al. [7] consists of enlarging step by step
the set of example assignments that the DMs agree on, possibly by suggesting some
DMs to change their minds, until a satisfactory group preference model with shared
profiles and coalitions is reached. Assuming DM 3 is ready to change his opinion
about Prj 90 and Prj 69, and DM 4 changes his opinion about Prj 98, a common
preference model may be reached, which is displayed in Table @]

8 Scalability of the algorithms

The proposed algorithms have been implemented on top of the Java J-MCDA li-
braries |3, 4] and use the JLP library [3] to define the mathematical programs,
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Number of binary variables Number of instances Solved

[0, 399] 477 100%
400, 799] 441 87%
800, 1199] 362 80%
1200, 1599] 290 78%
[1600, 1999] 268 75%
2000, 2199] 121 69%

Table 5: The proportion of problems solved within the given resource limits (less
than 90 minutes of computation, max 3 GB disk space usage) according to the
number of binary variables contained in those problems. The number of instances
indicates the number of problems generated, i.e. that we tried to solve.

which are then solved using the llog CPLEX library version 12.2. The Java wrapper
makes a future integration into the Decision Deck project [8] easy and involves no
performance impact as the mathematical programs are solved in pure C thanks to
the Ilog concert technology. The tests have been run on an Intel Core2 Duo E8400
3 GHz PC with 2 GB RAM running a GNU/Linux Debian Lenny system.

In order to assess the performance and scalability of the proposed mathematical
programs, the ICL and CWR programs have been run on a series of test problems.
So as to get consistent results and observe the behaviour of the programs according
to the problem size, about 2000 problems have been generated of various sizes chosen
in the following ranges: number of criteria between three and ten, number of DMs
between one and four, number of categories between two and five (implying that one
to four category limits have to be found). The number of examples given by each
DM vary between 1 and 700. Each criterion has an integer scale between 0 and 99.

Once the problem size is fixed, we generate category limits which we suppose all
DMs share. The category limits performances divide evenly the space of possible
parameters into the categories, e.g. with four categories the profiles will have a
performance on every criterion of 25 for the worst profile, 50 for the middle one, and
75 for the best one. Each DM is also assigned a random set of weights. We also
generate random alternatives, i.e. alternatives having their performances on each
criterion set randomly with an uniform distribution. The assignment examples are
obtained by computing, for each DM, the assignment of the alternatives into the
defined categories. Then the ICL and CWR programs are used with the resulting
data. Note that by construction, there exists a set of shared profiles satisfying
assignment examples of all DMs.

We observe the proportion of ICL programs that are solved within a time limit
of 90 minutes (a duration compatible with an off-line use of the program) and a disk
space usage limit of 3 GB (representing the size of the tree structure used by the
solver). The proportion of problems that can be solved within these limits obviously
depends on the size of the problem. Reported in Table[lis the proportion of problems
solved using the ICL program, according to the number of binary variables involved.

Recall that the number of binary variables in the ICL problem corresponds to
the product of the number of criteria, the number of profiles to be found, and the
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Nb of criteria Nb of binary variables Nb of instances Solved

3, 5] [0, 2199] 714 100%
[6, 7] [0, 399] 112 100%
[6, 7] 400, 799] 108 96%
[6, 7] 800, 1199] 93 96%
[6, 7] 1200, 1599)] 84 96%
6, 7] [1600, 1999] 80 95%
[6, 7] 2000, 2199] 24 96%
8, 10] [0, 399] 184 99%
8, 10] 400, 799] 179 70%
8, 10] 00, 1199)] 132 48%
8, 10] 1200, 1599)] 100 39%
8, 10] [1600, 1999] 97 36%
8, 10] 2000, 2199] 52 29%

Table 6: The proportion of problems solved within the given resource limits (less
than 90 minutes of computation, max 3 GB disk space usage) according to the
number of binary variables and criteria contained in those problems. The number
of instances indicates the number of problems generated, i.e. that we tried to solve.

