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Abstract

In reliability engineering, component importance measures are used to prioritise

components in a system for purposes such as reliability improvement and main-

tenance planning. Existing importance measures have paid little attention to the

costs incurred by maintaining a system and its components within a given time

period. Cost-effectiveness analysis, however, is critically important in increasingly

competitive markets. This paper proposes a new cost-based importance measure

which considers costs incurred by maintaining a system and its components within

a finite time horizon. Possible extensions are discussed and examples are given to

show the use of the new measure.
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1 Introduction

In reliability engineering, component importance measures are used to pri-

oritise components in a system for purposes such as reliability improvement

and maintenance planning. Existing importance measures, however, have paid

little attention to the costs incurred by maintaining binary systems and their

components within a given time period. This issue is discussed in this paper.

1.1 Prior work

Component importance has been studied by many authors [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].

Well-known importance measures include Birnbaum importance [1], Barlow-

Proschan importance [2], Fussell-Vesely importance [3], Natvig importance

[4], importance for multistate systems [5,7,8], structure importance [6,8] and

joint importance [8,9]. There is a substantial literature on such importance

measures, discussing specific theoretic aspects and their practical use, e.g.

[9,14,15]. When interpreting component importance, Rausand and Hoyland

concluded that the importance of a component should depend on the follow-

ing factors[17]:

• the location of the component in the system;

• the reliability of the component;

• the uncertainty in the estimate of the component reliability and related cost;

In this paper, we argue that the importance of a component should, in addition

to these factors, also depend on the costs of maintaining this component in

1 Corresponding author. Email: s.m.wu@kent.ac.uk. Telephone: 0044 1227 827 940.
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a given time interval (0, t), and we propose a new importance measure that

takes these costs into account.

1.2 Problems

We consider the consequences caused by improving the reliability of a compo-

nent within a time interval (0, t) by considering the following three types of

costs, which we refer to later as Cost1, Cost2 and Cost3.

Cost1: Costs of improving component reliability. In a system, the costs

of improving the reliabilities of different components are likely to be differ-

ent, although the levels of improvement might be the same. In a drinking

water supply system, for example, if one wants to increase the same amount

of reliability on different components, the costs of improving the reliability

of a water pump are typically different to the costs of improving the relia-

bility of a switch board.

Cost2: Costs due to component failure. If a component fails, it needs to

be repaired or replaced. This incurs costs. For example, in a drinking water

system, a failed pumping station needs to be repaired. Such costs typically

vary for different components and therefore should be distinguished in an

importance measure.

Cost3: Cost of system failure. A system is usually designed and installed

for completing a specific function. If a system fails, it can cause losses such

as loss of lives, damage to health, release of hazardous materials or other

detrimental effects to the environment, or economic losses including repair

or replacement of the directly damaged structure as well as repair of col-

lateral damage. For example, if a water supply system fails, its users might

need to stop their production lines. This can cause economic losses, which

can include losses to the supplier due to possible penalties relating to inter-

ruption of water supply and the effects on their reputation.
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Cost1 has been addressed in several publications, e.g. [17, p.188]. Little re-

search, however, has considered Cost2 and Cost3 in reliability importance

measures for binary systems, although performance utility has been incorpo-

rated in importance measures for multistate systems [5,7,8]. However, when

selecting components to improve their reliabilities in order to improve the re-

liability of the entire system, one must consider the different costs incurred, as

the ultimate purposes of improving the reliability of a system are to prolong

the system’s service life and to save on costs of maintaining the system. This

necessitates the introduction of a new importance measure that reflects Cost2

and Cost3 and distinguishes between them.

This paper introduces a new importance measure that considers and distin-

guishes the cost of system failures (Cost2) from the cost of component failures

(Cost3). Section 2 introduces assumptions and notation. Section 3 introduces

a new cost-based importance measure, derives its properties and considers it

for some specific systems. In Section 4 some further aspects of this measure

are discussed. Section 5 presents a numerical example and a small illustrative

case study of the use of the cost-based importance. Section 6 concludes the

paper.

2 Assumptions and Notation

In this paper, we make the following assumptions.

A.1 A system is composed of n components. At time t = 0, all components

are new.

A.2 The components and the system are binary, i.e., having two possible

states: functioning or failed.

