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Abstract

In this paper, we consider a serial two-echelon periodic review inventory system with two
supply modes at the most upstream stock point. As control policy for this system, we propose
a natural extension of the dual-index policy, which has three base-stock levels. We consider the
minimization of long run average inventory holding, backlogging, and both per unit and fixed
emergency ordering costs. We provide nested newsboy characterizations for two of the three
base-stock levels involved and show a separability result for the difference with the remaining
base-stock level. We use results for the single-echelon system to efficiently approximate the
distributions of random variables involved in the newsboy equations and find an asymptotically
correct approximation for both the per unit and fixed emergency ordering costs. Based on these
results, we provide an algorithm for setting base-stock levels in a computationally efficient
manner. In a numerical study, we investigate the value of dual-sourcing in supply chains and
show that it is useful to decrease upstream stock levels. In cases with high demand uncertainty,
high backlogging cost or long lead times, we conclude that dual-sourcing can lead to significant
savings.
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1. Introduction

Modern supply networks are complex and often consist of many manufacturing facilities and

inventory locations spread over the continents. In recent decades many European companies

have switched production to Asia and have built new production plants there, adding to the

globalization of supply chains. However, in order to stay competitive and be flexible, they

maintain the possibility of manufacturing in Europe as well, albeit at a higher price. As

a consequence, inventory managers have two different options for inventory replenishments,

differing mainly in costs and lead times. With the growing complexity of supply chains,

situations with one buyer and several supply options have become increasingly common.

Nevertheless, quantitative modeling approaches to analyze these supply networks are limited.

Although there is a large body of literature on inventory management in supply chains,

most authors consider single vendor/single buyer relationships or single vendor/multiple

buyer relationships. Furthermore, most research on multiple supplier inventory systems is

restricted to a single inventory location.

In this article, we extend the existing literature and present a serial two-echelon model,

where the most upstream stockpoint has two supply options: an expensive one with a short

lead time as well as a cheaper one with a longer lead time. The first stockpoint is supplied

by the second via a single mode. The aim is to determine the replenishment quantities based

on the inventory status to minimize the operational costs of the system. We assume that

the inventory is reviewed periodically, and both stockpoints apply the same review period.

Since no restrictive assumptions for the lead times are made, such as a one period lead time

difference for the most upstream stockpoint, we cannot expect the optimal control policy to

have a simple structure. Not even for the single-echelon case can the optimal policy structure

be obtained or computed for general lead time differences (Fukuda, 1964; Whittmore and

Saunders, 1977; Feng et al., 2006a,b). Therefore, we restrict ourselves to a class of policies

which is optimal in case of single supply modes and has been shown to work reasonably well

in case of dual sourcing. Specifically, we consider base-stock policies for both stockpoints

combined with a dual-index policy at the most upstream stockpoint, and we show how to

compute near optimal base-stock levels in an efficient manner.

Our research is related to two streams of literature. In the first stream of literature, dual-

sourcing for single-echelon models is studied. Since the excellent review of Minner (2003),

much research has been done to generate new knowledge and results in this area. Because

the optimal replenishment policy is complex in case of two or more suppliers, most of the

papers present heuristic policies and the computation of good or optimal policy parameters.
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The so-called constant order policy, where each period a constant amount is ordered at the

regular supplier, is studied in Rosenshine and Obee (1976), Chiang (2007), Janssen and

de Kok (1999), and Allon and Van Mieghem (2010). Although the constant order policy

performs well when the regular lead time is long (Klosterhalfen et al., 2010), the dual-index

policy (DIP) performs well in general (Veeraraghavan and Scheller-Wolf, 2008). The DIP

tracks two inventory positions: a regular inventory position (on-hand stock + all outstanding

orders-backlog) and an emergency inventory position (on-hand stock + outstanding orders

that will arrive within the emergency lead time - backlog). In each period, ordering decisions

are made to raise both inventory positions to their order-up-to levels. A fast algorithm to

compute near optimal policy parameters for the dual-index policy can be found in Arts et al.

(2010). Extensions of the dual-index policy are investigated in Sheopuri et al. (2010). In

addition to periodic review policies, models in continuous time with two or more suppliers

are studied in Song and Zipkin (2009) and Plambeck and Ward (2007).

The second stream of literature related to our work is devoted to serial multi-echelon

systems where there is only one way of replenishing each stockpoint. Since the seminal work

of Clark and Scarf (1960), many contributions have been added to this stream of literature.

While some researchers have derived bounds (e.g. Chen and Zheng (1994), Shang and

Song (2003), and Chao and Zhou (2007)), others concentrate on computational efficiency

(e.g. Gallego and Özer (2006)). For an extensive discussion of the existing literature and

important results in this field, we also refer to Axsäter (2003) and van Houtum (2006).

Both research streams are merged in the new field of serial multi-echelon inventory sys-

tems with multiple supply modes. To the best of our knowledge, there are only a few

contributions in this field. The first extension of the classical Clark and Scarf model is pre-

sented in Lawson and Porteus (2000). They allow for two different transportation modes

between the stockpoints where the emergency delivery mode has lead time zero and the

regular mode a lead time of one period. For such a system they are able to characterize

the optimal policy under linear holding and backorder costs. Muharrenoglu and Tsitsiklis

(2003) also allow for supermodular shipping costs and derive the optimal policy. The op-

timal policy under physical storage constraints is derived in Xu (2009). In a more recent

paper by Zhou and Chao (2010), the case of arbitrary regular lead times and a one period

shorter emergency lead time is studied. They also provide bounds and heuristics based on

newsvendor equations. Although their model is a clear extension of the model of Lawson

and Porteus, an environment where a product can either be shipped in three weeks over sea

or in one day by plane is not included in the modeling approach. Therefore, there is a clear
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need for models with more general lead time assumptions.

