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Abstract 

The motivation for this paper is to introduce a hybrid Neural Network architecture of Particle 

Swarm Optimization and Adaptive Radial Basis Function (ARBF-PSO), a time varying leverage 

trading strategy based on Glosten, Jagannathan and Runkle (GJR) volatility forecasts and a 

Neural Network fitness function for financial forecasting purposes. This is done by 

benchmarking the ARBF-PSO results with those of three different Neural Networks 

architectures, a Nearest Neighbors algorithm (k-NN), an autoregressive moving average model 

(ARMA), a moving average convergence/divergence model (MACD) plus a naïve strategy. 

More specifically, the trading and statistical performance of all models is investigated in a 

forecast simulation of the EUR/USD, EUR/GBP and EUR/JPY ECB exchange rate fixing time 

series over the period January 1999 to March 2011 using the last two years for out-of-sample 

testing. 

As it turns out, the ARBF-PSO architecture outperforms all other models in terms of statistical 

accuracy and trading efficiency for the three exchange rates.  
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1. INTRODUCTION 
Neural networks (NN) are an emergent technology with an increasing number of real-world 

applications including operational research (Lisboa and Vellido (2000) and Zhang et. al. 

(1998)). However their numerous limitations and contradictory empirical evidence around their 

forecasting power are often creating scepticism about their use among practitioners. This 

scepticism is further fuelled by the fact that the selection of each algorithm parameters and 

inputs is based more on trial and error and the practitioner’s market knowledge rather than on 

some formal statistical procedure.  

The motivation for this paper is to introduce in Operational Research a hybrid Neural Network 

architecture of Particle Swarm Optimization and Adaptive Radial Basis Function (ARBF-PSO), 

which try to overcome some of these limitations. More specifically our proposed architecture is 

fully adaptive something that decreases the numbers of parameters that the practitioner needs to 

experiment while on the other hand it increases the forecasting ability of the network. The 

proposed methodology is superior in comparison to the application of meta-heuristic methods 

(PSO, Genetic Algorithms, Swarm Fish Algorithm) that have been already presented in the 

literature (Nekoukar and Beheshti (2010) and Shen et al. (2011)) because it eradicates the risk of 

getting trapped into local optima and the final solution is assured to be optimal for a subset of 

the training set. 

In our study we benchmark our proposed algorithm with a Multi-Layer Perceptron (MLP), a 

Recurrent Neural Network (RNN), a Psi Sigma Neural Network (PSI), a Nearest Neighbors 

algorithm (k-NN), an autoregressive moving average model (ARMA), a moving average 

convergence/divergence model (MACD) plus a naïve strategy in a forecasting and trading 

simulation of the EUR/USD, the EUR/GBP and the EUR/JPY European Central Bank (ECB) 

daily fixing. The main reason behind our decision to use the ECB daily fixings is that it is 

possible to leave orders with a bank and trade on that basis. It is therefore a tradable quantity 

which makes our trading simulation more realistic. We examine the exchange rates from their 

first trading day since the end of April 2011. Moreover, the nonlinearities and the high 

complexity of the exchange rates series make them perfect for a forecasting exercise. 

Nevertheless our proposed methodology can be applied to any forecasting task irrespective the 

nature of the series under study. 

Moreover, we introduce a time-varying leverage trading strategy based on GJR (1993) model 

volatility forecasts and examine if its application can increase the trading efficiency of our 

models.  
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We also introduce a fitness function for our NNs that not only minimize the MSE of our 

forecasts but also increase their profitability. This is crucial in financial applications where 

statistical accuracy is not always synonymous with financial profitability of the derived 

forecasts. 

As it turns out the ARBF-PSO algorithm does remarkably well and outperforms all other 

models in terms of statistical accuracy and trading efficiency for the time series and period 

under study. It seems that its adaptability and flexibility allows it to outperform in our 

forecasting competition compared with the more ‘traditional’ k-NN, MLP, RNN and PSI 

models. These results provide the first empirical evidence around the utility of the ARBF-PSO 

in finance and forecasting.  

The rest of the paper is organised as follows. In section 2 we present some relevant recent 

applications in forecasting and section 3 describes the dataset used for this research and its 

characteristics. An overview of the proposed model and the NN and statistical benchmarks is 

given in section 4. Section 5 gives the empirical results of all the models considered and 

investigates the possibility of improving their performance with the introduction of a 

sophisticated trading strategy while section 6 provides some concluding remarks. 

2. LITERATURE REVIEW 
Developing high accuracy techniques for predicting time series is a very crucial problem for 

scientists and decision makers. The traditional statistical methods seem to fail to capture the 

discontinuities, the nonlinearities and the high complexity of datasets such as financial time 

series. Complex machine learning techniques like Artificial Neural Networks (NNs) provide 

enough learning capacity and are more likely to capture the complex non-linear models which 

are dominant in the financial markets but their parameter tuning remains difficult and 

generalization problems exist (Donaldson and Kamstra (1996) and Lisboa and Vellido (2000)). 

 
The main objective of this paper is to introduce a novel hybrid method which is able to 

overcome the difficulties in tuning the parameters of artificial neural networks. For this purpose 

among the various neural network techniques, we use the Radial Basis Function Neural 

Networks (RBFNN) which has proven experimentally to outperform the more classical NNs 

architectures (Broomhead and Lowe (1988)). The hybrid method combines the RBFNNs with 

Particle Swarm Optimization (PSO) algorithm, a state-of-the art heuristic optimization technique 

(Kennedy and Eberhart (1995)) in a way that optimizes the neural networks parameters, 



  

 4

structure and training procedure. Our proposed methodology is an extension of the algorithm 

proposed by Ding et. al. (2005) for forecasting purposes. 

The proposed methodology has not been applied in science yet. However, two approaches have 

been recently proposed for the optimization of RBF Neural Networks and their application in 

financial time-series forecasting. Nekoukar and Beheshti (2010) propose the application of a 

modified PSO (using hunter particles to increase diversity) for training Radial Basis Functions. 

This methodology was applied for the prediction of the price of Iranian stock time-series. 

Despite the high prediction accuracy of the derived model, this hybrid technique does not 

provide any method for optimizing the structure of the RBF network. Moreover, the applied 

PSO algorithm uses constant parameters, which requires an extra time-consuming optimization 

step. Shen et al. (2011) introduce a novel hybrid technique which applies an Artificial Fish 

Swarm algorithm to train Radial Basis Function Neural Networks for modeling the Shanghai 

Composite Indices. The prediction results are extremely good, but the artificial fish swarm 

algorithm is not used for the optimization of the RBF network’s structure and it requires some 

parameters to be tuned via a time consuming trial and error approach. Compared to a simple 

genetic algorithm and a simple PSO method which are also used to train Radial Basis Function 

Neural Networks, the Artificial Fish Swarm algorithm produces a slightly higher prediction 

error but the authors believe that being a new intelligent algorithm it has room for improvement 

and development.  Both of these methods use Mean Square Error as a fitness function and they 

are not specialized for the prediction of financial time series contrary to our proposed 

methodology. 

Several scientists have applied other NNs algorithms to the task of forecasting financial series 

with ambiguous empirical evidence. Fulcher et. al. (2006) apply Higher Order Neural Networks 

in forecasting the AUD/USD exchange rate with a 90% accuracy. Panda and Narasimhan (2007) 

use a single hidden layer feedforward NN to produce statistical accurate forecasts of the 

INR/USD exchange rate having several linear autoregressive models as benchmarks while 

Andreou et. al. (2008) use NNs to forecast and trade European options with disappointing 

results. On the other hand, Kiani and Kastens (2008) forecast the GBP/USD, the CAD/USD and 

the JPY/USD exchange rates with feedforward and recurrent NNs having as benchmarks several 

ARMA models. In their application, NNs outperform in statistical terms their ARMA 

benchmarks in forecasting the GBP/USD and USD/JPY but not in forecasting the USD/CAD 

exchange rate. Yang et. al. (2008) employ a NN and other regression techniques to examine the 

potential martingale behaviour of Euro exchange rates in the context of out-of-sample forecasts. 

The overall evidence indicates that, while martingale behaviour cannot be rejected for Euro 
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exchange rates with major currencies such as the Japanese yen, British pound, and US dollar, 

there is nonlinear predictability in terms of economic criteria with respect to several smaller 

currencies (such as the Australian dollar, the Canadian dollar and the Swiss franc). Bekiros and 

Georgoutsos (2008) forecast and trade successfully the NASDAQ index with RNNs and Yang 

et. al. (2010) study the predictability of eighteen stock indexes with NNs and linear models. 

