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Abstract

In a standard TU-game it is assumed that every subset of the player set N can form a

coalition and earn its worth. One of the first models where restrictions in cooperation are

considered is the one of games with coalition structure of Aumann and Drèze (1974). They

assumed that the player set is partitioned into unions and that players can only cooperate

within their own union. Owen (1977) introduced a value for games with coalition structure

under the assumption that also the unions can cooperate among them. Winter (1989)

extended this value to games with levels structure of cooperation, which consists of a game

and a finite sequence of partitions defined on the player set, each of them being coarser

than the previous one.

A share function for TU-games is a type of solution that assigns to every game a vector

whose components add up to one, and thus they can be interpreted as players’ shares in the

worth to be allocated. Extending the approach to games with coalition structure developed

in van den Brink and van der Laan (2005), we introduce a class of share functions for games

with levels structure of cooperation by defining, for each player and each level, a standard

TU-game. The share given to each player is then defined as the product of her shares

in the games at every level. We show several desirable properties and provide axiomatic

characterizations of this class of LS-share functions.
∗Corresponding author’s e-mail address: toriol@ethz.ch.
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1 Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set of players N

and for any subset (coalition) of players a worth representing the total payoff that the coalition

can obtain by cooperating. A value function for TU-games is a function that assigns to every

TU-game with n players an n-dimensional vector representing a distribution of payoffs among

the players. A value function is efficient if for every game it distributes exactly the worth of the

‘grand coalition’, N , over all players. The most famous efficient value function is the Shapley

value (Shapley, 1953). An example of a value function that is not efficient is the Banzhaf value

(Banzhaf, 1965; Owen, 1975; Dubey and Shapley, 1979). Since the Banzhaf value is not efficient

it is not adequate in allocating the worth v(N). In order to allocate v(N) according to the

Banzhaf value, van den Brink and van der Laan (1998) characterize the normalized Banzhaf

value, which distributes the worth v(N) proportional to the Banzhaf values of the players.

A different approach to efficiently allocate the worth v(N) is described in van der Laan

and van den Brink (1998), who introduce share functions as an alternative type of solution

for TU-games. A share vector for an n-player game is an n-dimensional real vector whose

components add up to one. The ith component is player i’s share in the total payoff that is

to be distributed among the players. A share function assigns such a share vector to every

game. The share function corresponding to the Shapley value is the Shapley share function,

which is obtained by dividing the Shapley value of each player by v(N), i.e., by the sum of the

Shapley values of all players. Similarly, the Banzhaf share function is obtained by dividing the

Banzhaf –or normalized Banzhaf– value by the corresponding sum of payoffs over all players.

One advantage of share functions over value functions is that share functions avoid the “efficiency

issue”, i.e., they avoid the question of what is the final worth to be distributed over the players.

This yields some major simplifications. For example, although the Banzhaf and normalized

Banzhaf value are very different value functions (e.g. the Banzhaf value satisfies linearity and

the dummy player property which are not satisfied by the normalized Banzhaf value), they

correspond to the same Banzhaf share function. Another main advantage of share functions

has been discovered by Pekec (2001), who shows that on a ratio scale meaningful statements

can be made for a certain class of share functions, whereas all statements with respect to value
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functions are meaningless.1

In a standard TU-game it is assumed that every subset of the player set N is a fea-

sible coalition and can earn its worth. However, there are many real life situations in which

cooperation is restricted, e.g. there is a priori information about the behavior of the players or

only partial cooperation is possible due to environmental restrictions. The games with coalition

structure proposed in Aumann and Drèze (1974) are among the first models in which restrictions

in cooperation are considered. They assume that the player set is partitioned and that players

can only cooperate with other players that belong to the same element of the partition. Such

a partition is called a coalition structure and the elements of the coalition structure are called

unions. Owen (1977) allows that a subset of players within a union can also cooperate with

players of other unions, but only if all players of the other unions agree. His proposed value,

known as the Owen value, can be introduced in several ways. We can define an external game

or quotient game as a game where the unions form the player set, and the worth of a coalition

of unions simply equals the worth of that ‘union of unions’ in the original game. Then, for every

union, an internal game is defined where the worth of every subset of players within that union

equals the Shapley value of that subset in the modified quotient game obtained by replacing that

union by the specific subset. Taking the Shapley value of this internal game yields the Owen

value of the game with coalition structure. This value satisfies the (consistency) property that

the sum of the payoffs assigned to the players in a particular union equals the Shapley value of

that union in the quotient game.

A straightforward example shows that the existence of a coalition structure might have a

significant impact on the outcome. Suppose that, in a simple majority voting game, the coalition

structure consists of two unions of players. If the two unions have not the same number of votes,

then, by definition of the voting game, one of the unions has the majority. Ignoring the coalition

structure, we might apply the Shapley value and typically this results in an outcome in which

every player is assigned a positive payoff (power). Taking into account the coalition structure,

the Owen value assigns the full worth of the grand coalition, v(N) = 1, to the players of the

majority coalition and, thus, all players in the minority coalition get zero payoff.

Similar insights might be obtained in situations with more complex restrictions to the

cooperation among players. In Courtin (2011) the distribution of power in the European Par-

liament is analyzed when the a priori information that limits the cooperation among parties can
1A statement for a TU-game is meaningful on a ratio scale if the statement is also true if we multiply the

relevant variables by the same constant, see Pekec (2001).
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be represented by two arbitrary partitions of the set of parties, that respond respectively to an

economic and a political criterion. Whereas the Aumann-Drèze coalition structure is a partition

of the grand coalition, in the model of Courtin (2011) the resulting coalition structure is a collec-

tion of unions with possibly non-empty intersection. These games, with the so-called coalition

configuration structure, are introduced in Albizuri et al. (2006) and Albizuri and Aurrekoetxea

(2006).

In this paper we consider a different structure that restricts the cooperation possibilities

among the agents. To illustrate the validity of the model, we briefly discuss its possible appli-

cation to the European Parliament. This chamber is, together with the “Council of Ministers”

and the “European Commission”, one of the main European political institutions. It consists of

754 delegates from 27 different countries. Members of each country are organized within na-

tional parties, and parties from different countries are organized in seven parliamentary groups.

The three largest groups are the European People’s Party, the Socialists and Democrats, and

the Alliance of Liberals and Democrats. Some of these groups are further divided into (for-

mal) smaller subgroups, e.g. the latter Alliance consists of two subgroups: the Liberals and the

Democrats. Moreover, it might also happen that on particular issues other (informal) subgroups

are formed, e.g. according to geographical proximity among national parties. Considering the

structure from top to down, we observe that first there is a coalition structure consisting of the

seven parliamentary groups. Then, within such a group there is a second coalition structure

consisting of the subgroups. Next, within each subgroup there is again a coalition structure

consisting of national parties. To study the power of an individual member of the parliament it

seems necessary to take into account this organizational structure.

Games with such a structure have been considered in Winter (1989), who extends games

with coalition structure to the so-called games with levels structure of cooperation. This model

consists of a game and a finite sequence of partitions defined on the player set, each of them

being coarser than the previous one. Considering the ‘highest’ level as a coalition structure,

each union is again partitioned so that players within a union in this next level are somehow

closer to each other than to other players in the union, who are still closer than players outside

the union in the highest level. Again, this partition of the unions can be partitioned further,

and so on and so forth. For this model Winter (1989) suggests a solution that generalizes the

Owen value for games with coalition structure, and thus also generalizes the Shapley value

for standard TU-games. Recently, Álvarez-Mozos and Tejada (2011) defined an extension of

the (non efficient) Banzhaf value for games with levels structure of cooperation, and provided

4



comparable axiomatizations of this value and Winter’s Shapley type value.

In van den Brink and van der Laan (2005) it is shown that share functions have addi-

tional desirable properties when applying them to games with coalition structure. For every

element in the class of share functions mentioned above, they defined a share function for games

with coalition structure, taking for every player the product of her share in the internal game

and the share of her union in the external (quotient) game. These share functions satisfy the

consistency property that the sum of the shares over players in one union equals the share of

the union in the quotient game. Applying the Shapley share function twice yields the Owen

value (after multiplying by v(N)). However, applying the Banzhaf share function twice2 yields

a different solution than the Banzhaf value for games with coalition structure considered in

Owen (1981). In van den Brink and van der Laan (2005), see also Andjiga and Courtin (2010),

two axiomatizations of such a class of share functions are given, one using the multiplication

property, and another one using the consistency property relating the payoffs of players within

a union to the payoff of the union in the quotient game.

The results of van den Brink and van der Laan (2005) show that taking the product of

two shares is a natural method to define solutions for games with coalition structure. In this

paper we extend this argument to games with levels structure of cooperation. We introduce a

class of LS-share functions by defining a standard TU-game for every union at every level, and

then assigning to every player the product of her shares over the corresponding games at every

level.

We show several desirable properties of these solutions. Two fundamental properties are

(i) they yield the corresponding solution for standard TU-games in case the levels structure is

trivial (meaning that the grand coalition N is partitioned immediately in a coalition structure

consisting of all singletons of N), and (ii) the sum of the shares of the players in a union

equals the share of the union in the game played among the unions of this level (consistency).

We provide axiomatizations of these share functions, extending those that are known for games

with coalition structure. Moreover, we use weaker versions of some of the axioms used for games

with coalition structure by requiring them only for trivial structures. Besides generalizing those

two axiomatizations, we introduce a new type of axiom which we refer to as µ-fairness.

The class of LS-share functions introduced in this paper is parametrized by real valued

µ-functions on the set of TU-games. These functions are introduced in van der Laan and van

den Brink (1998). The first result of this paper characterizes the class of µ-functions that are
2Recall that the Banzhaf value and normalized Banzhaf value yield the same Banzhaf share function.
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positive, symmetric, and additive.

The paper is organized as follows. Section 2 contains preliminaries on TU-games. In Sec-

tion 3 we review share functions and present the result which characterizes all positive, additive,

and symmetric µ-functions, and the corresponding share functions for TU-games. In Section 4

we introduce the class of LS-share functions for games with levels structure of cooperation, we

derive the first properties, and we give special attention to the Shapley levels share function.

Finally, in Section 5 we provide the axiomatic characterizations.

