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Abstract5

In this paper we study the profitability of car manufacturersin relation to industry-wide prof-6

itability targets such as industry averages. Specifically we are interested in whether firms adjust7

their profitability in the direction of these targets, whether it is possible to detect any such change,8

and, if so, what the precise nature is of these changes.9

This paper introduces several novel methods to assess the trajectory of profitability over time.10

In doing so we make two contributions to the current body of knowledge regarding the dynamics11

of profitability. First, we develop a method to identify multiple profitability targets. We define12

these targets in addition to the commonly used industry average target. Second, we develop new13

methods to express movements in the profitability space fromt to t + j, and define a notion of14

agreement between one movement and another.15

We use empirical data from the car industry to study the extent to which actual movements16

are in alignment with these targets. Here we calculate the three targets that we have previously17

identified, and contrast them with the actual profitability movements using our new agreement18

measure. We find that firms tend to move more towards to the new targets we have identified than19

to the common industry average.20

Keywords: Forecasting, DuPont ratios, Multivariate statistics, Kernel Density Estimation,21

Directional Statistics, Profitability Targets22

1. Introduction23

Understanding the drivers of business profitability has been a longstanding domain of interest24

for operational researchers (see e.g., Wu et al. (2010); Tecles and Tabak (2010); So and Thomas25
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(2011) for recent examples). In this paper we study the profitability of individual firms in relation26

to industry-wide profitability targets such as industry averages. Specifically we are interested in27

whether firms adjust their profitability in the direction of these targets, whether it is possible to28

detect any such change, and, if so, what the precise nature isof these changes.29

Our study of profitability limits itself to the two DuPont profitability ratios: profit margin and30

asset turnover. The DuPont profitability ratios are disaggregated components of Return on Assets31

(ROA). The ratios are well-documented in textbooks, and serve as the basic building blocks for32

profitability. Profit margin is defined as net income divided by sales. Asset turnover is defined as33

sales divided by total assets. In this paper we follow the approach advanced by Penman (2010)34

to focus on Return on Net Operating Assets (RNOA), in order toneutralize the ways in which35

firms use financial leverage to increase profit. Financial leverage influences overall profitability36

by incorporating profits from financial assets, and because these profits can vary widely between37

companies in the same industry, it is difficult to compare operating profitability using ROA data.38

In line with this approach we study the disaggregated, multiplicative components of RNOA: Op-39

erating Profit Margin (OPM) and Net Operating Asset Turnover(ATO). For ease of reference, the40

study will often simply refer to these components as profit margin and asset turnover.41

It is useful to visualize these two profitability drivers in atwo-dimensional plane, with ATO on42

the X-axis and OPM on the Y-axis. The various RNOAc levels (where OPM× ATO = c) can then43

be depicted in the form of iso-curves. Soliman (2004) and Penman (2010) provide illustrations of44

such plots. The two-dimensional plane is an instance of a more generaln-dimensional profitability45

space, in this case withn = 2. We are interested in describing how firms move year on year through46

this space (i.e., from one ATO-OPM point to another), and whether this movement is influenced47

by certain target points in the space.48

This paper introduces several novel methods to assess the trajectory of profitability over time.49

In doing so we make two contributions to the current body of knowledge regarding the dynamics50

of profitability.51

First, we develop a method to identify multiple profitability targets. We define these targets in52

addition to the commonly used industry average target. The derivation of our new targets is based53
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on linear diffusion of kernel density estimation (KDE). KDE has the advantage that it does not54

estimate one global maximum (i.e., one “peak”) but instead allows for the possibility of multiple55

local maxima. These local maxima manifest themselves as multiple, local “hills” in the profitability56

space. Using the KDE estimator we arrive at two new types of targets in addition to the industry57

average target.58

Second, we develop new methods to express movements in the profitability space fromt to59

t + j, and define a notion of agreement between one movement and another. The method is based60

on a comparison of the angles of movement, and a mapping of thedifference in angles onto a linear61

[-1, 1] domain. The result is an agreement measure which enables us to express one profitability62

movement as a percentage of agreement with another movement.63

The target level is often taken to be the profitability mean ofthe industry in which the firm64

operates. Previous research in this area has looked at whether the ratios are mean-reverting over65

time (see for example Freeman et al. (1982)). Lev (1969) provides the first empirical evidence66

that firms do indeed adjust their ratios to such target levels. Lev also discusses the difficulty of67

adjustment (in the sense that some ratios are easier to manage than others) and the cost of not68

adjusting, for example, if banks insist on target levels andraise loan interest if the firm does not69

meet these levels.70

Other than creditor pressure, theoretical reasons for firmsmoving their profitability towards71

target levels can be found in the competitive forces framework as outlined by Porter (1980, 1985).72

