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Abstract

This paper mainly investigates the circular open dimension problem (CODP),

which consists of packing a set of circles of known radii into a strip of fixed

width and unlimited length without overlapping. The objective is to min-

imize the length of the strip. An iterated tabu search approach, named

ITS, is proposed. ITS starts from a randomly generated solution and at-

tempts to gain improvements by a tabu search procedure. After that, if

the obtained solution is not feasible, a perturbation operator is subsequently

employed to reconstruct the incumbent solution and an acceptance criterion

is implemented to determine whether or not accept the perturbed solution.

This process is repeated until a feasible solution has been found or the al-

lowed computation time has been elapsed. Computational experiments based

on well-known benchmark instances show that ITS produces quite compet-

itive results with respect to the best known results. For 18 representative

CODP instances taken from the literature, ITS succeeds in improving 13

best known results within reasonable time. In addition, for another chal-

lenging related variant: the problem of packing arbitrary sized circles into a

circular container, ITS also succeeds in improving many best known results.
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Supplementary experiments are also provided to analyze the influence of the

perturbation operator, as well as the acceptance criterion.

Keywords: Packing, Cutting, Tabu search, Perturbation operator,
Acceptance criterion

1. Introduction

Cutting and packing (C&P) problems are widely encountered in practi-

cal applications, such as paper industry (Fraser and George, 1994), wireless

communication (Adickes et al., 2002), marine transport (Birgin et al., 2005),

aircraft designing (Liu and Li, 2010), material cutting (He et al., 2012), etc.

They generally consist of cutting (or packing) a set of small items from (or

into) a large object so as to minimize the wasted portion. As well-known

NP-hard problems, C&P problems are extremely challenging to solve ex-

actly and thus heuristics which attempt to obtain approximate solutions

within reasonable time have been the most proposed approaches for tackling

C&P problems.

As a representative variant of the C&P family, the circle packing problem

(denoted by CPP) is concerned about how to pack a number of circles of

known radii into a larger container without overlapping. The objective is

to minimize the container size. According to the size of the circles to pack,

CPP can be classified into two categories (Castillo et al., 2008): the arbitrary

sized circle packing problem (denoted by ACP) and the uniform sized circle

packing problem (denoted by UCP). It should be pointed out that ACP

has to deal with both continuous and combinatorial features of the problem,

while UCP mainly deals with continuous optimization problem. Due to the

extremely large-scale combinatorial solution space of ACP, the approaches

proposed for ACP are usually very different from those proposed for UCP.

This paper mainly investigates a variant of ACP: the circular open dimen-

sion problem (denoted by CODP), which attempts to pack N(N = 1, 2, · · · )
arbitrary sized circles into a strip of fixed width and unlimited length without

overlapping. More precisely, CODP can be formulated as follows.
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Given a strip of fixed width W and unlimited length L, as well as N

arbitrary sized circles Ci of known radii ri(i = 1, 2, . . . , N). Take the ori-

gin of two-dimensional Cartesian coordinate system at the midpoint of the

container, and denote the coordinates of the midpoint of Ci by (xi, yi). The

objective of CODP is to obtain a solution (X,L), where X is a configuration

denoted by (x1, y1, . . . , xi, yi, . . . , xN , yN), such that

Minimize L, subject to :

|xi|+ ri ≤ 0.5L ∀ 1 ≤ i ≤ N,

|yi|+ ri ≤ 0.5W ∀ 1 ≤ i ≤ N,

√

(xi − xj)2 + (yi − yj)2 ≥ ri + rj ∀ 1 ≤ i < j ≤ N.

(1)

The first two constraints state that each circle should not extend outside

the container. The third constraint requires that any pair-wise circles can

not overlap with each other. (X,L) is termed a feasible solution if it meets

all the constraints.

Furthermore, in order to measure the feasibility of a given solution (X,L),

we define a penalty function based on the definition of overlaps as follows.

For any solution (X,L), there may exist two kinds of overlaps: overlaps

between two circles and overlaps between a circle and a border of the strip.

Respectively, the overlapping depth between the ith circle Ci and the jth

circle Ci is

Oij = Max

{

0, ri + rj −
√

(xi − xj)2 + (yi − yj)2
}

. (2)

And the overlapping depth between Ci and a vertical border of the strip

is

Oix = Max
{

0, ri + |xi| − 0.5L
}

. (3)

Similarly, the overlapping depth between Ci and a horizontal border of

the strip is

Oiy = Max
{

0, ri + |yi| − 0.5W
}

. (4)
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By adding all squares of overlapping depth together, we get a penalty

function E(X,L) which measures the feasibility of a solution (X,L) as follows

E(X,L) =

N−1
∑

i=1

N
∑

j=i+1

O2
ij +

N
∑

i=1

(O2
ix +O2

iy). (5)

According to this definition, it is not difficult to find that: (1) For any

solution (X,L), E(X,L) ≥ 0. (2) (X,L) is feasible if and only if E(X,L) =

0. Therefore, the objective of CODP is to minimize L while guaranteeing

E(X,L)=0.