2 Preliminaries

A cooperative game with transferable utility is a pair (N, v), where N is a finite set of players

and v, the characteristic function, is a real valued function on 2N = {S : S ⊆ N} with v(∅) = 0.

Along the paper we use the | · | operator to denote the cardinality of a finite set, i.e., |S| is

the number of players in S, for any S ⊆ N . Alternatively, sometimes we use lowercase letters

to denote cardinalities, and thus s = |S| for any S ⊆ N . A game (N, v) is called monotone

if for every S, T ⊆ N with S ⊆ T , it holds that v(S) ≤ v(T ). That is, monotone games are

those in which the cooperation among players is never pernicious. Notice that the class of

monotone games is a quite wide class of games. We denote by G the set of all monotone games.

Since the whole paper deals with monotone games, henceforth we will simply say game instead

of monotone game. For an arbitrary finite set K, we denote by RK to the |K|-dimensional

Euclidean space with elements x ∈ RK having components xi, i ∈ K.

For each S ⊆ N and i ∈ N , we will write S ∪ i instead of S ∪ {i} and S \ i instead of

S \ {i}. For a pair of games (N, v), (N,w) ∈ G, the game (N, z) with z = v + w is defined by

z(S) = v(S) + w(S) for all S ⊆ N . We denote by (N, v0) the null game with player set N , i.e.,

v0(S) = 0 for all S ⊆ N . For every nonempty T ⊆ N and (N, v) ∈ G, we denote by (T, v|T ) the

subgame on T given by v|T (S) = v(S) for all S ⊆ T . Further, given S ∈ 2N , the unanimity game

with carrier S, (N, uS), is defined by uS(T ) = 1 if S ⊆ T , and uS(T ) = 0 otherwise. Notice

that (N, uS) ∈ G for every S ∈ 2N .

Given (N, v) ∈ G, a player i ∈ N is a dummy if v(S ∪ i) = v(S) + v(i) for all S ⊆ N \ i,

that is, if all her marginal contributions are equal to v(i). A player i ∈ N is called a null player

if she is a dummy and v(i) = 0. Two players i, j ∈ N are symmetric if v(S ∪ i) = v(S ∪ j) for

all S ⊆ N \ {i, j}, that is, if their marginal contributions to each coalition coincide.

A value function, or shortly value, on G is a map f that assigns to every game (N, v) ∈ G

6



a vector f(N, v) ∈ RN . The following definitions provide the explicit expressions of two well-

known values in the literature.

Definition 2.1. (Shapley, 1953)

The Shapley value, Sh, assigns to any game (N, v), a vector in RN defined as

Shi(N, v) =
∑

S⊆N\i

s!(n− s− 1)!

n!
[v(S ∪ i)− v(S)] , i ∈ N.

Definition 2.2. (Banzhaf, 1965; Owen, 1975)

The Banzhaf value, Ba, assigns to any game (N, v) a vector in RN defined as

Bai(N, v) =
∑

S⊆N\i

1

2n−1
[v(S ∪ i)− v(S)] , i ∈ N.

By a share function we mean a map ρ that assigns to every game (N, v) ∈ G a vector

ρ(N, v) ∈ RN such that
∑
i∈N ρi(N, v) = 1. The component ρi(N, v) represents player i’s share

in the worth to be distributed. Consequently, a share function ρmay be obtained from each value

f on G by defining for every (N, v) ∈ G and every player i ∈ N its share ρi(N, v) = fi(N,v)∑
j∈N fj(N,v) .

In the next definition the share functions obtained from Sh and Ba are presented.

Definition 2.3.

(i) Given a game (N, v) ∈ G, the Shapley share function, ρSh, assigns to any game (N, v) a vector

in RN defined as ρShi (N, v) = Shi(N,v)
v(N) , i ∈ N , if v 6= v0, and ρShi (N, v0) = 1

|N | , i ∈ N .

(ii) Given a game (N, v) ∈ G, the Banzhaf share function, ρBa, assigns to any game (N, v)

a vector in RN defined as ρBai (N, v) = Bai(N,v)∑
j∈N Baj(N,v) , i ∈ N , if v 6= v0, and ρBai (N, v0) = 1

|N | ,

i ∈ N .

3 Share functions

In van der Laan and van den Brink (1998) a class of share functions for TU-games is defined

and characterized based on real valued functions µ : G −→ R. The Shapley and Banzhaf share

functions are included in this class for appropriate choices of µ-functions. In this section we

reconsider and extend the results of van der Laan and van den Brink (1998). In Subsection

3.1 we propose a set of properties for µ-functions that will allow us to write them as a sum of

weighted marginal contributions where the weights are of a certain type. In Subsection 3.2 we

merge the aforesaid result with the characterization of van der Laan and van den Brink (1998).
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3.1 Real valued functions on G

We consider some properties that real valued functions on G, µ : G → R, might satisfy. By G0

we denote the class of null games (N, v0), and by G+ = G \ G0 the class of non-null games. Let

Π(N) denote the set of all permutations of N and, for any π ∈ Π(N) and (N, v) ∈ G, define the

game (N, πv) where (πv)(T ) = v(π(T )) for all T ⊆ N . We say that

(a) µ is positive if µ(N, v0) = 0 and µ(N, v) > 0 for every (N, v) ∈ G+.

(b) µ is additive if for every pair of games (N, v), (N,w) ∈ G, it holds that µ(N, v + w) =

µ(N, v) + µ(N,w).

(c) µ is symmetric if for every pair of symmetric players i, j ∈ N in (N, v) ∈ G and every

S ⊆ N \ {i, j}, it holds that µ(S ∪ i, v|S∪i) = µ(S ∪ j, v|S∪j).

(d) µ is anonymous if, for every game (N, v) ∈ G, every permutation π ∈ Π(N), and every

nonempty subset S ⊆ N , it holds that µ(S, v|S) = µ(π(S), (π−1v)|π(S)).

In van der Laan and van den Brink (1998) the first two properties are used to define a

family of µ-functions on a fixed player set. It is there proved that a certain characterization

result for share functions, which makes use of a property called µ-additivity, holds as long as

µ is positive, additive, and anonymous3. In van den Brink and van der Laan (1999) their

result is extended to a variable player set using symmetry instead of anonymity. Nevertheless,

the formulation of anonymity seems to be a more natural way of requiring that the identity of

players does not play a role. In the Appendix (see Proposition 6.1) it is shown that symmetry and

anonymity are in fact equivalent properties. This implies that, although we use the anonymity

formulation henceforth, we are actually considering exactly the same class of functions as in van

der Laan and van den Brink (1998) for a fixed player set.

We next show that, except for the equivalence between symmetry and anonymity, there

is no logical relation among the above properties.

Proposition 3.1. Additivity, positivity, and anonymity are independent properties.

Proof. First, µ(N, v) = v(N)2 satisfies positivity and anonymity but not additivity.

Second, µ(N, v) = −v(N) satisfies additivity and anonymity but not positivity. Third, take a
3The necessity for anonymity is mentioned in Theorem 25 and Footnote 6 in van den Brink and van der Laan

(1999).
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particular player j and define µ as

µ(N, v) =

2v(N) if j ∈ N,

v(N) otherwise.

Then µ satisfies additivity and positivity but not anonymity. �

The following result shows that any real valued function µ that is positive, additive, and

anonymous can be written as a linear combination of marginal contributions with the weights

depending only on the sizes of the corresponding coalitions.

Theorem 3.2. Let µ be a real valued function on G. Then, the two following statements are

equivalent:

(a) µ is positive, additive, and anonymous.

(b) There is a unique family of strictly positive weights, {ωn,sµ ∈ R : n ∈ N and s ∈ {0, 1, . . . , n−

1}} such that, for every (N, v) ∈ G,

µ(N, v) =
∑
i∈N

∑
S⊆N\i

ω|N |,|S|µ [v(S ∪ i)− v(S)] . (1)

Proof. We first prove the implication (b) =⇒ (a). First, since the weights are strictly

positive and the games in G are monotone, µ is positive. Second, since µ(N, v), as defined in

eq. (1), is linear on each v(S), S ⊆ N , µ is additive. Third, since the weights depend only on

the cardinality of the sets, µ(N, v) is anonymous.

Next we prove the implication (a) =⇒ (b). Let N and µ : G −→ R be fixed. We denote

by GN the set of games with the fixed player set N . It is well known that GN is a cone in

the euclidean space of dimension 2n − 1. As a consequence, µ can be cast as the restriction of

a map µ∗ : R2n−1 −→ R. Moreover, observe that GN has positive measure in R2n−1 because

{(N, uS)}∅6=S⊆N is a basis of R2n−1 and for every S ⊆ N , (N, uS) ∈ G. Therefore, since µ

is positive, µ∗ is bounded from below in a set of positive measure. From the solution of the

Cauchy equation for several variables applied to µ (see Proposition 1 at page 35 in Aczél and

Dhombres (1989) for instance), for every ∅ 6= S ⊆ N , there are scalars aS ∈ R, such that, for all

(N, v) ∈ GN ,

µ(N, v) = µ∗(N, v) =
∑
∅6=S⊆N

aSv(S).
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Note that the argument above applies for any given µ and N . Hence, for every positive, additive,

and anonymous µ, every finite set of players N , and every coalition ∅ 6= S ⊆ N there are scalars

aN,Sµ such that, for every (N, v) ∈ G,

µ(N, v) =
∑
∅6=S⊆N

aN,Sµ v(S). (2)

Next, let N and N ′ be two sets of players, ∅ 6= S ⊆ N , and S′ ⊆ N ′ such that |S| = |S′|.

Let π ∈ Π(N ∪N ′) be a permutation that exchanges S with S′ and N with N ′. By anonymity,

µ(N, uS|N ) = µ(π(N), (π−1uS)|Π(N)) = µ(N ′, uS
′

|N ′). (3)

We prove that aN,Sµ = aN
′,S′

µ by reverse induction on the cardinality of S.