The main contribution of this paper to the literature is as follows. We provide a two-

echelon inventory system with two supply options for the most upstream stockpoint and, in

contrast to the papers discussed above, we allow for general lead time difference between

regular and emergency supply. We show how to compute near optimal policy parameters in

an efficient manner, and we quantify the added value of the emergency supply mode. In a

numerical study we investigate when an emergency supply source is most beneficial.

The remainder of the paper is organized as follows. In Section 2 we present the model,

which is analyzed in Section 3. In Section 4 numerical results are presented, and the benefit

of the second supply source is analyzed. The paper concludes with a summary and directions

for future research in Section 5.

2. Model

We consider a two-echelon serial supply chain that faces stochastic demand for a single stock

keeping unit (SKU). The most upstream stockpoint (stockpoint 2) has a regular and an

emergency supply mode. The system is periodic and within a period the order of events is

as follows for each stockpoint: (1) holding and backlogging costs are incurred, (2) orders are

placed and received, and (3) demand is realized and filled or backlogged. The price and lead

time for a SKU, ordered via the regular (emergency) supply mode, are cr (ce) [$/SKU] and

l2,r (l2,e) [periods], ce > cr, l
2,r > l2,e. For convenience we also define ` := l2,r − l2,e ≥ 1.

Additionally, there is a fixed set-up cost k [$/emergency order] for each order placed through

the emergency supply mode. The lead time from stockpoint 2 to stockpoint 1 is l1. Demand

per review period is a sequence of non-negative i.i.d. discrete random variables {Dt}∞t=0,

where t is a period index. We will need the regularity condition P(D > 0) > 0, where D

is the generic single period demand random variable. Also for notational convenience, we

let Dt1,t2 =
∑t2

t=t1
Dt. The regular (emergency) order placed by stockpoint 2 in period t

are denoted Qr,2
t (Qe,2

t ), and the order placed by stockpoint 1 is Q1
t . We let I1

t denote the

physical stock minus backorders at stockpoint 1 at the beginning of period t while I2
t denotes

the physical stock at stockpoint 2 at the beginning of period t. We also define echelon 1 and

2 inventory levels at the beginning of a period as

IL1
t = I1

t (1)

IL2
t = IL1

t +
∑t−1

n=t−l1 Q
1
n + I2

t (2)
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Each period a holding cost of h2 [$/unit] is charged to all items in stockpoint 2 and

downstream therefrom, h2(IL2
t + (IL1

t )−). For units in stockpoint 1, an additional charge

of h1 [$/unit] is applied, h1(IL1
t )+. If backorders exist in stockpoint 1 at the beginning of

a period, a penalty cost p [$/unit] is charged for each unit in backorder which amounts to

p(IL1
t )−. Here we use the standard notations x+ = max(0, x) and x− = max(0,−x). By

using the fact that x = x+ − x−, we can write the total incurred holding and penalty costs

in a period t as

h2(IL2
t + (IL1

t )−) + h1(IL1
t )+ + p(IL1

t )− = h2IL
2
t + h1IL

1
t + (p+ h1 + h2)(IL1

t )−. (3)

For the emergency ordering costs, we observe that any reasonable policy (including the

policy we will consider) will order E(D) per period on average to stockpoint 2. Thus, we

have that the average purchasing cost per period equals crE(D) + (ce− cr)E(Q2,e), where we

dropped the time index to indicate steady state. Since crE(D) is a fixed cost term regardless

of policy operation, we omit it from the cost function. If we define c = ce − cr, then the

relevant variable ordering costs in a period t are cQ2,e
t . Also, for notational convenience we

allow Q2,e
t = 0 but only account for the fixed emergency ordering cost k whenever Q2,e

t > 0.

Thus, in a period t the total relevant ordering costs are given by

kI(Q2,e
t > 0) + cQ2,e

t (4)

where I(ξ) is the indicator function of the event ξ.

The sequence of events in a period t can be summarized as follows:

1. Inventory holding and backlogging costs are incurred according to equation (3).

2. Stockpoint 2 places orders Q2,e
t and Q2,r

t and incurs ordering costs according to equation

(4).

3. Stockpoint 2 receives orders Q2,e
t−l2,e and Q2,r

t−l2,r .

4. Stockpoint 1 places order Q1
t , which is constrained by the on hand inventory in stock

point 2: I2
t +Q2,e

t−l2,e +Q2,r
t−l2,r .

5. Stockpoint 1 receives order Q1
t−l1 .

6. Demand at stockpoint 1 occurs and is satisfied except for possible backorders.

Now we describe the operation of the two-echelon dual-index policy. This policy uses

three inventory positions in its operation, which are defined at the beginning of a period
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right before the corresponding orders are placed. The first inventory position is simply the

echelon 1 inventory position IP 1:

IP 1
t = I1

t +
∑t−1

n=t−l1 Q
1
n (5)

For echelon 2, we distinguish the emergency (IP 2,e) and the regular (IP 2,r) echelon inventory

positions:

IP 2,e
t = IP 1

t + I2
t +

t−1∑
n=t−l2,e

Q2,e
n +

t−∑̀
n=t−l2,r

Q2,r
n (6)

IP 2,r = IP 1
t + I2

t +
t∑

n=t−l2,e

Q2,e
n +

t−1∑
n=t−l2,r

Q2,r
n = IP 2,e

t +
t−1∑

n=t−`+1

Q2,r
n +Q2,e

t (7)

Notice that the last term in IP 2,e
t includes only regular orders that will arrive to stockpoint

2 within the emergency lead time, whereas IP 2,r
t includes all outstanding regular orders.

Moreover, IP 2,r
t includes the emergency order placed in period t, Q2,e

t . A graphical represen-

tation of these inventory positions in period t and the rest of the model and its notations is

given in Figure 1. Orders that are placed in period t have a dashed line indicating the place

where they will be in the pipeline upon placement.