In the present work, an iterated tabu search approach named ITS is pro-

posed for tackling CODP. ITS is composed of a tabu search procedure and a

perturbation operator associated with an acceptance criterion. Specifically,

ITS forcibly squeezes all the circles into the strip at first and then attempts

to gain further improvements by repeatedly performing tabu search and so-

lution perturbation, until a feasible solution has been obtained or the allowed

computation time is elapsed. Computational results demonstrate that ITS is

rather competitive with respect to the state-of-the-art approaches, in terms

of both solution quality and computation time.

The rest of this paper is organized as follows. Section 2 briefly reviews

the relevant literature. Section 3 presents the details of the proposed ITS

algorithm. Computational experiments and analysis are presented in Section

4 and Section 5 concludes the paper.

2. Related literature

Various approaches have been developed for solving the circle packing

problems (CPP). In this section, we briefly review the approaches proposed

for solving CPP, especially for the circular open dimension problem (CODP)

and its closely related variants.

As mentioned above, CPP can be classified into two categories: the arbi-

trary sized circle packing problem (ACP) and the uniform sized circle pack-

ing problem (UCP). Herein, we introduce several representative approaches
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proposed for ACP at first and then briefly review the algorithms for UCP

subsequently.

Almost all the competitive approaches for solving ACP are heuristics,

which can be mainly classified into two categories: constructive approaches

and perturbation-based approaches. Constructive approaches attempt to

pack the circles one by one in sequence into the container according to some

constructive rules, until all the circles have been packed feasibly. In contrast,

perturbation-based approaches start from one or several initial configura-

tion(s) which contain(s) all the circles (generally with overlapping) and then

attempt to gain further improvements by continuous optimization and solu-

tion perturbations, until a feasible solution has been obtained. Obviously,

these two kinds of strategies are essentially different from each other.

As we know, most of the existing approaches for ACP are constructive

approaches. Respectively, for the version of strip or rectangular container

(CODP and its variant), many constructive approaches have been proposed.

For example, George et al. (1995) developed several heuristic building rules

to simulate the packing process, including a quasi-random technique and a

genetic algorithm. Hifi and M’Hallah (2004) proposed a constructive pro-

cedure and a genetic algorithm. Huang et al. (2005) developed two greedy

approaches denoted by B1.0 and B1.5 based on the maximum hole degree

rule. In order to improve B1.0 and B1.5, Kubach et al. (2009) developed

several greedy algorithms and parallelized them by a master slave approach

followed by a subtree-distribution model. Kallrath (2009) also applied several

heuristics, including a branch and reduce optimization navigator, a column

enumeration approach and a symmetry constraints breaking strategy. Akeb

and Hifi (2008) proposed an open strip generation solution, an exchange-

order strategy to augment the first heuristic and a hybrid heuristic that

combines beam search with a series of predetermined interval search. For

further improvements, Akeb et al. (2011) proposed an augmented algorithm

which incorporates a beam search, a binary search, a multi-start strategy and

a separate-beams strategy. And they also proposed an adaptive look-ahead
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strategy-based algorithm (Akeb and Hifi, 2010). Moreover, for the situation

of circular container, there are also several constructive approaches, such

as the corner occupying algorithm A1.0 and A1.5 (Huang et al., 2006), the

beam-search strategy BS (Akeb et al., 2009), the adaptive beam search look-

ahead algorithm (Akeb et al., 2010), the adaptive hybrid algorithm TS/NP

(Al-Modahka et al., 2011), etc.

Meanwhile, there are various perturbation-based algorithms proposed for

solving ACP. Respectively, for the version of strip or rectangular container,

Stoyan and Yaskov (1998; 2004) used the reduced gradient method for local

optimization and developed several strategies for transition from one local

minimum to another one. Hifi et al. (2004) proposed a simulated annealing

approach which also combines the gradient descent method with several con-

figuration transformation strategies. Moreover, for the situation of circular

container, several efficient perturbation-based algorithms exist, such as the

quasi-physical quasi-human algorithm (Wang et al., 2002), the population

basin hopping method (Addis et al., 2008a), the simulated annealing ap-

proach (Müller et al., 2009), and the energy landscape paving method (Liu

et al., 2009), etc.

On the other hand, UCP has also been extensively investigated and many

efficient approaches exist, such as the non-linear programming solver(MINOS)

(Maranas et al., 1995), the billiard simulation approach (Boll et al., 2000),

the population basin hopping method (Addis et al., 2008b; Grosso et al.,

2010), the greedy vacancy search strategy (Huang and Ye, 2010), the quasi-

physical global optimization method (Huang and Ye, 2011), etc. In addition,

as mentioned above, due to the extremely challenging combinatorial feature

of ACP, the approaches proposed for ACP are usually quite different from

those proposed for UCP.