Let S = N and S′ = N ′. Then, we have that aN
′,N ′

µ = µ(N ′, uN
′

|N′
) = µ(N, uN|N ) = aN,Nµ ,

where the first and last equality follow from eq. (2) and the second equality from eq. (3). Next,

for some s < n, T ⊆ N and T ′ ⊆ N ′, assume that aN,Tµ = aN
′,T ′

µ whenever |T | = |T ′| > s. Take

S ( N and S′ ( N ′ with |S| = |S′| = s > 0. By eq. (2) and eq. (3),

aN
′,S′

µ +
∑

{T ′⊆N ′|S′(T ′}

aN
′,T ′

µ =
∑

{T ′⊆N ′|S′⊆T ′}

aN
′,T ′

µ =
∑

{T⊆N |S⊆T}

aN,Tµ = aN,Sµ +
∑

{T⊆N |S(T}

aN,Tµ .

(4)

By the induction hypothesis we have that for every T ′ ⊆ N ′ with S′ ( T ′ and every T ⊆ N

with S ( T such that |S| = |S′|, aN ′,T ′µ = aN,Tµ . Thus, eq. (4) leads to aN,Sµ = aN
′,S′

µ . Thus,

there exist numbers an,sµ , with n ∈ IN and s ∈ {1, . . . , n}, such that, for every (N, v) ∈ G,

µ(N, v) =
∑
∅6=S⊆N

an,sµ v(S). (5)

Analogously to Corollary 3.8 of van der Laan and van den Brink (1998), for every n ∈ N

and s ∈ {0, . . . , n − 1}, we recursively define the parameters wn,sµ , by ωn,n−1
µ = 1

na
n,n
µ , and

ωn,s = 1
s+1

(
an,s+1
µ + (n− s− 1)ωn,s+1

µ

)
for all s ∈ {0, . . . , n− 2}. Then, we can rewrite eq. (5)

as

µ(N, v) =
∑
i∈N

∑
S⊆N\i

ωn,sµ [v(S ∪ i)− v(S)] . (6)

Hence, we have proved the existence of a family of weights, {ωn,sµ ∈ R : n ∈ N and s ∈ {0, . . . , n−

1}} such that eq. (6) holds for every (N, v) ∈ G.

To prove the uniqueness of the weights, let {ωn,sµ }n∈N,s∈{0,...,n−1} and {δn,sµ }n∈N,s∈{0,...,n−1}

be two systems of weights that satisfy eq. (6). For each n ∈ N and s ∈ {0, . . . , n − 1}, let

(N, vs) ∈ G with |N | = n be defined by vs(T ) = 1 if |T | > s and vs(T ) = 0 otherwise. Then,

0 = µ(N, vs)− µ(N, vs) =
∑
i∈N

∑
S⊆N\i

(ωn,|S|µ − δn,|S|µ ) [vs(S ∪ i)− vs(S)] = (ωn,sµ − δn,sµ ) · n ·
(
n− 1

s

)
,
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which implies that ωn,sµ = δn,sµ for any n ∈ N and s ∈ {0, . . . , n − 1}. Hence, the system of

weights is unique.

Finally, to prove that the weights are positive, notice that the game (N, vs) ∈ G is not a

null game. Therefore,

0 < µ(N, vs) =
∑
i∈N

∑
S⊆N\i

ωn,|S|µ [vs(S ∪ i)− vs(S)] = ωn,sµ · n ·
(
n− 1

s

)
,

which implies that ωn,sµ > 0 for any n ∈ N and s ∈ {0, . . . , n− 1}.

Two important examples of additive, positive, and anonymous real valued functions are

µSh(N, v) = v(N) and µBa(N, v) =
∑
S⊆N (2s − n)v(S). They induce respectively the two

families of weights defined for every n ∈ N and s ∈ {0, . . . , n− 1} by

ωn,sSh = ωn,s
µSh =

s!(n− s− 1)!

n!
and ωn,sBa = ωn,s

µBa =
1

2n−1
. (7)

3.2 A characterization of share functions

In this subsection we focus on share functions. We start by considering three properties that a

share function might satisfy.

npp A share function ρ satisfies the Null Player Property if, for every (N, v) ∈ G+ and every

null player i ∈ N in (N, v), it holds that ρi(N, v) = 0.

sym A share function ρ satisfies Symmetry if, for every (N, v) ∈ G and every pair i, j ∈ N of

symmetric players in (N, v), it holds that ρi(N, v) = ρj(N, v).

µ-add Let µ : G → R. A share function ρ satisfies µ-Additivity if, for every pair of games

(N, v), (N,w) ∈ G, it holds that µ(N, v+w)ρ(N, v+w) = µ(N, v)ρ(N, v)+µ(N,w)ρ(N,w).

The two first properties, npp and sym, are the same as for value functions (except that

here the null player property is not required for null games), whereas µ-add generalizes the usual

additivity property for value functions. The next result shows that the above three properties

determine a unique share function and that none of the properties can be left out.

Proposition 3.3. Let µ : G → R be positive, additive, and anonymous. Then, there is a unique

share function ρµ satisfying npp, sym, and µ-add. This share function is given by

ρµi (N, v) =

∑
S⊆N\i ω

n,s
µ [v(S ∪ i)− v(S)]

µ(N, v)
, i ∈ N, if v 6= v0,

and ρµi (N, v0) = 1
n , i ∈ N . Moreover, the three properties are independent.

11



Proof. We only prove the independence of the properties since the characterization

result holds as a direct consequence of Theorem 25 in van den Brink and van der Laan (1999),

Theorem 3.2 in Subsection 3.1 and Proposition 6.1 in the Appendix.

First, let a, b be two different and fixed players. Since µ is additive, positive, and anony-

mous, we can write

µ({a, b}, v) = λ1 · v(a) + λ1 · v(b) + λ2 · v(a, b),

for some 0 < λ1, λ2. Then we define ρ as follows:

• If N = {a, b} and (N, v) ∈ G+, then ρa(N, v) = 1
µ(N,v) [λ1 · v(a) + λ2 · (v(a, b)− v(b))] ,

ρb(N, v) = 1
µ(N,v) [(λ1 + λ2) · v(b)] .

• If N 6= {a, b}, then ρ(N, v) = ρµ(N, v).

It is straightforward to check that ρ is a share function that satisfies npp and µ-add. However

it does not satisfy sym. To prove this last assertion, consider the game (N, v) ∈ G where

N = {a, b} and v(a) = v(b) = v(a, b) = 1. It is clear that a and b are symmetric players in

(N, v) but

µ(N, v)ρa(N, v) = λ1 6= λ1 + λ2 = µ(N, v)ρb(N, v).

Second, let µ : G → R and µ′ : G → R, µ 6= µ′ be two positive, additive, and anonymous

functions. Then, from the uniqueness of the characterization result, ρµ
′
satisfies npp and sym

but not µ-add.

Third, let ρ be defined for every (N, v) ∈ G and every i ∈ N by ρi(N, v) = 1/n. Then,

for any additive µ, ρ satisfies µ-add and sym but not npp. �

Note that the expression of ρµ given in Proposition 3.3 implies that all shares are nonneg-

ative for any monotone game. It should also be noticed that Theorem 3.5 in van der Laan and

van den Brink (1998) proves an even stronger result for a fixed player set.4 Given a µ-function

that is positive and anonymous, it is there shown that the characterization result for share func-

tions holds if and only if µ is additive. This fact supports the need to consider µ-functions that

not only are positive and anonymous – properties that are very standard – but also additive.

Note also that, when µ = µSh, the unique share function satisfying the corresponding properties

is ρSh, whereas when µ = µBa, it is ρBa. Lastly, observe that µSh-add is the additivity property

used by Shapley (1953).
4As mentioned in van den Brink and van der Laan (1999), these results hold under symmetry of µ.
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4 Games with levels structure of cooperation

In the model analyzed so far cooperation among agents was not limited. In the rest of the

paper a restriction to the cooperation is introduced as a finite sequence of partitions defined on

the player set, each of them being coarser than the previous one. The worths of each coalition

together with the sequence of partitions are now the available data.

Let N be a finite set of players. For some integer k ≥ 0, Winter (1989) introduced a

k-level structure of cooperation over N being a sequence of partitions of N , B = {B0, . . . , Bk+1}

such that B0 = {{i} : i ∈ N}, Bk+1 = {N}, and, for each r ∈ {0, . . . , k}, Br+1 is coarser than

Br. That is to say, for each r ∈ {1, . . . , k + 1} and each S ∈ Br, there is B ⊆ Br−1 such that

S = ∪U∈B U . Each S ∈ Br is called a union and Br is called the r-th level of B. The levels

B0 and Bk+1 are added for notational convenience. We denote by B0 the trivial levels structure

with k = 0, i.e., B0 = {B0, B1} with B0 = {{i}}i∈N and B1 = {N}. We further denote by

L(N) the set of all levels structures of cooperation over the set N .

Example 4.1. Take N = {1, 2, 3, 4, 5}. Then B ∈ L(N) given by B0 = {{1}, {2}, {3}, {4}, {5}},

B1 = {{1, 2}, {3}, {4, 5}}, B2 = {{1, 2}, {3, 4, 5}} and B3 = {{1, 2, 3, 4, 5}} is a 2-level structure

of cooperation over N .

A game with levels structure of cooperation is a triple (N, v,B), where (N, v) ∈ G and

B ∈ L(N). We denote by GL the set of all games with levels structure of cooperation. Notice

that a game with the trivial levels structure B0 corresponds to a standard transferable utility

game and that a game with 1-level structure of cooperation B = {B0, B1, B2} corresponds to a

game with coalition structure as introduced in Aumann and Drèze (1974), also known as game

with a priori unions in Owen (1977).

On the one hand, given (N, v,B) ∈ GL with B = {B0, . . . , Bk+1}, for each r ∈ {0, . . . , k}

we define the rth- union level game (Br, v
r, Br) ∈ GL induced from (N, v,B) as the game

with k − r levels structure of cooperation with the elements of Br as players, characteristic

function vr given by vr(S) = v(
⋃
U∈S U) for any coalition S ⊆ Br, and with levels structure

Br = {Br0 , . . . , Brk−r+1} given by Br0 = {{U} : U ∈ Br}, Brs = {{U ∈ Br : U ⊆ U ′} : U ′ ∈ Br+s}

for s ∈ {1, . . . , k− r}, and Brk−r+1 = {{U : U ∈ Bk}}. Notice that Br = B if r = 0, whereas Bk

is the trivial levels structure B0 on the player set {U : U ∈ Bk}. Notice as well that monotonicity

of (N, v) implies monotonicity of (Br, v
r).