Figure 1: Graphical representation of the model at the beginning of period t

The ordering decisions in period t are given by comparing the inventory positions with

their order-up-to-levels S2,r, S2,e and S1. For convenience we shall assume the regularity

condition that IP 1
t ≤ S1 and IP 2,r

t ≤ S2,r for all t ≥ 0. This can be assumed without

loss of generality because if this assumption is violated, the number of periods where this
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assumption is violated is finite with probability 1 if we do not order until these assumptions

are met. Consequently we can always renumber periods such that this assumption holds.

Q1
t = min(S1 − IP 1

t , I
2
t +Q2,e

t−l2,e +Q2,r
t−l2,r) (8)

Q2,e
t = (S2,e − IP 2,e

t )+ (9)

Q2,r
t = S2,r − IP 2,r = S2,r − (IP 2,e

t +Q2,e
t +

∑t1
n=t+1−`Q

2,r
n ). (10)

Notice that Q2,e
t is not simply the difference between the inventory position and its order-

up-to-level S2,e. The reason is that IP 2,e
t is usually not below its order-up-to-level S2,e. In

fact, it is usually larger and the excess is called the overshoot Ot defined as

Ot = (IP 2,e
t − S2,e)+ = IP 2,e

t +Q2,e
t − S2,e. (11)

As with the single stage DIP, the evaluation of the stationary distribution of Ot plays a

crucial role in the evaluation and optimization of the echelon DIP.

Now we can state the average cost function C(S1, S2,e, S2,r) as

C(S1, S2,e, S2,r) = cE
(
Q2,e

)
+ kP

(
Q2,e > 0

)
+

h2E
(
IL2
)

+ h1E
(
IL1
)

+ (p+ h1 + h2)E
[(
IL1
)−]

. (12)

3. Analysis

The analysis will proceed along the following lines. In section 3.1 we show that when ∆ :=

S2,r − S2,e is fixed, the stationary distributions of O, Q2,r and Q2,e are fixed. This result

allows us to decompose the problem and provide newsvendor characterizations for optimal

S1 and S2,e for fixed ∆. In section 3.2 we show how the distribution of O and P(Q2,e > 0)

can be accurately approximated.

3.1 Optimization

Let us define ∆ = S2,r − S2,e. With this definition, a dual-index policy is fully defined by

∆, S2,e and S1 as (S1, S2,e, S2,r) = (S1, S2,e, S2,e + ∆). Furthermore, let us consider the

outstanding regular orders that will not arrive to stockpoint 2 within the emergency lead

time in period t just after all orders have been placed, At:

At =
∑t

n=t+1−`Q
2,r
n (13)

With these preliminaries we have the following result.
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Lemma 3.1. (Separability result) The following statements hold:

(i) Suppose t ≥ 0. Then the following relations hold:

∆ = Ot + At (14)

Ot+1 = (Ot −Dt +Q2,r
t+1−`)

+ (15)

Q2,e
t+1 = (Dt −Ot −Q2,r

t+1−`)
+ (16)

Q2,r
t+1 = Dt −Q2,e

t+1. (17)

(ii) The stationary distribution of O, Q2,e and Q2,r depend on S2,e and S2,r only through

their difference ∆ = S2,r − S2,e.

Proof. For part (i), recall the regular echelon 2 inventory position as given in equation (7).

Adding Q2,r
t to both sides of this equation and substituting equation (11) yields:

IP 2,r
t +Q2,r

t = S2,e +Ot +
∑t

n=t+1−`Q
2,r
n .

Now by supposition t ≥ 0 and so IP 2,r ≤ S2,r. Consequently Q2,r
t = S2,r − IP 2,r

t and

with the definition of At in (13) we obtain:

S2,r = S2,e +Ot + At.

Rearrangement and substitution of ∆ = S2,r − S2,e proves (14).

For the proof of equations (15)-(17), we rewrite the emergency echelon 2 inventory posi-

tion:

IP 2,e
t+1 = IP 2,e

t +Q2,e
t −Dt +Q2,r

t+1−`

= S2,e +Ot −Dt +Q2,r
t+1−`. (18)

The second equality follows from the definition of the overshoot (11). Now by rewriting we

have:

Ot+1 = (IP 2,e
t+1 − S2,e)+

= (S2,e +Ot −Dt +Q2,r
t+1−` − S

2,e)+

= (Ot −Dt +Q2,r
t+1−`)

+. (19)
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For the echelon 2 emergency order quantity, we can write similarly:

Q2,e
t+1 = (S2,e − IP 2,e

t+1)+

= (Dt −Ot −Q2,r
t+1−`)

+. (20)

Lastly, Q2,r
t+1 = Dt−Q2,e

t+1 follows immediately from the fact that the dual-index policy ensures

that every period the total amount ordered to stock point 2 equals demand from the previous

period.

To prove part (ii), we substitute equation (14) into equations (15) to (17) to find

Ot+1 = (∆−Dt −
∑t

n=t−`+2Q
2,r
n )+ (21)

Q2,e
t+1 = (Dt +

∑t
n=t−`+2 Q

2,r
n −∆)+ (22)

Q2,r
t+1 = Dt −Q2,e

t+1. (23)

From these equations, we see that the stochastic processes {Ot}, {Q2,e
t }, and {Q2,r

t } can be

described completely using S2,r and S2,e only through their difference ∆. Consequently, their

stationary distributions can depend only on ∆.

From this Lemma, we immediately have that the cost terms cE(Q2,e) +kP(Q2,e > 0) can

be fixed, by fixing ∆. Thus, for fixed ∆, we only need to optimize the holding and penalty

costs h2E (IL2) + h1E (IL1) + (p + h1 + h2)E
[
(IL1)

−
]
. We will now investigate how to

evaluate these costs for fixed ∆. We will do this by analyzing replenishment cycles.