A.3 All components in the system are repairable. The quality of each repair

upon failure is minimal. That is, repairs upon failed components are minimal

and repair upon system failures is also minimal. A minimal repair restores

the item to the state it had just before failure.
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A.4 The system is coherent, that is, the failure of one or more components

cannot lead to improved functioning of the system.

A.5 The behaviours of the components in the system are mutually statisti-

cally independent.

A.6 When a component is waiting for repair, it neither ages nor deteriorates.

Thus, it does not fail.

A.7 Compared to the operating time, repair times are negligible.

Let Xk(t) be a binary random variable representing the state of component

k at time t ≥ 0, for k = 1, 2, . . . , n. The random variable Xk(t) = 1 if the

component is functioning at t and Xk(t) = 0 otherwise. We assume that the

stochastic process Xk(t), t ≥ 0, has right-continuous sample paths. The as-

sumption of the system being coherent implies that the structure function

φ(X) of the system, where X(t) = (X1(t), X2(t), . . . , Xn(t)), is non-decreasing

in each argument and we further assume that φ(0) = 0 and φ(1) = 1, which

excludes only trivial systems that either never or always function independent

of the state of the components. The components are assumed to be indepen-

dent, i.e. the processes Xk(t), k = 1, 2, . . . , n, are stochastically independent.

To summarise, the system is a monotone binary system of n independent

components.

Table 1 presents further notation used in this paper.

Here: Table 1

3 Cost-based component importance

Birnbaum introduced the following measure of the reliability importance of a

component in a system [1]:

Definition 1 The Birnbaum reliability importance (BRI) is defined by [1]

IBk (t) =
∂Rs(t)

∂Rk(t)
(1)
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where k = 1, 2, ..., n. The Birnbaum importance can be interpreted as follows:

if IBk (t) is large, a small change in the reliability of component k will result in

a comparatively large change in the system reliability.

As discussed in Section 1.2, the total cost of maintaining a system within

time period (0, t) includes costs due to system failure and maintaining failed

components. Hence, the total maintenance cost within time interval (0, t) is

given by

C(t) =
n∑
k=1

(Cs,k(t) + Ck(t)) (2)

where Cs,k(t) is the expected total cost of maintaining the system within time

(0, t), caused by the failure of component k, and Ck(t) is the expected total

cost of maintaining component k within time (0, t). We distinguish between

the expected total costs of maintaining the system caused by different com-

ponents, in order to deal with the fact that system production loss relates to

the maintenance times for failed components, which typically differ per type

of component (e.g. [18]).

We develop the two elements in the right-hand side of Eq. (2) further for

two specific scenarios, to illustrate the new approach presented in this paper.

Application of the new cost-based importance measure to real-world problems

will typically be more complex, relevant issues are discussed later in this paper

leading to interesting and challenging topics for further research.

Scenario A. Once a component fails, it can immediately be detected and

repaired.

Scenario B. We make the following assumptions.

B1. The failure of a component may not be detected immediately, but it

will be inspected and repaired once the system fails. That is, a failed com-

ponent will be repaired once a minimal cut set containing this component

fails.

B2. Once a minimal cut set fails, only the components in this failed minimal

cut set are repaired. Failed components that are not contained in this

minimal cut set will not be repaired.
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When choosing a component for improvement, we can aim to minimise the

value of C(t), or to maximise the value of −C(t). This leads to the following

definition.

Definition 2 The cost-based importance of component k is defined as

ICk (t) = − ∂C(t)

∂Rk(t)
(3)

The importance measure ICk (t) can be interpreted as follows: when ICk (t) is

large, a small change in the reliability of component k will result in a compar-

atively large change in the total cost of maintaining the entire system during

time interval (0, t).

While IBk (t) was introduced for non-repairable systems, ICk (t) can be used for

repairable systems and components when minimal repairs upon failures are

conducted. The reason can be explained as follows. Take component k as an

example. The system starts at time 0. The first failure of component k is

governed by the distribution Fk(t) with failure rate rk(t), and each succeeding

failure is governed by the intensity function λk(t). When repair upon failure

is minimal, the failure intensity λk(t) has the same functional form as the

failure rate governing the first system failure. That is, λk(t) = rk(t). Since,

mathematically, Rk(t) = e−Λk(t) (where Λk(t) =
∫ t
0 λ(x)x. ), we can use ICk (t) to

measure the importance of component k in a repairable system.