On the other hand, given B ∈ L(N) with B = {B0, . . . , Bk+1} and i ∈ N , let (N,B−i) ∈

L(N) be the levels structure of cooperation obtained from (N,B) by isolating player i from
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the union she belongs to at each level, i.e., B−i = {B0, B
−i
1 , . . . , B−ik , Bk+1}, where, for all

r ∈ {1, . . . , k}, B−ir = {U ∈ Br : i /∈ U} ∪ {S \ i, {i}} with i ∈ S ∈ Br.

A value on GL is a map f that assigns to every game with levels structure of cooperation

(N, v,B) ∈ GL a vector f(N, v,B) ∈ RN . We recall the definition of the Shapley levels value

(Winter, 1989) for games with levels structure of cooperation. To do so we need to introduce

some further notation. For B = {B0, . . . , Bk+1} ∈ L(N), we define the sets of permutations

Ω1(B) ⊆ Ω2(B) ⊆ · · · ⊆ Ωk+1(B) ⊆ Π(N) by Ωk+1(B) = Π(N) and, recursively, for r =

k, . . . , 1,

Ωr(B) = {σ ∈ Ωr+1(B) : ∀S ∈ Br,∀i, j ∈ S and l ∈ N, if σ(i) < σ(l) < σ(j) then l ∈ S}.

That is, Ωr(B) denotes the permutations of Ωr+1(B) such that the elements of each union of

Br are consecutive.

Definition 4.2. (Winter, 1989)

The Shapley levels value, ShL, assigns to any cooperative game with levels structure of cooper-

ation (N, v,B) ∈ GL, a vector in RN defined as

ShLi (N, v,B) =
1

|Ω1(B)|
∑

σ∈Ω1(B)

(v(Pσi ∪ i)− v(Pσi )), i ∈ N,

where Pσi = {j ∈ N : σ(j) < σ(i)} is the set of predecessors of i with respect to σ.

4.1 A class of LS-share functions

In this section we introduce a family of share functions for games with levels structures of

cooperation. The different share functions depend only on the choice of a positive, additive and

anonymous real valued function µ : G → R. We generalize the families of share functions for

standard games (van der Laan and van den Brink, 1998) and Coalition Structure (CS)-share

functions for games with coalition structure (van den Brink and van der Laan, 2005) to games

with an arbitrary number of levels structures of cooperation.

A Levels Structure (LS)-share function is a map that assigns to every player in a game

with levels structure of cooperation (N, v,B) ∈ GL her share in the worth to be allocated over

the players. The class of CS-share functions introduced and characterized in van den Brink and

van der Laan (2005) is built by multiplying for each player two shares, namely the share of each

player in some ‘internal’ game within the union she belongs to, and the share of this union in

an ‘external’ game played among the unions.
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To generalize the class of CS-share functions to games with an arbitrary number of levels

structure of cooperation (N, v,B), we introduce further concepts and notation. Given a levels

structure of cooperation B ∈ L(N), for each player i ∈ N , let U ir, r ∈ {0, . . . , k + 1}, be the

sequence of sets obtained by taking U ir the element in Br that contains player i. Notice that

U i0 = {i}, U ik+1 = N and that U i0 ⊆ U i1 ⊆ · · · ⊆ U ik ⊆ U ik+1. Then, let N i
r(B) = {U : U ∈

Br, U ⊆ U ir+1} be the set of all unions of the rth-level of cooperation that form the union U ir+1 of

the (r+ 1)th level of cooperation. In order to ease the notation, we write N i
r when no confusion

may arise.

Example 4.3 (Continuation of Example 4.1). Let i = 4 ∈ N . Then,

U4
0 = {4} ⊆ U4

1 = {4, 5} ⊆ U4
2 = {3, 4, 5} ⊆ U4

3 = {1, 2, 3, 4, 5} and

N4
0 (B) = {{4}, {5}}, N4

1 (B) = {{3}, {4, 5}}, N4
2 (B) = {{1, 2}, {3, 4, 5}}.

Following the philosophy behind the definition of the internal and external games for

games with coalition structure, given a game with k levels structure of cooperation we shall

define k+1 different games for each player. We recall that lowercase letters denote cardinalities,

and hence in particular nir = |N i
r| and sr = |Sr| for every r ∈ {0, . . . k} in the definition below.

Definition 4.4. Let µ : G → R be positive, additive, and anonymous with corresponding

weights {ωn,sµ : n ∈ N, s ∈ {0, 1, . . . , n−1}}. For every (N, v,B) ∈ GL, i ∈ N , and r ∈ {0, . . . , k},

let the rth-level game of i with respect to µ, (N i
r(B), vi,rµ ) ∈ G, be given, for each T ⊆ N i

r, by

vi,rµ (T ) =
∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

Sr+1⊆Ni
r+1

Ui
r+1 /∈Sr+1

ω
ni
k,sk

µ · · ·ωn
i
r+1,sr+1

µ · [v(Sk,r+1 ∪ T )− v(Sk,r+1)] (8)

where Sk,r+1 = Sk ∪ Sk−1 ∪ · · · ∪ Sr+1 for r ∈ {0, . . . , k − 1} and Sk,k+1 = ∅.

Note that in the definition above we abuse notation and write v(Sk,r+1) to denote v({i ∈

U : U ∈ Sl for some l ∈ {r + 1, . . . , k}}). Further, we assume that the empty set always

belongs to the summation in eq. (8). Therefore the kth level game of any player with respect

to any µ coincides with the kth union level game, i.e., we have vi,kµ (T ) = v(
⋃
U∈T U) for all

T ⊆ N i
k = {U ∈ Bk : U ⊆ N} = Bk. Moreover, it is easy to check that, when k = 1, vi,0µ and

vi,1µ correspond exactly to the internal and external (quotient) games considered by Owen (1977)

for µ = µSh and in Andjiga and Courtin (2010) for general µ; in the latter paper a minor mistake

in the internal game made in van den Brink and van der Laan (2005) has been corrected. It is

as well straightforward to check that for every i ∈ N and r ∈ {0, . . . , k}, (N i
r, v

i,r
µ ) ∈ G whenever

(N, v) ∈ G.

15



Example 4.5 (Continuation of Example 4.3). For i = 4, r = 0 and T = {4}, we have

v4,0
µ ({4}) = ω2,0

µ · ω2,0
µ · (v({4})− v(∅)) + ω2,0

µ · ω2,1
µ · (v({3, 4})− v({3}))

+ ω2,1
µ · ω2,0

µ · (v({1, 2, 4})− v({1, 2})) + ω2,1
µ · ω2,1

µ · (v({1, 2, 3, 4})− v({1, 2, 3})).

Next, in line with Theorem 3.1 in van den Brink and van der Laan (2005), a class of

LS-share functions is defined based on positive, additive, and anonymous µ-functions. Each

member of this class of LS-share functions is also denoted by ρµ and is defined as a product of

the shares in each of the rth-level games.

Definition 4.6. Let µ : G → R be positive, additive, and anonymous. Given a game with

levels structure of cooperation (N, v,B) ∈ GL, the µ-LS-share function, ρµ, assigns to any game

(N, v) a vector in RN defined as

ρµi (N, v,B) =

k∏
r=0

ρµUi
r
(N i

r, v
i,r
µ ), i ∈ N,

where the share function for standard games, ρµ, is defined in Proposition 3.3.

It is easy to verify that the above definition indeed yields a LS-share function: this is

just a consequence of ρµ being a share function and the fact that, for each r ∈ {1, . . . , k} and

U ∈ Br, it holds N i
s = N j

s and vi,rµ = vj,rµ for every pair of players i, j ∈ U and s ∈ {r, ..., k}.

The next proposition shows other properties satisfied by µ-LS-share functions.

Proposition 4.7. Let µ : G → R be positive, additive, and anonymous. Then

(i) For every (N, v) ∈ G, ρµ(N, v,B0) = ρµ(N, v).

(ii) For every (N, v,B) ∈ GL such that (N, v) ∈ G+, and every null player i in (N, v),

ρµi (N, v,B) = 0.

(iii) For every (N, v,B) ∈ GL and every pair of players i, j ∈ N that are symmetric in (N, v)

such that there is some U ∈ B1 with i, j ∈ U , ρµi (N, v,B) = ρµj (N, v,B).

(iv) For every (N, v,B) ∈ GL, U ∈ Br ∈ B and r ∈ {0, . . . , k},
∑
i∈U ρ

µ
i (N, v,B) = ρµU (Br, v

r, Br).

(v) For every pair of games (N, v), (N,w) ∈ G, every levels structure of cooperation B ∈ L(N),

and every player i ∈ N ,

ρµi (N, z,B)·
k∏
r=0

µ(N i
r, z

i,r
µ ) =

k∏
r=0

[
µ(N i

r, v
i,r
µ )ρµUi

r
(N i

r, v
i,r
µ , B0) + µ(N i

r, w
i,r
µ )ρµUi

r
(N i

r, w
i,r
µ , B0)

]
,

where z = v + w.
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Proof.

(i) If B0 = {B0, B1} then, for every i ∈ N , we have N i
0 = {{j} : j ∈ N} and N i

1 = {N}.

It trivially follows that ρµ(N, v,B0) = ρµ
Ui

0
(N i

0, v
i,0
µ ) = ρµi (N, v).

(ii) We assume k ≥ 1 since it is trivial otherwise. Let (N, v,B) ∈ GL be such that

(N, v) ∈ G+, and i ∈ N be a null player in (N, v). First of all, observe that by Definition 4.4,

(N, v) ∈ G+ implies that (N i
k, v

i,k
µ ) ∈ G+. We next shall show that, for every r ∈ {1, . . . , k}, if

U ir is not a null player in (N i
r, v

i,r
µ ), then (N i

r−1, v
i,r−1
µ ) ∈ G+.

We first show it for r = k. Let U ik ∈ N i
k be a non-null player in (N i

k, v
i,k
µ ). That is, there

is S∗k ⊆ N i
k \ U ik such that

vi,kµ (S∗k ∪ U ik)− vi,kµ (S∗k) = v(S∗k ∪ U ik)− v(S∗k) > 0. (9)

Next, we show that (N i
k−1, v

i,k−1
µ ) is not a null game. Indeed, note that

vi,k−1
µ (N i

k−1) =
∑

Sk⊆Ni
k

Ui
k /∈Sk

ω
ni
k,sk

µ

[
v(Sk ∪ U ik)− v(Sk)

]
> 0,

where the inequality holds since, on the one hand, each term in the above summation is nonneg-

ative because (N, v) is monotone and, on the other hand, the term associated to S∗k is positive

by eq. (9).