Finally, we refer interested readers to (Wäscher et al., 2007; Castillo et

al., 2008; Hifi and M’Hallah, 2009) for more comprehensive reviews about

the C&P problems.
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3. Proposed approach

This paper mainly studies CODP, which considers how to pack a number

of arbitrary sized circles into a strip of fixed width and unlimited length

without overlapping, so as to minimize the length of the container. As a

representative variant of ACP, CODP should deal with both the continuous

and combinatorial features of the problem. Therefore, different continuous

or combinatorial optimization strategies usually lead to different approaches

for solving CODP.

In this paper, a hybrid meta-heuristic algorithm named ITS is proposed,

which integrates a tabu search procedure (TS) and a perturbation operator

associated with an acceptance criterion. Respectively, TS is a robust neigh-

borhood search approach, while the perturbation operator associated with

the acceptance criterion is employed to drive the search out of local opti-

mum trap towards new promising region of the solution space. In this paper,

we present an efficient algorithm with novel combination of these various

strategies, as would outlined in Algorithm 1.

Respectively, the key components of the proposed approach are detailed
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in the following subsections.

Input: Radii of all the circles and the width W of the strip
Output: Feasible solution (XITS, LITS) with as small LITS as possible

1 L← PreSetL(); % pre-set the length of the strip, see 3.4
2 repeat

3 % randomly generate an initial solution
4 (X,L)← RandomInit();
5 % further optimize (X,L) by TS, see 3.1

(X,L)← TabuSearch(X,L);
6 repeat

7 % reconstruct (X,L), see 3.2

8 (X
′

, L)← Perturb(X,L);

9 % further optimize (X
′

, L) by TS, see 3.1

(X∗, L)← TabuSearch(X
′

, L);
10 % accept (X∗, L) if and only if it is better than (X,L), see 3.3
11 if (X∗, L) is better than (X,L) then
12 (X,L)← (X∗, L)
13 end

14 until (X,L) is feasible or it is not improved for 10 perturbations ;

15 until (X,L) is feasible or the limited time has been elapsed ;
16 % post-process (X,L) for further optimization, see 3.4
17 (XITS, LITS)← PostProcess(X,L);
18 return (XITS, LITS)

Algorithm 1: Outline of the proposed approach

3.1. Tabu search procedure

Tabu search (TS) is a well-known meta-heuristic (Glover, 1989; Glover,

1990) which has proven to be effective for solving a large number of practical

optimization problems, including quadratic assignment (James et al., 2009),

unconstrained global optimization (Duarte et al., 2011), course timetabling

(Lü and Hao, 2010), graph coloring (Wu and Hao, 2012), etc. For CODP,

this paper employs a TS procedure as follows.

From an initial solution (X,L), TS calls the well-known unconstrained

minimization algorithm LBFGS (Liu and Nocedal, 1989) for continuous opti-

mization at first (the role the LBFGS algorithm plays is illustrated in Figure
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Figure 1: Continuous optimization by LBFGS

1), and then attempts to improve (X,L) consistently by iteratively updat-

ing (X,L) with its best neighboring solution, with the aid of forbidden rule

and aspiration criterion, until the incumbent solution (X,L) is feasible or

(X,L) cannot be further improved within a given number of consecutive it-

erations. For the sake of efficiency, L is pre-set to a proper constant which

remains unchanged until the search process terminates, then, some post-

process techniques is used to further optimize L as much as possible (as

detailed in subsection 3.4).

Like other neighborhood search-based approaches, one of the most impor-

tant features of TS is the definition of its neighborhood. For CODP, we note

that swapping two circles with different radii usually leads to a new candi-

date solution. Therefore, we introduce a constrained neighborhood N(X,L)

of (X,L) as follows.

N(X,L) is a solution set which contains all the neighboring solutions

of (X,L), where a neighboring solution is generated by swapping a pair-

wise circles Ci and Cj with similar radii and calling LBFGS subsequently

for continuous optimization (denoted by LBFGS((X,L) ⊕ Swap(Ci, Cj))).

More precisely, if all the circles are sorted in descending order according to

their radii, Ci and Cj are with similar radii means |j − i| ≤ 2 and ri 6= rj .

N(X,L) is formally identified as

N(X,L) =
{

LBFGS((X,L)⊕Swap(Ci, Cj)), ∀ |j−i| ≤ 2 and ri 6= rj
}

. (6)

On one hand, the circles with similar radii usually play similar roles in
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the entire solution so that swapping them may obtain further improvements

without destroying the entire solution too much. On the other hand, although

a larger neighborhood usually leads to a better solution, but more computa-

tional efforts are also needed. In consideration of both solution quality and

computing complexity, we generate neighboring solutions by swapping two

circles with similar radii, instead of swapping any pair-wise circles.

Furthermore, it is usually necessary for a neighborhood search-based ap-

proach to prevent local cycling during the recursive neighborhood search

iterations. Therefore, a special data structure tabu list is introduced to for-

bid the previously swapped circles to be re-swapped within a certain number

of iterations. Technically, the tabu list is presented by an integer array

TabuTenure[N ] (initialized to be zero) which records the tabu tenures of all

the circles. TabuTenure[i] < CurIterNum (the current iteration) means Ci

is a free circle which can be swapped freely to generate neighboring solutions

at the current iteration. Otherwise, Ci is a tabu circle which is forbidden to

be swapped until the TabuTenure[i] iteration.

