

DEPARTMENT OF ENVIRONMENT,

TECHNOLOGY AND TECHNOLOGY MANAGEMENT

The accessibility arc upgrading problem

Pablo A. Maya Duque, Sofie Coene, Peter Goos,

Kenneth Sörensen & Fritz Spieksma

UNIVERSITY OF ANTWERP
Faculty of Applied Economics

Stadscampus

Prinsstraat 13, B.226

BE-2000 Antwerpen

Tel. +32 (0)3 265 40 32

Fax +32 (0)3 265 47 99

http://www.ua.ac.be/tew

FACULTY OF APPLIED ECONOMICS

DEPARTMENT OF ENVIRONMENT,

TECHNOLOGY AND TECHNOLOGY MANAGEMENT

The accessibility arc upgrading problem

Pablo A. Maya Duque, Sofie Coene, Peter Goos,

Kenneth Sörensen & Fritz Spieksma

RESEARCH PAPER 2012-009
MARCH 2012

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium

Research Administration – room B.226

phone: (32) 3 265 40 32

fax: (32) 3 265 47 99

e-mail: joeri.nys@ua.ac.be

The papers can be also found at our website:

www.ua.ac.be/tew (research > working papers) &

www.repec.org/ (Research papers in economics - REPEC)

D/2012/1169/009

mailto:joeri.nys@ua.ac.be
http://www.ua.ac.be/tew
http://www.repec.org/

The accessibility arc upgrading problem

Pablo A. Maya Duque∗1,3, Sofie Coene2, Peter Goos1,4, Kenneth
Sörensen1, and Frits Spieksma2

1University of Antwerp, Faculty of Applied Economics, ANT/OR
2Katholieke Universiteit Leuven, Faculty of Business and Economics, ORSTAT

3Universidad de Antioquia, Faculty of Engineering
4Erasmus University Rotterdam, Erasmus School of Economics

Abstract

The accessibility arc upgrading problem (AAUP) is a network up-
grading problem that arises in real-life decision processes such as rural
network planning. In this paper, we propose a linear integer program-
ming formulation and two solution approaches for this problem. The
first approach is based on the knapsack problem and uses the knowl-
edge gathered from an analytical study of some special cases of the
AAUP. The second approach is a variable neighbourhood search with
strategic oscillation. The excellent performance of both approaches is
validated using a large set of random generated instances. Finally, we
stress the importance of a proper allocation of scarce resources in ac-
cessibility improvement.

Keywords: Network upgrading problem, knapsack problem, variable
neighbourhood search

1 Introduction

Accessibility is formally defined by Donnges (2003) as the degree of diffi-
culty people or communities have in accessing locations for satisfying their
basic social and economic needs. This concept has been recognised to play
an important role in the quality of life as well as the potential for devel-
opment of communities and regions. The road network is one of the main

∗Corresponding author: Pablo A. Maya Duque, University of Antwerp, Stadscampus
S.B.513, Prinsstraat 13, 2000 Antwerp, Belgium, Tel: +3232654061, Fax: +3232654901,
Email: pmayaduque@gmail.com

1

elements that contributes to the accessibility. This is particularly true in
rural areas of lesser-developed countries, where the road network ensures the
accessibility to the economic and social infrastructure and to facilities, such
as hospitals, usually located in regional centres or in more developed cities.
In this paper, we study the accessibility arc upgrading problem (AAUP),
a network upgrading problem in which resources have to be allocated in
order to improve the accessibility to a set of vertices in a network. In the
domain of rural road network planning, this problem arises when allocating
resources to upgrade roads of a rural transport network, in order to improve
the access that communities in small villages have to regional centres. We
proceed by giving a precise description of this problem.

The AAUP can be described as follows: Let G = (V, E) be a directed con-
nected graph in which the vertex set V is partitioned into two different sets
V1 and V2. Vertices in V1 are called centres, while vertices in V2 are called
regular vertices. Each arc e in E has associated a current level and a set of
possible upgrading levels. The level of an arc determines the time required
to traverse it. An upgrading cost is incurred when improving an arc from
its current level to a specific upgrading level. There is a total budget B
to upgrade the level of some arcs. For each vertex j in V2, a weight wj
(e.g., number of inhabitants) is given. We define as measure of the acces-
sibility of regular vertex j the travel time from j to the closest centre i
in V1. An upgrading strategy specifies a set of arcs to be upgraded and the
level to which each of them has to be improved. The objective is to find
an upgrading strategy that does not exceed the budget B and minimises
the weighted sum of the accessibility measures, i.e., the weighted sum of the
times required to travel from each vertex j in V2 to its nearest centre i in V1.

The rest of this paper is structured as follows. In Section 2, we propose a
linear integer programming formulation of the AAUP problem. Section 3
reviews the literature, and, in Section 4, we analyse special cases. Section 5
proposes heuristic methods for the AAUP, and, in Section 6, we test these
methods on randomly generated instances. Section 7 discusses the potential
practical impact of the AAUP. Finally, Section 8 summarises the main con-
tributions of this work and highlights some opportunities for future research
on this topic.

2

2 Mathematical formulation

Based on the mathematical formulation described in Campbell and Lowe
(2006), the AAUP can be formulated as a non-linear binary programming
model, as shown by Maya Duque and Sörensen (2011). In this paper, we
propose an alternative formulation in which the AAUP is defined as a spe-
cial case of a more general problem called budget constrained minimum cost
flow problem (BC-MCFP).