Their models demonstrate low predictability when the data snooping bias was considered. On 

the same year while on the same year Huck (2010) combines NNs with a multi-criteria decision 

making method in a S&P 100 stock pair trading application with good results. Adeodato et. al. 

(2011) won the NN3 Forecasting Competition problem with an innovative approach based on 

the use of median for combining MLP forecasts and Matias and Reboredo (2012) forecast 

successfully with NNs and other nonlinear models intraday stock market returns. In a 

forecasting competition, Dunis et. al.  (2010 and 2011) and Sermpinis et. al. (2012) compare 

several Higher Order NNs and autoregressive models in forecasting and trading the EUR 

exchange rates. Their results demonstrate the forecasting superiority of a class of NNs, the Psi 

Sigma, which are able to capture higher order correlation within their dataset. Bekiros (2010) 

introduced a promising hybrid neurofuzzy system which forecast accurately the direction of the 

market for 10 of the most prominent stock indices of U.S.A, Europe and Southeast Asia and 

Dhamija and Bhalla (2011) apply several variants of the MLP and RBF networks to the task of 

forecasting five different exchange rates with good results. On the same year Wang et. al. 

(2011) forecast successfully the Shenzhen Integrated Index and the Dow Jones Industrial 

Average Index with a hybrid NN model. Compared to the above mentioned studies, our 

proposed algorithm is fully adaptive and enables us to avoid the time consuming and risky 

process of optimizing the parameters of our networks through a sensitivity analysis in the in-

sample period. However, we apply some of the most promising architectures of the previous 

mentioned paper such as the Psi Sigma (Fulcher et. al. (2006), Dunis et. al.  (2010 and 2011) 

and Sermpinis et. al. (2012)), the RNN (Kiani and Kastens (2008) and Bekiros and Georgoutsos 

(2008)) and the MLP (Panda and Narasimhan (2007), Adeodato et. al. (2011) and Dhamija and 

Bhalla (2011)) as benchmarks to our proposed model.  

3. THE EUR/USD AND EUR/GBP EXCHANGE RATES AND RELATED FINANCIAL 
DATA 

The European Central Bank (ECB) publishes a daily fixing for selected EUR exchange rates: 

these reference mid-rates are based on a daily concentration procedure between central banks 

within and outside the European System of Central Banks, which normally takes place at 2.15 

p.m. ECB time. The reference exchange rates are published both by electronic market 
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information providers and on the ECB's website shortly after the concentration procedure has 

been completed. Although only a reference rate, many financial institutions are ready to trade at 

the EUR fixing and it is therefore possible to leave orders with a bank for business to be 

transacted at this level. 

The ECB daily fixings of the EUR exchange rates are therefore tradable levels which makes 

using them a more realistic alternative to, say, London closing prices and these are the series 

that we investigate in this paper. We examine the ECB daily fixings of the EUR/USD, the 

EUR/GBP and the EUR/JPY since their first trading day on 4 January 1999 until 29 April 2011. 

The data period is partitioned as table 1. 

Name of period  Beginning End 
Total dataset 3158 4 January 1999 29 April 2011
Training dataset 2645 4 January 1999 30 April 2009
Out-of-sample dataset [Validation set] 513 4 May 2009 29 April 2011

Table 1:  The total dataset 

The figure 1 below shows the total dataset for the three exchange rates under study. 

 
Fig. 1: EUR Frankfurt daily fixing prices (total dataset) 

The three observed time series are non-normal (the Jarque-Bera statistics confirms this at the 

99% confidence level) containing slight skewness and high kurtosis. They are also 

nonstationary and hence we decided to transform them into a stationary daily series of rates of 

return1 using the formula: 

 
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

−1

ln
t

t
t P

P
R  [1] 

Where  Rt  is the rate of return and Pt is the price level at time t. 
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The summary statistics of the EUR/USD, EUR/GBP and EUR/JPY returns series reveal positive 

skewness and high kurtosis. The Jarque-Bera statistic confirms again that the two return series 

are non-normal at the 99% confidence level. These two return series will be forecasted from our 

models.  

In the absence of any formal theory behind the selection of the inputs of a neural network, we 

conduct neural networks experiments and a sensitivity analysis on a pool of potential inputs in 

the training dataset in order to help our decision. Based on these experiments and the sensitivity 

analysis we select as inputs the sets of variables that provide the higher trading performance for 

each network in the in-sample period. This set of inputs (which is different for each network 

and series under study) is consisted by a set of autoregressive terms of the three exchange rates 

under study.  We also explored autoregressive terms of other exchange rates as inputs (e.g. the 

ECB fixing of the EUR/CHF), commodities prices (e.g. Gold Bullion and Brent Oil) and stock 

market prices (e.g. the S&P 500 index). However, they did not seem to add any value during 

our sensitivity analysis.2 

In order to train our neural networks we further divide our dataset as in table 2: 

Name of period Trading days Beginning End 
Total dataset 3158 4 January 1999 29 April 2011
Training data set 2134 4 January 1999 30 April 2007
Test data set 511 2 May 2007 30 April 2009
Out-of-sample data set [Validation set] 513 4 May 2009 29 April 2011

Table 2:  The neural networks datasets 

4. FORECASTING MODELS 
4.1 Statistical/Technical Models 
In this paper, we benchmark our ARBF-PSO model with 3 different NNs, a Nearest Neighbors 

algorithm (k-NN) algorithm and 3 traditional strategies, namely an autoregressive moving 

average model (ARMA), a moving average convergence/divergence technical model (MACD) 

and a naïve strategy. The performance of our models is evaluated in terms of statistical accuracy 

and trading performance via a simulated trading strategy. 

4.1.1 Naïve strategy 

                                                                                                                                                            
1 Confirmation of its stationary property is obtained at the 1% significance level by both the Augmented Dickey 
Fuller (ADF) and Phillips-Perron (PP) test statistics. 
2 The 12 different sets of inputs for our 4 different NN architectures and 3 series under study are not presented here 
for the sake of space and are available upon request.  
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The naïve strategy simply takes the most recent period change as the best prediction of the 

future change. The model is defined by3: 

 
tt YY =+1

ˆ  [2] 

where     tY   is the actual rate of return at period t 

   1
ˆ

+tY   is the forecast rate of return for the next period 

4.1.2 Moving Average 
A moving average model is defined as: 

 ( )
n

YYYY
M ntttt

t
121 ... +−−− ++++

=  [3] 

where    tM   is the moving average at time t 
 n   is the number of terms in the moving average 

tY   is the actual rate of return at period t  
The MACD strategy used is quite simple. Two moving average series are created with different 

moving average lengths. The decision rule for taking positions in the market is straightforward. 

Positions are taken if the moving averages intersect. If the short-term moving average intersects 

the long-term moving average from below a ‘long’ position is taken. Conversely, if the long-

term moving average is intersected from above a ‘short’ position is taken4. 

The forecaster must use judgement when determining the number of periods on which to base 

the short-term and long term moving averages. The combinations that performed best over the 

in-sample sub-period were retained for out-of-sample evaluation. The models selected were a 

combination of (1,8) for the EUR/USD,  (3,6) for the EUR/GBP  and (2,5) for the EUR/JPY 

exchange rate. 

4.1.3 ARMA model 
Autoregressive moving average models (ARMA) assume that the value of a time series depends 

on its previous values (the autoregressive component) and on previous residual values (the 

moving average component)5.   

The ARMA model takes the form: 

 qtqtttptpttt wwwYYYY −−−−−− −−−−+++++= εεεεφφφφ ...... 221122110  [4] 

where    tY     is the dependent variable at time t 
                                                 
3 We also applied a simple random walk model to our series ( ttY ελ +=+1

ˆ  where )1,0(~ Ntε and λ is the in-
sample mean). The performance of the random walk model was similar or slightly worse from our naïve strategy as 
it is described in equation [2] in the in-sample period and is available upon request.    
4 For example, a ‘long’ EUR/USD position means buying Euros at the current price, while a ‘short’ position means 
selling Euros at the current price. 
5 For a full discussion on the procedure, refer to Box et al., (1994). 
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1−tY , 2−tY , and ptY −   are the lagged dependent variable 

0φ , 1φ , 2φ , and pφ   are regression coefficients 

tε     is the residual term 

1−tε , 2−tε , and pt−ε   are previous values of the residual 
 1w , 2w , and qw   are weights. 