Since Λk(t) = − ln(Rk(t)), the definition of the importance in Eq. (3) can be

re-written as

ICk (t) = − ∂C(t)

∂Rk(t)

= − ∂C(t)

∂Λk(t)

∂Λk(t)

∂Rk(t)

=
1

Rk(t)

∂C(t)

∂Λk(t)
(4)
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3.1 Cost-based importance for Scenario A and Scenario B

Assume a system is composed of three components: 1, 2, and 3, as shown in

Figure 1.

Here: Figure 1

In the following, we investigate the proposed importance measure under Sce-

nario A and Scenario B, respectively.

3.1.1 Scenario A

Take the system shown in Figure 1 as an example, component 1 constitutes a

first-order cut set: the system fails if component 1 fails. Components 2 and 3

constitute another minimal cut set. Under Scenario A, if one of the components

2 and 3 fails, it will be repaired immediately and hence the system will not

fail. As such, the failure of component 2 or component 3 only incurs cost of

repairing the component itself.

Now let’s look at more general situations. Under Scenario A, a failed com-

ponent will be repaired immediately. Hence, the system will fail only if the

failure of a component, component ij say, can cause system failure, and then

incur cost cs,ij of system failure as well as the cost of repairing component ij

itself. If the failure of a component does not cause system failure, it will only

incur cost of repairing the failure component.

Thus, the total expected maintenance cost within time interval (0, t) is given

by

C(t) =
m0∑
j=1

cs,ijΛUij
(t) +

n∑
k=1

ckΛk(t) (5)

where cs,ij is the cost per system failure caused by failure of component ij and

ck is the cost of failure of component k. ΛUij
is the expected number of failures

of minimal cut set ii Uij that is composed of one component, component ij,

ii A state vector x is called a cut vector if φ(x) = 0. If φ(y) = 1 for all y > x,
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i.e., Uij is a first-order cut set.

Thus, we have: under Scenario A, if component k constitutes a first-order cut

set, then ICk (t) = (ck + cs,k)/Rk(t); if component k is not in a first-order cut

set, then ICk (t) = ck/Rk(t).

3.1.2 Scenario B

Generally, under Scenario B, a system fails and then is repaired only if at least

one minimal cut set failed. Assume that there are n0 minimal cut sets in the

system, then the cost incurred within time interval (0, t) is composed of two

parts: one on cost of repairing the system upon failures of the n0 minimal cut

sets, and one on cost of repairing each component in the failed minimal cut

sets. That is, the expected cost of maintaining the system within time interval

(0, t) is given by

C(t) =
n0∑
i=1

ΛUi1,...,imi
(t)(cc,i +

mi∑
j=1

cij)

 (6)

where cc,i is the expected cost per system failure, caused by the failure of the

minimal cut set Ui1,...,imi
, and cij is the expected cost per failure of component

ij.

Eq. (6) implies: if components k1 and k2 are only included in the minimal cut

set Ui1,...,imi
but not included in any other minimal cut sets, then the values

of ck1 and ck2 do not impact the ordering of ICk1 and ICk2 .

Estimating ΛUi1,...,imi
(t) in Eq. (6) is more complicating. Similar to the analysis

in Scenario A, we take the system shown in Figure 1 as an example. Without

loss of generality, assume components 1, 2, and 3 fails at times t1, t2, and t3,

successively, as shown in Figure 2.

Here: Figure 2

then x is a minimal cut vector. If Ui1,...,imi
is a minimal cut vector, then the set

Ui1,...,imi
= {ij : xij = 0 and j = 1, . . . ,m} is a minimal cut set.
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We have the following analysis.

• At time t1, component 1 fails, which causes the system fail. Component 1

is repaired and then the system starts again. As the repair is minimal and

the repair time is negligible, the failure process of component 1 can be seen

as a non-homogeneous Poisson process (NHPP), for example. Thus, it can

be easy to estimate the number of failures and cost of those failures within

a given time period (0, t) for component 1, that is, estimating C1(t) is not

problematic.