In the BC-MCFP, a given amount of flow has to be sent from a set of supply
vertices or sources, through the arcs of a network, to a set of demand ver-
tices or sinks. For each existing arc of the network, there is set of possible
upgrading levels. Therefore, for each existing arc, we define one new arc
per possible upgrading level connecting the same pair of vertices. For each
resulting arc, there is a cost per unit of flow, and a fixed cost associated
with the use of the arc. In our particular setting of the BC-MCFP, there
is no fixed cost for using an arc at its lowest level, but that cost increases
with the upgrading level. The cost per unit of flow decreases as the arc is
upgraded. The problem is to find a minimum cost flow, such that the sum
of the fixed costs incurred by using some of the arcs at an upgraded level
is limited to a fixed budget. Basically, this problem is a minimum cost flow
problem that involves an additional set of decision variables related to the
upgrading decisions.

Consider the variable xe which is equal to the flow over arc e, and a binary
variable ye which is equal to 1 if the arc e is used, and 0 otherwise. Let
δ+(i) and δ−(i) be the forward and backward stars of vertex i, respectively.
Furthermore, let parameter di denote the demand or supply in vertex i, and
let pe and ce represent the fixed cost of using arc e, and the cost per unit
of flow over arc e, respectively. Note that di is positive for supply vertices
and negative for demand vertices. A formulation for the BC-MCFP is as
follows:

min
∑
e∈E

cexe (1)

s.t.∑
e∈δ+(i)

xe −
∑

e∈δ−(i)

xe = di ∀i ∈ V (2)

xe ≤Mye ∀e ∈ E (3)

3

∑
e∈E

peye ≤ B (4)∑
e: e=(i,j)

ye ≤ 1 ∀i, j ∈ V : (i, j) ∈ E (5)

0 ≤ xe ≤ ae ∀e ∈ E (6)

ye ∈ {0, 1} ∀e ∈ E (7)

The objective function (1) minimises the total flow cost. The constraints
in (2) ensure that the demand for each sink vertex j is satisfied and that
the supply (capacity) for each source i is not exceeded. The constraints
in (3), where M denotes a large number, enforce that flow can only pass
through arcs that have been selected for use. Constraint (4) imposes an
upper bound B on the total upgrading cost. The constraints in (5) ensure
that at most one arc connecting each pair of vertices is chosen. Note that
these constraints are not needed when the arcs are uncapacitated. Finally,
constraints (6) and (7) define the type and bounds for the decision variables.
In constraints (6), ae represents the capacity of arc e

We now show that the AAUP is a special case of the BC-MCFP. Consider
an instance of the AAUP as described in Section 1. Each regular vertex acts
as a sink, while each centre is a supply vertex. The value of dj for a regular
vertex j is set to −wj , while the value of di for each centre i is set to the total
demand on the network (i.e., the sum of the wj values for all j in V2). Then,
we create one dummy demand vertex connected to each of the centres. The
fixed cost and cost per unit of flow for the arcs connecting the dummy vertex
and the centres are set to 0, while the di value of the dummy vertex is set to
(|V1| − 1)

∑
j∈V2 wj . Solving the resulting instance of the BC-MCFP yields

a solution for the corresponding instance of the AAUP. Figure 1 shows the
transformation of an AAUP into a BC-MCFP, schematically.

In Figure 1, the vertices c1, c2 and c3 are the centres, while the vertices 1
to 19 represent the regular vertices. The solid lines correspond to existing
arcs of the network, while the dashed lines are possible upgrading levels of
the existing arcs. The vertex labelled with an asterisk represents a dummy
regular vertex and the grey dotted lines are the arcs that connect the dummy
vertex to the centres.

4

*

c1

c2

c3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

−wj

∑
wj

∑
wj

∑
wj

−2
∑

wjce = 0

Figure 1: Transformation of the AAUP into a BC-MCFP

3 Literature review

In this section, we review the literature that is relevant for the accessibil-
ity arc upgrading problem. We first concentrate on the network upgrading
problem. Afterwards, we extend the review to consider the accessibility fac-
tor within the upgrading network problem.

Although several authors have addressed network upgrading problems, the
literature is not as extensive as it is for other problems within the domain
of network design. Krumke et al. (1998) distinguish two kinds of upgrading
problems depending on whether the focus is on upgrading the arcs or up-
grading the vertices. The authors propose a bi-objective approach for both
types of problems. In that approach, a sub-class of graphs is S considered
(e.g., the set of spanning trees) and a budget or target value is defined for
the first objective. The goal is to find a network within the fixed budget
that belongs to S and minimises the second objective. Results on the com-
plexity of a number of node-based and edge-based upgrading problems are
presented. In particular, the case in which the objectives are defined as min-
imising the cost of improving the network and minimising the total length
of the minimum spanning tree is shown to be NP-hard for trees and general
networks. Drangmeister et al. (1998) study a related problem that looks for
an optimal reduction strategy (i.e., shortening some of the edges) such that
a budget constraint is satisfied and the total length of a minimum spanning
tree in the modified network is minimised. Some NP-hardness results, even

5

for simple classes of graphs, are presented, as well as some approximation
algorithms.