Using as a guide the correlogram and the information criteria in the training and the test sub 

periods we have chosen a restricted ARMA (5,5) for the EUR/USD and a restricted ARMA 

(6,6) for the EUR/GBP and a restricted ARMA (4,4) for the EUR/JPY exchange rate. In all 

models all their coefficients are significant at the 95% confidence interval as the null hypothesis 

that all coefficients (except the constant) are not significantly different from zero is rejected at 

the 95% confidence interval. 

The selected ARMA models for the EUR/USD, EUR/GBP and EUR/JPY exchange rates are 

presented in equations [5], [6] and [7] respectively: 

 

5321

5321

43699.0285219.049545.048310.0
40105.031984.053617.049349.000071.0

−−−−

−−−−

+−+−
−+−+=

tttt

ttttt YYYYY
εεεε

 
[5]

                 
62

1621

49460.044556.0
46933.053005.043358.042524.000011.0

−−

−−−−

−+
++−−=

tt

ttttt YYYY
εε

ε
                 [6] 

 

                  
43

1431

60691.0056206.1
89816.057035.002907.187062.000036.0

−−

−−−−

−−
+++−=

tt

ttttt YYYY
εε

ε
                [7] 

The model selected was retained for out-of-sample estimation.  
4.1.4 Nearest Neighbours Model 
Nearest Neighbours is a nonlinear and non-parametric forecasting method. It is based on the 

idea that pieces of time series in the past have patterns which might have resemblance to pieces 

in the future. Similar patterns of behaviour are located in terms of nearest neighbours using a 

distance called the Euclidean distance and these patterns are used to predict behaviour in the 

immediate future. It only uses local information to forecast and makes no attempt to fit a model 

to the whole time series at once. It is similar to technical analysis as it tries to find out patterns 

based on certain parameters. The user defines parameters such as the number of neighbours K, 

the length of the nearest neighbour’s pattern m (also called the ‘embedding dimension’) and the 

weighting of final prices in a neighbour α. When α is greater than 1, a greater emphasis is given 

to similarity between the more recent observations. The nearest neighbours algorithm weights 

the nearest to furthest Neighbour sets according to the Euclidean distance from the actual time 
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series. These three parameters are very important for neighbours and very easy to apply 

computationally. 

Guégan and Huck (2004) suggest that a good approximation for choosing the parameters K and 

m is dependent on the size of the information set. They choose m from the interval: 

                             m = [R(ln(T)), R(ln(T)+2)]                                                                              [8] 
where R is the rounding function rounding to the immediate lower figure and T the size of the 

dataset. They also suggested that K should be approximately twice the value of m. Thus for our 

dataset m lies between 8 and 10 and K lies between 16 and 20. Based on the above guidelines 

and Dunis and Nathani (2007) who applied Nearest Neighbours in financial series, we 

experiment in the in-sample dataset and we select the set of parameters that provide the highest 

trading performance in the in-sample period. These sets of parameters for each exchange rate 

under study are presented in table 3 below. 

 

 

 

 

Table 3:  Nearest Neighbours Parameters 

4.2 Neural Networks 
 
4.2.1. Benchmark Neural Networks Architectures 
 
Neural networks exist in several forms in the literature. The most popular architecture is the 

Multi-Layer Perceptron (MLP). A standard MLP has at least three layers. The first layer is 

called the input layer (the number of its nodes corresponds to the number of explanatory 

variables). The last layer is called the output layer (the number of its nodes corresponds to the 

number of response variables). An intermediary layer of nodes, the hidden layer, separates the 

input from the output layer. Its number of nodes defines the amount of complexity the model is 

capable of fitting. In addition, the input and hidden layer contain an extra node called the bias 

node. This node has a fixed value of one and has the same function as the intercept in traditional 

regression models. Normally, each node of one layer has connections to all the other nodes of 

the next layer.   

The training of the network (which is the adjustment of its weights in the way that the network 

maps the input value of the training data to the corresponding output value) starts with randomly 

 m K a 

EUR/USD 8 18 1.1 

EUR/GBP 8 19 1 

EUR/JPY 9 18 1.2 
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chosen weights and proceeds by applying a learning algorithm called backpropagation of errors6 

(Shapiro (2000)).The iteration length is optimised by maximising a fitness function in the test 

dataset. 

In addition to the classical MLP network, we also apply a recurrent neural network. While a 

complete explanation of RNN models is beyond the scope of this paper, we present below a 

brief explanation of the RNN architecture. For an exact specification of recurrent networks, see 

Elman (1990). A simple recurrent network has an activation feedback which embodies short-

term memory. In other words, the RNN architecture can provide more accurate outputs because 

the inputs are (potentially) taken from all previous values. The advantages of using recurrent 

networks over feedfoward networks (such as the MLPs) for modelling non-linear time series, 

has been well documented in the past (see amongst other Elman (1990) and Tenti (1996)). 

However as mentioned by Tenti (1996), “the main disadvantage of RNNs is that they require 

substantially more connections, and more memory in simulation than standard backpropagation 

networks” (p.569), thus resulting in a substantial increase in computational time. However, 

having said this, RNNs can yield better results in comparison with simple MLPs due to the 

additional memory inputs.  

The third NN benchmark model considered in our study is the Psi Sigma. Psi Sigma networks 

can be considered as a class of feedfoward fully connected higher order neural networks. First 

introduced by Shin and Ghosh (1991), the Psi Sigma network utilizes product cells as the output 

units to indirectly incorporate the capabilities of higher-order networks while using a fewer 

number of weights and processing units. Their creation was motivated by the need to create a 

network combining the fast learning property of single layer networks with the powerful 

mapping capability of higher order neural networks while avoiding the combinatorial increase in 

the required number of weights. The order of the network in the context of Psi Sigma is 

represented by the number of hidden nodes. In a Psi Sigma network the weights from the hidden 

to the output layer are fixed to 1 and only the weights from the input to the hidden layer are 

adjusted, something that greatly reduces the training time. Moreover, the activation function of 

the nodes in the hidden layer is the summing function while the activation function of the output 

layer is a sigmoid. More details on the Psi Sigma architecture can be found in Shin and Ghosh 

(1991), Dunis et. al.  (2010 and 2011) and Sermpinis et. al. (2012). 

4.2.2. Proposed Fitness Function and NN optimization 

                                                 
6 Backpropagation networks are the most common multi-layer networks and are the most commonly used type in 
financial time series forecasting (Kaastra and Boyd (1996)). 
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In our networks which are specially designed for financial purposes we apply a novel multi-

objective fitness function. This fitness function focuses on achieving three goals at the same 

time. First of all, the annualized return in the training period should be maximized and secondly 

the Mean Square Error (MSE) of the networks output should be minimized. Finally, we are 

interested in finding the simplest neural network that achieves these goals and thus the number 

of hidden neuron should be minimized. Based on the above the fitness function for all our 

networks takes the form of the equation below7: 

Fitness= Annualized_Return – MSE – 10-2 * number_of_hidden_neurons         [9]                                               

To the best of our knowledge no similar approach has been applied yet in the relevant literature 

and equation [9] is an original contribution of this paper. The existing financial forecasting 

approaches guide their predictors using as fitness functions statistical measures such as the MSE 

(e.g. Fulcher et. al. (2006)), the RMSE (e.g. Panda and Narasimhan (2007))  or the correct 

directional movement prediction rate (e.g. Dunis et. al.  (2010 and 2011)). However, statistical 

accuracy does not always imply financial profitability. The proposed fitness function aims to 

bring a balance between trading profitability (first factor of equation [9]) and statistical accuracy 

(second factor).  Thus, the proposed fitness function clearly outperforms existing fitness 

functions as our main goal is to extract a profitable trading strategy and not only a prediction 

that presents low error measures.  

After our networks are optimized, the predictive value of each model is evaluated by applying it 

to the validation dataset (out-of-sample dataset). Since the starting point for each network is a 

set of random weights, forecasts can differ between networks. In order to eliminate any variance 

between our NN forecasts, we use the average of a committee of 10 NNs which present the 

highest profit in the test sub-period. In our study we apply our NNs to the task of forecasting the 

daily return of the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The characteristics of 

the NNs used in this paper are presented in Appendix A.1. 

4.2.3 ARBF-PSO method 

4.2.3.1 Radial Basis Function Neural Networks (RBFNN) 

A radial basis function neural network (RBFNN) is a feedforward neural network where hidden 

units do not implement an activation function, but a radial basis function. An RBFNN 

approximates a desired function by superposition of nonorthogonal, radially symmetric 

functions. They have been proposed by Broomhead and Lowe (1988) as an approach to improve 

                                                 
7 The number of hidden neurons is multiplied with 10-2 because the simplicity of the derived neural network is of 
secondary importance compared to the other two objectives (maximize the annualized return and minimizing the 
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accuracy of artificial neural networks while decreasing training time complexity. Their 

architecture is depicted in Figure 2. 