Let Ct,2 = h2IL
2
t denote the holding costs associated with echelon 2 that are incurred

in period t. Suppose we start in some period t0 ≥ 0 and order according to the echelon

dual-index policy, we obtain:

E
[
Ct0+l2,e+1,2|IP 2,e

t0 +Q2,e
t0 = S2,e +O

]
= E

[
h2(S2,e +O −Dt0,t0+l2,e)

]
= h2(S2,e + E(O)− E [Dt0,t0+l2,e ]). (24)

Next, we let Ct,1 = h1IL
1
t + (p + h1 + h2)(IL1

t )− denote the holding and penalty costs

associated with echelon 1 in period t. Then we have:

E
[
Ct0+l2,e+l1+1,1|IP 1

t0+l2,e +Q1
t0+l2,e = min(S1, IP 2,e

t0 +Q2,e
t0 −Dt0,t0+l2,e−1)

]
= E

[
Ct0+l2,e+l1,1|IP 1

t0+l2,e +Q1
t0+l2,e = S1 − (Dt0,t0+l2,e−1 −O − (S2,e − S1))+

]
= h1

(
S1 − E[(Dt0,t0+l2,e−1 −O − (S2,e − S1))+]− E [Dt0+l2,e,t0+l2,e+l1 ]

)
+

(p+ h1 + h2)E

[([
Dt0,t0+l2,e−1 −O − (S2,e − S1)

]+
+Dt0+l2,e,t0+l2,e+l1 − S1

)+
]
.(25)
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With the conventions

B1 = (Dt0,t0+l2,e−1 −O − (S2,e − S1))+ (26)

B0 = (B1 +Dt0+l2,e,t0+l2,e+l1 − S1)+, (27)

the average holding and penalty cost function for fixed ∆, Chp(S1, S2,e|∆), can be written

succinctly as

Chp(S1, S2,e|∆) = h2

(
S2,e + E(O)− E(Dt0,t0+l2,e−1)

)
+

h1

(
S1 − E(B1)− E(Dt0+l2,e,t0+l2,e+l1)

)
+ (p+ h1 + h2)E(B0). (28)

The following result follows immediately from Lemma 3.1, equation (28), and results for

serial supply chains with discrete demand (Doĝru et al., 2004; van Houtum, 2006).

Theorem 3.2. (Newsvendor inequalities for S2,e and S1) Suppose ∆ = S2,r − S2,e has been

fixed. Then the optimal choice for S1 is the smallest integer that satisfies the following

newsvendor inequality:

P
(
B

(1)
0 = 0

)
≥ p+ h2

p+ h2 + h1

. (29)

where

B
(1)
0 = (Dt0+l2,e,t0+l2,e+l1 − S1)+.

Now let S1∗ denote the optimal S1 and let ε(S1∗) = P (Dt0+l2,e,t0+l2,e+l1 ≤ S1∗) − p+h2

p+h2+h1
.

Then the optimal S2,e is the smallest integer that satisfies the following newsvendor inequality:

P (B∗0 = 0) ≥ p

p+ h1 + h2

+ P(B∗1 = 0)ε(S∗1) (30)

where

B∗1 = (Dt0,t0+l2,e−1 −O − (S2,e − S1∗))+

and

B∗0 = (B∗1 +Dt0+l2,e,t0+l2,e+l1 − S1∗)+.

Remark Note that while Theorem 3.2 pertains to two-echelon systems, analogous results

can easily be obtained for N -echelon systems as long as dual sourcing only occurs at the

most upstream stock point.
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3.2 Overshoot and emergency ordering probability

In Lemma 3.1, we have established that the stationary distributions of O, Q2,e, and Q2,r

are uniquely defined for fixed ∆. However, to evaluate the performance of a given DIP, we

need to evaluate these distributions to find the cost terms kP(Q2,e > 0), cE(Q2,e) and apply

Theorem 3.2. In this section we provide an accurate approximation for the needed results.

The overshoot distribution behaves in a manner entirely identical to the overshoot dis-

tribution in a single stage system as an inspection of Lemma 3.1 will reveal. Consequently,

we can adopt the approximation proposed by Arts et al. (2010) to determine the overshoot

distribution. To be self-contained, we briefly outline how to do this.

Observe that equation (14) in Lemma 3.1 implies that that the stationary distribution

of O can be obtained from the stationary distribution of A as P(O = x) = P(A = ∆ − x).

For At the following recursion holds (Arts et al., 2010, provide a detailed derivation):

At+1 = min(∆, At −Q2,r
t+1−l +Dt). (31)

From this equation, it is readily verified that a one-dimensional Markov chain for At has

transition probabilities pij = P(At+1 = j|At = i):

pij =

{ ∑j
k=0P(Q2,r

t+1−` = i+ k − j|At = i)P(D = k), if j < ∆;∑i
k=0P(Q2,r

t+1−` = k|At = i)P(D ≥ ∆ + k − i), if j = ∆.
(32)

Note that this is an aggregated Markov chain for At. A full Markov chain for At would

require storing regular orders Q2,r
t−`+1 to Q2,r

t in the state space. Thus, the state-space grows

exponentially in `. In making this aggregation, we require the probability P(Qr
t+1−` =

k|At = i), which is in fact unknown. However, this probability can be approximated using

the following limiting result which is proven in Arts et al. (2010).

Proposition 3.3. The following statements hold:

(i) As ∆→∞, P(Q2,r
t = x)→ P(Dt−1 = x)

(ii) As ∆→∞, P
(
Q2,r

t+1−` = x|At = y
)
→ P

(
Dt+1−` = x|

∑t
n=t+1−`Dn = y

)
.