Now take r ∈ {1, ..., k− 1} and let U ir be a non-null player in (N i
r, v

i,r
µ ). That is, there is

S∗r ⊆ N i
r \ U ir such that

vi,rµ (S∗r ∪ U ir)− vi,rµ (S∗r )

=
∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

Sr+1⊆Ni
r+1

Ui
r+1 /∈Sr+1

ω
ni
k,sk

µ · · ·ωn
i
r+1,sr+1

µ

[
v(Sk,r+1 ∪ S∗r ∪ U ir)− v(Sk,r+1 ∪ S∗r )

]
> 0.

Since (N, v) is monotone, there are S∗k ⊆ N i
k \ U ik, . . . , S∗r+1 ⊆ N i

r+1 \ U ir+1 such that

v(S∗k,r ∪ U ir)− v(S∗k,r) > 0, (10)

where S∗k,r = S∗k ∪ ...∪S∗r+1 ∪S∗r . Next, we show that (N i
r−1, v

i,r−1
µ ) is not a null game. Indeed,

note that

vi,r−1
µ (N i

r−1) =
∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

Sr⊆Ni
r

Ui
r /∈Sr

ω
ni
k,sk

µ · · ·ωn
i
r,sr

µ

[
v(Sk,r ∪ U ir)− v(Sk,r)

]
> 0,
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where, again, the inequality holds since, on the one hand, each term in the above summation is

nonnegative because (N, v) is monotone and, on the other hand, the term associated to S∗k,r is

positive by eq. (10).

Summing up, first we have seen that (N i
k, v

i,k
µ ) is not a null game, and second that, for

every r ∈ {1, . . . , k}, if U ir is not a null player in (N i
r, v

i,k
µ ), then (N i

r−1, v
i,r−1
µ ) ∈ G+. Thus, two

cases may arise,

• either there exists r ∈ {1, . . . , k} such that U ir is a null player in a non-null game (N i
r, v

i,r
µ ),

which by npp of ρµ means that ρµUi
r
(N i

r, v
i,r
µ ) = 0,

• or, for every r ∈ {1, . . . , k}, (N i
r−1, v

i,r−1
µ ) is not a null game. In particular (N i

0, v
i,0
µ ) ∈ G+.

Since i is a null player in (N, v) it is also a null player in (N i
0, v

i,0
µ ), which by npp of ρµ

means that ρµ
Ui

0
(N i

0, v
i,0
µ ) = 0.

In any case, we obtain ρµi (N, v,B) = 0.

(iii) Notice that, if i and j are symmetric players in (N, v) and they belong to the same

union at the first level, then U i0 and U j0 are symmetric in (N i
0, v

i,0
µ ) = (N j

0 , v
j,0
µ ) and U ir = U jr

for r ∈ {1, . . . , k}. Then, using Definition 4.6 and the fact that ρµ satisfies sym,

ρµi (N, v,B) = ρµ
Ui

0
(N i

0, v
i,0
µ )

k∏
r=1

ρµUi
r
(N i

r, v
i,r
µ ) = ρµ

Uj
0

(N j
0 , v

j,0
µ )

k∏
r=1

ρµ
Uj

r
(N j

r , v
j,r
µ ) = ρµj (N, v,B).

(iv) This is a consequence of ρµ being a share function and the fact that given U ∈ Br ∈ B,

for every l ∈ {r, . . . , k}, (N i
l , v

i,l
µ ) is the same game for any i ∈ U .

(v) This follows from Proposition 3.3 and the definition of ρµ since, for each r ∈ {0, . . . , k}

and each i ∈ N , it holds that (v + w)i,rµ = vi,rµ + wi,rµ . �

Property (i) shows that the µ-LS-share function extends the µ-share function for games

without levels structure of cooperation. Properties (ii) and (iii) are standard and apply to every

game with levels structure of cooperation. Although only weaker versions of these two properties

are needed in the characterization results for ρµ in Section 5, it is important to point out that

their corresponding stronger versions are also satisfied by ρµ. In fact, van den Brink and van

der Laan (2005) use, for games with one level structure of cooperation, the stronger versions.

Property (iv) is a consistency property, in the sense that it requires the share of a union in the

rth- union level game to coincide with the sum of the shares of the players in that union. For
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games with coalition structure it generalizes the quotient game property stated in Owen (1977).

Lastly, property (v) is a generalized version of the µ-add for share functions and it extends

as well two µ-additivity properties introduced in van den Brink and van der Laan (2005) for

CS-share functions.

4.2 The Shapley levels share function

The LS-share function associated to the Shapley levels value as given in Definition 4.2 is defined

below. Since ShL is efficient, we only need to divide the Shapley value of a player by the worth

of the grand coalition.

Definition 4.8. Given a game with levels structure of cooperation (N, v,B) ∈ GL, the Shapley

levels LS-share function, ρSh
L

, is a vector in RN given by,

ρSh
L

i (N, v,B) =
ShLi (N, v,B)

v(N)
, i ∈ N, if v 6= v0,

and ρSh
L

i (N, v0, B) =
k∏
r=0

1
|Ni

r|
, i ∈ N .

In this subsection we prove that the Shapley levels LS-share function belongs to the

family of share functions introduced in Definition 4.6. In order to do so, we make use of the

characterization of the Shapley levels value by Álvarez-Mozos and Tejada (2011). The two

main properties of this characterization are the Level Game Property and the Level Balanced

Contributions property. The first one requires the total payoff obtained by the members of a

union in a given level be equal to the payoff obtained by the union when considering it as a

player in the corresponding level game. The second one is a reciprocity property that requires

that, when a player of a union on the highest level Bk is isolated within the level structure and

becomes a union itself of Bk, Bk−1, . . . , B1, this affects a player that is in the same union on

the lowest level B1 in the same amount as if it happens the other way around. Let us formally

introduce these two properties.

lgp A value f on GL satisfies the Level Game Property if for every (N, v,B) ∈ GL and U ∈ Br
for some r ∈ {1, · · · , k}, ∑

i∈U
fi(N, v,B) = fU (Br, v

r, Br).

lbc A value f on GL satisfies Level Balanced Contributions if for every (N, v,B) ∈ GL and

i, j ∈ U ∈ B1,

fi(N, v,B)− fi(N, v,B−j) = fj(N, v,B)− fj(N, v,B−i).
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Before proving the main result of this subsection, we first state a useful alternative

expression of the Shapley levels value.

Lemma 4.9. Let (N, v,B) ∈ GL be a game with levels structure of cooperation. Then, for each

i ∈ N ,

ShLi (N, v,B) =
∑

Sk⊆Ni
k\U

i
k

· · ·
∑

S0⊆Ni
0\Ui

0

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh · [v(Sk,0 ∪ i)− v(Sk,0)] . (11)

Proof. We prove this lemma by induction on the number of levels of B ∈ L(N). The

case k = 1 is a consequence of ShL being a generalization of the Owen value. Suppose that the

Shapley levels value ShL(N, v,B′) is obtained from eq. (11) for every (N ′, v′, B′) ∈ GL with at

most k− 1 levels of cooperation, and let (N, v,B) ∈ GL be a game with k levels of cooperation.

Let i ∈ U i1 ∈ B1 be an arbitrary player. We prove that ShLi (N, v,B) is obtained from eq. (11)

for (N, v,B) by a second induction on u = |U i1|. If u = 1, we have U i1 = {i} and thus

ShLi (N, v,B) =
∑
i∈Ui

1

ShLi (N, v,B) = ShL{i}(B1, v
1, B1)

=
∑

Sk⊆N{i}k (B1)

U
{i}
k (B1)/∈Sk

· · ·
∑

S1⊆N{i}1 (B1)

U
{i}
1 (B1)/∈S1

ω
ni
k(B1),sk

Sh · · · ωn
i
1(B1),s1

Sh

[
v1(Sk,1 ∪ {i})− v1(Sk,1)

]

=
∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

S1⊆Ni
1

Ui
1 /∈S1

∑
S0⊆Ni

0

Ui
0 /∈S0

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)] ,

where the second equality follows by lgp, the third equality holds by the first induction hy-

pothesis since B1 ∈ L(B1) is a levels structure of cooperation with k − 1 levels, and the

fourth equality holds since N i
0(B) \ U i0 = ∅, N i

r(B1, B1) = N i
r(B) for all r ∈ {1, . . . , k}, and

v1(Sk,1 ∪ {i})− v1(Sk,1) = v(Sk,0 ∪ i)− v(Sk,0).

Now assume that ShLi (N, v,B) is obtained from eq. (11) for any (N, v,B) with k levels

of cooperation and for any i ∈ U i1 ∈ B1 where |U i1| < u. Next suppose that (N, v,B) ∈ GL is a

game with k levels of cooperation and |U i1| = u. Since ShL satisfies lgp and lbc, we have

ShLi (N, v,B) = ShLUi
1
(B1, v

1, B1)−
∑

j∈Ui
1\i

ShLj (N, v,B)

= ShLUi
1
(B1, v

1, B1)−
∑

j∈Ui
1\i

[
ShLi (N, v,B)− ShLi (N, v,B

−j) + ShLj (N, v,B
−i)
]
,

which can be rewritten as

ShLi (N, v,B) =
1

ni0

ShLUi
1
(B1, v

1, B1) +
∑

j∈Ui
1\i

[
ShLi (N, v,B

−j)− ShLj (N, v,B
−i)
] . (12)
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Observe that, according to the double induction hypothesis, ShLUi
1
(B1, v

1, B1), ShLi (N, v,B−j),

and ShLj (N, v,B
−i), for all j ∈ U i1 \ i, can be obtained from eq. (11). Hence, for every j ∈ U i1 \ i,

it holds that

ShLi (N, v,B
−j) =

∑
Sk⊆Ni

k(B−j)

Ui
k(B−j)/∈Sk

· · ·
∑

S0⊆Ni
0(B−j)

Ui
0(B−j)/∈S0

ω
ni
k(B−j),sk

Sh · · ·ωn
i
0(B−j),s0

Sh [v(Sk,0 ∪ i)− (v(Sk,0)]

=
∑

Sk⊆Ni
k(B−j)

{j},Ui
k(B−j)/∈Sk

· · ·
∑

S0⊆Ni
0(B−j)

Ui
0(B−j)/∈S0

{
ω
ni
k(B−j),sk

Sh · · ·ωn
i
0(B−j),s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)]

+
sk + 1

nik(B−j)− sk − 1
· ωn

i
k(B−j),sk

Sh · · ·ωn
i
0(B−j),s0

Sh [v(Sk,0 ∪ j ∪ i)− v(Sk,0 ∪ j)]
}
,

where the second equality is obtained by distinguishing the cases {j} /∈ Sk and {j} ∈ Sk and

noting that
ω
ni
k(B−j),sk+1

Sh

ω
ni
k(B−j),sk

Sh

=
sk + 1

nik(B−j)− sk − 1
.