At each iteration of the TS procedure, if the best neighboring solution

corresponds to swapping Ci and Cj, then the tabu tenures of Ci and Cj

should be updated respectively as follows

TabuTenure[i] = CurIterNum+ T + rand(N
8
),

TabuTenure[j] = CurIterNum+ T + rand(N
8
).

(7)

It means that Ci (respectively, Cj) will be forbidden to be swapped with

any other circle for T + rand(N
8
) iterations, where T is a constant which is

experimentally fixed at 2 and rand(N
8
) denotes a randomly generated integer

from 0 to N
8
(rounded to the nearest integer).

With this forbidden rule, the TS procedure then restricts consideration to

free circles which are not forbidden by the tabu list. It updates the incumbent

solution with its best neighboring solution iteratively. However, in some

occasions, swapping some tabu circles may lead to an excellent solution which

has not been visited. In this case, it is necessary to readmit this solution as
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an element of the neighborhood. In order to mitigate this problem, such

an aspiration criterion is further employed to override the forbidden rule:

if a swapping leads to a solution better than (with lower penalty function)

the best solution found so far, the generated neighboring solution will be

admitted as a candidate solution, no matter the swapped circles are tabu or

not.

The set which contains all the neighboring solutions excluded by the

forbidden rule is denoted by F (X,L), and the set which contains all the

neighboring solutions readmitted by the aspiration criterion is denoted by

A(X,L). Then, the final neighborhood is redefined as NFA(X,L), which is

a subset of the previously defined neighborhood N(X,L).

NFA(X,L) =
(

N(X,L)− F (X,L)
)

⋃

A(X,L). (8)

Input: The incumbent solution (X,L)
Output: Best solution encountered so far

1 for i=1 To N do

2 TabuTenure[i] = 0; % initialize the tabu tenures
3 end

4 repeat

5 % generate neighborhood of (X,L)
6 NFA(X,L)← GenerateNeighborhood(X,L);
7 % update (X,L) with its best neighboring solution
8 (X,L)← UpdateWithBestSolution(NFA(X,L));
9 % update the tabu tenures of the corresponding circles

10 UpdateTabuTenure(TabuTenure);

11 until (X,L) is feasible or it has not been improved for 20 iterations ;
12 return (X,L);

Algorithm 2: Tabu search procedure for solving CODP

With the definition of NFA(X,L), TS iteratively updates the incumbent

solution (X,L) with the best solution (with lowest penalty function) of its

neighborhood NFA(X,L), until a feasible solution (X,L) with E(X,L) =

0 has been obtained, or (X,L) cannot be further improved for a certain

number of consecutive iterations (e.g. 20 iterations). The framework of TS
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is described in Algorithm 2.

3.2. Perturbation operator

Like other neighborhood search-based strategies, TS realizes the intensifi-

cation search which optimizes the objective function as far as possible within

a limited search region. However, it usually falls into local optimum trap

even with the aid of tabu list. For the sake of diversification, it is preferred

to combine TS with some diversification operators that drive the search to

explore new promising region of the solution space.

An easily implemented method is to destruct the incumbent solution

completely randomly. However, this naive strategy is not efficient enough

because it cannot guide the search to move towards new promising solution

space based on the incumbent solution. In order to overcome its weakness,

a solution perturbation operator is employed to reconstruct the incumbent

solution (X,L) strategically as follows:

(1) Sort all the circles in descending order according to their radii and

then categorize each circle as either a large circle or a small circle. For each

circle Ci, it is termed a large circle if ri >
1

2
ravg,where ravg =

∑N
i=1

ri
N

is the

average radius of all the circles to pack. Otherwise, Ci is termed a small

circle.

(2) Remove all the small circles from (X,L).

(3) Randomly swap SwapNum pairs of large circles with similar radii and

call LBFGS subsequently for continuous optimization (see subsection 3.1 for

the definition of similar radii).

(4) Pack the removed small circles back into the proper position one by

one in a descending order according to their radii. Respectively, for each small

circle Ci, we randomly replace it into the strip N (the instance size) times

and call LBFGS algorithm subsequently to obtain N local optimal solutions.

After that, we only retain the best solution (with lowest penalty function),

within which Ci is considered to be packed into the proper position.

After the above 4 perturbation steps, (X,L) is reconstructed to a new

solution (X
′

, L). Note that SwapNum should be set prudently, due to the

12



fact that swapping too many circles does not perform differently from random

restarting, while swapping too few circles usually leads to local cycling. In

order to exploit the tradeoff between intensification and diversification, we

empirically set SwapNum to be about N
3
(rounded to the nearest integer).