(iii) For ∆ = 1, P
(
Q2,r

t+1−` = x|At = y
)

= P
(
Dt+1−` = x|

∑t
n=t+1−`Dn = y

)
.

Using the limiting results in Proposition 3.3 by approximating P
(
Q2,r

t+1−` = x|At = y
)

with P
(
Dt+1−` = x|

∑t
n=t+1−`Dn = y

)
, we can compute an approximation to πx = P(A = x)

by solving the linear balance equations together with the normalization equation:

πx =
∑∆

j=0 πjpxj x = 0, 1, ...,∆− 1
∑∆

j=0 πj = 1 (33)
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An approximation for the stationary distribution of O is now P(O = x) = π∆−x. This result

can be used in the newsvendor characterizations in Theorem 3.2.

Next, to evaluate the term cE(Q2,e) we note that E(A) = `E(Q2,r) and E(D) = E(Q2,r)+

E(Q2,e). Combining these relations, we have cE(Q2,e) = c(E(D)− E(A)/`).

Evaluating kP(Q2,e > 0) can be done by conditioning as follows:

kP(Q2,e > 0) = kP((D −O −Q2,r
t+1−`)

+ > 0|At = ∆−O)

= kP(D −O −Q2,r
t+1−` > 0|At = ∆−O)

= k
∑∆

y=0P(D −Q2,r
t+1−` > y|At = ∆− y)P(O = y)

= k
∑∆

y=0

∑∆−y
z=0 P(D > y + z)P(Q2,r

t+1−` = z|At = ∆− y)P(O = y).(34)

From equation (34), one can readily compute an approximation for kP(Q2,e > 0) using

Proposition 3.3 again in the same manner. The costs associated with emergency ordering

Ce(∆) are:

Ce(∆) = c(E(D)−E(A)/`)+k
∑∆

y=0

∑∆−y
z=0 P(D > y+z)P(Q2,r

t+1−` = z|At = ∆−y)P(O = y).

(35)

In Arts et al. (2010), it is shown that the approximations suggested here are extremely

accurate for a single stage system in that the solutions obtained are statistically not distin-

guishable from simulation estimates. An efficient algorithm to optimize the parameters of

the dual-index policy for the system under study is now straightforward, and an outline for

an algorithm to do this is given in Figure 2.

1. Initialize ∆

2. Determine the approximate stationary distribution of the overshoot using equations

(32), (33) and Proposition 3.3.

3. Find the optimal S1 and S2,e for this ∆ using Theorem 3.2.

4. Compute the (approximate) average cost of this policy using equations (28) and (35).

5. Stop or update ∆ according to some search procedure and proceed to step 2

Figure 2: Outline of an algorithm to optimize the two-echelon dual-index

policy
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4. Numerical results

In this section, we investigate the effect of different problem parameters on optimal costs,

order-up-to-levels, and savings compared to the equivalent single sourcing system that uses

only the best supply source, which can be solved to optimality. For the computation of the

optimal policy parameters in a serial system with single delivery modes, we use the approach

described in van Houtum (2006). For our numerical study, we define a base instance and

then unilaterally vary different parameters. The base case has the following parameters:

E(D) = 10, cvD = 1, l1 = 2, l2,e = 1, ` = l2,r − l2,e = 10, h1 = 0.6, h2 = 0.4, p = 19, c = 10

and k = 0. Here cvD is the coefficient of variance of demand σ(D)/E(D). The demand

distributions we use are either mixtures of negative binomial or geometric distributions as

fitted on the first two moments by the procedure of Adan et al. (1996).

First, we investigate the effect of demand variability. We let cvD range from 0.3 to

2 and plot cost, base-stock levels, and percentage saving compared to the optimal single

sourcing policy (Fig 3). The plot of cost is further divided to see the share of different cost

terms. Figure 3 shows that costs increase rapidly with demand variability, but that savings

compared to single sourcing do too. Furthermore, it is noteworthy that the emergency base-

stock level S2,e is mostly below the echelon 1 base-stock level S1. Further results show that

this is usual behavior.

Figure 3: Effect of demand variability

Second, we investigate the effect of the lead time difference ` = l2,r − l2,e on the system.

Results are shown in Figure 4. Here we see that costs do not increase rapidly with `, but

savings compared to single sourcing do. This saving is possible because more units are

ordered via the emergency channel as evidenced from the increase in variable ordering costs.

13



Thus, dual-sourcing is especially efficient when regular lead times are long compared to

emergency lead times.

Figure 4: Effect of lead time difference

Third, the service level defined as SL = p
p+h1+h2

is varied by varying p. In Figure 5,

we see that dual-sourcing is more beneficial when customers require high service, while the

added value when service is relatively unimportant is negligible.

Figure 5: Effect of required service level

Fourth, the unit emergency costs c are varied. The results, shown in Figure 6, indicate

that variable ordering and echelon 2 holding costs act as substitutes. This highlights previous

findings (Veeraraghavan and Scheller-Wolf, 2008) that the dual-index policy saves money by

reducing holding, not penalty costs. Also, as expected, we see that the dual-index policy

approaches a single-sourcing base-stock policy as c increases.

In the next experiment, we keep h1 + h2 = 1 while varying h1. This represents the

incremental value added from stage 2 to stage 1 of the supply chain. In Figure 7, we see that,

14



Figure 6: Effect of unit emergency costs

as the incremental value of stage 1 inventory increases, the value of dual sourcing decreases

(although total costs decrease). The explanation for this is that, as observed in Figure 6, the

benefit from the dual-index policy is the reduction of echelon 2 stock. As the importance of

this cost decreases, so does the benefit of the dual-index policy over single-sourcing.