If the profitability of one firm is much higher than its peers, competing firms will attempt to imi-73

tate the distinctive resources available to the superior firm, or will move into the arena where the74

superior company enjoyed above-average profits. If the profitability of a firm drops below those75

of its peers, the firm will be much less profitable than the competition and it will face the risk of76

failure or takeover.77

Fama and French (2000) use a version of the partial adjustment model which allows cross-78

sectional data to be combined with time series data, leadingto a larger sample to draw conclusions79

from. They find strong evidence that profitability (return onassets) is indeed mean-reverting. They80

also show that firms with much higher profitability tend to revert faster. Soliman (2004), using a81
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comprehensive empirical study, tests whether OPM and ATO indeed revert to their industry means82

rather than to the general economy-wide levels. The study finds increased predictive ability of83

RNOA when taking into account industry adjustments for OPM and ATO. Soliman concludes that84

it is worthwhile to study OPM and ATO at the industry level; this is precisely the approach adopted85

in this paper.86

Related research has focused on the incremental benefit of looking at the disaggregated prof-87

itability ratios OPM and ATO and their informativeness for predicting future earnings. Fairfield88

and Yohn (2001) study changes in profitability and look at theincremental benefit of ATO and89

OPM specifically. They find that disaggregating the change inreturn on assets into the change in90

ATO and the change in OPM helps to better predict future profitability. Soliman (2008) similarly91

finds the profitability measures to be informative for stock market prices.92

We use empirical data from the car industry to study the extent to which actual movements are93

in alignment with these targets. The automobile sector has been subject of research on financial94

performance before (see e.g., Saranga (2009) for an examplein the component manufacturing95

industry). We focus on the 21 US, Japanese and German car manufacturers with a global presence.96

For each firm we calculate the three targets that we have previously identified, and contrast them97

with the actual profitability movements using our new agreement measure. We find that firms tend98

to move more towards the new targets we have identified than tothe common industry average.99

The remainder of the paper is as follows. We first present the new methods for profitability100

targets, profitability movements and directional agreements. We then document our sample and101

present the results of the calculations. Finally we presentconclusions and directions for future102

research.103

2. Method Development104

2.1. Movements and directional agreement105

The first step in the development of our method is the standardization of the two profitability106

ratios. If left unstandardized, unit changes have differential effects on the two profitability ratios.107

For instance if the ATO range is 10 and the OPM range is 0.1 thenwithout scaling (standardizing)108
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them ATO has a 100 times larger impact, any OPM change would benegligible. It is therefore109

important to establish the relative weighting of ATO and OPM. Our assumption here is that they110

have equal weight.111

We standardize every ratio by their yearly min-max range, such that unit changes carry the112

same impact for every ratio. The scaling is accomplished by dividing the ATO and OPM distances113

by their yearly ranges. The ATO range is max{ATOt} −min{ATOt} and analogously for the OPM114

range. Here, these ranges will be calledscaling factorsand denoted bys := (sATO, sOPM).115

The actual profitability movement of a companyc is its change of ATO and OPM from yeart116

to yeart + j, where j is the number of years forward.117

The vector118

−→rct := (rc,t+ j − rc,t) ÷ s (1)

= (OPMc,t+ j −OPMc,t,ATOc,t+ j − ATOc,t) ÷ s (2)

will be defined as theactual directionof profitability: from one position in yeart to the following119

yeart + j. The÷ operator indicates the element-by-element division by thescaling factors. Given120

a current profitability position and a target positionτ we can similarly define a target direction−→τct.121

We determine the level of agreement of the actual direction and target direction by considering122

the angles of the directions. Letϕa be the angle of the actual direction−→rct andϕτ be the angle of123

the target direction−→τct. The absolute difference between these angles is the difference angle∆ϕ:124

∆ϕ = |ϕa − ϕτ|. (3)

To aid in our understanding of these difference angles, it is convenient to map them to an125

interval [-1, 1], where:126

Ψ ∈



































(0, 1], directional agreement;

0, orthogonal;

[−1, 0) , directional disagreement.