   
Fig. 2: A RBF Neural Network with N inputs and 2 hidden nodes 
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where Ci is a vector indicating the centre of the Gaussian Function and σi is a value indicating its 

width. Ci, σi and the weights wi are parameters which should be optimized through a learning 

phase in order to train the RBFNN. 
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with ty  being the target value and T the number of iterations. 

4.2.3.2 ARBF-PSO method 

The hybrid methodology proposed in the present paper is an extension of the hybrid algorithm 

proposed by Ding et. al. (2005). In this algorithm the Particle Swarm Optimization (PSO) 

methodology was used to locate the parameters Ci of the RBFNN while in parallel locating the 

optimal number for the hidden layers of the network. This methodology is extended in our 

proposed algorithm in order to increase accuracy, make it appropriate for predicting financial 

time series and avoid the time consuming step of optimizing the parameters of PSO. 
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The PSO algorithm, proposed by Kennedy and Eberhart (1995), is a population based heuristic 

search algorithm based on the simulation of the social behavior of birds within a flock. In PSO, 

individuals which are referred to as particles are placed initially randomly within the hyper 

dimensional search space. Changes to the position of particles within the search space are based 

on the social-psychological tendency of individuals to emulate the success of other individuals. 

The consequence of modeling this social behavior is that the search process is such that particles 

stochastically return towards previously successful regions in the search space. 

The performance of an RBFNN highly depends on its structure and on the effective calculation 

of the RBF function’s centers Ci and widths σ and the network’s weights. If the centers of the 

RBF are properly estimated then their widths and the networks weights can be computed 

accurately with existing heuristic and analytical methodologies which described below in this 

paper. In this approach the PSO searches only for optimal values of the parameters Ci and for 

the optimal number of hidden neurons (the RBFNN structure) which should be used. Each 

particle i is initialized randomly to have mi hidden neurons (within a predefined interval starting 

from the number of inputs until 100 which is the maximum hidden layer size that we applied) 

and is represented as shown in equation [13]: 
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where N is a large number to point that it does not represent an RBF centre. Using this specific 

representation scheme, we allow the production of RBFNNs with fewer hidden nodes than the 

maximum allowed hidden layers size. Thus, the produced optimization algorithm becomes even 

more flexible and enables the algorithm to locate the optimal network structure for each 

problem. By optimizing equation [13] the identification of the RBFNN structure and the 

effective calculation of the RBF function centers can be accomplished in parallel. 

In our PSO variation, initially we create a random population of particles, with candidate 

solutions represented as showed in equation [13], each one having an initially random velocity 
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matrix to move within the search space. It is this velocity matrix that drives the optimization 

process, and reflects both the experiential knowledge of the particle and socially exchanged 

information from the particles neighborhood. The form of the velocity matrix for every particle 

is described in the equation below: 
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From the centers of its particle described in equation [13] using the Moody-Darken (1989) 
approach we compute the RBF widths using the following equation: 

i
k

i
j

i
j cc −=σ           [15] 

where i
kc  is the nearest neighbor of the centers i

jc . For the estimation of the nearest neighbors 
we apply the Euclidean distance which is computed for every pair of centers. 
At this point of the algorithm the centers and the widths of the RBFNN have been computed. 
The computation of its optimal weights wi is accomplished by solving the equation:  
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 where n1 is the number of training samples. 

The computation of 1)( −⋅ i
T
i HH  is computationally hard when the rows of Ηi are highly 

dependent. In order to solve this problem we filtered the in-sample dataset and when the mean 

absolute distance of two training samples is less than 10-3 from the mean values of their input 

values then randomly we do not use one of them in our final training set. By this way, the 

algorithm becomes faster while maintaining its high accuracy. This analytical approach for the 

estimation of the RBFNN weights is superior in comparison with the application of meta-

heuristic methods (PSO, Genetic Algorithms, Swarm Fish algorithm) that have been already 
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presented in the literature because it eradicates the risk of getting trapped into local optima and 

the final solution is assured to be optimal for a subset of the training set. 

Next, our novel multi-objective fitness function [9] was used for evaluating the performance of 

its particle.  

Iteratively, the position of each particle is changed by adding in it its velocity vector and the 

velocity matrix for each particle is changed using the equation below: 

Vi+1 = w * Vi + c1 * r1 * ( i
pbestC  - Ci) + c2 * r2 * ( i

gbestC - Ci)     [17] 

where w is a positive-valued parameter showing the ability of each particle to maintain its own 

velocity, i
pbestC   is the best solution found by this specific particle so far, i

gbestC  is the best 

solution found by every particle so far, c1 and c2 are used to balance the impact of the best 

solution found so far for a specific particle and the best solution found by every particle so far in 

the velocity of a particle. Finally, r1, r2 are random values in the range of [0,1] sampled from a 

uniform distribution.  

Ideally, PSO should explore the search space thoroughly in the first iterations and so the values 

for the variables w and c1 should be kept high. For the final iterations the swarm should 

converge to an optimal solution and the area around the best solution should be explored 

thoroughly. Thus, c2 should be valued with a relatively high value and w, c1 with low values. In 

order to achieve the described behavior for our PSO implementation and to avoid getting 

trapped in local optima when being in an early stage of the algorithm’s execution we developed 

a PSO implementation using adaptive values for the parameters w, c1 and c2.  Equations [18], 

[19] and [20] mathematically describe how the values for these parameters are changed through 

PSO’s iterations helping us to endow the desired behavior in our methodology. 

w(t)= (0.4/n2) * (t-n)2 + 0.4                    [18] 

c1(t)= -2 * t/n +2.5          [19] 

c2(t)= 2 * t/n + 0.5           [20] 

where t is the present iteration and n is the total number of iterations. 

In order to enhance the optimization of the RBFNN structure we applied two more operators in 

our hybrid method in addition to the classical ones of the PSO. The first operator is used to add 

a hidden neuron in every particle with a probability equal to 0.1. The second operator reduces 

the hidden neurons by one with a probability equal to 0.1. The probabilities which were applied 

for increasing and decreasing the hidden neurons, were set as equal to reassure that the 
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algorithm is not further biased towards larger or smaller architectures. Furthermore, a high 

probability equal to 0.8 was assigned to the fact of not changing the network’s architecture in 

order to enforce the algorithm to explore thoroughly the potential of existing architectures in the 

population before investigating different ones. 

For the initial population of particles we use a small value of 30 particles and the number of 

iterations used was 100 combined with a convergence criterion. Using this termination criterion 

the algorithm stops when the population of the particles is deemed as converged. The population 

of the particles is deemed as converged when the average fitness across the current population is 

less than 5% away from the best fitness of the current population. Specifically, when the average 

fitness across the current population is less than 5% away from the best fitness of the population, 

the diversity of the population is very low and evolving it for more generations is unlikely to 

produce different and better individuals than the existing ones or the ones already examined by 

the algorithm in previous generations. 

The adaptive methodology described above is capable of protecting our results from the data-

snooping effect. Data snooping occurs when a given set of data is used more than once for 

purposes of inference or model selection. When such data reuse occurs, there is always the 

possibility that any satisfactory results obtained may simply be due to chance rather than to any 

merit inherent in the method yielding the results (White (2000)). The problem can be 

particularly serious when using neural network models which are basically atheoretical. 

However in our case, the simultaneous optimization of the RBF’s structure and parameters in a 

single optimization procedure should prevent the data snooping effect. In order to verify that our 

proposed model is free from the data snooping bias in our study, we apply the White’s (2000) 

Reality Check test. The null hypothesis of the test is that the model selected in a specification 

search has no predictive superiority over a given benchmark model. Following the relevant 

literature we use as benchmarks a martingale model (Yang et. al. (2010)) and a strategy of 

absence from the market or else of 0% return (Qi and Wu (2006)).  The “nominal p-value” is 

calculated by applying the Reality Check methodology only to the best ARBF-PSO network in 

terms of MSE while the “White’s p-value” is computed by applying the Reality Check 

methodology to all the 10 ARBF-PSO networks used in this study. In table 4 below we present 

the White’s (2000) Reality Check p-values8 for our proposed model. 
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Benchmark Models  EUR/USD EUR/GBP EUR/JPY 

Nominal p-value 0.000 0.000 0.000 Martingale model 

White’s p-value 0.001 0.003 0.001 

Nominal p-value 0.000 0.000 0.000 Absence from the market 

White’s p-value 0.003 0.003 0.002 

Table 4: White Reality Check p-values for the ARBF-PSO method 
We note from the table above that the null hypothesis can be rejected at the 1% level in all cases 

and our ARBF-PSO forecasts are free from the data snooping bias. 