We point out that we have used the notation U ir(B−j) for all r ∈ {0, ..., k+1} to denote the unions

of each level that contain player i when the levels structure is B−j . Thus, U i0(B−j) = U i0 = {i}

and U ir(B−j) = U ir \j for all r ∈ {1, . . . , k}. Also notice that N i
k(B−j) = N i

k \U ik∪ (U ik \j)∪{j},

N i
r(B

−j) = N i
r \ U ir ∪ (U ir \ j) for each r ∈ {1, . . . k − 1} and N i

0(B−j) = N i
0 \ j. Moreover, it

can also be checked that

ω
ni
k(B−j),sk

Sh

ω
ni
k,sk

Sh

=
nki − sk
nki + 1

,
ω
ni
0(B−j),s0

Sh

ω
ni
0,s0

Sh

=
ni0

ni0 − s0 + 1
, and

ω
ni
r(B−j),sr

Sh

ω
ni
r,sr

Sh

= 1, for every r ∈ {1, . . . , k − 1}.

From the above remarks we obtain

ShLi (N, v,B
−j)

=
∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

S0⊆Ni
0

{i},{j}/∈S0

{(
nik − sk
nik + 1

· ni0
ni0 − s0 − 1

)
· ωn

i
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)]

+

(
sk + 1

nik + 1
· ni0
ni0 − s0 − 1

)
· ωn

i
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ j ∪ i)− v(Sk,0 ∪ j)]

}
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Using twice the above expression, exchanging i and j, we obtain,

ShLi (N, v,B
−j)− ShLj (N, v,B

−i)

=
∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

S0⊆Ni
0

{i},{j}/∈S0

ni0
ni0 − s0 − 1

· ωn
i
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0 ∪ j)] .

Then, from eq. (12), we have

ShLi (N, v,B) =
1

ni0

∑
Sk⊆Ni

k

Ui
k /∈Sk

· · ·
∑

S1⊆Ni
1

Ui
1 /∈S1

ω
ni
k,sk

Sh · · ·ωn
i
1,s1

Sh

·

v(Sk,1 ∪ U i1)− v(Sk,1) +
∑

j∈Ui
1\i

∑
S0⊆Ni

0

{i},{j}/∈S0

ni0
ni0 − s0 − 1

· ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0 ∪ j)]

 .

Lastly, the expression of the lemma follows since, given Sk ⊆ N i
k \U ik, . . . , S1 ⊆ N i

1 \U i1, we have

1

ni0

[
v(Sk,1 ∪ U i1)− v(Sk,1)

]
+
∑

j∈Ui
1\i

∑
S0⊆Ni

0

{i},{j}/∈S0

1

ni0 − s0 − 1
· ωn

i
0,s0

Sh · [v(Sk,0 ∪ i)− v(Sk,0 ∪ j)]

=
1

ni0

[
v(Sk,1 ∪ U i1)− v(Sk,1)

]
+

∑
S0⊆Ni

0\{i}
S0 6=Ni

0\{i}

(ni0 − s0 − 1) · 1

ni0 − s0 − 1
· ωn

i
0,s0

Sh · v(Sk,0 ∪ i)

−
∑

S0⊆Ni
0\{i}

S0 6=∅

s0 ·
1

ni0 − s0
· ωn

i
0,s0−1

Sh · v(Sk,0) =
∑

S0⊆Ni
0\Ui

0

ω
ni
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)] ,

where the first equality holds by observing that, given S0 ( N i
0 \ {i}, the number of different

players j ∈ N i
0 \ {i} such that j /∈ S0 is ni0 − s0 − 1, whereas, given ∅ 6= S0 ⊆ N i

0 \ {i}, the

number of different players j ∈ N i
0 \ {i} such that j ∈ S0 is s0.

We now prove that the Shapley levels LS-share function, ρSh
L

, lies within the class of

µ-LS-share functions, i.e., that there is an anonymous, positive, and additive real-valued µ such

that ρSh
L

= ρµ. Furthermore, we prove that µ = µSh and that the corresponding weights are

therefore those given in eq. (7).

Proposition 4.10. Let (N, v,B) ∈ GL be a game with levels structure of cooperation. Then

ρSh
L

(N, v,B) = ρµ
Sh

(N, v,B). (13)

Proof. Let (N, v,B) ∈ GL, i ∈ N , and µ = µSh. First of all, note that if (N, v) is a null

game the result is straightforward. Then, in the sequel we assume that (N, v) ∈ G+. If i is a
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null player in (N, v), by npp, we have ρSh
L

i (N, v,B) = 0, whereas, by (ii) of Proposition 4.7, we

have ρµ
Sh

i (N, v,B) = 0, and thus eq. (13) trivially holds. Thus, we also assume that i is not a

null player.

From the proof of (ii) in Proposition 4.7, we know that, for every r ∈ {1, . . . , k}, if U ir is

not a null player in (N i
r, v

i,r
µ ) then (N i

r−1, v
i,r−1
µ ) is not a null game, and that (N i

k, v
i,k
µ ) is not a

null game when (N, v) is not a null game either. Hence, if, for some r ∈ {1, . . . , k}, U ir is a null

player in (N i
r, v

i,r
µ ), then this latter game is non-null.

We now consider two cases. First, suppose that, for some r ∈ {1, . . . , k}, U ir is a null player

in (N i
r, v

i,r
µ ) ∈ G+. First, by npp we have that ρµUi

r
(N i

r, v
r,i
µ ) = 0 and, hence, ρµi (N, v,B) = 0.

Then, for every Sr ⊆ N i
r \ U ir, we have vi,rµ (Sr ∪ U ir) = vi,rµ (Sr), which implies that U ir is a null

player also in (Br, v
r). Moreover, since ShL satisfies the null player property, we obtain

ShLUi
r
(Br, v

r, Br) = 0. (14)

Now, taking into account that (N, v) ∈ G+, we have that, for every j ∈ N , ShLj (N, v,B) ≥ 0.

Thus, from eq. (14) and the fact that ShL satisfies lgp, we obtain that ShLi (N, v,B) = 0 and,

hence, ρSh
L

i (N, v,B) = 0, which completes the proof for this case.

Second, assume that for every r ∈ {0, . . . , k}, (N i
r, v

r,i
µ ) ∈ G+. Using Definition 4.6 and

Proposition 3.3, it is enough to check that

ρSh
L

i (N, v,B) =

k∏
r=0

ShUi
r
(N i

r, v
i,r
µ )

vi,rµ (N i
r)

.

First, note that by Definitions 2.1 and 4.4, for each r ∈ {0, . . . , k − 1},

ShUi
r+1

(N i
r+1, v

i,r+1
µ ) = vi,rµ (N i

r). (15)

Second, using Lemma 4.9, we have

ShLi (N, v,B) =
∑

Sk⊆Ni
k\U

i
k

· · ·
∑

S0⊆Ni
0\Ui

0

ω
ni
k,sk

Sh · · ·ωn
i
0,s0

Sh [v(Sk,0 ∪ i)− v(Sk,0)]

=
∑

S0⊆Ni
0

Ui
0 /∈S0

ω
ni
0,s0

Sh


∑

Sk⊆Ni
k

Ui
k /∈Sk

· · ·
∑

S1⊆Ni
1

Ui
1 /∈S1

ω
ni
k,sk

Sh · · ·ωn
i
1,s1

Sh [v(Sk,0 ∪ i)− v(Sk,0)]


= Shi(N

i
0, v

i,0
µ ) = ShUi

0
(N i

0, v
i,0
µ ), (16)
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where the penultimate equality holds by Definition 4.4. Finally,

ρSh
L

i (N, v,B) =
ShLi (N, v,B)

v(N)
=

ShLi (N, v,B)

v(N)

k−1∏
r=0

vi,rµ (N i
r)

vi,rµ (N i
r)

=
ShLi (N, v,B)

v(N)

k−1∏
r=0

ShUi
r+1

(N i
r+1, v

i,r+1
µ )

vi,rµ (N i
r)

=
ShLi (N, v,B)

v(N)

k−1∏
r=1

ShUi
r
(N i

r, v
i,r
µ )

vi,rµ (N i
r)

ShUi
k
(N i

k, v
i,k
µ )

vi,0µ (N i
0)

=
ShUi

0
(N i

0, v
i,0
µ )

vi,0µ (N i
0)

k−1∏
r=1

ShUi
r
(N i

r, v
i,r
µ )

vi,rµ (N i
r)

ShUi
k
(N i

k, v
i,k
µ )

vi,kµ (N i
k)

=

k∏
r=0

ρShUi
r
(N i

r, v
i,r
µ ),

where the third equality holds by eq. (15), the fifth equality holds by eq. (16) and the fact that

vi,kµ (N i
k) = v(N), and the last equality holds by the definition of ρSh.

In Álvarez-Mozos and Tejada (2011) a generalization of the Banzhaf value is introduced

and characterized for games with levels structure of cooperation. This Banzhaf value generalizes

the Owen-Banzhaf value given in Owen (1981) for games with coalition structure. From van

der Laan and van den Brink (2002) it follows that the corresponding share function does not

belong to their class of CS-share functions. Therefore, the share function corresponding to the

Banzhaf levels value of Álvarez-Mozos and Tejada (2011) does not belong to the class of LS-share

functions defined in this section. In particular it does not satisfy the multiplication property,

that we introduce in the next section.