• At time t2, component 2 fails, which does not cause the system fail. Accord-

ing to Assumption B1 of Scenario B, component 2 will not be repaired until

time t3 when the system fails due to the failure of component 3. That is, at

time t3, components 2 and 3 are repaired and then the system is re-started

again. However, as the failure of component 2 is not detected immediately

after it failed, time t2 is unknown. Hence, the actual working time of compo-

nent 2 within time interval (0, t) (with t > t3) is not obtainable. Therefore,

an explicit expression of C2(t) might not easily be obtained. Similar analysis

applies to component 3.

3.1.3 A special case of Scenario B

Now let’s look at a special case that satisfies the following two more conditions.

B3. All of the minimal cut sets in the system are mutually exclusive, that is,

a component in the system only belongs to one minimal cut set;

B4. Assume the lifetimes of all of the components in the system are ex-

ponentially distributed, with intensities θk (with k = 1, 2, ..., n), respec-

tively. That is, the lifetime distribution function of component k is given by

Fk(t) = 1− e−θkt.

Assumption B3 ensures that the number of failures of the system is the sum

of the numbers of failures of each minimal cut sets.
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Based on Assumption B4, it is know that the exponential distribution has

the memorylessness property. For example, component 2 in Figure 2 in time

interval (t3,∞) has the same lifetime distribution F2(t) as that in (0, t2), due

to

Pr(T > t+ t2|T > t2) = Pr(T > t). (7)

Eq. (7) implies that component 2 is renewed at time t3. Similarly, compo-

nent 3 is renewed at time t3. That is, the minimal cut set constituted with

components 2 and 3 are renewed at time t3. To be more general, the fail-

ure of the minimal cut set Ui1,...,imi
occurs only if all of the components

i1, ..., imi
have failed. As such, the lifetime distribution of Ui1,...,imi

is given

by GUi1,...,imi
(t) =

∏
k∈{i1,...,imi}

Fk(t). As each component in Ui1,...,imi
is renewed,

the total number of renewals in time interval (0, t) is given by

ΛUi1,...,imi
(t) = GUi1,...,imi

(t) +
∫ t

0
ΛUi1,...,imi

(t− s)G. Ui1,...,imi
(s). (8)

The above equation is the renewal function and its derivation process can be

found from textbooks of stochastic processes.

3.2 Series and parallel systems

For series and parallel systems, the cost-based importance for Scenario A and

Scenario B are given in the following lemmas. The proofs are easily obtained.

Lemma 1 Under Scenario A or Scenario B, the total maintenance cost of a

series system is given by

C(t) =
n∑
k=1

Λk(t)(cs,k + ck) (9)

Hence, the importance of component k in a series system is given by

ICk (t) =
cs,k + ck
Rk(t)

(10)
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Lemma 1 implies that if ck = cj for k, j = 1, 2, ..., n, then ICk (t) is equivalent

to IBk (t) for series systems.

Lemma 2 Under Scenario A, the total maintenance cost of a parallel system

is given by

C(t) =
n∑
k=1

ckΛk(t) (11)

Hence, the importance of component k in a parallel system, under Scenario

A, is given by

ICk (t) =
ck

Rk(t)
(12)

Under Scenario A, a parallel system with multiple components will never fail,

as a failed component can be repaired immediately after it fails, and then put

back into service. Hence, a component with higher repair cost and smaller

reliability is more important.

Lemma 3 Under Scenario B, the total maintenance cost of a parallel system

is given by

C(t) = (cs,1 +
n∑
k=1

ck)Λs(t) (13)

Here, without loss of generality, we assume that the cost of repairing the fail-

ure of the system is cs,1. Hence, the importance of component k in a parallel

system, under Scenario B, is given by

ICk (t) = −(cs,1 +
n∑
k=1

ck)
∂Λs(t)

∂Rk(t)
(14)

Eq. (14) can also be written as

ICk (t) =
1

Rs(t)

∂Rs(t)

∂Rk(t)
(cs,1 +

n∑
k=1

ck)

=
1

Rs(t)
IBk (t)(cs,1 +

n∑
k=1

ck) (15)

From Eq. (15), under Scenario B, the ordering of the components according to

the cost-based importance measure is equivalent to their ordering according
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to the Birnbaum importance measure.

4 Discussion

In this section we discuss a range of topics that are important for application

of the new cost-based importance measure proposed in this paper, and which

therefore include interesting research challenges.