(4)
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Figure 1: Alternative directional agreement measure basedon the cosine function.

That means if actual and target direction are the same, thenΨ = 1, and there is 100% agreement.127

In case they are orthogonal, thenΨ = 0. If they point into opposite directions then the directional128

agreement isΨ = −1, and the movements are in 100% disagreement.129

This mapping is achieved by introducing the linearΨ function, which we will calldirectional130

agreement:131

Ψ :=



















1− 2∆ϕ
π
, ∆ϕ ≤ π

2∆ϕ
π
− 3 ∆ϕ > π

(5)

There are alternative mappings. For instance one could use the cosine function. However, the132

density shape of the cosine measure is biased towards one andminus one (see figure 1). The linear133

mapping is chosen specifically to neutralize such biases.134

Figure 2 presents a visual overview of these concepts. The Figure depicts one company135

(BMW), which moves in the profitability space from timet = 2010 to timet = 2011. The ac-136

tual movement is in red. The target (here the industrial average) is in green, and the dotted green137

line represents a target movement. The blue lines representorthogonal and opposite directions.138

2.2. Estimating profitability target139

Probability density estimations fall into two main classes: parametric and non-parametric es-140

timation. Parametric estimations take a certain parametric distribution (e.g. normal, logistic, etc.)141

and determine parameters such that the error to the originalsample data is minimized. Usually142

parametric distribution estimations have a unique maximumwithout local peaks. Ratios such as143

profit margins and asset turnovers do in general not follow the normal distribution and often posses144

local peaks. Hence,we use a non-parametric (i.e., distribution free) method. In this work we focus145

6



ϕa

∆ϕ

ϕr

BMW, 2011

BMW, 2010opposite direction

orthogonal

b

b
Industrial average

ATO

OPM

(-1)

(0)

(+1)

(∆ = +1
2)

Figure 2: Development directions and angles.

on Kernel density estimators (non-parametric method) to achieve this goal.146

Histograms are among the most traditional of discrete density estimations. Constructing his-147

tograms gives rise to the problem of defining bins having the “appropriate” width and location. In148

order to blur these hard bin boundaries, we can step a distance s from the minimum to the maxi-149

mum observation. At each stepxk = xk−1+ swe count the number of observations in a surrounding150

interval [xk − w, xk + w). That means there is an overlap, which means we count the observations151

twice, if s= w. This is called the naive classifier after normalization (division by 2nw):152

yk =
1

2nw

n
∑

k=1

[|xk − ỹi | < w], (6)

wheren is the number of observations, 2w is the interval width (also known as window width,153

bandwidth or smoothing parameter) and ˜y is the vector of observations. The square brackets denote154

the Iverson convention, i.e. if the expression within the square brackets is true the returned value155

is one otherwise zero. Figure 3 shows a histogram and naive density estimates for OPM of car156

manufacturers for the years 1991 until 2010. The difference between the two naive estimates is157

that one has the window widthw set equal to the step sizes.158

An obvious weakness of the naive density estimate is its discontinuity at the interval bound-159

aries, even when we choose half open intervals. However, if there are no observations at the interval160
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Figure 3: Histogram and naive density estimates for (a) OPM and (b) ATO of car manufacturers.

boundaries then probability density must equal to one:161

n
∑

k=1

syk
!
= 1; (7)

whereyk =
ỹk
∑

ỹi s
(i.e. ỹk normalized)1. By using areas we have already left the discrete probability162

definition behind us despite the sum still being applicable.163

Generalizing the above leads to the Kernel FunctionK(x), which requires:164

∫ ∞

−∞
K(x)dx= 1. (8)

Popular functions are the Epanechnikov and Normal kernel functions. Figure 4 shows the165

normalized histogram using the same width as the normal kernel density estimate. The normal166

kernel is here almost completely overlapped by the Epanechnikov kernel density estimate with167

optimal window width. However reducing the bandwidth by a factor of four approximates more168

closely the normalized histogram.169

A detailed description of kernel methods is outside the scope of this text, but the interested170

reader is pointed to the following literature. Hastie et al.(2009) discuss Kernel Smoothing meth-171

ods. Density estimation is reviewed in Silverman (1986) with a particular focus on univariate and172

multivariate kernel estimations. Multivariate Density Estimation is discussed in detail by Scott173

(1992).174

1In a more general notation equation (7) is written as
∑∞
−∞ syxδx

!
= 1.
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Figure 4: Typical density estimates for (a) OPM and (b) ATO ofcar manufacturers.