As expected, this perturbation operator is able to relocate the small circles

into the proper position rapidly, while escaping far enough away from the

current local optimum trap. The rationale behind is due to the experience

that the structure of a given solution mainly depends on the large circles,

while the small circles are usually suitable to be located in some vacant

region. We utilize this heuristic to speed up the search procedure.

3.3. Acceptance criterion

Moreover, it is important to introduce a robust acceptance criterion which

determines whether to accept the perturbed solution or not . This paper

designs a concise acceptance criterion as follows: each time after the incum-

bent solution (X,L) is perturbed to (X
′

, L), it would be further optimized to

(X∗, L) by launching TS subsequently. After that, if E(X∗, L) < E(X,L),

(X∗, L) is accepted as the new incumbent solution, otherwise, return to

(X,L) and repeat a new round of perturbation followed by TS again.

With this acceptance criterion, it is easy to find out that the incumbent

solution (X,L) will be improved consistently, due to the fact that only im-

proved solutions may be accepted. We believe that this feature can reinforce

the robustness of the proposed approach.

Specifically, in order to guarantee the diversification feature of the pro-

posed approach, once the incumbent solutions has not been further improved

for certain (e.g. 10) consecutive rounds of solution perturbations, a multi-

start technique is employed to destruct the incumbent solution to a randomly

generated initial solution. After that, new rounds of TS followed by solution

perturbations are launched again. This process is repeated until a feasible

solution has been obtained, or the allowed computation time (e.g. 30 hours)

has been elapsed.
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3.4. Pre-setting and post-processing

So far, we have not discussed how to set the length L of the strip (the

width W is fixed). In fact, the value of L should be set carefully due to the

fact that if L is too large, the obtained solution is not high-quality enough

even if it satisfies all the constraints. Otherwise, if L is too small, it is

impossible for any algorithm to obtain a feasible solution such that a lot of

computational efforts may be wasted.

In order to determine L properly, this paper develops some pre-setting

and post-processing techniques as follows:

(1) Set L to Lbest , where Lbest is the best known result reported in the

literature.

(2) Launch ITS to return a solution (X,L) with as low penalty energy as

possible.

(3) Based on the solution (X,L) returned by ITS, employ a post-processing

procedure to optimize L as much as possible, while guaranteeing the feasi-

bility of the obtained solution. Specifically, the post-processing procedure is
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detailed as Algorithm 3.

Input: Solution (X,L) returned by ITS
Output: Feasible solution(XITS, LITS) with as small LITS as possible

1 Lupper ← L+ C; % set the upper bound of L
2 Llower ← L− C; % set the lower bound of L
3 XITS ← X ;
4 % optimize LITS in dichotomous way
5 repeat

6 LITS ← Lupper+Llower

2
;

7 % call TS for further improvements, see 3.1
8 (XITS, LITS)← TabuSearch(XITS, LITS);
9 if E(XITS, LITS) = 0 then

10 Lupper ← LITS;
11 else

12 Llower ← LITS;
13 end

14 until Lupper − Llower < 10−4;
15 % guarantee that no overlap exists within the final solution
16 repeat

17 LITS ← LITS + 10−5;
18 % call LBFGS for continuous optimization, see 3.1
19 (XITS, LITS)← LBFGS(XITS, LITS);

20 until E(XITS, LITS) = 0;
21 return (XITS, LITS);

Algorithm 3: Post-processing procedure
In Algorithm 3, C is a constant which should be large enough to make

sure that it is very easy to obtain a strictly feasible solution if LITS ← Lupper,

and it is very difficult to obtain a strictly feasible solution if LITS ← Llower.

In this paper, C is uniformly set to 1. Algorithm 3 returns a strictly feasible

solution (XITS, LITS) with as small strip length LITS as possible. Uniformly,

LITS is rounded to keep 4 significant digits after the decimal point, e.g.,

LITS =
√
2 = 1.41421356 . . . is rounded to 1.4143 instead of 1.4142 in order

to guarantee the feasibility of the obtained solution.

Based on the above-mentioned strategies, the tabu search procedure is

augmented to an iterated tabu search algorithm named ITS, as shown in Al-
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gorithm 1. Furthermore, we would like to emphasize several key points of the

proposed approach. As described above, ITS is composed of a tabu search

procedure and a solution perturbation operator, associated with an accep-

tance criterion. In our opinions, the tabu search procedure should be robust

enough to ensure that the incumbent solution can be improved consistently.

On the other hand, for the sake of diversification, the perturbation operator

associated with the acceptance criterion should be well-designed in order to

drive the search towards new promising solution space. In a word, an effec-

tive perturbation-based approach for tackling CODP usually corresponds to

a rational tradeoff between intensification and diversification.

4. Results and analysis

In order to evaluate the performance of the proposed approach, we imple-

ment ITS in C++ language and run it on a computer with 2.87 GHz CPU

and 512 MB RAM.