4.1 Other systems

In the preceding sections, we assumed that all components in the system under

consideration are repairable. If there are non-repairable components, one needs

to estimate the number of replacements instead of the number of repairs. In

this case, cost of replacement should be considered. The definition in Eq. (3) is

still valid, but the definition shown in Eq. (4) should be updated accordingly.

4.2 Design cost

Similar to the discussion by Rausand and Hoyland [17, p.188], where importance-

to-cost is considered for the Birnbaum importance, to improve the system

reliability we may want to change the parameter Λk(t) by buying a higher

quality component or adding preventive maintenance. Assume that we are

able to determine the cost of the improvement as a function of Λk(t), that is,

cd,k(t) = cd,k(Λk(t)), and that this function is strictly increasing or decreasing

such that we can find its inverse function. The effect of an extra investment

related to component k may now be measured by
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∂C(t)

∂cd,k(t)
=

∂C(t)

∂Λk(t)

∂Λk(t)

∂cd,k(t)

= ICk (t)Rk(t)
∂Λk(t)

∂cd,k(t)
(16)

4.3 Lifetime distributions, maintenance, cost, and applications

Lifetime distributions in Scenario B. The assumption of exponential life-

time distributions in Scenario B is important, as shown in Figure 1 and its

interpretation. However, if the lifetime distributions are not exponential or

failed components are not repaired immediately after the system fails, the

waiting time of a component (for example, t4− t1 for component 3 or t4− t3
for component 1 in Figure 2) is random and the age at which the compo-

nent will re-start is random. Estimating the time that a component has been

working within a time interval (0, t) becomes complicated, which makes it

hard to derive an explicit expression of the cost C(t). In this case, a simu-

lation study can be performed for further investigations, or approximations

may be possible, which is an important topic for future research.

Maintenance policy. In practice, the cost-based importance may be depen-

dent on the maintenance policy. For example, Scenario A assumes that a

failed component will be repaired immediately upon its failure whereas Sce-

nario B assumes that a failed component may need to wait for repair until

the failure of the minimal cut set containing this component. In other words,

these two scenarios involve different maintenance policies. In practice, there

may be other scenarios. For example, a failed component may be detected

and repaired with a probability p; further investigations are left for future

research and are best done in direct relation to real-world applications.

Maintenance quality. In the preceding sections, we assumed that minimal

repair is conducted on failed items, including both the system and the com-

ponents in the system. Apparently, other levels of maintenance quality can

also be considered. The quality of maintenance can e.g. be better-than-

perfect, perfect, minimal, imperfect, and worse-than-before failure, which
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can lead to different types of total cost within a time interval (0, t). This

can lead to different versions (or extensions) of the cost-based importance

measure.

Repair time. We also assumed that repair times are negligible. This assump-

tion can obviously be relaxed. However, the expression of C(t) will become

more complex. Because the main purpose of this article is to introduce the

cost-based importance measure we do not consider this further but it is

an important topic for practical application of the cost-based importance

measure.

Time-independent cost. In this paper, we assumed that costs cs,k and ck

are time independent. In practice, cs,k and ck may change with time, again

the theory for dealing with this is best developed in line with real-world

applications.

Finite time period. The cost-based importance measure introduced in this

paper considers the process explicitly over a finite period of length t. The

choice of t may often follow directly from practical interest, but it is im-

portant in practical applications to study the behaviour of the cost-based

importance measure as function of t. This use of a finite period of interest

is different from many traditional approaches to cost aspects for repairable

systems, which are often based on renewal theory and implicitly consider

an infinite period. Recently, there has been increasing interest in aspects of

reliability over finite periods, for example single cycles between inspections

or replacements, which has shown that the criterion and period used can

have substantial impact on the conclusions [19,20].

Applications of the cost-based importance. There will be many possi-

ble applications of the proposed importance measure. For large complex

systems, repair of failures of sub-systems may often be regarded as min-

imal. When maintenance policy and maintenance quality are assessed, it

is not hard to obtain the cost-based importance. For example, at both

design stage and operation stage, or for the purpose of lifecycle costing,

an optimal maintenance policy should be designed and the importance of

each component should be assessed. Traditional importance measure such
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as the Birnbaum importance cannot be applied in the scenario when costs

of maintaining different components are different. The proposed cost-based

importance measure is designed can for this purpose. In this new impor-

tance measure, time t can, for example, be the design life if the system

user is interested in component importance and wishes to assess the lifecy-

cle cost of the system, or the contract period for a maintenance agent who

understands component importance and wishes to assess the contract cost.