For this study we use a multivariate adaptive kernel densityestimator, which is based on the175

linear diffusion process. This estimator was originally introduced byBotev et al. (2010). The176

bandwidth was determined by a plug-in selection method thatis not based on normal reference177

rules. So the bandwidth selection is free of distribution assumptions. Going away from the mostly178

used Gaussian kernel density estimator also improves the local adaptivity. That means peaks are179

better reflected. Furthermore the linear diffusion KDE overcomes boundary issues most other KDE180

suffer from. The Appendix provides more specific details about this estimator.181

2.3. Movements towards targets182

Our objective is to compare movements from one (ATO,OPM) point to another. Therefore, we183

define four targets of interest. One of them is the actual (historic) movement of the profitability184

ratios. We will callrct := (ATOct,OPMct) the position of a companyc at yeart. We are interested185

in getting to the following four targets, with the last two targets being new and developed using the186

Kernel Density Estimation:187

• next position of actual financial ratiosrct+p188

• industrial average ¯at ,189

• density centerdt,190

• maximum neighbormct.191
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The next position of an actual movementrct+p is the ATO and OPM for the yeart + j, where j192

is the number of years in the future (e.g. one, three or five).193

The industry averageis determined each year by:194

āt :=
1
n

n
∑

c=1

rct, (9)

wheren is the number of companies in yeart.195

The direction to the industry average is:196

−→act := (at − rct) ÷ s, (10)

wheres was defined in section 2.1.197

Thedensity center dt is determined using the linear diffusion Kernel density estimation (KDE):198

dt := argmax{KDE(r t , k)} , (11)

wherer t := (r1t, . . . , rnt). The KDE returns a heatmapH, which is aRk×k matrix with k being199

a power two value (e.g. 256). Additionally we will know thex andy positions of the heat map200

values, which arehx andhy. That means equation (11) returns as argument the position of the201

maximum probability density value. Note that uniqueness isnot ensured.202

Analogously we define the direction to the density center:203

−→
dct := (dt − rct) ÷ s, (12)

and to the maximum neighbor:204

−−→mct := (mct − rct) ÷ s. (13)

The maximum neighbormct is the value which assumes a maximum in a neighborhood ofrct:205

mct := argmax{N(rct,KDE(r t, k))} , (14)
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whereN is an algorithm that returns a number of neighbors ofrct. First all distances ofrct to hx206

andhy are determined. Then a selection (neighborhood) of the closest points with their probability207

density estimate is returned.208

The kernel density estimations were implemented in Matlab using theksdensity, kde (uni-209

variate) andkde2d (bivariate) functions. These functions implement algorithms published in Bow-210

man and Azzalini (1997) and Botev et al. (2010) respectively.211

3. Data212

Because the study focuses on the development and profitability within industry level, we choose213

one specific industry to illustrate our techniques over a relatively long period of time. The industry214

we study is the car manufacturing industry, and the time horizon of the study is 16 years, from215

1995 to 2010.216

We studied the profitability measures of 31 global car manufacturers over the course of 16217

years: 14 car manufacturers were from Japan, 9 from the United States, and 8 from Germany. The218

Worldscope database (ThomsonReuters) provides the underlying financial statement data for the219

analysis.220

The calculation of operating profit margin and asset turnover closely follows Soliman (2008).221

Operating profit margin(OPM) is operating income (Worldscope datatype 1250) divided by net222

revenues (datatype 1001).Asset turnover(ATO) is net revenues divided by average net operating223

assets (NOA). NOAis operating assets minus operating liabilities. Operating assets are total assets224