5 Characterization of the class of LS-share functions

The characterization of a share function consists of finding a minimal set of properties that

uniquely determine it. In many situations characterizing a share function is more appealing

than just giving an explicit formula or procedure to calculate it. In this section we propose

sets of properties that characterize the class of µ-LS-share functions. We consider two types of

properties. Properties of the first type apply only to games with the trivial levels structure of

cooperation, whereas properties of the second type involve games with arbitrary levels structures

of cooperation.

The following properties of the first type are standard in the literature for games without

restrictions on the cooperation possibilities and are based on npp, sym and µ-add properties

defined in Section 3.2.

npp0 A LS-share function ρ satisfies the null player property for trivial levels structures of

cooperation if, for every (N, v,B0) ∈ GL with v 6= v0 and every null player i ∈ N in (N, v),
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ρi(N, v,B0) = 0.

sym0 A LS-share function ρ satisfies symmetry for trivial levels structures of cooperation if, for

every (N, v,B0) ∈ GL and every pair i, j ∈ N of symmetric players in (N, v),

ρi(N, v,B0) = ρj(N, v,B0).

µ-add0 Let µ : G → R. A LS-share function ρ satisfies µ-additivity for trivial levels structures

of cooperation if, for every pair (N, v,B0), (N,w,B0) ∈ GL,

µ(N, v + w)ρ(N, v + w,B0) = µ(N, v)ρ(N, v,B0) + µ(N,w)ρ(N,w,B0).

Next, we consider properties of the second type, which apply to arbitrary games with

levels structure of cooperation.

µ-mul Let µ : G → R. A LS-share function, ρ, satisfies µ-multiplication if for every (N, v,B) ∈

GL and i ∈ N ,

ρi(N, v,B) =
∏k
r=0 ρUi

r
(N i

r, v
i,r
µ , B0).

µ-addL Let µ : G → R. A LS-share function ρ satisfies µ-additivity for arbitrary levels structures

of cooperation if for every pair of games (N, v,B), (N,w,B) ∈ GL, and every player i ∈ N ,

ρi(N, v + w,B) ·
k∏
r=0

µ(N i
r, (v + w)i,rµ )

=

k∏
r=0

[
µ(N i

r, v
i,r
µ )ρUi

r
(N i

r, v
i,r
µ , B0) + µ(N i

r, w
i,r
µ )ρUi

r
(N i

r, w
i,r
µ , B0)

]
.

con A LS-share function ρ satisfies consistency5 if, for every (N, v,B) ∈ GL and every U ∈ Br
for some r ∈ {1, · · · , k},

∑
i∈U ρi(N, v,B) = ρU (Br, v

r, Br).

µ-fair Let µ : G → R. A LS-share function ρ satisfies µ-fairness if, for every (N, v,B) ∈ GL

and every union of the first level, U ∈ B1, there is a scalar Kµ
U,(B1,v1,B1) ∈ R+ such that,

for every i, j ∈ U ,
5We would like to mention that the term “consistency” has also been applied in the literature to other

properties, for instance the reduced game consistency property. Also observe that the property mimics the

requirements in Level Game Property, but it applies to share functions instead of values.
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ρi(N, v,B)− ρj(N, v,B) = Kµ
U,(B1,v1,B1)

[
ρi(U, v

i,0
µ , B0)− ρj(U, vj,0µ , B0)

]
.

Property µ-mul implies that the share of a player in a game with levels structure of

cooperation is obtained by sequentially multiplying her share in the lowest level game with

the share of the union she belongs to on the first level in the second level game, and so on

and so forth. It generalizes a principle mentioned by Owen (1977) when introducing his Owen

value for games with coalition structures and used by van den Brink and van der Laan (2005)

to characterize a class of CS-share functions. By Definition 4.6 it is obvious that µ-LS-share

functions satisfy this property, but here we state it as an explicit axiom that a solution for games

with levels structure of cooperation (in terms of share functions) should satisfy. Similarly, con is

based on a property that is introduced by Owen (1977) as a desirable requirement for a solution

for games with coalition structure, and is satisfied by the class of CS-share functions according

to van den Brink and van der Laan (2005). It states that the sum of the shares of the players

in a union at any level r equals the share of this union in the game between the unions on

this level in the game (Br, v
r, Br). It is obvious from Proposition 4.7.(iv) that all µ-LS-share

functions satisfy this property. By Proposition 4.7.(v), the µ-LS-share functions satisfy µ-addL,

which again generalizes two properties considered in van den Brink and van der Laan (2005) for

games with coalition structure. Finally, µ-fair is a new axiom for games with levels structure

of cooperation. It has some similarity with fairness or the equal gain/loss principle that can be

found in various parts of the game theory literature. However, in this case we do not change

the game or structure (which is usual in such fairness axioms), but we compare the difference

between the shares of two players who are symmetric in the structure (but not necessarily in

the game) with the difference between their shares in the game vi,0µ on the zero level, where

the constant only depends on µ and the first level game. We now state and prove the first

characterization result.

Theorem 5.1. Let µ : G → R be additive, positive, and anonymous. Then, ρµ is the unique LS-

share function on GL that satisfies npp0, sym0, µ-add0, and µ-mul. Moreover, the properties

are independent.

Proof. It has been shown in Proposition 4.7 that ρµ satisfies the four properties (notice

that µ-addL implies µ-add0). Thus we only need to check that ρµ is the unique LS-share

function satisfying the properties.

Let ρ be a LS-share function satisfying the properties. For games with trivial levels

structures of cooperation ρ is characterized in Proposition 3.3 as the unique share function that
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satisfies npp0, sym0, and µ-add0. Then, µ-mul relates the share of any player in any game

with levels structure of cooperation to shares of players in games with the trivial levels structure

of cooperation. Hence, by µ-mul and the uniqueness for trivial levels structures, ρ is unique.

Finally, we show that the properties are independent by means of the following examples.

(i) The LS-share function ρ1 defined, for every (N, v,B) ∈ GL, by ρ1(N, v,B) = ρµ(N, v)

satisfies npp0, sym0, and µ-add0 but not µ-mul.

(ii) The LS-share function ρ2 defined, for every (N, v,B) ∈ GL by ρ2(N, v,B) =
∏k
r=1

1
|Ni

r|
,

satisfies sym0, µ-add0, and µ-mul but not npp0.

(iii) Let a and b be two different and fixed players and N = {a, b}. We know that there are

λ1, λ2 > 0 such that µ(N, v) = λ1v(a) + λ1v(b) + λ2v(N). Then, define the LS-share

function ρ3, for every (N, v,B) ∈ GL, as

– If N = {a, b}, B = B0, and (N, v) ∈ G+, ρ3
a(N, v,B) = 1

µ(N,v) [λ1v(a) + λ2(v(N)− v(b))]

ρ3
b(N, v,B) = 1

µ(N,v) (λ1 + λ2)v(b)

– If B = B0 and N 6= {a, b}, ρ3(N, v,B) = ρµ(N, v).

– If B 6= B0 for every i ∈ N , ρ3
i (N, v,B) =

∏k
r=0 ρ

3
Ui

r
(N i

r, v
i,r
µ , B0).

Then, ρ3 satisfies npp0, µ-add0, and µ-mul but not sym0.

(iv) Let µ0 : G → R be additive, positive, anonymous, and different from µ. The LS-share

function ρ4 defined, for every (N, v,B) ∈ GL and i ∈ N , by

ρ4
i (N, v,B) =

k∏
r=0

ρµ
0

Ui
r
(N i

r, v
i,r
µ ),

satisfies sym0, npp0, and µ-mul but not µ-add0.

�

Theorem 5.1 upgrades Theorems 4.5 and 4.8 in van den Brink and van der Laan (2005)

in two ways. First, it extends the two characterization results from Coalition Structure (being a

levels structure with k = 1) share functions to LS-share functions. Second, it replaces for both

characterizations three of the axioms by weaker versions by requiring them only for trivial levels

structures.
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Obviously, µ-addL implies µ-add0, which can be seen by taking B = B0. Moreover,

µ-addL implies µ-mul, which can be seen by taking w = v0. From Proposition 4.7.(v) it follows

that every LS-share function ρµ satisfies µ-addL. Therefore, Theorem 5.1 yields the following

corollary.

Corollary 5.2. Let µ : G → R be additive, positive, and anonymous. Then, the function ρµ is

the unique LS-share function that satisfies npp0, sym0, and µ-addL. Moreover, the properties

are independent.

Using the LS-share functions considered in the proof of Theorem 5.1 it can be shown

that the properties considered in Corollary 5.2 are also independent. Indeed, the share function

ρ1 satisfies npp0 and sym0 but not µ-addL, the share function ρ2 satisfies sym0 and µ-addL

but not npp0, and the share function ρ3 satisfies npp0 and µ-addL but not sym0. Corollary 5.2

upgrades Theorem 5.3 in van den Brink and van der Laan (2005) in two ways by first extending

the characterization result of the LS-share function from one-level structures to an arbitrary

number of levels structures of cooperation, and second by replacing two of the axioms by weaker

versions that apply only to trivial structures. Moreover, it shows that the consistency property

used in van den Brink and van der Laan (2005) can be dropped without changing the result.

Finally, we give a characterization of ρµ by using the con and µ-fair axioms.

Theorem 5.3. Let µ : G → R be additive, positive and anonymous. Then, ρµ is the unique LS-

share function that satisfies npp0, sym0, µ-add0, con, and µ-fair. Moreover, the properties

are independent.

Proof. It has been shown in Proposition 4.7 that ρµ satisfies the first four properties.

By definition of ρµ we have that

ρi(N, v,B) =

k∏
r=0

ρµUi
r
(N i

r, v
i,r
µ , B0) = ρµ

Ui
0
(N i

0, v
i,0
µ , B0) ·

k∏
r=1

ρµUi
r
(N i

r, v
i,r
µ , B0)

Now, for some U ∈ B1, let i, j be two players in U . Then U i0 = {i}, U j0 = {j}, N i
0 = N j

0 = U , and

U ir = U jr , N i
r = N j

r and vi,rµ = vj,rµ for all r ∈ {1, . . . , k}. From substituting this in the equation

above for players i and j respectively, and the fact that
∏k
r=1 ρ

µ
Ui

r
(N i

r, v
i,r
µ , B0) = ρµU (B1, v

1, B1),

it follows that ρµ satisfies µ-fair.