In summary the novelty of our algorithm lies in the following points. First of all, the training 

samples in our methodology are initially filtered before we insert them to our network, and 

when the mean absolute distance of two training samples is less than 10-3 from the mean values 

of their input values then randomly we do not use one of them in our final training set. By this 

way we decrease the computational complexity of the method while maintaining its accuracy. 

Furthermore, in comparison with other optimization techniques which have already been applied 

for training RBFNNs for forecasting financial time series, our algorithm optimizes both the 

networks structure and its parameters. Specifically, the proposed algorithm optimizes the 

number of hidden nodes and in parallel the optimal centers of the RBF functions. The widths of 

the RBF functions and the RFBNNs weights are estimated in an analytical manner without the 

risk of getting trapped into local optima, decreasing the algorithms complexity. Moreover, all 

PSO parameters in our approach are adaptive using equations [18], [19] and [20] making our 

method appropriate for usage by non experts while at the same time avoiding the risky and time 

consuming trial and error approach of optimizing the parameters of a NN. It is also worth 

nothing that the simultaneous optimization of the RBF’s structure and parameters in a single 

optimization procedure prevents the data snooping effect which is present in existing 

methodologies for neural networks structure and parameters optimization and leads to 

overestimating their performance. Finally, in order to adapt our methodology to our specific task 

of financial time series forecasting we use the multi-objective fitness function [9] to select more 

profitable predictors for our ARBF-PSO and the other three NNs algorithms retained. 

A simple execution of the proposed methodology for modeling and trading a financial index, 

using 10 years historical data, does not require more than one hour using a modern personal 

                                                                                                                                                            
8 Following the approach of Qi and Wu (2006) who also applied White’s (2000) Reality Check test in FX data, we 
performed our test with 500 bootstrap replications and a bootstrap smoothing parameter equal to 0.75. 
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computer. The adaptive nature of the proposed algorithm makes a simple execution of the 

algorithm sufficient because the algorithm’s parameters are automatically tuned. This is less 

than the time needed for a MLP, a RNN and a PSN network but admittedly more than the time 

needed for the optimization of an ARMA model (a few minutes).  

5. EMPIRICAL RESULTS 
5.1 STATISTICAL PERFORMANCE 

5.1.1 Statistical Accuracy Measures 

The in-sample statistical performance of our models is presented in table 5 below for the 

EUR/USD, the EUR/GBP and the EUR/JPY exchange rates. For the four error statistics retained 

(Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE) and Theil-U) the lower the output, the better the forecasting accuracy of the 

model concerned. The Pesaran-Timmermann (PT) test (1992) examines whether the directional 

movements of the real and forecast values are in step with one another, or to put it another way, 

it checks how well rises and falls in the forecast value follow actual rises and falls. The null 

hypothesis is that the model under study has no power on forecasting the relevant exchange rate.  

 
  NAIVE ARMA 

 
MACD 

 
k-NN MLP RNN 

 
PSI 

 
ARBF-PSO

MAE 0.0106 0.0054 0.0053 0.0054 0.0050 0.0049 0.0051 0.0047 
MAPE 789.15% 184.66% 179.37% 165.53% 131.22% 115.32% 116.78% 112.32% 
RMSE 0.0249 0.0073 0.0171 0.0074 0.0062 0.0060 0.0061 0.0054 
Theil-U 0.7943 0.7209 0.7832 0.6875 0.5821 0.5424 0.5343 0.4824 

EUR/USD 

PT-statistic 0.03 2.87* 0.82 3.64* 4.43* 8.76* 10.12* 14.23* 
MAE 0.0076 0.0042 0.0044 0.0039 0.0034 0.0031 0.0030 0.0028 
MAPE 229.16% 142.92% 147.26% 121.11% 102.92% 98.92% 99.22% 93.92% 
RMSE 0.0237 0.0027 0.0035 0.0020 0.0017 0.0019 0.0017 0.0014 
Theil-U 0.8235 0.3615 0.3999 0.2682 0.2515 0.2512 0.2342 0.2042 

EUR/GBP 

PT-statistic 0.76 3.12* 0.91 3.33* 5.88* 9.92* 11.23* 14.67* 
MAE 0.0123 0.0087 0.0075 0.0064 0.0054 0.0050 0.0052 0.048 
MAPE 842.64% 197.53% 284.43% 168.32% 146.39% 125.76% 132.43% 123.32% 
RMSE 0.0267 0.0092 0.0134 0.0083 0.0063 0.0059 0.0061 0.0056 
Theil-U 0.7994 0.6823 0.7226 0.6237 0.5772 0.5375 0.5471 0.4983 

EUR/JPY 

PT-statistic 0.02 2.68* 1.14 2.97* 4.32* 7.46* 9.32* 13.11* 
Table 5: In-sample statistical performance 

Note: * denote rejection of the null hypothesis of no forecasting power at the 1% confidence interval 
We note that ARBF-PSO presents slightly better in-sample statistical performance than its 

benchmarks. The RNN and PSI forecasts are similar in terms of statistical accuracy with the 

MLP presenting the third more accurate forecasts. The realizations of the statistical accuracy 

measures are considerably higher for our more traditional benchmarks, something that was 

expected based on their simplistic nature. On the other hand, the PT-statistics indicate that only 

our Naïve and MACD strategies are poor forecasts for the three exchange rates under study.  In 

table 6 below we present the statistical performance of our models for the out-of-sample period. 



  

 20

 
  NAIVE ARMA 

 
MACD 

 
k-NN MLP RNN 

 
PSI 

 
ARBF-PSO

MAE 0.0074 0.0093 0.0056 0.0057 0.0058 0.0055 0.0053 0.0052 
MAPE 484.96% 196.07% 164.98% 177.43% 186.07% 166.72% 163.41% 145.72% 
RMSE 0.0093 0.0067 0.0070 0.0069 0.0065 0.0061 0.0058 0.0057 
Theil-U 0.7012 0.7433 0.7768 0.7631 0.7276 0.7106 0.6506 0.6306 

EUR/USD 

PT-statistic 0.23 0.02 0.52 2.42* 3.78* 6.36* 7.91* 8.96* 
MAE 0.0056 0.0054 0.0057 0.0051 0.0050 0.0047 0.0045 0.0041 
MAPE 487.51% 225.92% 240.27% 192.74% 189.32% 157.92% 159.98% 144.92% 
RMSE 0.0099 0.0063 0.0074 0.0072 0.0055 0.0050 0.0048 0.0048 
Theil-U 0.9257 0.7228 0.7357 0.7032 0.5103 0.4367 0.4243 0.4040 

EUR/GBP 

PT-statistic 0.44 2.14 0.03 2.86* 2.99* 6.12* 7.04* 9.22* 
MAE 0.0155 0.0103 0.0098 0.0088 0.0068 0.0050 0.0052 0.051 
MAPE 573.12% 223.84% 253.17% 201.34% 178.98% 151.48% 157.90% 149.41% 
RMSE 0.0298 0.0125 0.0189 0.0105 0.0077 0.0065 0.0073 0.0063 
Theil-U 0.8012 0.7717 0.7632 0.7213 0.6831 0.6451 0.6930 0.6003 

EUR/JPY 

PT-statistic 0.01 0.12 0.04 2.01 3.58* 5.02* 4.74* 7.32* 

Table 6: Out-of-sample statistical performance 
Note: * denote rejection of the null hypothesis of no forecasting power at the 1% confidence interval 

From the results above, we note that ARBF-PSO retains its forecasting superiority in the out-of-

sample sub-period for the statistical measures applied. Once more, the RNN and the PSI present 

the second best performance with MLP having the third best forecasts in terms of statistical 

accuracy. The PT statistics indicate that all our non linear models are good forecasts of the 

exchange rates under study except the k-NN model for the EUR/JPY series.  

5.1.2 Diebold-Mariano Test 

In order to test if our best model in terms of statistical measures produces forecasts that are 

statistically significant and superior to its counterparts, we apply the Diebold-Mariano (1995) 

statistic for predictive accuracy for both MSE and MAE loss functions (for more details on the 

test see Diebold and Mariano (1995)). The results of the Diebold-Mariano statistic, comparing 

the ARBF-PSO network with its benchmarks for the three exchange rates under study are 

summarized in the table 7 below. 