Two sets of well-known instances, which have been widely used as bench-

marks by previous approaches, are taken from the literature and tested. The

first set of 6 instances named SY1-SY6 are taken from Stoyan and Yaskov

(1998), and the second set of 12 instances identified as SY12, SY13, SY14,

SY23, SY24, SY34, SY56, SY123, SY124, SY134, SY234, SY1234 are taken

from Akeb and Hifi (2008). Note that the second set of instances are ob-

tained by concatenating the six original instances of the first set, e.g., SY12

is obtained by concatenating SY1 and SY2, and SY1234 is obtained by con-

catenating SY1, SY2, SY3, SY4, etc.

For each instance, we pre-set L to the best known result Lbest reported by

previous approaches at first, and then attempt to obtain a solution with as

low penalty function as possible by launching the proposed ITS algorithm.

The search process terminates until any one of the following two stop cri-

terions is met: (1) Successfully terminates if a feasible solution (X,L) with

E(X,L) = 0 is obtained, it means the obtained solution (X,L) is no worse

than the best known solution. (2) Abortively terminates if the allowed com-
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Table 1 Results obtained by ITS with respect to previous approaches

Others MSBS & SEP-MSBS A-SEP-MSBS ITS

Instance N W L L ttotal L ttotal LITS ttotal
SY 1 30 9.5 17.2315 17.2070 15600s 17.0954 30h 17.0782 15115s
SY 2 20 8.5 14.5350 14.4867 3510s 14.4548 30h 14.4541 8538s
SY 3 25 9.0 14.4670 14.4176 8870s 14.4017 30h 14.3864 8842s
SY 4 35 11.0 23.5550 23.4921 29290s 23.3538 30h 23.4177 30h
SY 5 100 15.0 35.8590 36.1818 30h 36.0061 30h 35.9843 30h
SY 6 100 19.0 36.4520 36.7197 30h 36.6629 30h 36.6515 30h
SY 12 50 9.5 29.7011 29.6837 30h 29.8148 30h 29.5835 18781s
SY 13 55 9.5 30.6371 30.3705 30h 30.4547 30h 30.3621 79168s
SY 14 65 11.0 38.0922 37.8518 30h 37.7244 30h 37.7512 30h
SY 23 45 9.0 27.8708 27.6351 68460s 27.7574 30h 27.6830 30h
SY 24 55 11.0 34.5476 34.1455 30h 34.1511 30h 34.0701 29576s
SY 34 60 11.0 34.9011 34.6376 30h 34.6744 30h 34.6263 15243s
SY 56 200 19.0 64.7246 65.2012 30h 64.7876 30h 64.5216 49126s
SY 123 75 9.5 43.2558 42.9931 30h 43.0930 30h 42.9566 17684s
SY 124 85 11.0 48.8927 48.8411 30h 48.6101 30h 48.5622 46715s
SY 134 90 11.0 49.3954 49.3254 30h 49.2739 30h 49.2224 5259s
SY 234 80 11.0 45.8880 45.5576 30h 45.4586 30h 45.4155 33586s
SY 1234 110 11.0 60.2613 60.0564 30h 60.3346 30h 59.9709 29595s
Average - - 36.1260 36.0447 ≈24h 36.0061 30h 35.9277 ≈14h
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putation time has elapsed, for an accurate comparison, the limited cumula-

tive computation time is fixed to 30 hours for each instance, just as same as

the referenced algorithms. After that, no matter the search process is suc-

cessfully or abortively terminated, the post-processing procedure described

in subsection 3.4 is executed subsequently to optimize L as much as possible

while guaranteeing that no overlap exists within the obtained solution, and

then the final value of strip length as well as the corresponding configuration

is reported as the final solution (XITS, LITS) obtained by ITS.

Table 1 reports the final results LITS obtained by ITS, with respect to

several other state-of-the-art approaches. Respectively, columns 1-2 indicate

the name of the instance and its size. Column 3 indicates the width of

the strip (W ) of each instance. Columns 4-8 report the best known results

reported by previous approaches, as well as the elapsed computation time.

i.e., column 4 indicates the best value of L obtained by either B1.0 & B1.5

(Huang et al., 2005), or B1.6 SPP (Kubach et al., 2009), or BSBIS (Akeb

and Hifi, 2008). Columns 5-6 indicate the value of L and the cumulative

computation time reported by MSBS & SEP-MSBS (Akeb et al., 2011).

Columns 7-8 indicate the value of L and the computation time reported by A-

SEP-MSBS (Akeb and Hifi, 2010). For comparison, columns 9-10 indicate the

value of L obtained by the proposed ITS algorithm, as well as the cumulative

computation time. Note that the results in bold indicate the best ones of all

the results obtained by various approaches, and 30h denotes that the limited

30 hours is elapsed before the corresponding solution was obtained.