Figure 7: Effect of holding cost division

Finally, we investigate the effect of having a fixed emergency ordering cost k. A fixed cost

can represent such things as shipping over air instead of over sea. In many cases, shipping

tariffs are based mostly on the modality and less so on the order quantity as long as the

order fits in a standard container. To model this, we reduce the variable ordering costs c

in the base instance to 1 and let the fixed ordering costs k range from 5 to 95. The results

are shown in Figure 8. We see a large saving potential compared to single sourcing. This

is striking because the dual-index policy is not especially fitted for fixed ordering costs. For
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example, it is quite possible to place an emergency order of size one under this policy. This

effect is shown by the division of fixed and variable ordering costs for large k. A more apt

policy may avoid fixed costs associated with placing very small emergency orders. Despite

this, the dual-index policy makes large cost savings possible. Note also that when both c

and k are small, it is possible for S2,e to exceed S1.

Figure 8: Value of dual-sourcing under fixed ordering costs

The computations were implemented in MATLAB and run on a 2.4 GHz dual core

processor. The computation times for finding optimal dual-index policy parameters for one

instance were 0.5 seconds on average and always within 1 second. The short computation

times, intuitive structure, and cost saving potential of the dual-index policy make it especially

fit for use in practice.

5. Summary and directions for future research

In this paper, we have studied a two-echelon serial inventory system where the most upstream

stockpoint has two suppliers. Replenishment orders are placed following a dual-index and a

base-stock policy. For the case of a discrete demand distribution, we have derived newsven-

dor inequalities for two base-stock levels. For the overshoot distribution, we rely on an

approximation based on a Markov chain. These results enable us to compute near-optimal

policies. We have further illustrated that the second supply option can lead to considerable

cost savings in case of high demand variability, large lead time difference, and small cost dif-

ference. However, the second supply option is less worthwhile for systems where the larger

part of the value is added at stockpoint one, since the second supply options mostly results

in inventory reduction at the most upstream stockpoint.
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Our model is the first serial multi-echelon model where two supply options with arbitrary

lead times can be used. However, lead time flexibility for a higher price is only considered

at the most upstream stockpoint. In a next step we plan to investigate two delivery options

at intermediate stockpoints.
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G. Gallego and O. Özer. A new algorithm and a new heursitic for serial supply systems.

Operations Research Letters, 33:349–362, 2006.

F. Janssen and T. de Kok. A two-supplier inventory model. International Journal of Pro-

duction Economics, 59:395–403, 1999.

S. Klosterhalfen, G.P. Kiesmüller, and S. Minner. A comparison of the constant-order and

dual-index policy for dual sourcing. International Journal of Production Economics, in

press, 2010.

D.G. Lawson and E.L. Porteus. Multi-stage inventory management with expediting. Oper-

ations Research, 48(6):878–893, 2000.

S. Minner. Multiple supplier inventory models in supply chain management: A review.

International Journal of Production Economics, 81-82:265–279, 2003.

A. Muharrenoglu and J.N. Tsitsiklis. Dynamic leadtime management in supply chains.

Working Paper Columbia University, 2003.

E.M. Plambeck and A.R. Ward. Note: a separation principle for a class of assemble-to-order

systems with expediting. Operations Research, 55(3):603–609, 2007.

M. Rosenshine and D. Obee. Analysis of a standing order system with emergency orders.

Operations Research, 24(6):1143–1155, 1976.

K.H. Shang and J.S. Song. Newsvendor bounds and heurstics for optimal policies in serial

supply chains. Management Science, 49(5):618–638, 2003.

18



A. Sheopuri, G. Janakiraman, and S. Seshadri. New policies for the stochastic inventory

control problem with two supply sources. Operations Research, 58(3):734–745, 2010.

J.S. Song and P. Zipkin. Inventories with multiple supply sources and networks of queues

with overflow bypasses. Management Science, 55(3):362–372, 2009.

G.J. van Houtum. Multiechelon production/inventory systems: optimal policies, heuristics

and algorithms. Tutorials in Operations Research INFORMS, pages 163–199, 2006.

S. Veeraraghavan and A. Scheller-Wolf. Now or later: a simple policy for effective dual

sourcing in capacitated systems. Operations Research, 56(4):850–864, 2008.

A.S. Whittmore and S.C. Saunders. Optimal inventory under stochastic demand with two

supply options. SIAM journal of applied mathematics, 32(2):293–305, 1977.

N. Xu. Optimal policy for a two-facility inventory problem with storage constraints and two

freight modes. European Journal of Operational Research, 194:78–84, 2009.

S.X. Zhou and X. Chao. Newsvendor bounds and heuristics for serial supply chains with

regular and expedited shipping. Naval Research Logistics, 57:71–87, 2010.

19



Working Papers Beta 2009 - 2010 
 
 
 
nr.  Year  Title                                                                Author(s) 

339 

 

 

338 

 

 

 

335 

 

 

334 

 

333 

 

 

 

332 

 

 

331 

 

 

330 

 

 

329 

 

328 

 

 

327 

 

 

326 

 

 

325 

 

 

 

 

2010 

 

 

2010 

 

 

 

2010 

 

 

2010 

 

2010 

 

 

 

2010 

 

 

2010 

 

 

2010 

 

 

2010 

 

2010 

 

 

2010 

 

 

2010 

 

 

2010 

 

 

 

 

Analysis of a two-echelon inventory system with 
two supply modes 

 

Analysis of the dial-a-ride problem of Hunsaker 
and Savelsbergh 

 

 

Attaining stability in multi-skill workforce 
scheduling 

 

Flexible Heuristics Miner (FHM) 

 

An exact approach for relating recovering 
surgical patient workload to the master surgical 
schedule 

 

Efficiency evaluation for pooling resources in 
health care 

 

The Effect of Workload Constraints in 
Mathematical Programming Models for 
Production Planning 

 

Using pipeline information in a multi-echelon 
spare parts inventory system 

 

Reducing costs of repairable spare parts supply 
systems via dynamic scheduling 

 