 

 
 
 
 
 

 
Table 7: Diebold-Mariano Statistics  

From the above table we note that the null hypothesis of equal predictive accuracy is rejected for 

all comparisons and for both loss functions at a 1% confidence interval, since all the test 

statistics are above the critical value of 2.33. Moreover, the statistical superiority of the ARBF-

 
 NAIVE ARMA

 
MACD

 
k-NN MLP RNN 

 
PSI 

MSE -8.456 -4.827 -5.542 -5.049 -4.214 -3.194 -3.224 EUR/USD 
MAE -9.143 -5.431 -6.281 -5.905 -5.104 -4.871 -4.523 
MSE -8.812 -5.991 -7.840 -4.576 -4.402 -3.002 -3.344 EUR/GBP 
MAE -9.924 -6.214 -8.515 -5.385 -4.919 -3.461 -3.951 
MSE -10.572 -6.718 -7.294 -5.751 -5.018 -3.851 -3.919 EUR/JPY 
MAE -10.917 -6.210 -7.821 -6.003 -5.891 -4.190 -4.387 
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PSO forecasts is confirmed as for both loss functions the realizations of the Diebold-Mariano 

(1995) statistic are negative9. 

5.2 TRADING PERFOMANCE 

5.2.1 Trading Strategy and Transaction Costs 
In the previous section we evaluate our forecasts through a series of statistical accuracy 

measures and tests. However, statistical accuracy is not always synonymous of financial 

profitability. In financial applications, the practitioner’s utmost interest is in producing models 

that can be translated to profitable trades. It is therefore crucial to further examine our proposed 

model and evaluate its utility through a trading strategy. The trading strategy applied is to go or 

stay ‘long’ when the forecast return is above zero and go or stay ‘short’ when the forecast return 

is below zero. The ‘long’ and ‘short’ EUR/USD, EUR/GBP or EUR/JPY position is defined as 

buying and selling Euros at the current price respectively. When the forecast return is 0 we keep 

our position. 

Transaction costs for a tradable amount, say USD 5-10 million, are about 1 pip per trade (one 

way) between market makers. But since we consider the EUR/USD, EUR/GBP and EUR/JPY 

time series as a series of middle rates, the transaction costs is one spread per round trip. For our 

dataset a cost of 1 pip is equivalent to an average cost of 0.007%, 0.012% and 0.008% per 

position for the EUR/USD, the EUR/GBP and the EUR/JPY respectively. Table 8 below 

presents the trading performance of our models in the in-sample sub-period. 

 
  NAIVE ARMA

 
MACD

 
k-NN MLP RNN 

 
PSI ARBF-PSO

Information Ratio       (excluding costs) 0.01 0.89 0.29 1.73 1.91 2.46 3.15 3.74 
Annualised Volatility  (excluding costs) 10.56% 10.60% 10.59% 10.51% 10.58% 10.52% 10.49% 10.41% 
Annualised Return     (excluding costs) 0.11% 9.42% 3.07% 18.14% 20.23% 25.87% 33.02% 38.96% 
Maximum Drawdown (excluding costs) -33.77% -13.76% -29.67% -31.74% -29.40% -21.38% -26.76% -25.57% 
Positions Taken        (annualised) 129 128 39 95 103 101 93 96 
Transaction Costs     (annualised)  0.90% 0.90% 0.27% 0.67% 0.72% 0.71% 0.65% 0.67% 
Annualised Return    (including costs) -0.79% 8.52% 2.80% 17.47% 19.51% 25.16% 32.37% 38.29% 

EUR/USD 

Information Ratio      (including costs) -0.08 0.80 0.26 1.66 1.84 2.39 3.09 3.68 
Information Ratio       (excluding costs) 0.53 1.46 0.52 2.05 2.60 3.15 3.35 4.71 
Annualised Volatility  (excluding costs) 7.94% 7.93% 7.96% 7.96% 7.94% 7.81% 7.79% 7.62% 
Annualised Return     (excluding costs) 4.19% 11.57% 4.16% 16.32% 20.61% 24.60% 26.12% 36.35% 
Maximum Drawdown (excluding costs) -25.43% -18.64% -21.63% -20.54% -19.52% -14.74% -18.48% -13.35% 
Positions Taken        (annualised) 128 140 81 103 145 69 64 61 
Transaction Costs     (annualised)  1.57% 1.68% 0.97% 1.24% 1.74% 0.83% 0.77% 0.73% 
Annualised Return    (including costs) 2.62% 9.89% 3.19% 15.08% 18.87% 23.77% 25.35% 35.62% 

EUR/GBP 

Information Ratio      (including costs) 0.33 1.17 0.40 1.89 2.37 3.04 3.25 4.67 
Information Ratio       (excluding costs) 0.62 0.89 0.42 1.37 1.48 2.15 2.13 2.45 
Annualised Volatility  (excluding costs) 12.60% 12.61% 12.63% 12.60% 12.58% 12.52% 12.51% 12.57% 

EUR/JPY 

Annualised Return     (excluding costs) 7.75% 11.24% 5.28% 17.22% 18.61% 26.92% 26.61% 30.79% 
                                                 
9 We apply the Diebold-Mariano test to couples of forecasts (ARBF-PSO vs. another forecasting model). A 
negative realization of the Diebold-Mariano test statistic indicates that the first forecast (ARBF-PSO) is more 
accurate than the second forecast. The lower the negative value, the more accurate are the ARBF-PSO forecasts. 
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Maximum Drawdown (excluding costs) -39.96% -20.43% -28.71% -22.37% -18.34% -36.09% -24.41% -20.41% 
Positions Taken        (annualised) 120 166 155 142 71 65 88 95 
Transaction Costs     (annualised)  0.96% 1.33% 1.24% 1.14% 0.57% 0.52% 0.70% 0.76% 
Annualised Return    (including costs) 6.79% 9.91% 4.04% 16.08% 18.04% 26.40% 25.91% 30.03% 
Information Ratio      (including costs) 0.54 0.79 0.32 1.28 1.43 2.11 2.07 2.39 

Table 8: In-sample trading performance 
Clearly our ARBF-PSO network demonstrates a superior trading performance in terms of 

annualised return and information ratio for all exchange rates in the in-sample period. The PSI 

and the RNN produce the second and the third most profitable trades. In comparison with the 

statistical performance of our models for the same period, we note that although PSI and RNN 

present very close statistical forecasts, this is not always the case in trading terms. In general all 

our models are producing positive annualised returns except the naïve strategy for the 

EUR/USD something that was expected as all our models (except the naïve) were optimized 

during this period. In table 9 we present our results for the out-of-sample period. 

 
  NAIVE ARMA

 
MACD

 
k-NN MLP RNN 

 
PSI ARBF-PSO

Information Ratio       (excluding costs) 0.07 -1.19 0.26 0.84 1.26 1.65 2.01 2.49 
Annualised Volatility  (excluding costs) 10.55% 10.52% 10.55% 10.55% 10.52% 10.49% 10.47% 10.42% 
Annualised Return     (excluding costs) 0.73% -12.55% 2.72% 8.88% 13.24% 17.27% 21.06% 25.93% 
Maximum Drawdown (excluding costs) -19.87% -32.64% -13.27% -14.61% -12.83% -17.16% -9.14% -8.10% 
Positions Taken        (annualised) 127 108 40 132 126 124 123 119 
Transaction Costs     (annualised)  0.89% 0.76% 0.28% 0.92% 0.88% 0.87% 0.86% 0.83% 
Annualised Return    (including costs) -0.16% -13.31% 2.44% 7.96% 12.36% 16.40% 20.20% 25.10% 

EUR/USD 

Information Ratio      (including costs) -0.02 -1.26 0.23 0.75 1.17 1.56 1.93 2.41 
Information Ratio       (excluding costs) 0.51 1.00 0.09 0.91 1.32 1.97 2.05 3.11 
Annualised Volatility  (excluding costs) 9.37% 9.37% 9.36% 9.38% 9.34% 9.33% 9.32% 9.26% 
Annualised Return     (excluding costs) 4.80% 9.38% 0.85% 8.57% 12.31% 18.41% 19.14% 28.83% 
Maximum Drawdown (excluding costs) -10.19% -16.36% -12.87% -16.14% -14.49% -11.88% -9.67% -7.49% 
Positions Taken        (annualised) 132 124 83 114 122 143 151 148 
Transaction Costs     (annualised)  1.58% 1.49% 0.96% 1.37% 1.46% 1.71% 1.81% 1.77% 
Annualised Return    (including costs) 3.22% 7.89% -0.11% 7.20% 10.85% 16.70% 17.33% 27.06% 

