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Profitability in the car industry: new measures for estimgtargets
and target directions

Hans van der Heijden, Wolfgang Garn
The Surrey Business School, University of Surrey, Guitdfurrey, GU2 7XH, United Kingdom

Abstract

In this paper we study the profitability of car manufactutiarselation to industry-wide prof-
itability targets such as industry averages. Specificalbyane interested in whether firms adjust
their profitability in the direction of these targets, whatht is possible to detect any such change,
and, if so, what the precise nature is of these changes.

This paper introduces several novel methods to assessajbettry of profitability over time.

In doing so we make two contributions to the current body aidedge regarding the dynamics
of profitability. First, we develop a method to identify mple profitability targets. We define
these targets in addition to the commonly used industryageetarget. Second, we develop new
methods to express movements in the profitability space froort + j, and define a notion of
agreement between one movement and another.

We use empirical data from the car industry to study the éxtemvhich actual movements
are in alignment with these targets. Here we calculate treettargets that we have previously
identified, and contrast them with the actual profitabilitpyements using our new agreement
measure. We find that firms tend to move more towards to the ailgets we have identified than
to the common industry average.

Keywords: Forecasting, DuPont ratios, Multivariate statistics,ni&Density Estimation,

Directional Statistics, Profitability Targets

1. Introduction

Understanding the drivers of business profitability hase®ngstanding domain of interest

for operational researchers (see e.g., Wu et al. (2010)eFemd Tabak (2010); So and Thomas

o
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(2011) for recent examples). In this paper we study the tafity of individual firms in relation
to industry-wide profitability targets such as industryragges. Specifically we are interested in
whether firms adjust their profitability in the direction dfelse targets, whether it is possible to
detect any such change, and, if so, what the precise natof¢hiese changes.

Our study of profitability limits itself to the two DuPont diability ratios: profit margin and
asset turnover. The DuPont profitability ratios are disaggted components of Return on Assets
(ROA). The ratios are well-documented in textbooks, andesas the basic building blocks for
profitability. Profit margin is defined as net income dividgddales. Asset turnover is defined as
sales divided by total assets. In this paper we follow the@ggh advanced by Penman (2010)
to focus on Return on Net Operating Assets (RNOA), in ordemeotralize the ways in which
firms use financial leverage to increase profit. Financiatnege influences overall profitability
by incorporating profits from financial assets, and becaueset profits can vary widely between
companies in the same industry, it igfdiult to compare operating profitability using ROA data.
In line with this approach we study the disaggregated, iplidative components of RNOA: Op-
erating Profit Margin (OPM) and Net Operating Asset Turn@¥diO). For ease of reference, the
study will often simply refer to these components as profitgimeand asset turnover.

It is useful to visualize these two profitability drivers itveo-dimensional plane, with ATO on
the X-axis and OPM on the Y-axis. The various RN©Rvels (where OPNk ATO = c) can then
be depicted in the form of iso-curves. Soliman (2004) anchizen(2010) provide illustrations of
such plots. The two-dimensional plane is an instance of & generah-dimensional profitability
space, in this case with= 2. We are interested in describing how firms move year on yeaugh
this space (i.e., from one ATO-OPM point to another), andtiwiethis movement is influenced
by certain target points in the space.

This paper introduces several novel methods to assessajbettiry of profitability over time.
In doing so we make two contributions to the current body avidedge regarding the dynamics
of profitability.

First, we develop a method to identify multiple profitalyiliargets. We define these targets in

addition to the commonly used industry average target. Enwation of our new targets is based
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on linear difusion of kernel density estimation (KDE). KDE has the adagatthat it does not
estimate one global maximum (i.e., one “peak”) but instdima for the possibility of multiple
local maxima. These local maxima manifest themselves aspiayllocal “hills” in the profitability
space. Using the KDE estimator we arrive at two new typesrggta in addition to the industry
average target.