Campbell and Lowe (2006) address two q-upgrading arc problems that in-
volve finding the best q arcs to upgrade in a network. The q-upgrading arc
diameter problem requires finding q arcs to upgrade such that the travel
time on the maximum shortest path between any origin–destination pair
(i.e., the diameter of the network) is minimised. The q-upgrading arc radius
problem requires finding q arcs to upgrade and locating the vertex center,
i.e., the node for which the maximum shortest path to the other nodes in
the network (i.e., the radius of the network) is minimised. The two problems
are shown to be NP-hard on general graphs, but polynomially solvable on
trees. A variant of the problems, which involves a budget constraint, is also
studied. It is shown that these problems are NP-hard for general graphs
and even for a path graph. Three heuristic algorithms are proposed to deal
with these kinds of problems.

Accessibility maximization has been considered mainly in the domain of
road network planning. Antunes et al. (2003) consider a inter-urban road
network long-term planning problem. They propose a non-linear combina-
torial optimization model that does not involve an evolution of the network
over time but defines the final status of the network at the end of the plan-
ning horizon. Two different heuristics approaches to solve the model are
described, based on local search and simulated annealing principles. Santos
et al. (2010) extend the study to consider accessibility and robustness ob-
jectives simultaneously. A model to help road authorities in their strategic,
system-wide decisions regarding the long-term evolution of an interurban
road network is proposed. Scaparra and Church (2005) also tackle a road
network planning problem, but focus on the rural case for developing coun-
tries. The authors propose a GRASP (Greedy Randomized Adaptive Search
Procedure) and path relinking heuristic, and consider a bi-objective model,
which minimizes the sum of the weighted shortest paths between all pairs
of nodes and maximizes the traffic flow. The maximal covering network
improvement problem is studied by Murawski and Church (2009) with the
objective of improving accessibility to rural health service. The problem
is formulated as an integer linear programming problem, and is applied to
a real case in the Suhum District of Ghana. The convenience of using a
metaheuristic approach for larger instances is pointed out by the authors.

6

4 Analytical analysis

We study the AAUP for two specific network topologies and present some
basic results on the complexity of this problem. First, in Subsection 4.1,
we consider the AAUP for the case in which the network topology is a star.
Second, in Subsection 4.2, we study the case in which the network is a tree.
Throughout this analysis, we denote by AAUP/p/q/S the AAUP problem
that considers at most p upgrading levels for each arc, exactly q centres, and
a network topology as indicated by S. Additionally, we define sl(e) as the
reduction in the cost per unit of flow when the arc e is upgraded to level l,
compared to the cost when the arc is at its original level.

4.1 AAUP on star network topologies

Consider first the case in which there is only one centre c, one possible
upgrading level for each arc, and the network has a star topology centred in c.
We denote this problem as AAUP/1/1/star. Define the binary variable xe
to indicate whether arc e is selected for upgrading (xe = 1) or not (xe = 0).
Additionally, for each arc e, we define a benefit be and a cost pe. The
benefit be is defined as the product of s1(e) and the weight wj of the vertex
j that is connected to the centre by means of arc e. The cost pe corresponds
to the cost of upgrading arc e. Then, the AAUP can be reformulated as the
following knapsack problem:

max
∑
e∈E

bexe (8)∑
e∈E

pexe ≤ B (9)

xe ∈ {0, 1} ∀e ∈ E (10)

Thus, the AAUP/1/1/star can be transformed into a knapsack problem and
each instance of the knapsack problem can be transformed into an instance of
the AAUP/1/1/star. Therefore, the two problems are polynomially equiv-
alent, and, in particular, the AAUP/1/1/star is at least as hard as the
knapsack problem. In other words, the AAUP/1/1/star is NP-hard.

For the more general case in which q centres are considered and each arc
might have more than one upgrading level, AAUP/p/q/star, the star topol-
ogy looks slightly different. While each arc still connects a centre and a
regular vertex, a regular vertex may now be adjacent to multiple centres.

7

An example of this case is presented in Figure 2, where, again, c1, c2 and c3
are centres, the vertices 1 to 13 represent the regular vertices, the solid lines
correspond to existing arcs of the network, and the dashed lines are possible
upgrading levels of the existing arcs.

c1

c2

c3

1

2

3

4

5
6

7

8 9

10

11

12

13

Figure 2: Example of a graph induced by an AAUP with a star topology

By following an analysis similar to the one we did for the AAUP/1/1/star,
the AAUP/p/q/star can be formulated as the multi-choice knapsack problem
(MCKP) presented in (11)-(14). In this formulation, E(j) is the set of arcs
adjacent to vertex j, Le is the set of possible upgrading levels for arc e, xel
is a binary variable that indicates whether arc e is improved from its current
level to level l, and pel and bel are the corresponding fixed cost and benefit,
respectively. The MCKP has been shown to be NP-hard (Kellerer et al.
(2005)).

max
∑
e∈E

∑
l∈Le

belxel (11)

∑
e∈E

∑
l∈Le

pelxel ≤ B (12)

∑
e∈E(j)

∑
l∈Le

xel ≤ 1 ∀j ∈ V2 (13)

xel ∈ {0, 1} ∀e ∈ E ,∀l ∈ Le (14)

8

4.2 AAUP on tree network topologies

We study now the case in which the network is a tree. Initially, we consider
the problem with only one centre and one possible upgrading level for each
arc, AAUP/1/1/tree. This problem can be polynomially reduced to the case
in which the network is a star. Therefore, the AAUP/1/1/tree problem is
as hard to solve as the knapsack problem. As a result, it is also NP-hard.