EUR/GBP 

Information Ratio      (including costs) 0.34 0.84 -0.01 0.77 1.16 1.79 1.86 2.92 
Information Ratio       (excluding costs) -0.81 0.10 -0.09 0.46 0.79 1.46 1.34 1.80 
Annualised Volatility  (excluding costs) 13.27% 13.32% 13.32% 13.29% 13.29% 13.28% 13.25% 13.31% 
Annualised Return     (excluding costs) -10.71% 1.30% -1.19% 6.11% 10.53% 19.36% 17.71% 23.96% 
Maximum Drawdown (excluding costs) -44.30% -17.43% -31.61% -19.81% -19.26% -15.14% -13.76% -8.51% 
Positions Taken        (annualised) 134 171 43 147 146 140 152 136 
Transaction Costs     (annualised)  1.09% 1.37% -0.34% 1.18% 1.17% 1.12% 1.22% 1.09% 
Annualised Return    (including costs) -11.80% -0.07% -1.53% 4.93% 9.36% 18.24% 16.49% 22.87% 

EUR/JPY 

Information Ratio      (including costs) -1.10 -0.01 -0.12 0.37 0.70 1.37 1.24 1.72 
Table 9: Out-of-sample trading performance  

We observe from the bold values of the above table that the ARBF-PSO confirms its trading 

superiority in the out-of-sample period. This is consistent with the superior statistical 

performance of our proposed methodology compared to its other NN and statistical benchmarks. 

A superiority that can be attributed to the proposed network algorithm that seems to excel in 

recognising the pattern of the two series under study compared to more traditional models. It is 

also worth noting that ARBF-PSO forecasts present a remarkably low maximum drawdown in 
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the out-of-sample period for all the three exchange rates under study.  Thus the maximum 

potential losses of an investor are almost 3 or 4 times lower than the annualised profit in the out-

of-sample period. Concerning our benchmarks models, we note that PSI and RNN present the 

second and the third best performance in terms of trading efficiency while our k-NN model has 

the fourth best performance with positive returns after transaction costs for all three exchange 

rates. The results of the more traditional models are mixed with the MACD for the EUR/USD 

and the naïve and ARMA for the EUR/GBP presenting slightly positive annualised returns after 

transaction costs.  

Concerning our proposed fitness function of equation [9], the results from the statistical and 

trading evaluation of our NNs forecasts seem promising. Firstly we note that all our NNs present 

significant profits after transaction costs for all series under study in the out-of-sample period. 

Moreover, we did not note any large inconsistencies in our NNs statistical and trading 

performance for both exchange rates and sub-periods. Large inconsistencies could indicate that 

the training of our NNs is biased to either statistical accuracy or trading efficiency, something 

that could possibly lead to profitable in-sample forecasts but disastrous out-of-sample results. In 

the next section, we introduce a trading strategy to further increase the trading performance of 

our models. 

5.3 LEVERAGE TO EXPLOIT HIGH INFORMATION RATIOS 

In order to further improve the trading performance of our models we introduce a leverage based 

on GJR (1,1) one day ahead volatility forecasts10.The intuition of the strategy is to avoid trading 

when volatility is very high while at the same time exploiting days when the volatility is 

relatively low. As mentioned by Bertolini (2010), there are few papers on market-timing 

techniques for foreign exchange, with the notable exception of Dunis and Miao (2005).  The 

opposition between market-timing techniques and time-varying leverage is only apparent as 

time-varying leverage can also be easily achieved by scaling position sizes inversely to recent 

risk measures behaviour. One of the primary restrictions of GARCH models is their symmetric 

response to positive and negative shocks. However, it has been argued that a negative shock to 

                                                 
10 We also explored a GARCH (1,1) model in forecasting volatility. Its statistical accuracy in the test sub-period in 
terms of the MAE, MAPE, RMSE and the Theil-U statistics is worse compared with GJR. Moreover, when we 
measure the utility of GARCH in terms of trading efficiency for our models within the context of our strategy in the 
test sub-period, our results in terms of annualised returns are slightly better with GJR for our models for all three 
exchange rates. However, we note that the use of the GJR model is quite puzzling for the series under study as an 
exchange rate is a relative price (contrary to, say, a stock market price). So for example a 'negative shock to the 
EUR/USD' is in reality a negative shock to the EUR and at the same time a positive shock for the USD, and there is 
therefore no reason a priori why its impact should be larger than "a positive shock of the same magnitude" to the 
EUR/USD (i.e. a positive shock to the EUR and at the same time a negative shock for the USD), unless one makes 
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financial time series is likely to cause volatility to rise by more than a positive shock of the same 

magnitude (Bekaert and Wu (2000) and Brooks (2003)). A popular asymmetric formulation of 

GARCH which has an additional term to account for possible asymmetries is the GJR model, 

where the conditional variance is given by: 

                 1
2

1
2

1
2

1
2

−−−− +++= ttttt Iuauw γβσσ                                                             [21] 

where  2
tσ   and tu  is the conditional variance and the error respectively at time t and  11 =−tI  if 

01 h−tu or 0 otherwise. 

So we firstly forecast the one day ahead exchange rate volatility with a GJR (1,1) model in the 

test and validation sub-periods. Then, following Dunis and Miao (2005) we split these two 

periods into six sub-periods, ranging from periods with extremely low volatility to periods 

experiencing extremely high volatility. Periods with different volatility levels are classified in 

the following way: first the average (µ) difference between the actual volatility in day t and the 

forecast for day t+1 and its ‘volatility’ (measured in terms of standard deviation (ζ) are 

calculated; those periods where the difference is between µ plus one ζ are classified as ‘Lower 

High Vol. Periods’. Similarly, ‘Medium High Vol.’ (between µ + ζ and µ + 2 ζ) and ‘Extremely 

High Vol.’ (above µ + 2 ζ) periods can be defined. Periods with low volatility are also defined 

following the same 1 ζ and 2 ζ approach, but with a minus sign. For each sub-period a leverage 

is assigned starting with 0 for periods of extremely high volatility to a leverage of 2.5 for 

periods of extremely low volatility. Table 10 below presents the sub-periods and their relevant 

leverage factor. 

 Extremely 
Low Vol. 

Medium Low 
Vol. 

Lower Low 
Vol. 

Lower High 
Vol. 

Medium High 
Vol. 

Extremely 
High Vol. 

Leverage 2.5 2 1.5 1 0.5 0 

Table 10: Sub-periods and leverage factor 

The parameters of our strategy (µ and ζ) are updated every three months by rolling forward the 

estimation period. So for example, for the first three months of our validation period, µ and ζ are 

computed based on the twenty four months of the test sub-period. For the following three 

months, the two parameters are computed based on the last fifteen months of our test sub-period 

and the first three of the validation sub-period.  The cost of leverage (interest payments for the 

additional capital) is calculated at 1.75% p.a. (that is 0.0069% per trading day11). This leverage 

                                                                                                                                                            
the assumption that financial markets have a negative bias against the EUR (something that might explain the 
superior perfomance of GJR than GARCH in our study). 
11 The interest costs are calculated by considering a 1.75% interest rate p.a. (the Euribor rate at the time of 
calculation) divided by 252 trading days. In reality, leverage costs also apply during non-trading days so that we 
should calculate the interest costs using 360 days per year. But for the sake of simplicity, we use the approximation 
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is applied to the models that have achieved an in-sample information ratio of at least 2 and, as 

such, would have been candidates for leveraging out-of-sample. Our final results are presented 

in table 11. 