4.4 Other extensions

Risk-based measures. Although we call ICk (t) a cost-based importance mea-

sure, C(t), Cs,k(t) and Ck(t) in Eq. (2) can also be regarded as other conse-

quences such as loss of lives, damage to health, releasing hazardous materi-

als, etc. Broadly speaking, ICk (t) can be regarded as a risk-based importance

measure, as risk can be defined as involving “both uncertainty and some kind

of loss or damage” [21] or as “the probability per unit time of the occurrence

of a unit cost burden” [22].

An alternative cost-based importance measure. As an alternative to the

measure proposed in this paper, one could define a cost-based importance

measure based on a ratio such as IC
′

k = Ck(t)

Cs,k(t)+
∑n

k=1
Ck(t)

. Other ratio-based

importance measures have been used by some authors for repairable systems

[23]. IC
′

k can be interpreted as the ratio of the cost incurred by the failures

of component k within time (0, t) to the cost of the entire system, which is

different from the meaning of ICk (t), as defined in Eq. (3).

Cost-based improvement potential. There are many other importance

measures that can be extended based on the cost measure shown in Eq. (2).

Here, we will not exhaust each possible extension, but we take an importance

measure, improvement potential, as an example. Improvement potential is

the difference between the system reliability with a perfect component k,

and the system reliability with the actual component k. It can be expressed

as [17]

IIPk (t) = IBk (t)(1−Rk(t)) (17)
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One might extend the above measure to be the following cost-based im-

provement potential.

IIPCk (t) = C(1k,X(t))− C(X(t)) (18)

where C(1k,X(t)) stands for the cost of maintaining the system when the

reliability of component k is improved to be 1 and the reliabilities of the

other components remain the same as the original ones, and C(X(t)) means

the cost of maintaining the system when the reliabilities of the other com-

ponents remain the same as the original ones, i.e. the cost C(t) shown in

Eq. (2). The new improvement potential, defined in Eq. (18), is the differ-

ence between the maintenance cost with a perfect component k, and the

maintenance cost with the actual component k.

Non-coherent systems. The preceding sections are developed on the basis

of the assumption that the system is coherent, which of course applies to

most systems in practice. However, some extended versions of the Birnbaum

importance have been presented for non-coherent systems (e.g. [24,25]). One

may follow such approaches to extend the cost-based importance measure

for non-coherent systems, this is left as a topic for future research, devel-

opment of which will greatly benefit from direct application to a real-world

non-coherent system to ensure that the specific system features are taken

into account.

5 Examples

We present a numerical example and a small case study to illustrate the basic

application of the cost-based importance measure presented in this paper, and

to briefly compare it to the Birnbaum importance measure.
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5.1 A numerical example

Consider the system shown in Figure 1, for which we will compare cost-based

importance measures of different components under different settings.

Using the Birnbaum importance measure, we obtain

IB1 (t) = R2(t) +R3(t)−R2(t)R3(t) (19)

IB2 (t) = R1(t)(1−R3(t)) (20)

IB3 (t) = R1(t)(1−R2(t)) (21)

Under Scenario A, the new cost-based importance measure for each component

is

IC1 (t) =
cs,1 + c1

R1(t)
(22)

IC2 (t) =
c2

R2(t)
(23)

IC3 (t) =
c3

R3(t)
(24)

Table 2 presents a comparison of the cost-based importance and the Birnbaum

importance, assuming that the time interval considered is (0, 4) and cs,1 =

cs,2 = cs,3 = 100.

Here: Table 2

The system in Figure 1 has two minimal cut sets: U1 = {1} and U2 = {2, 3}.
Then with Eq. (6), we have

C(t) = ΛU1(t)(cc,1 + c1) + ΛU2,3(t)(cc,2 + c2 + c3) (25)
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Under Scenario B and with Eqs. (25) and (3), we have

IC1 (t) =
cs,1 + c1

R1(t)
(26)

IC2 (t) =
(cs,2 + c2 + c3)(1−R3(t))

R2(t) +R3(t)−R2(t)R3(t)
(27)

IC3 (t) =
(cs,3 + c2 + c3)(1−R2(t))

R2(t) +R3(t)−R2(t)R3(t)
(28)

Here: Table 3

Tables 2 and 3 illustrate how the cost-based importance measure depends on

the location of the component in the system, the reliability of the component,

the maintenance costs of components upon failure and cost of system failure.