(datatype 2999) less cash and short term investments (datatype 2001). Operating liabilities are225

total assets less long-term debt (3251), short-term debt (3051), common equity (3501), preferred226

stock (3451), and minority interest (3426). AverageNOA is 0.5(NOAt + NOAt−1) whereNOAt−1227

is available, andNOAt whereNOAt−1 is not available.228

Several invalid data points are encountered with the data: missing values, infinite values, zero229

values and outliers. To determine the yearly KDE, our approach was to remove these invalid data230

points on a year-by-year basis. For determining directionality it is necessary to ensure the validity231

of the data for both the selected yeart and the target yeart + j jointly. Furthermore, it is necessary232
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that these issues are resolved for ATO and OPM concurrently for each company. The removal of233

nonexistent and infinite values is trivial. In theory zero values could happen, however in practice234

they should not. Thus we remove values that are exactly zero.“Outliers” are by far the most critical235

issue. ATO ratios were accepted if they were within the range-1 and 9. OPM ratios were required236

to be in the interval (-0.4, 0.2). Before discussing alternatives let us have a look at the effect of237

this constraints. Before processing the data there are 31 companies over 16 years, i.e. 496 possible238

values. 96 OPM, 111 ATO and 112 OPM & ATO are infinite or nonexistent. 2 OPM, 26 ATO and239

28 OPM & ATO are zero. Boolean combination leaves us with 359 values. The range constraint240

removes another 41 values. So from the original data set 64% remain. This means that the number241

of companies per year varies between 17 and 23 within the 16 years.242

Alternatives to handling outliers were considered: using outliers, confidence intervals (e.g.243

mean± 2 standard deviations), quantiles in [5%, 95%] and a distance measure. The distance244

measure determines the average distance between values andremoves those data points, which are245

beyond the average distance plus the standard deviation. However, the outlier handling with the246

range constraints preserves more data than its alternatives.247

Thus, ATO and OPM are in distinct ranges with typical OPM ratios for car manufacturers in248

[-0.4, 0.2], whilst ATO ratios are within the range [-1,9]. This re-emphasizes the importance of249

scaling as a first step to the analysis: if no scaling is applied a change in the ATO ratio would have250

a roughly 17 times higher impact than a change in the OPM ratio.251

4. Results252

4.1. Profitability Target Estimator253

Figure 5 (a) presents the bivariate kernel density estimation for the sample for the year 2008.254

The figure is a three-dimensional representation of the OPM and ATO probability density estima-255

tion.256

The figure is best interpreted as a smoothed-out bivariate histogram. We can see that there are257

local maxima (hills and peaks) with the highest maximum representing the center of the density258

function. Several firms (shown as red dots) cluster around a separate local maximum.259
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Figure 5: Probability density estimate of ATO and OPM for theyear 2008.

Although the three-dimensional picture is useful to examine the local maxima in terms of260

height, it may also be misleading. This is because 3D pictures may distort, and in addition some261

local maxima may “hide” behind larger maxima. Figure 5 (b) presents a different visualization of262

the same density estimation. We will use this visualizationin the remainder of the paper because its263

interpretation is not handicapped by possible 3D distortions. In addition, it matches the traditional264

depiction of ATO and OPM as discussed previously.265

Initially we will analyze and describe in some detail the directional agreement of companies266

to their targets in the year 2008. The procedure used for thatyear will be applied for the whole267

period of 16 years. During this period (1995 until 2009) the industry average varies more than268

the density centers (see figure 6). The movements for the density centers are roughly 10% of269

the displayed range. The industry averages have particularlarge deflections in the years 1995,270

1996, 2007 and 2009. This means taking industry average and density center as a target requires a271

renewed calculation on a year-on-year basis.272

4.2. Movements towards targets273

In order to evaluate the directional agreement we have to determine probability density esti-274

mates and the directions.275

The vector map in figure 7 demonstrates the directions of the companies to the industrial av-276

erage, density center and maximum neighbors in 2008. In particular the actual development of277
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Table 1: Directional agreement, three targets vs actual movement 2008.
Directional Statistic density neighbor ind. avg.
Agreement Mean 0.67 0.556 0.59

Std 0.21 0.3 0.21
Median 0.706 0.62 0.559

Disagreement Mean -0.533 -0.483 -0.444
Std 0.38 0.32 0

Median -0.359 -0.428 -0.444

a company to the next year can be seen. These figures demonstrate some complications in the278

analysis. For instance the company Harley (on the top) is located at the local maximum, leading279

to an undefined direction. Mitsubishi and Kanto have similarratios, which define a “mini-cluster”.280

However, they move away from their centers in almost complete orthogonal directions. Overall we281

observe a fall in OPM and ATO from 2008 to 2009. This leads to a significant change in the prob-282

ability density heat map (see figure 8) and motivates a large shift of density center and industrial283

average.284

The quantitative analysis gives statistical values of directional agreement summarized in table285