In order to reduce an AAUP/1/1/tree to the problem on a star, we con-
sider, without loss of generality, the tree rooted at the vertex corresponding
to the centre. For each regular vertex j, we define a cumulative weight ŵj .
This cumulative weight is the result of adding wj and the weights wk for
all the vertices located after j when the tree is traversed from the root to
the leaves. Additionally, for each arc e, there is an upgrading cost pe, and a
benefit be = s1(e) · ŵj , where j is the arc’s vertex that is furthest from the
root. The problem can then be formulated as a knapsack problem using the
model described in (8)-(10).

Consider now the case in which there are exactly two centres, c1 and c2.
Under this assumption, the set of vertices can be divided into three groups.
The first group is formed by c1 and all vertices for which the path to c2
passes through c1. Similarly, the second group consists of by c2 and the
vertices whose path to c1 passes through c2. The vertices for which both the
path to c1 does not pass by c2 and the path to c2 does not pass through c1
form the third group. An example of the AAUP/1/2/tree case is presented
in Figure 3. In this picture, the vertices c1 and c2 are the centres and vertices
1 to 9 represent regular vertices, while the numbers next to the arcs define
the time required to traverse the arc at the given status. For this particular
example, the set of vertices is partitioned into three groups. The first group
is formed by vertices {c1, 1, 2, 3}, while the second group is {c2, 7, 8, 9}, and
vertices {4, 5, 6} form the third group.

For any solution, regardless of which arcs are upgraded, c1 will be the closest
centre for the vertices in the first group and c2 will be the closest centre for
the vertices in the second group. For the vertices in the third group, which
centre is the closest may depend on the upgrading decisions. However, note
that this third group can always be partitioned into two different sets of
connected vertices. One of those sets will have c1 as its closest centre, while
c2 will be the closest centre for the other set. The frontier that separates
those two sets is always one of the arcs that form the shortest path between

9

1 2

c1

3

4

5 6 c2

7

8

9

1

3

2

1

1

1 2 2

3

1

Figure 3: Example of an AAUP/1/2/tree problem

c1 and c2. For example, in Figure 3, vertices {4, 5} have c1 as their closest
centre, while c2 is the closest centre for vertex {6}. The arc (5, 6), depicted
using a dotted line, is the frontier between those two sets.

When an arc r in the shortest path between the two centres is removed (e.g.,
arc (5, 6)), the original graph is decomposed into two trees Ta = {Va, Ea}
and Tb = {Vb, Eb}. As we previously showed, each of these trees can be
transformed into a star. Therefore, finding the optimal upgrading strategy
for the case involving two centres requires the solution of the problem on
two stars, which can be integrated into a single multi-choice knapsack prob-
lem. By the definition of a tree, there can be at most n − 1 arcs in the
shortest path between the two centres. As a result, there are at most n− 1
options for choosing the arc r to be removed. Thus, an optimal solution for
the AAUP/1/2/tree can be found by solving O(n) (multi-choice) knapsack
problems and choosing the best out of the n− 1 solutions.

Using a similar analysis, it is possible to show that, for the general case, in
which there are q centres and each arc might have more than one upgrading
level, an optimal solution for the AAUP on trees can be found by solv-
ing at most O(nq−1) MCKPs and choosing the best solution among them.
By removing q − 1 arcs, one in each shortest path that connects two con-
secutive centres, the tree can be decomposed into q independent sub-trees.
The arc upgrading problem on each of those sub-trees can be reformulated
as a MCKP by considering an approach similar to the one used for the
AAUP/1/1/tree. As there are at most n− (q − 1) arcs connecting two cen-
tres, there are at most (n − (q − 1))q−1 possibilities for removing the q − 1
arcs, that is, for defining the set of sub-trees.

10

5 Solution methods

In Section 2, we have described a formulation that can be used to solve
instances of the AAUP using a dedicated MIP solver. In this section, we
propose two alternative approaches. First, we describe a heuristic approach
specifically designed for the AAUP that is based on the analytical analysis
we have done in the previous section. Second, we outline a variable neigh-
bourhood search approach (Hansen and Mladenovic, 2005) for the general
BC-MCFP, and apply it to the AAUP, which, as we explained in Section 2,
is a special case of the BC-MCFP

5.1 A knapsack problem-based heuristic for the AAUP

We have shown that, for the cases in which the network is a star or a tree,
the AAUP can be tackled by transforming it into either a knapsack problem
or a multi-choice knapsack problem. Based on these basic cases, we outline
an approach for the AAUP on general networks. In order to do that, note
that, for any feasible solution of the AAUP, we can assign each vertex to
its nearest centre. The paths linking each centre to the vertices assigned to
it define a forest composed of |V1| trees. Therefore, an (exponential time)
exact algorithm for the AAUP enumerates all the forest sub-graphs that can
be defined from the original graph and in which each tree of the forest is
rooted in a different centre. Then, the problem on each of these forests is
solved by the approach we describe in Section 4.2. The best among all those
solutions corresponds to the optimal solution for the AAUP.