Identification of Employment Concentration and 
Specialization Areas: Theory and Application 

 

A combinatorial approach to multi-skill workforce 
scheduling 

 

 

Stability in multi-skill workforce scheduling 

 

 

Maintenance spare parts planning and control: A 
framework for control and agenda for future 
research 

 

 

Joachim Arts, Gudrun Kiesmüller 

 

 

Murat Firat, Gerhard J. Woeginger 

 

 

 

Murat Firat, Cor Hurkens 

 

A.J.M.M. Weijters, J.T.S. Ribeiro 

 

P.T. Vanberkel, R.J. Boucherie, E.W. 
Hans, J.L. Hurink, W.A.M. van Lent, W.H. 
van Harten 

 

Peter T. Vanberkel, Richard J. Boucherie, 
Erwin W. Hans, Johann L. Hurink, Nelly 
Litvak 

 

M.M. Jansen, A.G. de Kok, I.J.B.F. Adan 

 

 

Christian Howard, Ingrid Reijnen, Johan 
Marklund, Tarkan Tan 

 

 

H.G.H. Tiemessen, G.J. van Houtum 

 

F.P. van den Heuvel, P.W. de Langen, 
K.H. van Donselaar, J.C. Fransoo 

 

Murat Firat, Cor Hurkens 

 

 

 

Murat Firat, Cor Hurkens, Alexandre 
Laugier 

 

M.A. Driessen, J.J. Arts, G.J. v. Houtum, 
W.D. Rustenburg, B. Huisman 

 

 

 



 

324 

 

 

323 

 

 

322 

 

 

 

321 

 

 

320 

 

 

319 

 

318 

 

317 

 

316 

 

315 

 

314 

 

 

313 

2010 

 

 

2010 

 

 

2010 

 

 

 

2010 

 

 

 

2010 

 

 

2010 

 

 

2010 

 

2010 

 

2010 

 

2010 

 

2010 

 

2010 

 

 

2010 

Near-optimal heuristics to set base stock levels 
in a two-echelon distribution network 

 

Inventory reduction in spare part networks by 
selective throughput time reduction 

 

 

The selective use of emergency shipments for 
service-contract differentiation 

 

 

Heuristics for Multi-Item Two-Echelon Spare 
Parts Inventory Control Problem with Batch 
Ordering in the Central Warehouse 

 

Preventing or escaping the suppression 
mechanism: intervention conditions 

 

Hospital admission planning to optimize major 
resources utilization under uncertainty 

 

Minimal Protocol Adaptors for Interacting 
Services 

Teaching Retail Operations in  Business and 

Engineering Schools 

Design for Availability: Creating Value for 
Manufacturers and Customers 

Transforming Process Models: executable 
rewrite rules versus a formalized Java program 

 

Getting trapped in the suppression of 
exploration: A simulation model  

 

A Dynamic Programming Approach to Multi-
Objective Time-Dependent Capacitated Single 
Vehicle Routing Problems with Time Windows 

R.J.I. Basten, G.J. van Houtum 

 

 

M.C. van der Heijden, E.M. Alvarez, 
J.M.J. Schutten 

 

 

E.M. Alvarez, M.C. van der Heijden, W.H. 
Zijm 

 

 

 

B. Walrave, K. v. Oorschot, A.G.L. 
Romme 

 

Nico Dellaert, Jully Jeunet. 

 

 

 

R. Seguel, R. Eshuis, P. Grefen. 

 

Tom Van Woensel, Marshall L. Fisher, 

Jan C. Fransoo. 

Lydie P.M. Smets, Geert-Jan van 
Houtum, Fred Langerak. 

Pieter van Gorp, Rik Eshuis. 

 

Bob Walrave, Kim E. van Oorschot, A. 
Georges L. Romme 

 

 

S. Dabia, T. van Woensel, A.G. de Kok 

312 2010 
Tales of a So(u)rcerer: Optimal Sourcing 
Decisions Under Alternative Capacitated 
Suppliers and General Cost Structures 

Osman Alp, Tarkan Tan 

311 2010 
In-store replenishment procedures for perishable 
inventory in a retail environment with handling 
costs and storage constraints  

R.A.C.M. Broekmeulen, C.H.M. Bakx 

310 2010 
The state of the art of innovation-driven business 
models in the financial services industry 

E. Lüftenegger, S. Angelov, E. van der 
Linden, P. Grefen 

309 2010 
Design of Complex Architectures Using a Three 
Dimension Approach: the CrossWork Case 

R. Seguel, P. Grefen, R. Eshuis 

308 2010 
Effect of carbon emission regulations on 
transport mode selection in supply chains  

K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. 
van Houtum 



307 2010 
Interaction between intelligent agent strategies 
for real-time transportation planning  

Martijn Mes, Matthieu van der Heijden, 
Peter Schuur 

306 2010 Internal Slackening Scoring Methods  

Marco Slikker, Peter Borm, René van den 
Brink 

305 2010 
Vehicle Routing with Traffic Congestion and 
Drivers' Driving and Working Rules  

A.L. Kok, E.W. Hans, J.M.J. Schutten, 
W.H.M. Zijm 

304 2010 
Practical extensions to the level of repair 
analysis  

R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 

303 2010 
Ocean Container Transport: An Underestimated 
and Critical Link in Global Supply Chain 
Performance 

Jan C. Fransoo, Chung-Yee Lee 

302 2010 
Capacity reservation and utilization for a 
manufacturer with uncertain capacity and 
demand 

Y. Boulaksil; J.C. Fransoo; T. Tan 

300 2009 Spare parts inventory pooling games 

F.J.P. Karsten; M. Slikker; G.J. van 
Houtum 

299 2009 
Capacity flexibility allocation in an outsourced 
supply chain with reservation  