Second, we develop new methods to express movements indhtlpitity space front to
t + j, and define a notion of agreement between one movement attteandbhe method is based
on a comparison of the angles of movement, and a mapping diftieeence in angles onto a linear
[-1, 1] domain. The result is an agreement measure whichlemals to express one profitability
movement as a percentage of agreement with another movement

The target level is often taken to be the profitability mearhef industry in which the firm
operates. Previous research in this area has looked at evitbthratios are mean-reverting over
time (see for example Freeman et al. (1982)). Lev (1969)igesvthe first empirical evidence
that firms do indeed adjust their ratios to such target levieé also discusses thefiiculty of
adjustment (in the sense that some ratios are easier to mahnag others) and the cost of not
adjusting, for example, if banks insist on target levels eaige loan interest if the firm does not
meet these levels.

Other than creditor pressure, theoretical reasons for fimoging their profitability towards
target levels can be found in the competitive forces framkwas outlined by Porter (1980, 1985).
If the profitability of one firm is much higher than its peersppeting firms will attempt to imi-
tate the distinctive resources available to the superior, for will move into the arena where the
superior company enjoyed above-average profits. If thetplolity of a firm drops below those
of its peers, the firm will be much less profitable than the cetitipn and it will face the risk of
failure or takeover.

Fama and French (2000) use a version of the partial adjustmedel which allows cross-
sectional data to be combined with time series data, ledadiadarger sample to draw conclusions
from. They find strong evidence that profitability (returnamssets) is indeed mean-reverting. They

also show that firms with much higher profitability tend toggvfaster. Soliman (2004), using a
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comprehensive empirical study, tests whether OPM and AT®ed revert to their industry means
rather than to the general economy-wide levels. The studig fincreased predictive ability of
RNOA when taking into account industry adjustments for ORM ATO. Soliman concludes that
itis worthwhile to study OPM and ATO at the industry levelistis precisely the approach adopted
in this paper.

Related research has focused on the incremental benefibkihfpat the disaggregated prof-
itability ratios OPM and ATO and their informativeness faegicting future earnings. Fairfield
and Yohn (2001) study changes in profitability and look atitt@emental benefit of ATO and
OPM specifically. They find that disaggregating the changetarn on assets into the change in
ATO and the change in OPM helps to better predict future @doifity. Soliman (2008) similarly
finds the profitability measures to be informative for stockrket prices.

We use empirical data from the car industry to study the éxtewhich actual movements are
in alignment with these targets. The automobile sector lees Isubject of research on financial
performance before (see e.g., Saranga (2009) for an examgihe component manufacturing
industry). We focus on the 21 US, Japanese and German cafasturers with a global presence.
For each firm we calculate the three targets that we havequglyi identified, and contrast them
with the actual profitability movements using our new agreenmeasure. We find that firms tend
to move more towards the new targets we have identified theretoommon industry average.

The remainder of the paper is as follows. We first present dve methods for profitability
targets, profitability movements and directional agreeselVe then document our sample and
present the results of the calculations. Finally we presentlusions and directions for future

research.

2. Method Development

2.1. Movements and directional agreement

The first step in the development of our method is the stamditrdn of the two profitability
ratios. If left unstandardized, unit changes hav&edential éfects on the two profitability ratios.

For instance if the ATO range is 10 and the OPM range is 0.1vwh#out scaling (standardizing)
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them ATO has a 100 times larger impact, any OPM change wouldelégible. It is therefore
important to establish the relative weighting of ATO and QRMIr assumption here is that they
have equal weight.

We standardize every ratio by their yearly min-max rangehdhat unit changes carry the
same impact for every ratio. The scaling is accomplishedvagidg the ATO and OPM distances
by their yearly ranges. The ATO range is M&d Q} — min{AT Q} and analogously for the OPM
range. Here, these ranges will be caledling factorsand denoted b := (Sato, Sopm)-

The actual profitability movement of a compamis its change of ATO and OPM from yeéar
to yeart + |, wherej is the number of years forward.