As shown in Table 1, ITS succeeds in improving the best known results in

13 occasions out of all the 18 instances, it only fails to match 5 best known

solutions after the limited 30 hours is elapsed. With respect to previous

approaches, ITS respectively succeeds in improving 16 results reported by

A-SEP-MSBS (only except SY4, SY14), 17 by MSBS & SEP-MSBS (only

except SY23), and 16 by the other approaches (only except SY5, SY6). Over-

all, the average strip length obtained by ITS is 35.9277, which is about 0.22%

better than the average strip length reported by A-SEP-MSBS, about 0.32%
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better than MSBS & SEP-MSBS, about 0.55% better than the other ap-

proaches, respectively. The comparison in term of solution quality undoubt-

edly indicates that ITS produces competitive results with respect to previous

approaches. Figure 2 illustrates the 13 improved solutions (all circles have

been sorted in descending order according to their radii), interested readers

please contact the authors for the detailed coordinates of each instance.

On the other hand, as same as most of the compared approaches, every

solution reported by ITS is obtained within 30 hours. Statistically, the av-

erage computation time elapsed by ITS for each instance is about 14 hours,

while every solution reported by A-SEP-MSBS was obtained after 30 hours,

and the average computation time elapsed by MSBS & SEP-MSBS for each

instance was about 24 hours. Note that ITS is run on a computer with

2.87 GHz Processor and 512 MB RAM, while A-SEP-MSBS, MSBS & SEP-

MSBS, BSBIS were all run on a computer with 3 GHz Processor and 256

MB RAM (indeed, less than 10 MB memory is needed to run ITS), it implies

that ITS is quiet efficient in term of computation time, with respect to the

compared approaches.

In a word, the comparison in terms of both solution quality and com-

putation time demonstrates that ITS is a rather competitive algorithm for

solving CODP, with respect to previous state-of-the-art approaches. Further-

more, we would like to point out that for the tested benchmark instances, all

the compared algorithms were constructive approaches, which attempted to

pack the circles one by one into the container according to some construc-

tive rules. In contrast, ITS is a representative perturbation-based approach,

which squeezes all the circles into the container at first, and then attempts to

gain further improvements by continuous optimization, tabu search (a special

variant of neighborhood search) and solution perturbation. Obviously, these

two kinds of approaches are essentially different from each other. Computa-

tional experiments have demonstrated the effectiveness of ITS in comparison

with several other constructive approaches. We hope the comparison between

them would be helpful for further research.
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Figure 2: Improved solutions obtained by ITS for 13 instances (i.e., SY1, SY2, SY3, SY12,
SY13, SY24, SY34, SY123, SY56, SY124, SY134, SY234, SY1234 in sequence)
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In addition, in order to evaluate the performance of ITS for solving other

more general variant of the arbitrary sized circle packing problem (ACP), we

have proposed a similar version of the ITS algorithm (with tiny modification

of the penalty function, tabu search procedure and perturbation operator)

and attempted to resolve the problem of packing arbitrary sized circles into

a circular container, so as to minimize the radius of the container. For this

variant of ACP, a famous international contest was organized in 2008, with

a set of 46 instances (5 ≤ N ≤ 50) as benchmarks. For each instance,

ri = i (i = 1, . . . , N), respectively. During the competition, 155 groups from

32 countries submitted a total of 27490 solutions online, of which the best

results were published in Addis et al. (2008a). Furthermore, Müller et al.

(2009) proposed a simulated annealing approach and succeeded in improving

26 best known results with N ≥ 24. Based on these 46 instances, Specht

extended them to N = 100 and made all the best known results available on

www.packomania.com, which has been a well-known database for different

variants of the circle packing problem (CPP).

In our opinions, this set of instances are really representative and ex-

tremely challenging, therefore, we use them as benchmarks to evaluate the

performance of ITS for dealing with the situation of circular container. Ex-

periments results based on the same hardware platform mentioned above

show that ITS succeeds in improving 5 (N = 30, 32, 36, 37, 41) best known

results with N ≤ 50, meanwhile, it improves many best known results with

50 < N ≤ 100 (the detailed coordinates are available on www.packomania.com).

Note that every result is obtained within 30 hours, while almost all the other

researchers did not report the computation time. To summarize, the experi-

ments results demonstrate that ITS is not only suitable for the situation of

strip or rectangular container, but also suitable for the situation of circular

container, it is an effective approach for solving ACP.

Finally,in order to analyze the behavior of the perturbation operator, as

well as the acceptance criterion, we keep all the other parameters unchanged

and then compare the performance of ITS (with perturbation operator) with
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Table 2 Comparison between ITS (with perturbation operator) and the dupli-
cated TS algorithm (without perturbation operator)

ITS (with perturbation) duplicated TS (without perturbation)