1. The results show that the strongest positive directionalagreement is towards the density center286

on average; followed by the industry average and maximum neighbor target. The median indicates287

an even stronger directional agreement towards the densitycenter. The median of the directionality288

of the steepest local ascent is higher than the industry average. Furthermore large variations of the289

ratios are observed. This suggest the need to consider the whole probability distribution.290

The same analysis - as done for the year 2008 - is applied to theyears 1995 until 2010. Figure 8291

shows the ratios (OPM,ATO) and the corresponding estimatedprobability density heat maps. The292

displayed ATO and OPM ranges are [-1.7,8] and [-0.1,0.2] respectively. Most of the years show293

a single density center. Nevertheless these visualizations indicate that a multivariate parametric294

normal probability density estimate would be inappropriate. This applies in particular to the years295

2007 and 2008 where multiple clusters exist. The quantitative analysis is achieved by aggregating296

positive and negative directional agreements, which lead to the descriptive statistics shown in table297

2. We observe that the number and sum of directional agreements for all targets is greater than the298

disagreements. The density center is the best target according to all descriptive statistic elements.299
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Figure 8: Kernel density heat maps 1995-2010.
Year 1995 Year 1996 Year 1997 Year 1998

Year 1999 Year 2000 Year 2001 Year 2002

Year 2003 Year 2004 Year 2005 Year 2006

Year 2007 Year 2008 Year 2009 Year 2010

16



Table 2: Directional agreement, three targets vs actual movement 1995-2009.
Directional Statistic density neighbor ind. avg.
Agreement Mean 0.544 0.486 0.517

Std 0.280 0.280 0.290
Median 0.578 0.498 0.554

Count 164 161 150
Sum 89.3 78.2 77.5

Disagreement Mean -0.558 -0.520 -0.544
Std 0.300 0.280 0.300

Median -0.624 -0.522 -0.633
Count 123 126 137

Sum -68.6 -65.5 -74.5

−1 −0.5 0 0.5 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

directional agreement

pr
ob

ab
ili

ty
 d

en
si

ty
 e

st
im

at
io

n

 

 
density centre(w=0.26)
max. neighbour (w=0.34)
industrial average (w=0.34)

(a) (b)

Figure 9: Directional Agreement distribution (a) Histogram; (b) Probability KDEs.

The positive and negative medians for density center and industry are more pronounced than the300

neighbor target. A closer examination of the histogram and the density estimation (figure 9) con-301

firms these formations. The probability density estimate for the density center target suggests two302

distinct groups. One group that is likely to have its DuPont drivers directed towards the density303

center and the other one going towards the opposite direction. Overall there are 57.1% positive304

DuPont drivers over a 16 years period. In table 3 the financialratios for each financial target from305

1995 until 2009 are given by using the count of directional agreements and disagreements.306

A refined positive directional agreement overview is obtained by: Ψ
+

Ψ+−Ψ− whereΨ+ :=
∑

[Ψ̌ >307

0]Ψ̌ andΨ− :=
∑

[Ψ̌ < 0]Ψ̌. HereΨ̌ represents the directional agreement of a companyc in a308

specified yeart towards a target{a, d,m} (e.g. Ψ̌ := Ψd
ct). Using this formula we obtainΨ+a =309

51.0%,Ψ+d = 56.5% andΨ+m = 54.4%. Here the difference between density center and industry310
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Table 3: Directional Agreement of DuPont drivers between 1995 and 2009.
density neighbor ind. avg.

Agreement 164 161 150
57.1% 56.1% 52.3%

Disagreement 123 126 137
42.9% 43.9% 47.7%

average is 5.5%.311

Additionally we analyzed the directional agreement using as the actual direction a 3 years312

and 5 years future scope. When a 3 years scope is used for determining the actual direction then313

inclinations to the targets reduce. A further reduction is observed using 5 years for the actual314

direction, which causes one target to have directional disagreement.315

5. Discussion316

In this paper we studied the profitability of 21 global car manufacturers over a 16-year period317

in relation to industry-wide profitability targets. To examine whether each firm moved towards318

targets, we have developed new targets using KDE density estimation, and a new concepts to319

assess whether there is directional “agreement” between the actual move and the targeted move.320