The vector

T = (Fetsj—Tet) =S (1)

= (OPMc,t+j - OPMc,t, AToc,t+j - ATOc,t) ~S (2)

will be defined as thactual directionof profitability: from one position in yedrto the following

yeart + j. The+ operator indicates the element-by-element division bystiading factors. Given

a current profitability position and a target positiowe can similarly define a target directiag.
We determine the level of agreement of the actual directimhtarget direction by considering

the angles of the directions. Let be the angle of the actual directiog andg. be the angle of

the target directiofrg. The absolute dierence between these angles is tiedénce angle,:

Aap = |‘Pa - (10‘r| (3)

To aid in our understanding of theseffdrence angles, it is convenient to map them to an

interval [-1, 1], where:

(0,1], directional agreement;
Yel o, orthogonal; (4)

[-1,0), directional disagreement.
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Figure 1: Alternative directional agreement measure basdte cosine function.

That means if actual and target direction are the same,theri, and there is 100% agreement.
In case they are orthogonal, thén= 0. If they point into opposite directions then the direcéibn
agreement i¥ = -1, and the movements are in 100% disagreement.

This mapping is achieved by introducing the lin&&afunction, which we will calldirectional

agreement

1—13, A, <m
Y= g 5)

24
—+ -3 A, >nr
Ve

There are alternative mappings. For instance one couldhgsedsine function. However, the
density shape of the cosine measure is biased towards omeiaus one (see figure 1). The linear
mapping is chosen specifically to neutralize such biases.

Figure 2 presents a visual overview of these concepts. Theré&idepicts one company
(BMW), which moves in the profitability space from tinhe= 2010 to timet = 2011. The ac-
tual movement is in red. The target (here the industrialayeyis in green, and the dotted green

line represents a target movement. The blue lines represtimigonal and opposite directions.

2.2. Estimating profitability target

Probability density estimations fall into two main classparametric and non-parametric es-
timation. Parametric estimations take a certain parameistribution (e.g. normal, logistic, etc.)
and determine parameters such that the error to the origamaple data is minimized. Usually
parametric distribution estimations have a unique maximuithout local peaks. Ratios such as
profit margins and asset turnovers do in general not foll@ntbrmal distribution and often posses

local peaks. Hence,we use a non-parametric (i.e., disioinéree) method. In this work we focus

6
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Figure 2: Development directions and angles.

on Kernel density estimators (non-parametric method) hbe@e this goal.

Histograms are among the most traditional of discrete terstimations. Constructing his-
tograms gives rise to the problem of defining bins having tpptopriate” width and location. In
order to blur these hard bin boundaries, we can step a destainem the minimum to the maxi-
mum observation. At each step= x_; + Swe count the number of observations in a surrounding
interval [x, — w, X + w). That means there is an overlap, which means we count thenaimons
twice, if s= w. This is called the naive classifier after normalizatiowi@on by Zhw):

n

= 5 3 %5 <l ©

k=1

wheren is the number of observationsw2s the interval width (also known as window width,
bandwidth or smoothing parameter) anid the vector of observations. The square brackets denote
the Iverson convention, i.e. if the expression within theasg brackets is true the returned value
is one otherwise zero. Figure 3 shows a histogram and nanstgesstimates for OPM of car
manufacturers for the years 1991 until 2010. Thiéedénce between the two naive estimates is
that one has the window widtli set equal to the step size

An obvious weakness of the naive density estimate is itodistuity at the interval bound-

aries, even when we choose half open intervals. Howevégiétare no observations at the interval
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Figure 3: Histogram and naive density estimates for (a) OR§I(B) ATO of car manufacturers.

11 boundaries then probability density must equal to one:

D sk=1; (7
k=1

12 Whereyy = Zy—;s (i.e. yk normalized). By using areas we have already left the discrete probybilit

s definition behind us despite the sum still being applicable.

1

@

164 Generalizing the above leads to the Kernel FuncKgr), which requires:
f K(x)dx = 1. (8)
165 Popular functions are the Epanechnikov and Normal kernadtfons. Figure 4 shows the

s Normalized histogram using the same width as the normakkelensity estimate. The normal
ez kernel is here almost completely overlapped by the Epankohrkernel density estimate with

s Optimal window width. However reducing the bandwidth by etéa of four approximates more

160 Closely the normalized histogram.

170 A detailed description of kernel methods is outside the saofpthis text, but the interested
1 reader is pointed to the following literature. Hastie et(2009) discuss Kernel Smoothing meth-
2 0ds. Density estimation is reviewed in Silverman (1986witparticular focus on univariate and
s Multivariate kernel estimations. Multivariate Densitytiggation is discussed in detail by Scott

me (1992).