Instance Lbest LITS TS ttotal LTS TS ttotal
SY 1 17.0954 17.0782 2939 15115s 17.1252 19425 30h
SY 2 14.4548 14.4541 4674 8538s 14.4507 34428 52334s
SY 3 14.4017 14.3864 2300 8842s 14.4353 49357 30h
SY 4 23.3538 23.4177 13327 30h 23.6946 11612 30h
SY 5 35.8590 35.9843 359 30h 36.1064 215 30h
SY 6 36.4520 36.6515 289 30h 36.7351 238 30h
SY 12 29.6837 29.5835 377 18781s 29.8522 2237 30h
SY 13 30.3705 30.3621 1589 79168s 30.8527 1999 30h
SY 14 37.7244 37.7512 1483 30h 38.3340 1182 30h
SY 23 27.6351 27.6830 4672 30h 28.0332 3917 30h
SY 24 34.1455 34.0701 726 29576s 34.3884 1901 30h
SY 34 34.6376 34.6263 438 15243s 35.5036 1612 30h
SY 56 64.7246 64.5216 9 49126s 65.0716 17 30h
SY 123 43.0930 42.9566 187 17684s 43.5016 665 30h
SY 124 48.6101 48.5622 238 46715s 49.0600 400 30h
SY 134 49.2739 49.2224 28 5259s 49.6101 321 30h
SY 234 45.4586 45.4155 395 33586s 46.1748 546 30h
SY 1234 60.3346 59.9709 63 29595s 60.6436 156 30h
Average 35.9616 35.9277 1894 ≈14h 36.3096 7235 ≈29h
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the duplicated TS algorithm (without perturbation operator). Specifically,

the duplicated TS algorithm is obtained by repeatedly launching the tabu

search procedure detailed in Algorithm 2, every time from a randomly gen-

erated initial solution, until a solution better than the best known solution

has been found or the limited 30 hours has been elapsed. It is easy to find

out that, if the perturbation operator of ITS is designed to restart randomly

every time, ITS becomes the same as the duplicated TS algorithm. There-

fore, we hope the comparison between them can reflect the impact of the

perturbation operator associated with the acceptance criterion.

Table 2 reports the experimental results. Respectively, column 1 indi-

cates the instance name and column 2 indicates the smallest strip length

Lbest reported by previous approaches. Columns 3-5 indicate the results cor-

responding with the proposed ITS algorithm, including the strip length LITS

(column 3), the times the tabu search (TS) procedure is re-launched (column

4) and the elapsed time (column 5). For comparison, columns 6-8 indicate the

results corresponding with the duplicated TS algorithm, including the value

of strip length LTS (column 6), the times the tabu search (TS) procedure is

re-launched (column 7), as well as the elapsed time (column 8). Specifically,

the results in bold indicate the best ones of all the results reported by various

approaches, and 30h denotes that the limited 30 hours is elapsed for some

instances.

As shown in Table 2, ITS succeeds in improving 13 best known results

and fails to match the left 5 best known results. In contrast, the duplicated

TS algorithm only succeeds in improving the best known result of SY 2 with

smallest size (N = 20), it fails to match any one of the other best known

results. Overall, the average strip length obtained by the duplicated TS

algorithm is 36.3096, which is about 1.06% larger than the average length

obtained by ITS (35.9277), and about 0.97% larger then the average of the

best known results (35.9616), respectively. It demonstrates that ITS is rather

effective in comparison with the duplicated TS algorithm, especially for in-

stances of large size. In our opinions, it is because that the tabu search pro-
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cedure only realizes the intensification search within a limited search region,

the lack of diversification mechanism weakens the global search capability of

the duplicated TS algorithm, especially for large-sized instances.

On the other hand, for each instance, ITS re-launches the tabu search pro-

cedure 1894 times on average, the average elapsed time is about 14 hours. In

contrast, the duplicated TS algorithm re-launches the tabu search procedure

7235 times for each instance and the average elapsed time is about 29 hours.

Apparently, ITS is much more efficient than the duplicated TS algorithm.

In a word, the comparison in terms of both solution quality and compu-

tation efficiency implies that ITS undoubtedly dominates the duplicated TS

algorithm, it demonstrates the significance of the perturbation operator, as

well as the acceptance criterion.

5. Conclusion

Cutting and packing (C&P) problems are well known NP-hard problems

and are widely encountered in practical applications. This paper mainly in-

vestigates the circular open dimension problem (CODP), which is a represen-

tative variant of the C&P family. For this problem, an iterated tabu search

algorithm named ITS is proposed, which is composed of a tabu search proce-

dure (TS) and a solution perturbation operator associated with an acceptance

criterion. As a representative perturbation-based approach, the framework

of ITS is quite different from the previously proposed approaches for solving

CODP, most of which were constructive approaches. Computational experi-

ments show that ITS produces quite competitive results compared with other

state-of-the-art approaches. For two sets of representative problem instances

taken from the literature, ITS succeeds in improving the best known results

on 13 occasions out of all the 18 instances, the computation time remains

reasonable for each instance.

In addition, supplementary experiments show that ITS is also very ef-

fective for solving another closely related variant of CODP: the problem of
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packing arbitrary sized circles into a circular container. The significance of

the perturbation operator as well as the acceptance criterion is also analyzed.

We would like to continue our investigation in the following ways: (1)

Further improve the tabu search procedure. (2) Develop some more effective

strategies for global perturbation. (3) Consider the situations of packing

arbitrary sized circles into a circular, square or triangular container. (4)

Extend our investigation to three-dimensional situations. We hope that these

attempts would achieve further improvements with the research about C&P

problems.
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