 
  NAIVE ARMA

 
MACD

 
k-NN MLP RNN 

 
PSI ARBF-PSO

Information Ratio       (excluding costs) 0.07 -1.19 0.26 0.84 1.26 1.48 1.86 2.03 
Annualised Volatility  (excluding costs) 10.55% 10.52% 10.55% 10.55% 10.52% 17.13% 17.21% 17.21% 
Annualised Return     (excluding costs) 0.73% -12.55% 2.72% 8.88% 13.24% 25.31% 32.04% 35.02% 
Maximum Drawdown (excluding costs) -19.87% -32.64% -13.27% -14.61% -12.83% -12.77% -6.69% -6.01% 
Positions Taken        (annualised) 127 108 40 132 126 114 113 109 
Average Leverage Factor (ex post)* n.a n.a n.a n.a n.a 1.44 1.50 1.33 
Transaction + Leverage Costs (annualised) 0.89% 0.76% 0.28% 0.92% 0.88% 1.71% 1.70% 1.65% 
Annualised Return    (including costs) -0.16% -13.31% 2.44% 7.96% 12.36% 23.60% 30.34% 33.37% 

EUR/USD 

Information Ratio      (including costs) -0.02 -1.26 0.23 0.75 1.17 1.38 1.76 1.94 
Information Ratio       (excluding costs) 0.51 1.00 0.09 0.91 1.32 1.87 2.14 2.81 
Annualised Volatility  (excluding costs) 9.37% 9.37% 9.36% 9.38% 9.34% 11.52% 11.55% 11.53% 
Annualised Return     (excluding costs) 4.80% 9.38% 0.85% 8.57% 12.31% 21.56% 24.68% 32.42% 
Maximum Drawdown (excluding costs) -10.19% -16.36% -12.87% -16.14% -14.49% -9.01% -7.72% -5.12% 
Positions Taken        (annualised) 132 124 83 114 122 100 108 105 
Average Leverage Factor (ex post)* n.a n.a n.a n.a n.a 1.18 1.31 1.13 
Transaction + Leverage Costs (annualised) 1.58% 1.49% 0.96% 1.37% 1.46% 1.85% 1.99% 1.91% 
Annualised Return    (including costs) 3.22% 7.89% -0.11% 7.20% 10.85% 19.71% 22.69% 30.51% 

EUR/GBP 

Information Ratio      (including costs) 0.34 0.84 -0.01 0.77 1.16 1.71 1.96 2.65 
Information Ratio       (excluding costs) -0.81 0.10 -0.09 0.46 0.79 1.31 1.18 1.55 
Annualised Volatility  (excluding costs) 13.27% 13.32% 13.32% 13.29% 13.29% 18.12% 18.09% 18.10% 
Annualised Return     (excluding costs) -10.71% 1.30% -1.19% 6.11% 10.53% 23.81% 21.38% 28.02% 
Maximum Drawdown (excluding costs) -44.30% -17.43% -31.61% -19.81% -19.26% -12.81% -11.01% -6.47% 
Positions Taken        (annualised) 134 171 43 147 146 122 134 118 
Average Leverage Factor (ex post)* n.a n.a n.a n.a n.a 1.23 1.20 1.17 
Transaction + Leverage Costs (annualised) 1.09% 1.37% -0.34% 1.18% 1.17% 1.43% 1.58% 1.36% 
Annualised Return    (including costs) -11.80% -0.07% -1.53% 4.93% 9.36% 22.38% 19.80% 26.66% 

EUR/JPY 

Information Ratio      (including costs) -1.10 -0.01 -0.12 0.37 0.70 1.24 1.09 1.47 
* The average leverage factor ex post is computed as the ratio of the annualised returns after costs of tables 13 and 
11 for those models which the leverage was applied 

Table 11: Out-of-sample trading performance –final results11 

From the table above we note that our trading strategy is successful for all models applied. On 

average there is an increase in annualised returns after transaction costs of 8.53%, 3.94% and 

3.75% for the EUR/USD, the EUR/GBP and the EUR/JPY exchange rate respectively when 

applying the leveraged trading strategy. Most importantly, we note that the application of our 

strategy leads to a substantial reduction in maximum drawdowns, the essence of risk for an 

investor in financial markets. In terms of model individual performance, the superiority of the 

ARBF-PSO is confirmed in terms of annualised return, information ratio and maximum 

drawdown. Our other two NNs models (the RNN and the PSI) which were candidates for a 

leverage, similarly show a satisfactory performance in terms of their profitability with PSI 

                                                                                                                                                            
of 252 trading days to spread the leverage costs of non-trading days equally over the trading days. This 
approximation prevents us from keeping track of how many non-trading days we hold a position. 
11 Not taken into account the interest that could be earned during times where the capital is not traded (non-trading 
days) or not fully invested and could therefore be invested. 
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presenting better performance for the EUR/USD and EUR/GBP and the RNN for the EUR/JPY 

exchange rate.  

6. CONCLUDING REMARKS 
In this paper, we introduce a hybrid Neural Network architecture of Particle Swarm 

Optimization and Adaptive Radial Basis Function (ARBF-PSO), a time-varying leverage 

trading strategy based on Glosten, Jagannathan and Runkle (1993) volatility forecasts and a 

neural network fitness function for financial forecasting purposes. We apply the proposed 

architecture to the task of forecasting the one day ahead return of the EUR/USD, the EUR/GBP 

and the EUR/JPY ECB daily fixings and benchmark its results with three different NNs, a 

Nearest Neighbors algorithm (k-NN) and three statistical/technical forecasting models.  In terms 

of results, the ARBF-PSO outperforms all its benchmarks in terms of statistical accuracy and 

trading efficiency for both in- and out-of-sample periods. In terms of our proposed time-varying 

leverage trading strategy, we note that in the models applied there was a substantial increase in 

the trading performance after transaction costs. We also note a reduction in maximum 

drawdowns after its application. Finally, concerning our proposed fitness function for NNs, we 

note that all our networks produce substantial profitability in both in- and out-of-sample periods. 

Moreover, we observe that the ranking of our models is almost the same in statistical and trading 

terms. This allows us to argue that our NNs were trained in a way that allowed them to increase 

not only their statistical accuracy but also their trading efficiency.  

The newly introduced ARBF-PSO methodology expands in many directions the current 

prevailing computational intelligence and statistical models for financial forecasting and trading. 

It is fully adaptive, replacing some hard to tune model parameters such as the neural network’s 

architecture with softer ones such as the initial size of the population of particles for the particle 

swarm optimization module. Furthermore, the simultaneous optimization of the RBF’s structure 

and parameters in a single optimization procedure prevents the data snooping effect which is 

present in existing methodologies for neural networks structure and parameters optimization and 

leads to overestimating their performance. In the end, ARBF-PSO deploys a novel fitness 

function which was proved to be able to pilot candidate solutions to more profitable trading 

strategies. Our results should go some way towards convincing scientists and decision makers to 

experiment further beyond the bounds of the more traditional Operational Research models.  
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APPENDIX 
A.1 Neural Networks Characteristics 

In the table 12 below, we present the characteristics of the neural networks with the best trading 

performance in in-sample sub-period which we used in our committees. The choice of the 

characteristics was based after an extensive experimentation in the in-sample sub-period. For the 

ARBF-PSO algorithm the choice of the number of hidden nodes is incorporated within the 

network’s algorithm (the maximum possible number of hidden nodes in our ARBF-PSO 

algorithm is set to 100) and the training is fully adaptive (see Section 4.2.3.2). Therefore no 

further experimentation was needed. 

Table 12: Network characteristics 
* The learning rate, the momentum, the number of iterations steps and the initialization of weights are the 
characteristics that are describing the training process of our NNs benchmarks which are trained through 
gradient descent. Our proposed ARBF-PSO algorithm is fully adaptive and is trained through a PSO 
approach (see Section 4.2.3.2). 
 
 
 
 
 
 
 

 

 Parameters MLP RNN PSI ARBF-PSO 
Learning algorithm Gradient descent Gradient descent Gradient descent PSO 

Learning rate 0.003 0.002 0.5 NA* 
Momentum 0.005 0.004 0.5 NA* 

Iteration steps 30000 20000 20000 NA* 
Initialisation of weights N(0,1) N(0,1) N(0,1) NA* 

Input nodes 9 8 10 7 
Hidden nodes 8 7 6 14 

EUR/USD 

Output node 1 1 1 1 
Learning algorithm Gradient descent Gradient descent Gradient descent PSO 

Learning rate 0.002 0.003 0.5 NA* 
Momentum 0.004 0.005 0.5 NA* 

Iteration steps 35000 30000 25000 NA* 
Initialisation of weights N(0,1) N(0,1) N(0,1) NA* 

Input nodes 8 8 9 8 
Hidden nodes 9 7 5 9 

EUR/GBP 

Output node 1 1 1 1 
Learning algorithm Gradient descent Gradient descent Gradient descent PSO 

Learning rate 0.003 0.003 0.5 NA* 
Momentum 0.005 0.005 0.5 NA* 

Iteration steps 30000 30000 30000 NA* 
Initialisation of weights N(0,1) N(0,1) N(0,1) NA* 

Input nodes 10 9 8 9 
Hidden nodes 13 11 6 10 

EUR/JPY 

Output node 1 1 1 1 
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Research Highlights 
 

  We introduce a hybrid Neural Network architecture of Particle Swarm 
Optimization and Adaptive Radial Basis Function. 

  We introduce a time varying leverage trading strategy. 
  We introduce a Neural Network fitness function for financial forecasting 

purposes. 
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