Clearly, from a practical point of view, this approach is not feasible for real-
istically sized instances. However, by using some key ideas from that exact
algorithm, we have built a heuristic for the AAUP, which we refer to as
the knapsack problem-based heuristic. In that heuristic, we first create an
initial solution. This solution specifies a particular status of the network in
which each arc is fixed at a given upgrading level. Based on that particular
network, each vertex is assigned to its closest centre by using the minimum
cost flow formulation of the AAUP. The paths linking each regular vertex to
its closest centre form a forest involving only a subset of the arcs of the com-
plete graph. Then, the arc upgrading problem is solved on that forest. We
call this sub-problem the restricted AAUP, and solve it by transforming it
into a multi-choice knapsack problem (see Section 4). The resulting solution
is a feasible solution for the original AAUP. In that solution, the arcs that
are not part of the forest are set to their original level, while the upgrading

11

level of the other arcs is dictated by the solution of the restricted AAUP.
Based on this new solution, a new assignment of the regular vertices to the
centres is made and the entire procedure is iterated. The algorithm stops
when a local optimum is reached, i.e., when there is no improvement after
iterating over a given feasible solution. Algorithm 1 presents a schematic
overview of the KP-based heuristic.

Algorithm 1 KP-based heuristic for the AAUP

Initialize: Consider a graph G = (V, E),V = {V1,V2}
Construct an initial solution x for the AAUP

repeat
Define a forest F by solving the MCFP over x.
Solve the restricted AAUP on the sub-graph induced by F .
Update x based on the solution of the restricted AAUP

until x is a local optimum

The solution obtained by the KP-based heuristic proposed in Algorithm 1
depends on the initial solution x. We consider three different initial so-
lutions: (i) The present solution in which the level of each arc is set to its
original (lowest) status; (ii) The ideal solution in which the arcs are assigned
the best possible level; and (iii) a random feasible solution in which the level
of each arc is set randomly. The algorithm is run once for the first two initial
solutions while a given number of replications are performed using different
initial random solutions.

5.2 Variable neighbourhood search for the AAUP.

In this section, we describe a metaheuristic approach developed for the
BC-MCFP and that we have used to solve instances of the AAUP. The
approach is a variable neighbourhood search (VNS) with strategic oscilla-
tion that considers a feasible upgrading strategy (i.e., a particular status of
the network in which each arc is fixed at a given upgrading level) at each it-
eration. Given an upgrading strategy, the accessibility value in the objective
function of the AAUP can be obtained by solving a standard minimum cost
flow problem. Two basic moves, upgrade and downgrade, are used to define
two neighbourhoods. The first neighbourhood (N1) contains all solutions
that can be reached from the current solution by upgrading the level of an
arc. The second neighbourhood (N2) includes all the solutions that can be
obtained from the current solution by considering both moves simultane-

12

ously. Whenever the search reaches a local optimum, a strategic oscillation
is applied. This oscillation allows the search to temporarily consider infea-
sible solutions and restarts the VNS once the feasibility has been restored.
Additionally, a shaking phase is applied when the strategic oscillation fails
to move the search to a better solution. Algorithm 2 presents an outline of
the VNS approach.

Algorithm 2 VNS with strategic oscillation

Initialization: Set the current network status as the initial solution x.
Consider the set of neighbourhood structures Nk(x) k = 1, 2.
Set a stopping criterion.
while Stopping criterion has not been met do
repeat

Set k ←− 1
while k <= 2 do
Explore Neighbourhood Nk(x).
if a better solution x′ ∈ Nk(x) is found then

Set x←− x′

Set k ←− 1
else

set k ←− k + 1
end if

end while
Apply strategic oscillation.

until x is a local optimum
Apply shaking phase.

end while

5.2.1 Upgrading move

The upgrading neighbourhood N1 is formed by all the solutions that can be
reached from the current solution by upgrading an arc by one level without
violating any constraint. In order to estimate the cost-saving potential of
an arc whose upgrading is feasible, we use the solution of the MCFP associ-
ated to the current solution to distinguish between basic and non-basic arcs.
Basic arcs are those for which the associated decision variable is basic when
solving the linear problem, while non-basic arcs are related to the non-basic
decision variables. For the basic arcs, the saving is estimated as the prod-
uct of the reduction in cost per unit of flow obtained by upgrading the arc

13

and the flow that passes the arc in the current solution. The saving for a
non-basic arc is estimated by its reduced cost. The arc to be upgraded is
selected randomly among the α arcs that provide the best saving estimates.

After upgrading an arc, a procedure to remove redundant upgraded arcs
is run. That procedure downgrades to their lowest level all the arcs that
have been upgraded in previous iterations of the VNS algorithm but do not
carry any flow in the current solution. We use the solution of the MCFP
associated to the current upgrading strategy to identify the arcs that must
be downgraded. The solution obtained by downgrading those arcs will have
the same objective value but it will use less resources.

5.2.2 Combined upgrading-downgrading move

The neighbourhood N2 contains all feasible solutions that can be obtained
from the current solution by downgrading one arc and upgrading at least one
other arc. This neighbourhood requires a list of upgrading candidates and
a list of downgrading candidates. The former list is formed by all the arcs
that are basic in the current solution and can be upgraded. A saving cost
is estimated for each of those arcs, in the way described for the upgrading
move in Section 5.2.1. That saving is used to order the upgrading candi-
dates. The list of downgrading candidates contains all the arcs that can be
downgraded, i.e., the arcs for which the current level is not the lowest. This
list is arranged in decreasing order of the ratio of the fixed cost for using the
arc at its current level to the flow through the arc in the current solution.
Only the β best candidates in this list are kept.