1In a more general notation equation (7) is writterp:4y, Sy,dx 11
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Figure 4: Typical density estimates for (a) OPM and (b) AT@af manufacturers.

For this study we use a multivariate adaptive kernel derestimator, which is based on the
linear difusion process. This estimator was originally introducedbyev et al. (2010). The
bandwidth was determined by a plug-in selection methodithabt based on normal reference
rules. So the bandwidth selection is free of distributiosuasptions. Going away from the mostly
used Gaussian kernel density estimator also improves ta &mlaptivity. That means peaks are
better reflected. Furthermore the lineafasion KDE overcomes boundary issues most other KDE

sufer from. The Appendix provides more specific details aboistektimator.

2.3. Movements towards targets

Our objective is to compare movements from one (ATO,OPMinpim another. Therefore, we
define four targets of interest. One of them is the actuatdh movement of the profitability
ratios. We will callry; := (AT Qy, OPMy) the position of a companyat yeart. We are interested
in getting to the following four targets, with the last twagdats being new and developed using the

Kernel Density Estimation:

next position of actual financial ratiog. ,

industrial average; ,

density cented;,

maximum neighbomy.
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The next position of an actual movemegt, is the ATO and OPM for the yedr+ j, where]
is the number of years in the future (e.g. one, three or five).

Theindustry averagés determined each year by:

1 n
&= ; et 9)

wheren is the number of companies in ydar

The direction to the industry average is:
ai=(a—-ra)+s (10)

whereswas defined in section 2.1.

Thedensity center ds determined using the linearflision Kernel density estimation (KDE):
d; := argmaxKDE(r, kK)}, (11)

wherer; := (ry,...,rn). The KDE returns a heatmag, which is aR** matrix with k being
a power two value (e.g. 256). Additionally we will know tixeandy positions of the heat map
values, which ardn, andh,. That means equation (11) returns as argument the posititreo
maximum probability density value. Note that uniquenes®iensured.

Analogously we define the direction to the density center:
_)
dot 1= (di = ret) + S, (12)

and to the maximum neighbor:

Met = (Mg — ) = S (13)

The maximum neighbanm is the value which assumes a maximum in a neighborhoog: of

My ;= argmax N (r, KDE(r, K))}, (24)

10
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where N is an algorithm that returns a number of neighbors.pfFirst all distances of; to hy
andhy are determined. Then a selection (neighborhood) of thestgmints with their probability
density estimate is returned.

The kernel density estimations were implemented in Matkihgitheksdensity, kde (uni-
variate) anckde2d (bivariate) functions. These functions implement aldons published in Bow-

man and Azzalini (1997) and Botev et al. (2010) respectively

3. Data

Because the study focuses on the development and profigatatihin industry level, we choose
one specific industry to illustrate our techniques over atredly long period of time. The industry
we study is the car manufacturing industry, and the timezooriof the study is 16 years, from
1995 to 2010.

We studied the profitability measures of 31 global car mastufers over the course of 16
years: 14 car manufacturers were from Japan, 9 from the tUSii@es, and 8 from Germany. The
Worldscope database (ThomsonReuters) provides the yimdgfinancial statement data for the
analysis.

The calculation of operating profit margin and asset turnolasely follows Soliman (2008).
Operating profit marginlOPM) is operating income (Worldscope datatype 1250) édildy net
revenues (datatype 1001Asset turnovefATO) is net revenues divided by average net operating
assetslOA). NOAIis operating assets minus operating liabilities. Opegedgsets are total assets
(datatype 2999) less cash and short term investments {dat@001). Operating liabilities are
total assets less long-term debt (3251), short-term d€l%1(3 common equity (3501), preferred
stock (3451), and minority interest (3426). Averdg®Ais 0.5(NOA + NOA_;) whereNOA_;
is available, andNOA whereNOA_; is not available.