Comparison between the cost-based importance measures and the Birnbaum

importance measures are also shown in the two tables.

5.2 A case study

Andrawus [18] studies the reliability of a 600kW wind turbine system, as

represented in Fig. 3. Cost data, reliability parameters of each component and

cost of system failure are given in Table 4, where the time unit of the scale

parameters in the Weibull distributions is hour.

Here: Figure 3

Here: Table 4

The Birnbaum importance measure for each component is
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IBba(t) = Rms(t)Rgb(t)Rg(t)(1−Rbb(t)) (29)

IBbb(t) = Rms(t)Rgb(t)Rg(t)(1−Rba(t)) (30)

IBms(t) = Rgb(t)Rg(t)(Rba +Rbb −Rba(t)Rbb(t)) (31)

IBgb(t) = Rms(t)Rg(t)(Rba +Rbb −Rba(t)Rbb(t)) (32)

IBg (t) = Rms(t)Rgb(t)(Rba +Rbb −Rba(t)Rbb(t)) (33)

Based on Eqs. (29)–(33) and Table 4, the ordering of the Birnbaum importance

measures of the components is given by

IBms(t) > IBg (t) > IBgb(t) > IBba(t) = IBbb(t) (34)

As [18] explained, the reliability, availability and maintainability of the wind

turbine are assessed over a period of 4 years; taking into account the costs

and availability of maintenance crew and spares holding. The ‘4 years’ is a

short term economic analysis period required by the collaborating wind farm

operator. We therefore consider the cost-based importance measure assuming

that the time interval under investigation is (0, 4) years.

Under Scenario A, we have

ICba(t) =
cba

Rba(t)
(35)

ICbb(t) =
cbb

Rbb(t)
(36)

ICms(t) =
cs,ms + cms
Rms(t)

(37)

ICgb(t) =
cs,gb + cgb
Rgb(t)

(38)

ICg (t) =
cs,g + cg
Rg(t)

(39)
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Based on Eqs. (33)–(37) and Table 4, the ordering of the cost-based importance

measures of the components is given by

ICgb(t) > ICg (t) > ICms(t) > ICba(t) = ICbb(t) (40)

Inequality (40) shows a different ordering from Inequality (32), that is, the

ordering according to the cost-based importance measure differs from that

according to the Birnbaum importance measure. Of course, the importance

ordering derived from the cost-based importance reflects the different costs

involved, which is probably more useful in practice. The possibility to do so,

in a way that generalizes Birnbaum importance, will be attractive in many

applications and can provide important insights. For example, in this case

study we see that improving the reliability of the gear box can result in the

largest cost reduction.

6 Conclusions

This paper introduced a new cost-based importance measure, for repairable

systems. We derived the cost-based importance for two maintenance scenarios

A and B. For Scenario A, we considered a general case where components

in the system can have any lifetime distributions, and derived the cost-based

importance for each component. For Scenario B, we discussed the challenges

to obtain cost-based importance when components in the system have gen-

eral lifetime distributions, and we derived the cost-based importance for each

component only when they have exponential lifetime distributions for a special

case.

The novelty of this paper lies in the fact that it proposed a new importance

measure, which takes consideration of costs of repairing components and cost

of repairing the system.

The data example shows that the ordering of the cost-based importance can be
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different from the Birnbaum importance and it relates not only to component

reliability and location but also cost on maintenance. This indicates that the

cost-based importance can be very useful as it takes different types of cost

into consideration.
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Table 1

Notation

ck cost per failure of component k

cs,k expected cost per system failure caused by the failure to component k

cc,i expected cost per system failure caused by the failure of minimal cut set i,

where i = 1, ..., n0

C(t) expected total cost of maintaining the system within time (0, t)

Ck(t) expected total cost of maintaining component k within time (0, t)

Cs,k(t) expected total cost incurred due to system failure within time (0, t), caused

by the failure of component k

m0 total number of different minimal cut sets, each of which contains only one

component

n number of components in the system

n0 total number of different minimal cut sets in the system

Rk(t) reliability function of component k

Rs(t) reliability of the system

Ui1,...,imi
the i-th minimal cut set, which contains components i1, i2, ..., imi , where i =