For every downgrading candidate, the upgrading list is traversed in decreas-
ing order of saving potential searching for a feasible upgrading candidate.
Whenever a feasible candidate is found, the remainder of the list is traversed
in order to add as many upgrading candidates as possible. As a result, when-
ever a feasible move is identified, it involves one arc to be downgraded and
either one arc or a set of arcs to be upgraded. Each of the feasible moves
is evaluated by solving a minimum cost flow problem. In order to limit the
computational effort, a first improvement approach is used, i.e., the search is
stopped as soon as a feasible move is found that improves current solution.

14

5.2.3 Strategic oscillation and shaking

The strategic oscillation component aims to help the search escape from lo-
cal optima and explore different parts of the solution space. This is done by
allowing the search to temporarily consider infeasible solutions by relaxing
the budget constraint. Based on the solution of the MCFP associated with
the current solution, we select arcs to be upgraded ignoring the budget con-
straints. To that end, the arcs are grouped in two different lists depending
on whether they are basic or not. A saving is estimated for each arc in the
same way it was described for the upgrading move in Section 5.2.1, and the
arcs are ranked in decreasing order of the savings. Then, the best candidate
in each list is upgraded. This is repeated as long as the total upgrading
cost does not exceed γ times the original budget, where γ is a user-specified
tuning parameter.

After this upgrade, the MCFP corresponding to the new upgrading strategy
is solved and its solution is used to run a procedure to restore feasibility.
That procedure calculates for all arcs the ratio of the fixed cost for using
them at their current level to the flow that passes through them in the cur-
rent solution. The arcs with the largest ratio are downgraded to their lowest
level until the budget feasibility is restored.

When the strategic oscillation fails to find a better feasible solution, a shak-
ing phase is applied to restart the search from a significantly different so-
lution. This phase downgrades all the arcs that carry flow in the current
solution to the lowest level, while, for arcs that do not carry flow, the level
is set randomly. After ensuring that this new solution is feasible, the search
is restarted, giving rise to a new iteration of the VNS. The number of it-
erations of the shaking phase is used as a stopping criterion for the VNS
algorithm.

6 Computational Results

In this section, we evaluate the performance of the two heuristic solution ap-
proaches based on a set of 480 randomly generated instances of the problem.
The mathematical model and the two algorithms for solving the AAUP were
implemented in Java and ILOG CPLEX Concert Technology (IBM ILOG
CPLEX Optimization Studio Academic Research Edition V12.2).

15

6.1 Instance generation

To generate the 480 AAUP instances, we first created a set of 30 random
instances for the minimum cost flow problem using GNETGEN, which is a
modification of the widely used NETGEN generator proposed by Klingman
et al. (1974). Table 1 shows the main parameters that were used for the
generator. The numbers of sources (centres), transhipments and sinks (reg-
ular vertices) are expressed as percentages of the total number of vertices n.
The number of arcs is defined as a percentage of the number of arcs in a
complete graph. Finally, the total supply was set to 100 times the number
of vertices.

Table 1: Parameters used for generating random MCFP instances

Parameter Values

Number of vertices (n) 100, 200, 400, 500, 1000
Percentage of sources (%) 2, 5
Percentage of transhipments (%) 30
Percentage of arcs (%) 3, 5, 15
Total supply/demand 100n
Minimum cost for arcs 1
Maximum cost for arcs 100

These minimum flow cost networks form the starting point to generate the
AAUP instances. In those instances, V1 corresponds to the sources or supply
vertices, the set V2 contains all sinks, and, for each vertex j in V2, the
demand represents the weight wj . For each arc of the original network, we
generated a set of upgrading options or copies. In order to make the set of
instances as diverse as possible, we use two different procedures to generate
these copies: the number of copies for each arc is either a fixed number m
or a random number between 1 and m. We used two values for m, namely 2
and 3. Each copy of an arc has a cost per unit of flow and a fixed cost for
using the arc. The flow cost decreases with each extra copy of an arc, while
the fixed cost increases. For each arc, the cost per unit of flow at the lowest
level (copy 0 of the arc) is the cost generated by GNETGEN, while the fixed
cost for using that arc is 0. For the r-th copy of an arc e, the flow cost cre
and fixed cost pre were generated using

cre = cr−1e /2 + U(0, cr−1e /2) (15)

16

and

pre = pr−1e + U(0, c0e) (16)

where U(a, b) represents a continuous uniformly distributed random variable
on the interval [a, b].

Finally, four different budget values are considered for each AAUP network.
To compute these budget values, we first solved the minimum cost flow prob-
lem over the original network, i.e., the network in which all arcs are set at
their lowest level. Then, the total budget was defined as the sum of the cost
of upgrading all the arcs that carry flow in the optimal solution to their best
possible level. The four different budget values correspond to four different
percentages of this total budget. In total, 480 instances were generated as
a result of combining the 30 random minimum cost flow networks and the
parameter values described in the Table 2.

