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Abstract 

A queuing model of a specialist neurological rehabilitation unit is studied. The application is to the Neurological 

Rehabilitation Centre at Rookwood Hospital (Cardiff, UK), the national rehabilitation unit for Wales. Due to 

high demand this 21 bed inpatient facility is nearly always at maximum occupancy, and, with a significant bed-

cost per day this makes it a prime candidate for mathematical modelling. Central to this study is the concept that 

treatment intensity has an effect on patient length of stay. The model is constructed in four stages. First, 

appropriate patient groups are determined based on a number of patient-related attributes. Second, a purpose-

built scheduling program is used to deduce typical levels of treatment to patients of each group. These are then 

used to estimate the mean length of stay for each patient group. Finally, the queuing model is constructed. This 

consists of a number of disconnected homogeneous server queuing systems; one for each patient group. A 

Coxian phase-type distribution is fitted to the length of time from admission until discharge readiness and an 

exponential distribution models the remainder of time until discharge. Some hypothetical scenarios suggested by 

senior management are then considered and compared on the grounds of a number of performance measures and 

cost implications. 
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1. Introduction 

Neurological rehabilitation
1
 is the process that aids functional recovery following an injury to 

the brain. Its primary goal is to ‘enable the patient to function at the highest level of 

independence possible, given his or her disability’ (Hanlon, 1996). A patient typically begins 

a programme of rehabilitation after a period of acute care following the initial onset of the 

injury. Acquired Brain Injury (ABI) is defined in Turner et al, 2002 as ‘an injury to the brain 

that has occurred since birth’ and can result from traumatic (e.g. road accident) or non-

traumatic (e.g. tumour) causes. The severity of ABI can be classified as mild, moderate or 

severe (Teasell et al, 2007). In the UK it is estimated that moderate to severe ABI occurs in 
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25 per 100,000 people per year (Turner-Stokes, 2003). It is such patients that are appropriate 

candidates for an inpatient rehabilitation programme. 

The aim of this study is to mathematically model the activities at an inpatient neurological 

rehabilitation unit. The application of this project is the Neurological Rehabilitation Centre at 

Rookwood Hospital in Cardiff, Wales. Admission to this facility is by referral only. There are 

approximately five referrals received every fortnight and these are placed in a non pre-

emptive priority
2
-based queue. This level of demand exceeds supply and so there is always a 

queue. The size of the queue is reduced by either the withdrawal of a referral (due to transfer, 

discharge or death) or by an admission. For a patient to be admitted there must be an 

available bed and a sufficient skill mix on-hand to cater for the needs of the referred patient 

(it is therefore not always possible to admit the highest priority patient in the queue). Because 

of this, there are typically only 21 beds occupied out of an available 25. Once admitted, 

treatment is provided by (up to) six departments
3
 in line with the weekly master schedule. 

When patients have demonstrated satisfactory recovery in the field of each department, a date 

of expected discharge readiness is set and the discharge destination
4
 is informed of this. The 

date of readiness is generally about four months from admission. However, this is rarely the 

date of ultimate discharge due to the inability of the discharge destination to accept the 

patient on-time. This delay to discharge or bed-blocking typically adds about one month to 

length of stay. 

What has been explained in the previous paragraph is a queuing system. This can be 

modelled by discrete-event simulation (to capture the precise time and state relationships of 

events) or queuing theory. The latter is used in this study owing to the research potential and 

the benefits of analytic over simulated results. Despite a thorough literature search, no studies 

were found that produce a queuing model of a neurological rehabilitation facility. This lack 

of previous research background alongside the cost (£480 bed cost per day) and scarcity 

(annual demand = 130; annual supply = 21×12/5 = 50) of services, provide a strong 

motivation for this study. 