Y. Boulaksil, M. Grunow, J.C. Fransoo 

 

298 

 

2010 

 

An optimal approach for the joint problem of level 
of repair analysis and spare parts stocking 

 

R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 

297 2009 
Responding to the Lehman Wave: Sales 
Forecasting and Supply Management during the 
Credit Crisis  

Robert Peels, Maximiliano Udenio, Jan C. 
Fransoo, Marcel Wolfs, Tom Hendrikx 

296 2009 
An exact approach for relating recovering 
surgical patient workload to the master surgical 
schedule  

Peter T. Vanberkel, Richard J. Boucherie, 
Erwin W. Hans, Johann L. Hurink, 
Wineke A.M. van Lent, Wim H. van 
Harten 

 

295 

 

2009 

 

An iterative method for the simultaneous 
optimization of repair decisions and spare parts 
stocks 

 

R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 

294 2009 Fujaba hits the Wall(-e) 

Pieter van Gorp, Ruben Jubeh, Bernhard 
Grusie, Anne Keller 

293 2009 
Implementation of a Healthcare Process in Four 
Different Workflow Systems 

R.S. Mans, W.M.P. van der Aalst, N.C. 
Russell, P.J.M. Bakker 

292 2009 
Business Process Model Repositories - 
Framework and Survey 

Zhiqiang Yan, Remco Dijkman, Paul 
Grefen 

291 2009 
Efficient Optimization of the Dual-Index Policy 
Using Markov Chains  

Joachim Arts, Marcel van Vuuren, 
Gudrun Kiesmuller 

290 2009 
Hierarchical Knowledge-Gradient for Sequential 
Sampling  

Martijn R.K. Mes; Warren B. Powell; 
Peter I. Frazier 

289 2009 
Analyzing combined vehicle routing and break 
scheduling from a distributed decision making 
perspective  

C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. 
Schutten 

288 2009 
Anticipation of lead time performance in Supply 
Chain Operations Planning  

Michiel Jansen; Ton G. de Kok; Jan C. 
Fransoo 

287 2009 Inventory Models with Lateral Transshipments: A Colin Paterson; Gudrun Kiesmuller; Ruud 



Review Teunter; Kevin Glazebrook 

286 2009 
Efficiency evaluation for pooling resources in 
health care  

P.T. Vanberkel; R.J. Boucherie; E.W. 
Hans; J.L. Hurink; N. Litvak 

285 2009 
A Survey of Health Care Models that Encompass 
Multiple Departments 

P.T. Vanberkel; R.J. Boucherie; E.W. 
Hans; J.L. Hurink; N. Litvak 

284 2009 
Supporting Process Control in Business 
Collaborations  

S. Angelov; K. Vidyasankar; J. Vonk; P. 
Grefen 

283 2009 Inventory Control with Partial Batch Ordering  O. Alp; W.T. Huh; T. Tan 

282 2009 
Translating Safe Petri Nets to Statecharts in a 
Structure-Preserving Way 

R. Eshuis 

281 2009 
The link between product data model and 
process model  

J.J.C.L. Vogelaar; H.A. Reijers 

280 2009 
Inventory planning for spare parts networks with 
delivery time requirements  

I.C. Reijnen; T. Tan; G.J. van Houtum 

279 2009 
Co-Evolution of Demand and Supply under 
Competition  

B. Vermeulen; A.G. de Kok 

 

 

278 

 

 

 

277 

 

 

2010 

 

 

 

2009 

 

Toward Meso-level Product-Market Network 
Indices for Strategic Product Selection and 
(Re)Design Guidelines over the Product Life-
Cycle 

 

An Efficient Method to Construct Minimal 
Protocol Adaptors 

B. Vermeulen, A.G. de Kok 

 

 

 

R. Seguel, R. Eshuis, P. Grefen 

276 2009 
Coordinating Supply Chains: a Bilevel 
Programming Approach  

Ton G. de Kok, Gabriella Muratore 

275 2009 
Inventory redistribution for fashion products 
under demand parameter update  

G.P. Kiesmuller, S. Minner 

274 2009 
Comparing Markov chains: Combining 
aggregation and precedence relations applied to 
sets of states  

A. Busic, I.M.H. Vliegen, A. Scheller-Wolf 

273 2009 
Separate tools or tool kits: an exploratory study 
of engineers' preferences  

I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van 
Houtum 

 

272 

 

2009 

 

An Exact Solution Procedure for Multi-Item Two-
Echelon Spare Parts Inventory Control Problem 
with Batch Ordering 

 

Engin Topan, Z. Pelin Bayindir, Tarkan 
Tan 

271 2009 
Distributed Decision Making in Combined 
Vehicle Routing and Break Scheduling  

C.M. Meyer, H. Kopfer, A.L. Kok, M. 
Schutten 

270 2009 
Dynamic Programming Algorithm for the Vehicle 
Routing Problem with Time Windows and EC 
Social Legislation  

A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J. 
Schutten 

269 2009 
Similarity of Business Process Models: Metics 
and Evaluation  

Remco Dijkman, Marlon Dumas, 
Boudewijn van Dongen, Reina Kaarik, 
Jan Mendling 

267 2009 
Vehicle routing under time-dependent travel 
times: the impact of congestion avoidance  

A.L. Kok, E.W. Hans, J.M.J. Schutten 



266 2009 
Restricted dynamic programming: a flexible 
framework for solving realistic VRPs  

J. Gromicho; J.J. van Hoorn; A.L. Kok; 
J.M.J. Schutten;  

 
 
 
Working Papers published before 2009 see: http://beta.ieis.tue.nl 
 


	Voorblad WP 339
	Beta_wp339
	Introduction
	Model
	Analysis
	Optimization
	Overshoot and emergency ordering probability

	Numerical results
	Summary and directions for future research

	Working Papers Beta