Table 2: Experimental parameters for generating the AAUP instances

Parameter Values

Copy Procedure Fixed, Random
Number of Copies (m) 2, 3
Budget values (%) 20, 50, 70, 100

We used Cplex to solve the AAUP instances using the mathematical model
described in Section 2 with a time limit of one hour. Table 3 shows the
number of times the optimal solution was found within the time limit for
the 24 instances at each combination of number of vertices and budget. The
results show that it becomes harder to solve the instances to optimality
when their size, as measured by the number of vertices, increases. The
hardest type of problem is one involving a larger number of vertices and a
small budget. For the instances for which the optimum was not found, the
average gap to optimality was 2.3 %, with a maximum of 30.1 %.

6.2 Results for the KP-based heuristic

We first study the KP-based heuristic for the AAUP, as described in Sec-
tion 5.1. As pointed out, three different kinds of initial solutions were con-
sidered: (i) one based on the present status of the network, (ii) one based on

17

Table 3: Number of instances solved to optimality using the mathematical
model

Number of vertices

Budget (%) 100 200 400 500 1000

20 23 19 11 6 2
50 23 20 13 12 4
70 21 16 12 11 4
100 24 23 15 12 12

the ideal status of the network, and (iii) one based on random initial solu-
tions. For the latter option, the algorithm was run for 100 different random
initial solutions and the best result was kept. Table 4 presents the average
percentage difference between the best solutions obtained with the heuristic
(considering the three different options for the initial solution) and the op-
timal value or best lower bound reported by Cplex. That difference is less
than 5 % for each combination of number of vertices and budget, and the
maximum values are observed for instances with large number of vertices.
When only the instances that are solved to optimality are considered, the
average gap is 0.39 % and the maximum gap is 3.33 %. The average comput-
ing times (expressed in seconds) for the heuristic using the three options for
the initial solution are shown in Table 5. The running time increases with
the size of the instances and is shortest for the instances with the 100 % of
budget. Additionally, the computing time required by the heuristic is, on
average, only the 4.3 % of that required by Cplex.

Table 4: Average (%) gap for the best solution found with the KP-based
heuristic

Number of vertices

Budget (%) 100 200 400 500 1000

20 0.30 0.77 2.46 2.81 4.90
50 0.58 1.27 2.18 2.41 3.35
70 0.53 1.00 1.35 1.50 1.74
100 0.13 0.21 0.32 0.41 0.53

The results reveal an excellent performance of the KP-based heuristic for
finding good feasible solutions for the AAUP in acceptable running times.

18

Table 5: Average computing time, expressed in seconds, for the KP-based
heuristic

Number of vertices

Budget (%) 100 200 400 500 1000

20 27.51 32.69 80.31 87.94 102.01
50 38.79 48.50 100.59 103.55 117.67
70 39.85 44.35 84.35 85.53 108.23
100 27.61 34.29 60.72 64.04 95.50

For about 67 % of the instances, the heuristic generates the best results
when the initial solution is created based on the ideal status of the network,
while, for almost 30 % of the instances, the best solution is found when the
algorithm starts from 100 random solutions.

6.3 Results for the VNS heuristic

We used a designed experiment both to study the usefulness of the different
components of the VNS algorithm and to tune its parameters α, β and γ.
According to the results, the two neighbourhoods, the strategic oscillation,
and the shaking phase contribute significantly to the performance of the
VNS algorithm. It also shows that the parameter setting influence the com-
puting time rather the solution quality.

Based on the experiment results, we set α = 4, β = 3, and γ = 1. Finally,
we set the stopping criterion for the VNS to 100. In other words, we perform
the shaking procedure 100 times.

Table 6 shows, for each combination of budget and number of vertices, the
average gap between the best solution found by the VNS algorithm and the
optimal solution or best lower bound provided by Cplex. That gap is largest
for the instances with budget level 20 % and 50 % and increases with the
number of vertices. When only the instances solved to optimality by Cplex
are taken into account, the average percentage gap is 0.60 %, with a maxi-
mum of 3.60 %. The average computing times are presented in Table 7. The
computing times increase with both the number of vertices and the budget
level, but the impact of the number of vertices is substantially larger than
the impact of the budget level.

19

Table 6: Average % gap for the best feasible solutions obtained with the
VNS heuristic

Number of vertices

Budget (%) 100 200 400 500 1000

20 0.80 1.46 2.85 2.62 5.74
50 0.84 1.66 2.78 2.42 4.65
70 0.77 1.41 2.03 1.88 2.98
100 0.09 0.26 0.45 0.43 0.77

Table 7: Computing time (s) for the VNS heuristic

Number of vertices

Budget (%) 100 200 400 500 1000

20 1.47 8.82 74.58 127.45 954.99
50 2.06 11.38 95.11 166.40 1178.07
70 2.41 13.51 104.32 180.84 1283.43
100 2.90 17.97 142.06 241.99 1497.67

6.4 Comparison of the two heuristics

In order to compare the two different heuristic approaches, we present in
Table 8, for each combination of budget and number of vertices, the average
percentage difference between the best solution found by the VNS algorithm
and the best solution generated by the KP-based heuristic. On average, the
KP-based heuristic generates better solutions, particularly for the instances
with a tight budget and a large number of vertices. Additionally, while, for
the small-sized instances, the computing times for the KP-based heuristic
are on average greater than those required by the VNS, for the instances
with 1000 vertices, the computing time of the former is on average only
0.17 % of the computing time required by the latter.