In order to prove uniqueness, suppose that ρ1 and ρ2 are two LS-share functions satisfying

the properties. We show that for every (N, v,B) ∈ GL, ρ1(N, v,B) = ρ2(N, v,B) by induction

on the number of levels k. If k = 0, then B = B0. In this case, by npp0, sym0, and µ-

add0, from Proposition 3.3 we have that ρ1(N, v,B) = ρ2(N, v,B) = ρµ(N, v). Next, assume
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that ρ1(N ′, v′, B′) = ρ2(N ′, v′, B′) for every (N ′, v′, B′) ∈ GL with at most k − 1 levels of

cooperation, and let (N, v,B) ∈ GL with k levels of cooperation. Let also U ∈ B1. On the

one hand, if |U | = 1 then for the only player i ∈ U we have that ρi(N, v,B) = ρU (B1, v
1, B1)

has been determined uniquely by the induction hypotheses. On the other hand, if |U | ≥ 2, let

i be one of the players of U . Then, for every other player j in U , by µ-fair there is a scalar

Kµ
U,(B1,v1,B1) ∈ R+ such that,

ρ1
i (N, v,B)− ρ1

j (N, v,B) = Kµ
U,(B1,v1,B1)

[
ρ1
i (U, v

i,0
µ , B0)− ρ1

j (U, v
j,0
µ , B0)

]
= Kµ

U,(B1,v1,B1)

[
ρ2
i (U, v

i,0
µ , B0)− ρ2

j (U, v
j,0
µ , B0)

]
= ρ2

i (N, v,B)− ρ2
j (N, v,B),

(17)

where the second equality is a consequence of the uniqueness for games with trivial levels struc-

ture of cooperation. Next, for the given player i, adding up eq. (17) for every j ∈ U , including

i, we obtain

|U i1|ρ1
i (N, v,B)−

∑
j∈Ui

1

ρ1
j (N, v,B) = |U i1|ρ2

i (N, v,B)−
∑
j∈Ui

1

ρ2
j (N, v,B). (18)

By con it follows that∑
j∈Ui

1

ρ1(N, v,B) = ρ1
Ui

1
(B1, v

1, B1) = ρ2
Ui

1
(B1, v

1, B1) =
∑
j∈Ui

1

ρ2(N, v,B),

where the second equality is due to the induction hypothesis, since |B1| = k − 1. This last

equation together with eq. (18) concludes the proof that ρ is uniquely determined.

Finally, we show the independence of the properties. Indeed,

(i) The LS-share function, ρ2, defined as in the proof of Theorem 5.1 satisfies sym0, µ-add0,

con, and µ-fair but not npp0.

(ii) The LS-share function, ρ3, defined as in the proof of Theorem 5.1 satisfies npp0, µ-add0,

con, and µ-fair but not sym0.

(iii) The LS-share function, ρ4, defined as in the proof of Theorem 5.1 satisfies npp0, sym0,

con, and µ-fair but not µ-add0.

(iv) Let ρ5 be the LS-share function defined for every (N, v,B) ∈ GL as follows:

– If B = B0,

ρ5(N, v,B) = ρµ(N, v).
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– Otherwise, for every i ∈ N

ρ5
i (N, v,B) = ρµ

Ui
1
(B1, v

1, B1) · 1

|U i1|
.

Then ρ5 satisfies npp0, sym0, µ-add0, and µ-fair but not con.

(v) Let ρ6 be the LS-share function defined for every (N, v,B) ∈ GL as follows:

– If B = B0,

ρ6(N, v,B) = ρµ(N, v).

– If N is a set of indivisible players, that is for every i ∈ N there are no players

i1, . . . , il ∈ N ′ such that i = {i1, . . . , il}. For every U ∈ B1 let iU ∈ U be a randomly

selected particular agent, then ρ6
iU

(N, v,B) = ρµU (B1, v
1, B1)

ρ6
i (N, v,B) = 0 for every i ∈ U \ iU

– Otherwise,

ρ6
i (N, v,B) = ρµi (N, v,B).

Then ρ6 satisfies npp0, sym0, µ-add0, and con but not µ-fair.

�

It is worth noting that when we consider µSh, Theorems 5.1 and 5.3 and Corollary 5.2,

together with Proposition 4.10, provide us with three different characterization results of the

Shapley levels share function ρSh
L

.

6 Appendix

Proposition 6.1. A mapping µ : G → R is symmetric if and only if it is anonymous.

Proof. On the one hand, let µ : G → R be anonymous. Let also i, j ∈ N be two

symmetric players in (N, v) ∈ G and S ⊆ N \ {i, j}. Consider the permutation π ∈ Π(N) that

leaves any player in N \{i, j} invariant and exchanges player i with player j, i.e., π(i) = j,π(j) =

i, and π(k) = k for all k ∈ N \ {i, j}. This type of permutations are known as transpositions.

We denote the set of all transpositions over N by Π∗(N). Then, since µ is anonymous,

µ(S ∪ i, v|S∪i) = µ(π(S ∪ i), (π−1v)|π(S∪i)). (19)
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By definition, for every T ⊆ π(S ∪ i) = S ∪ j,

(π−1v)(T ) = v(π−1(T )) =

v((T \ j) ∪ i) if j ∈ T,

v(T ) if j /∈ T,

which, means that (π(S∪i), (π−1v)|π(S∪i)) = (S∪j, v|S∪j) because i and j are symmetric players

in (N, v). Therefore, by eq. (19), µ is symmetric.

On the other hand, let µ : G → R be symmetric. Let also π ∈ Π(N). Since it is otherwise

straightforward, we assume that |N | ≥ 2 and π is not the identity permutation, that is, the

permutation that leaves every player invariant. It is well known that any such permutation can

be written as a finite composition of transpositions, i.e., there are π1, . . . , πr ∈ Π∗(N) such that

π = π1 ◦ · · · ◦ πr.

We claim that for every (N, v) ∈ G, π ∈ Π∗(N), and ∅ 6= S ⊆ N ,

µ(S, v|S) = µ(π(S), (π−1v)|π(S)). (20)

Observe that if eq. (20) holds then µ is anonymous. Indeed, let (N, v) ∈ G, π ∈ Π(N), and

∅ 6= S ⊆ N . Let also π = π1 ◦ · · · ◦ πr be a decomposition of π in transpositions. Then,

µ(S, v|S) = µ(πr(S), (π−1
r v)|πr(S)) = µ(πr−1(πr(S)), (π−1

r−1(π−1
r v))|πr−1(πr(S)))

= · · · = µ(π1(· · · (πr(S)) · · · ), (π−1
1 (· · · (π−1

r v) · · · ))|π1(···(πr(S))··· ))

= µ
(
(π1 ◦ · · · ◦ πr)(S), ((π1 ◦ · · · ◦ πr)−1v)|π1◦···◦πr(S)

)
= µ(π(S), (π−1v)|π(S)).

Hence, it only remains to prove eq. (20). Let π ∈ Π∗(N) be a transposition that

exchanges i with j for some i, j ∈ N and let ∅ 6= S ⊆ N . We distinguish three cases.

Case 1: S ∩ {i, j} = ∅.

Since π|S is the identity permutation, eq. (20) is trivially satisfied.

Case 2: ∅ 6= S ∩ {i, j} ( {i, j}.

Observe that it is equivalent to say that S \ π(S) 6= ∅ and π(S) \ S 6= ∅. We assume

without loss of generality that S ∩ {i, j} = {i}. Then consider the game (N ′, v′), defined by

N ′ = S ∪ j and for every T ⊆ N ′, by

v′(T ) =

v((T \ j) ∪ i) if j ∈ T, i /∈ T,

v(T ) if j /∈ T.

31



By construction, i and j are symmetric players in (N ′, v′). Let S′ = S \ i. Then, by symmetry,

µ(S, v|S) = µ(S′ ∪ i, v′|S′∪i) = µ(S′ ∪ j, v′|S′∪j) = µ(π(S), (π−1v)|π(S)).

Case 3: {i, j} ⊆ S.

Observe that in this case we have π(S) = S. Let k /∈ N be an extra (fictitious) player.

Then, define the game (N ′, v′) where N ′ = N ∪ k and v′(T ) = v(T \ k) for all T ⊆ N ′. Let also

πi,k ∈ Π∗(N ′) be the transposition that exchanges i with k and leaves the remaining players

invariant. Similarly, let πj,i, πj,k ∈ Π∗(N ′) be the transpositions that exchange j with i and j

with k, respectively. It is an easy exercise to check that π = πj,k ◦ πj,i ◦ πi,k. Let T = S \ {i, j}

and define

S0 = T ∪ {i, j} = S,

S1 = πi,k(S0) = πi,k(T ∪ {i, j}) = T ∪ {k, j},

S2 = πj,i(S
1) = (πj,i ◦ πi,k)(T ∪ {i, j}) = T ∪ {k, i},

S3 = πj,k(S2) = (πj,k ◦ πj,i ◦ πi,k)(T ∪ {i, j}) = T ∪ {i, j} = S.

Observe that S0 \ πi,k(S0) 6= ∅ and πi,k(S0) \ S0 6= ∅. Hence, by Case 2,

µ(S0, v|S0) = µ(πi,k(S0), (π−1
i,k v)|πi,k(S0)). (21)

Analogously, since S1 ∩ πj,i(S1) \ ∅ and πj,i(S1) \ S1 6= ∅, we have

µ(S1, (π−1
i,k v)|S1) = µ(πj,i(S

1), (π−1
j,i (π−1

i,k v))|πj,i(S1)), (22)

whereas, since S2 ∩ πk,j(S2) \ ∅ and πk,j(S2) \ S2 6= ∅, we have

µ(S2, (π−1
j,i (π−1

i,k v))|S2) = µ(πj,k(S2), (π−1
j,k (π−1

j,i (π−1
i,k v)))|πj,k(S2)

= µ(S3, ((πj,k ◦ πj,i ◦ πi,k)−1v)|S3 . (23)

Finally, the claim in eq. (20) follows from eq. (21), eq. (22), and eq. (23). �
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