Several invalid data points are encountered with the daissing values, infinite values, zero
values and outliers. To determine the yearly KDE, our apgragas to remove these invalid data
points on a year-by-year basis. For determining directiynidis necessary to ensure the validity

of the data for both the selected yéand the target yedr+ j jointly. Furthermore, it is necessary

11
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that these issues are resolved for ATO and OPM concurremtlgdch company. The removal of
nonexistent and infinite values is trivial. In theory zerdues could happen, however in practice
they should not. Thus we remove values that are exactly zéudliers” are by far the most critical
issue. ATO ratios were accepted if they were within the raigend 9. OPM ratios were required
to be in the interval (-0.4, 0.2). Before discussing altéues let us have a look at thdfect of
this constraints. Before processing the data there arel@paoies over 16 years, i.e. 496 possible
values. 96 OPM, 111 ATO and 112 OPM & ATO are infinite or noneis 2 OPM, 26 ATO and
28 OPM & ATO are zero. Boolean combination leaves us with 388es. The range constraint
removes another 41 values. So from the original data set @4%ain. This means that the number
of companies per year varies between 17 and 23 within the a&ye

Alternatives to handling outliers were considered: usingiers, confidence intervals (e.g.
mean=+ 2 standard deviations), quantiles in [5%, 95%] and a digtaneasure. The distance
measure determines the average distance between valuesshameks those data points, which are
beyond the average distance plus the standard deviatiowevdw, the outlier handling with the
range constraints preserves more data than its altereative

Thus, ATO and OPM are in distinct ranges with typical OPMasitior car manufacturers in
[-0.4, 0.2], whilst ATO ratios are within the range [-1,9]hi§ re-emphasizes the importance of
scaling as a first step to the analysis: if no scaling is aggliehange in the ATO ratio would have

a roughly 17 times higher impact than a change in the OPM.ratio

4. Resaults

4.1. Profitability Target Estimator

Figure 5 (a) presents the bivariate kernel density estondtr the sample for the year 2008.
The figure is a three-dimensional representation of the OR#MAT O probability density estima-
tion.

The figure is best interpreted as a smoothed-out bivariatedriam. We can see that there are
local maxima (hills and peaks) with the highest maximum espnting the center of the density

function. Several firms (shown as red dots) cluster arourgparste local maximum.

12
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Figure 5: Probability density estimate of ATO and OPM for yiear 2008.

Although the three-dimensional picture is useful to examine local maxima in terms of
height, it may also be misleading. This is because 3D pistaray distort, and in addition some
local maxima may “hide” behind larger maxima. Figure 5 (lggants a dierent visualization of
the same density estimation. We will use this visualizaitithe remainder of the paper because its
interpretation is not handicapped by possible 3D distogidn addition, it matches the traditional
depiction of ATO and OPM as discussed previously.

Initially we will analyze and describe in some detail theeditonal agreement of companies
to their targets in the year 2008. The procedure used foryieat will be applied for the whole
period of 16 years. During this period (1995 until 2009) thdustry average varies more than
the density centers (see figure 6). The movements for thatderenters are roughly 10% of
the displayed range. The industry averages have partitarge deflections in the years 1995,
1996, 2007 and 2009. This means taking industry average exmgity center as a target requires a

renewed calculation on a year-on-year basis.

4.2. Movements towards targets

In order to evaluate the directional agreement we have terhte probability density esti-
mates and the directions.
The vector map in figure 7 demonstrates the directions of dingpanies to the industrial av-

erage, density center and maximum neighbors in 2008. Incpéat the actual development of

13
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Table 1: Directional agreement, three targets vs actuabmewnt 2008.
Directional Statistiq density neighbor ind. avg.
Agreement Mean 0.67 0.556 0.59

Std 0.21 0.3 0.21

Median| 0.706 0.62 0.559

Disagreement Mean -0.533 -0.483 -0.444
Std 0.38 0.32 0

Median| -0.359 -0.428 -0.444

a company to the next year can be seen. These figures dentersstrae complications in the
analysis. For instance the company Harley (on the top) istémtat the local maximum, leading
to an undefined direction. Mitsubishi and Kanto have siméios, which define a “mini-cluster”.
However, they move away from their centers in almost conspethogonal directions. Overall we
observe a fall in OPM and ATO from 2008 to 2009. This leads tigaiicant change in the prob-
ability density heat map (see figure 8) and motivates a langed density center and industrial
average.