7 Potential practical impact

After having verified the excellent performance of the two heuristic ap-
proaches to tackle the AAUP, we would like to highlight their potential for
solving real-life decision problems. A a matter of fact, large improvements
in accessibility can be obtained by allocating scarce resources properly. To

20

Table 8: Average % difference between the best solutions generated with
the VNS approach and the KP-based heuristic

Number of vertices

Budget (%) 100 200 400 500 1000

20 0.49 0.68 0.37 0.37 0.77
50 0.27 0.39 0.58 0.60 1.22
70 0.24 0.40 0.67 0.68 1.21
100 -0.04 0.05 0.13 0.02 0.24

show how the algorithms we have discussed contributed to this end, we
measure for each experiment the improvement in accessibility. First, we de-
termine the maximum possible improvement as the difference between the
measure of accessibility for the network at its present status and the mea-
sure of accessibility for the improved network ignoring the budget constraint.
That estimate represents the target improvement for each instance. Once
the target has been fixed, we calculate the percentage improvement that is
achieved for each given budget level. Table 9 presents the average percent-
age improvement in accessibility for each combination of budget level and
numbers of vertices. From this table, it can be observed that, on average,
approximately 70 % and 90 % of the improvement target is obtained when
the budget level is set to 20 % and 50 % of the total budget, respectively.
Note that the improvement target is not achieved with 100 % the total
budget. This is due to the fact that the target was computed ignoring the
budget constraint.

Table 9: Percentage of accessibility improvement achieved

Number of vertices

Budget (%) 100 200 400 500 1000

20 69.52 70.66 71.66 72.58 70.80
50 90.01 90.29 90.41 90.89 90.39
70 95.85 95.57 95.68 95.88 95.91
100 99.29 98.99 98.97 99.01 99.00

21

8 Conclusions

We have defined the accessibility arc upgrading problem (AAUP), a net-
work upgrading problem for which real-life applications can be found in
several domains such as transportation, telecommunications and logistics.
The problem was formulated as an special case of the budget constrained
minimum cost flow problem (BC-MCFP).

An analytical study of some special cases of the AAUP provided some the-
oretical results on the complexity of the problem. Furthermore, based on
the insights obtained from the analytical study, we generated a solution
approach (which we called the knapsack problem-based heuristic) that per-
forms excellently in terms of efficiency and solution quality. Although this
approach might lack the flexibility to deal with additional constraints, it
could easily act as a building block for an algorithm designed for more com-
plicated problems.

We also proposed a second solution approach for the AAUP, namely a vari-
able neighbourhood search with strategic oscillation. The VNS algorithm
exploits the underlying network flow structure of the problem when defining
and evaluating the neighbourhoods. At each iteration, the VNS algorithm
considers a feasible upgrading strategy that can be evaluated by solving a
minimum cost flow problem. Therefore, by properly defining a function that
evaluates the feasibility of a solution, this approach can be easily extended
to situations in which additional constraints have to be considered. The
experiments illustrate the good performance of our VNS algorithm.

Finally, we pointed out the potential of this study for real-life decision pro-
cesses. It was shown how the algorithms we have proposed lead to large
improvements in accessibility by allocating scarce resources properly.

References

A. Antunes, A. Seco, and N. Pinto. An accessibility-maximization approach
to road network planning. Computer-Aided Civil and Infrastructure En-
gineering, 18:224–240, 2003.

A.M. Campbell and T.J. Lowe. Upgrading arcs to minimize the maximum
travel time in a network. Networks, 47:72–80, 2006.

22

Chris Donnges. Improving Access in Rural Areas. Technical report, Inter-
national Labour Office, Bangkok, 2003.

K.U. Drangmeister, S.O. Krumke, M.V. Marathe, H. Noltemeier, and
SS Ravi. Modifying edges of a network to obtain short subgraphs. Theo-
retical Computer Science, 203:91–121, 1998.

P Hansen and N Mladenovic. Search methodologies. Introductory tutorials
in optimization and decision support techniques, chapter Variable neigh-
borhood search, pages 211–238. Springer, 2005.

H Kellerer, U Pferschy, and D Pisinger. Knapsack Problems. Springer Ver-
lag. Springer, 2005.

D Klingman, A Napier, and J Stutz. NETGEN: A Program for Generating
Large Scale Capacitated Assignment, Transportation, and Minimum Cost
Flow Network Problems. Management Science, 20:814–821, 1974.

S. Krumke, M. Marathe, H. Noltemeier, R. Ravi, and S. Ravi. Approxi-
mation algorithms for certain network improvement problems. Journal of
Combinatorial Optimization, 2:257–288, 1998.

P. Maya Duque and K. Sörensen. A GRASP metaheuristic to improve ac-
cessibility after a disaster. OR Spectrum, pages 1–18, 2011.

L. Murawski and R. Church. Improving accessibility to rural health services:
The maximal covering network improvement problem. Socio-Economic
Planning Sciences, 43:102–110, 2009.

B. Santos, A. Antunes, and E. Miller. Interurban road network planning
model with accessibility and robustness objectives. Transportation Plan-
ning and Technology, 33:297–313, 2010.

M. Scaparra and R. Church. A GRASP and path relinking heuristic for
rural road network development. Journal of Heuristics, 11:89–108, 2005.

23