1, 2, ..., n0

Λk(t) Λk(t) =
∫ t

0 λk(x)dx, where λk(t) is the failure intensity function associated

with Fk(t), where Fk(t) = 1−Rk(t)

Λs(t) Λs(t) =
∫ t

0 λs(x)dx, where λs(t) is the failure intensity function associated

with Fs(t) and Fs(t) = 1−Rs(t)

ΛUi1,...,imi
(t)

∫ t
0 λUi1,...,imi

(x)dx, where λUi1,...,imi
(t) is the failure intensity function associ-

ated with FUi1,...,imi
(t)
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Table 2

Comparison between the Birnbaum importance and the cost-based importance un-

der Scenario A.

Reliabilities Costs Birnbaum importance Cost-based importance

c3 = c4 = c5 = 20 IB1 (t) > IB2 (t) = IB3 (t) IC1 (t) > IC2 (t) = IC3 (t)

R1(t) = R2(t) = R3(t) = e−0.1t2 c3 = 20; c4 = c5 > 120 IB1 (t) > IB2 (t) = IB3 (t) IC1 (t) < IC2 (t) = IC3 (t)

c3 = 20; c4 > 120; c5 > c4 IB1 (t) > IB2 (t) = IB3 (t) IC1 (t) < IC2 (t) < IC3 (t)

c3 = c4 = c5 = 20 IB1 (t) < IB2 (t) < IB3 (t) IC2 (t) < IC1 (t) < IC3 (t)

R1(t) = e−0.1t2 ;R2(t) = e−0.2t2 ;
c3 = 500; c4 = c5 = 20 IB1 (t) < IB2 (t) < IB3 (t) IC1 (t) > IC3 (t) > IC2 (t)

R3(t) = e−0.3t2

c3 = 500; c4 = 100; c5 = 20 IB1 (t) < IB2 (t) < IB3 (t) IC1 (t) > IC2 (t) > IC3 (t)

Table 3

Comparison between the Birnbaum importance and the cost-based importance, un-

der Scenario B, given that a time interval (0, 4) and cs = 100.

Reliabilities Costs Birnbaum importance Cost-based importance

c3 = c4 = c5 = 20 IB1 (t) > IB2 (t) = IB3 (t) IC1 (t) > IC2 (t) = IC3 (t)

R1(t) = R2(t) = R3(t) = e−0.1t c3 = 10; c4 = c5 ≥ 175 IB1 (t) > IB2 (t) = IB3 (t) IC1 (t) < IC2 (t) = IC3 (t)

for any c4 and c5 IB1 (t) > IB2 (t) = IB3 (t) IC2 (t) = IC3 (t)

c3 = c4 = c5 = 20 IB1 (t) < IB2 (t) < IB3 (t) IC1 (t) > IC3 (t) > IC2 (t)
R1(t) = e−0.1t;R2(t) = e−0.2t;

c3 = 10; c4 = c5 = 45 IB1 (t) < IB2 (t) < IB3 (t) IC3 (t) > IC2 (t) > IC1 (t)
R3(t) = e−0.3t

for any c4 and c5 IB1 (t) < IB2 (t) < IB3 (t) IC3 (t) > IC2 (t)

Table 4

Cost data and reliability parameters [18].

Component name Expected cost of per

component failure (£)

Expected cost of system failure

due to a component failure (£)

Reliability parameters

(Weibull distributions:

the unit of the scale

parameters is day)

Bearing A cba = 42204 cs,ba = 22375 Rba(t) = e−( t
3835

)1.09

Bearing B cbb = 42204 cs,bb = 22375 Rbb(t) = e−( t
3835

)1.09

Main shaft cms = 27266 cs,ms = 29114 Rms(t) = e−( t
6389

)1.43

Gear box cgb = 65387 cs,gb = 78468 Rgb(t) = e−( t
29051

)1.05

Generator cg = 49482 cs,g = 35964 Rg(t) = e−( t
17541

)1.11
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Fig. 1. System Example 1.

Fig. 2. A typical case of Scenario B.

Fig. 3. A 600kW Wind Turbine (Example 2).
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