The quantitative analysis gives statistical values ofdiomal agreement summarized in table
1. The results show that the strongest positive directiagegement is towards the density center
on average; followed by the industry average and maximughteir target. The median indicates
an even stronger directional agreement towards the desesitgr. The median of the directionality
of the steepest local ascent is higher than the industnageef~urthermore large variations of the
ratios are observed. This suggest the need to consider thle witobability distribution.

The same analysis - as done for the year 2008 - is applied yeetrs 1995 until 2010. Figure 8
shows the ratios (OPM,ATO) and the corresponding estimartalolability density heat maps. The
displayed ATO and OPM ranges are [-1.7,8] and [-0.1,0.2)eesvely. Most of the years show
a single density center. Nevertheless these visualizaiimticate that a multivariate parametric
normal probability density estimate would be inapprogridthis applies in particular to the years
2007 and 2008 where multiple clusters exist. The quantéatnalysis is achieved by aggregating
positive and negative directional agreements, which ledle descriptive statistics shown in table
2. We observe that the number and sum of directional agresrfarall targets is greater than the

disagreements. The density center is the best target asgdadall descriptive statistic elements.

15



Figure 8: Kernel density heat maps 1995-2010.
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Table 2: Directional agreement, three targets vs actuabmewnt 1995-2009.
Directional Statistiq density neighbor ind. avg.
Agreement Mean 0.544 0.486 0.517

Std| 0.280 0.280 0.290

Median| 0.578 0.498 0.554

Count 164 161 150

Sum 89.3 78.2 77.5

Disagreement Mean -0.558 -0.520 -0.544
Std| 0.300 0.280 0.300

Median| -0.624 -0.522 -0.633

Count 123 126 137

Sum| -68.6 -65.5 -74.5

density centre(w=0.26)
—max. neighbour (w=0.34)
0.65 industrial average (w=0.34)

Figure 9: Directional Agreement distribution (a) Histograb) Probability KDEs.

The positive and negative medians for density center anasingl are more pronounced than the
neighbor target. A closer examination of the histogram deddensity estimation (figure 9) con-
firms these formations. The probability density estimatdle density center target suggests two
distinct groups. One group that is likely to have its DuPatitats directed towards the density
center and the other one going towards the opposite directiverall there are 57.1% positive
DuPont drivers over a 16 years period. In table 3 the finamatads for each financial target from
1995 until 2009 are given by using the count of directionatagents and disagreements.

A refined positive directional agreement overview is olediby: % where¥* := Y[V >
O¥ and¥~ := 3[¥ < O]¥. HereV represents the directional agreement of a compainya
specified yeat towards a targeta,d, m} (e.g. ¥ := Pd). Using this formula we obtait¥} =
51.0%, ¥} = 56.5% and¥;, = 54.4%. Here the dference between density center and industry
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Table 3: Directional Agreement of DuPont drivers betwee®518nd 2009.
density neighbor ind. avg.

Agreement 164 161 150
57.1% 56.1% 52.3%
Disagreement 123 126 137

42.9% 43.9% 47.7%

average is 5.5%.

Additionally we analyzed the directional agreement usieglee actual direction a 3 years
and 5 years future scope. When a 3 years scope is used fomilgatey the actual direction then
inclinations to the targets reduce. A further reduction biserved using 5 years for the actual

direction, which causes one target to have directionabdesament.

5. Discussion

In this paper we studied the profitability of 21 global car mi@cturers over a 16-year period
in relation to industry-wide profitability targets. To exsr@ whether each firm moved towards
targets, we have developed new targets using KDE densityasin, and a new concepts to
assess whether there is directional “agreement” betweeadiual move and the targeted move.