number of alternatives in the assignment examples set. Data sets involving a MIP
formulation with less than 400 binary variables to solve ICL are all solved within
90 minutes. Such data sets correspond to relatively small problems, e.g. with 3
categories (2 profiles), 5 criteria and 40 assignment examples (10 examples for each
DM if 4 DMs are involved). Moreover, a large majority of instances are solved within
90 minutes when the number of binary variables does not exceed 1200. It is likely
that most practical sized problems will contain a number of binary variables below
1200, this number corresponding to a problem containing 6 criteria, 3 categories,
100 alternatives in the examples set.

Furthermore, we observed that the ability to solve the problem also depends
on the problem structure, and in particular on the number of criteria, for a given
number of binary variables. Indeed, all problems with no more than 5 criteria have
been solved in our experiment, even those containing the biggest number of binary
variables (in the range [2000, 2199]). On the opposite, when the number of criteria
is between 8 and 10, less than 50% of the instances involving 1200 binary variables
can be solved within 90 minutes. Table [6] shows the proportion of problems solved
according to the number of criteria.

The CWR program performances were also assessed by running it for each test
where profiles have been found. The time to compute all the weights restrictions
has been calculated. At most a few minutes are needed in the most difficult cases
to compute all the restrictions, and in most cases even only a few seconds. This is
so because, although CWR involves solving a lot of linear programs, these LPs are
solved almost instantaneously.

These data show that the ICL program is able to solve most problems having
a reasonable size within 90 minutes (using less than 3 GB of disk space). As the
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approach we propose is typically used in an off-line mode where the analyst analyses
the preferences indicated by the DMs in the interval between two meetings with
them, a bound of 90 minutes might be considered a reasonable time to solve such
complex problems. Bigger problems (involving about 10 criteria) might solve if
given more time or space, although this has not yet been investigated. A probably
better approach to solve very big problems would consist in developing appropriate
resolution methods taking into account the structure of the problem. This is an
interesting area to explore for further applicability of these algorithms.

9 Conclusions and perspectives

This paper deals with group preference elicitation. We aim at eliciting an ELECTRE
TRI sorting model for a group of DMs on the basis of assignment examples provided
by the various DMs. More precisely, we propose algorithms to elicit ELECTRE TRI
category limits shared by all DMs from their assignment examples. The proposed
algorithms consider the case with or without vetoes. We infer a part of the sort-
ing model only (category limits, but with variable weights): such partial inference
provides a better control of the inference process, in particular when multiple DMs
provide assignment examples. We illustrate the use of these algorithms on a practi-
cal example. Numerical tests of these algorithms show that a majority of instances
with a size corresponding to real-world problems can be solved in a reasonable time.

This work opens new research challenges and issues. Instances involving more
than eight criteria remain difficult to solve. Specific resolution algorithms should be
investigated to be able to solve all large instances. Our algorithm should be adapted
in order to select a set of profiles which minimizes the restriction on the weights
imposed to the DMs. When the assignment examples provided by the DMs are
not compatible with an ELECTRE TRI model using shared profiles, an interesting
issue amounts at identifying ways to modify the assignment examples in order to
find common profiles [15, [16]. In such case, it would also be interesting to identify
subsets of DMs who are closer to a consensus. Another interesting extension to the
proposed algorithms involve considering confidence levels attached to the assignment
examples provided by the DMs. From a practical point of view an important ques-
tion deals with the choice of the alternatives involved in the assignment examples:
how to choose alternatives that will lead to informative assignment examples? Our
algorithms provide one single solution defining the profiles. It would be interest-
ing to compute all sets of category limits compatible with the assignment examples
(rather than one solution) using a robust disaggregation approach [10].

Finally, an implementation of the tools described here should be made available
in the Decision Deck framework as open source software. That would permit to test
the suggested approach on real cases, which would certainly raise further new ideas
and suggestions for improvements.
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