The analysis has shown that firms have a positive directionalagreement towards targets: den-321

sity center, industry average and maximum neighbor. Density center has a 4.8% better positive322

directional agreement than the industry average. Furthermore the probability density estimate for323

the density center allows a better separation between DuPont drivers with directional agreement324

and disagreement. The profitability probability distributions can be used by companies to adjust325

their DuPont drivers. Moreover, the probability density estimates (based on a linear diffusion Ker-326

nel) capture the yearly dynamics and visualize the overall profitability of a market segment. This327

can be used by investors to identify profitable company clusters.328

The study gives rise to a number of avenues for further research. Following is a discussion of329

three possible avenues.330

The existence of multiple industry averages is consistent with the theory of strategic groups,331

i.e., groups of firms that tend to gravitate around similar structures, strategies, and performance.332
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A brief excursion in the strategic management literature shows a considerable amount of work on333

the formation and development of strategic groups. For example, Dranove et al. (1998) theorize334

how strategic interactions within the group influence profitability measures.Nair and Filer (2003)335

provide corroborating empirical evidence for the existence of groups. Porter (1980) discusses336

mobility barriers as the primary reason for the formation ofgroups. It is worth examining clusters337

of firms in more detail. The advantage of kernel density estimation is that groups remain fluid338

and confined to the nearest neighbor. Further study may seek to synchronize the results from339

kernel density estimation with, say, a cluster analysis which explicitly sorts the firms into different340

clusters.341

The second avenue is to further study the impact of different approaches to standardization342

of the measures and validation of the data points. Scaling the data appropriately is relatively343

challenging task, and our assumption that the two ratios areof equal importance is relatively crude.344

We suggest to focus future research on this aspect. Probabilistic methods may be an interesting345

way forward. We have considered several alternative ways toscale the ratios. Using only the346

maximum gives emphasis to positive ratios. Another approach was assuming normal distributed347

data and scaling by using the mean plus two or three standard deviations. We considered the effects348

of two more ways: not scaling the data and using the preprocessed ranges. Not to scale the data349

is materially similar to not using the OPM ratios, so this is not an option. Lastly we used the data350

preprocessing ranges, which dampens the data slightly more. However, this has the advantage that351

the scaling is independent of the year. Scaling on yearly basis might be problematic for comparison352

purposes. Further investigation is recommended.353

A third possible avenue is to look at generalizations of movements, for instance the dynamics354

of movements. We have looked at strategic movements in two-dimensional space. One of the355

interesting aspects of further research is to look at multi-dimensional strategic directions. One356

dimension could be related to working capital management (i.e., trying to remain liquid while at-357

tempting to become more profitable). This would lead to strategic movements in three dimensions.358

Kernel density estimations can be easily extended to higherdimensions, and a contour map could359

be projected on a unit sphere to examine the dynamics within an industry. The above opens up the360
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statistical calculus of directions to profitability analysis.361

Much of the dynamics of an industry can be described by the degree to which the firms react362

to each other. This is particularly so with respect to levelsof profitability. Individual and group363

dynamics of companies are therefore an interesting area of further investigation. The conceptual364

apparatus developed in this paper opens up the way for such analysis.365

Appendix366

The linear diffusion KDE can be best understood by characterizing the Gaussian kernel density367

estimator:368

f (x,w) =
1
n

n
∑

k=1

φ(x− yk,w), x ∈ R, (15)

wherew is the bandwidth,{y1, . . . , yn} are independent realizations and369

φ(x− yk,w) =
1

w
√

2π
e−

1
2 (

x−yk
w )2
.

This estimator has the characteristic that it is the unique solution of the diffusion partial differential370

equation (PDE):371

∂

∂w
f (x,w) =

1
2
∂2

∂w2
f (x,w), x ∈ R,w > 0, (16)

and the initial conditionf (x, 0) = 1
n

∑n
k=1[x = yk]. This motivates the following generalization:372

∂

∂w
g(x,w) = Lg(x,w), x ∈ R,w > 0, (17)

where the linear differential operator is defined by the form12
d
dx(a(x) d

dx(
·

p(x) )). Here a and p373

are positive real functions with bounded second derivatives. The initial condition forg(0,w) is374

1
n

∑n
k=1[x = yk] and the boundary condition is∂

∂x
g(x,t)
p(x) = 0. Note ifa = 1 andp = 1 we will obtain375

equation 15. The solution of the linear diffusion partial differential equation:376

g(x,w) =
1
n

n
∑

k=1

κ(x, yk, t) (18)
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will be called linear diffusion estimator andκ diffusion kernel.377
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