The analysis has shown that firms have a positive directiagiedement towards targets: den-
sity center, industry average and maximum neighbor. Dgrsihter has a 4.8% better positive
directional agreement than the industry average. Furtbeziie probability density estimate for
the density center allows a better separation between OufRrvers with directional agreement
and disagreement. The profitability probability distribats can be used by companies to adjust
their DuPont drivers. Moreover, the probability densittiraates (based on a linearfilision Ker-
nel) capture the yearly dynamics and visualize the overalitability of a market segment. This
can be used by investors to identify profitable company ehsst

The study gives rise to a number of avenues for further reee&ollowing is a discussion of
three possible avenues.

The existence of multiple industry averages is consistettt the theory of strategic groups,

i.e., groups of firms that tend to gravitate around similancttres, strategies, and performance.
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A brief excursion in the strategic management literatu@sha considerable amount of work on
the formation and development of strategic groups. For @kanbranove et al. (1998) theorize
how strategic interactions within the group influence patiiity measures.Nair and Filer (2003)
provide corroborating empirical evidence for the existen€ groups. Porter (1980) discusses
mobility barriers as the primary reason for the formatiogfups. It is worth examining clusters
of firms in more detail. The advantage of kernel density esfiiom is that groups remain fluid
and confined to the nearest neighbor. Further study may sesknichronize the results from
kernel density estimation with, say, a cluster analysicWieixplicitly sorts the firms into élierent
clusters.

The second avenue is to further study the impact &edeént approaches to standardization
of the measures and validation of the data points. Scaliegdtia appropriately is relatively
challenging task, and our assumption that the two ratiosfaggqual importance is relatively crude.
We suggest to focus future research on this aspect. Praimbihethods may be an interesting
way forward. We have considered several alternative wayscéte the ratios. Using only the
maximum gives emphasis to positive ratios. Another apgraeas assuming normal distributed
data and scaling by using the mean plus two or three stanearatiwbns. We considered théects
of two more ways: not scaling the data and using the prepsedesanges. Not to scale the data
is materially similar to not using the OPM ratios, so thisd an option. Lastly we used the data
preprocessing ranges, which dampens the data slightly.rHasgever, this has the advantage that
the scaling is independent of the year. Scaling on yearligloaight be problematic for comparison
purposes. Further investigation is recommended.

A third possible avenue is to look at generalizations of nmosmets, for instance the dynamics
of movements. We have looked at strategic movements in fmestsional space. One of the
interesting aspects of further research is to look at naiftiensional strategic directions. One
dimension could be related to working capital managememt (rying to remain liquid while at-
tempting to become more profitable). This would lead to sgi@tmovements in three dimensions.
Kernel density estimations can be easily extended to hidineensions, and a contour map could

be projected on a unit sphere to examine the dynamics withingustry. The above opens up the

19



361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

statistical calculus of directions to profitability anaks

Much of the dynamics of an industry can be described by theegeip which the firms react
to each other. This is particularly so with respect to lewlprofitability. Individual and group
dynamics of companies are therefore an interesting areartbielr investigation. The conceptual

apparatus developed in this paper opens up the way for sadtysan

Appendix

The linear difusion KDE can be best understood by characterizing the @Gaussrnel density

estimator:
n
W= px-Yow, xR (15)
k=1

wherew is the bandwidth{y, ..., y,} are independent realizations and

X=Y)
3 ()

¢(X_Yk,W) = €2

wV2r

This estimator has the characteristic that it is the unighgti®n of the difusion partial diferential

equation (PDE):
2

0
aw oW =555

f(x, w), xeR,w> 0, (16)

and the initial conditiorf (x, 0) = % Yi1[x = yi]. This motivates the following generalization:
0
Wvg(x, w) = Lg(x, w), xeR,w>0, a7

where the linear dierential operator is defined by the forfg@d—x(a(x)dix(m)). Herea and p
are positive real functions with bounded second derivativehe initial condition forg(0, w) is
%Zﬂzl[x = yix] and the boundary condition b@% = 0. Note ifa = 1 andp = 1 we will obtain
equation 15. The solution of the lineafitision partial diferential equation:

n

g = T k(% YD) (19

k=1
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will be called linear difusion estimator and diffusion kernel.

Further details on this kind of kernel density estimation ba found in Botev et al. (2010).
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