Whilst there is no specific literature linking queuing theory and neurological rehabilitation, 

there are some queuing studies in geriatric care that are comparable. The congruency in 

                                                      
2
 Determined by injury severity and time spent in queue. 

3
 Physiotherapy, occupational therapy, speech and language therapy, psychology, dietetics, orthopaedics (in 

order of decreasing size as measured by number of full-time equivalents). 
4
 Typically (62%) own home with social services support (see Table A.1). 
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patient flow permits a comparison, i.e. accident and emergency followed by some form of 

inpatient facility and then community care. Taylor et al, 1998 use a queuing model to study 

the movement of geriatric patients between the hospital and the community. Faddy & 

McClean, 2005 fit phase-type distributions to length of stay in the hospital and community 

and later, in McClean & Millard, 2007, incorporate this service distribution within a queuing 

model. The authors state that ‘keeping patients longer in hospital, and improving their fitness 

for discharge can reduce the transfer of patients to secondary care systems and may in the 

long-term both improve hospital performance and reduce costs’. This very notion is echoed 

in Turner-Stokes, 2007 with regard to the rehabilitation of ABI patients.  

However, it is not just length of stay (LOS) that affects functional ability on discharge. Many 

clinical studies indicate that the intensity of treatment received also has an effect on patient 

outcome
5
 (Heinemann et al, 1995, Cifu et al, 2003). There are also those that suggest that 

treatment intensity affects LOS (Blackerby, 1990, Slade et al, 2002) and since LOS affects 

outcome (Spivack et al, 1992, Sandhaug et al, 2010) a trilateral relationship between these 

three measures is inferred. Unfortunately, for this study, data is not available for community 

care and so the queuing model is restricted to the rehabilitation unit only. There is therefore 

no reason to permit variability on outcome within this study and so treatment intensity and 

LOS are the respective independent and dependent variables. In the queuing model, average 

LOS is equivalent to the mean service time of a service channel (bed). The mean service rate 

is the reciprocal of this value. The effect of treatment intensity is incorporated by 

conditioning these service rates on the intensity of treatment received. 

However, the amount of treatment provided is not directly controlled by clinicians – it 

depends on the amount allocated on the weekly master schedule
6
. In order to ask realistic 

questions of the model that relate to changes in treatment intensity, it is necessary to produce 

appropriately modified versions of this master schedule. For example, if the workforce is 

increased by 50% then a master schedule based on this change would be constructed from 

which treatment intensity can be deduced. Since the construction of the master schedule by 

hand takes many hours each week it is not appropriate to ask therapists to produce these 

versions. An automated scheduling program that replicates the process is therefore sought. 

However, such a program is not suitable for all of the departments. In fact, only the 
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 Defined as functional ability on discharge. 

6
 Departments schedule their treatment consecutively and in order of increasing size during the preceding week. 

The master schedule is an amalgamation of these departmental timetables. 
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physiotherapy department has a sufficient number of staff and a clear-enough set of treatment 

allocation guidelines to make an automated program viable. It is assumed that any changes 

made to the physiotherapy department are replicated across the other departments. The 

quality of timetables produced by the program actually surpassed those produced by hand and 

so replaced the manual approach for the week-to-week scheduling of physiotherapy 

treatment. This program is described in Section 2. 

The rest of this paper is structured as follows. A computer program designed to solve a multi-

server queuing system with balking and reneging for steady-state results is described in 

Section 3. This will be of use in the construction of the model (Section 5) in which a Coxian 

distribution is fitted to the length of time from admission to discharge readiness and an 

exponential distribution is fitted to the remainder of time until discharge. Thereafter, a 

number of hypothetical scenarios are considered using the model in Section 6. A discussion is 

provided in the final section. 

2. The automated scheduling program 

2.1 Background  

Treatment is provided to patients in pre-arranged sessions. For the physiotherapy department 

there are about ten types of session that can be performed. These differ in duration, activity 

performed, and number of therapists/patients in attendance. For example, a ‘stretch’ is 30 

minutes with one or two therapists and a single patient, whilst a ‘group’ is 45 or 60 minutes 

with one therapist and about three patients. A ‘standard’ session is 45 or 60 minutes and is 

either a ‘single’, ‘double’ or ‘triple’ depending on how many therapists are involved in 

treating the patient. 

The physiotherapy timetable details the start and end time, type, providing therapist(s), and 

recipient(s) of each session scheduled for that week. It is produced on the Thursday of the 

preceding week (to that for which treatment is being scheduled) after all of the other (smaller) 

departments have allocated their sessions. Treatment allocation is dependent on the following 

six variables: patient demand (number of requests for each session type), patient attributes 

(preferred therapist, preferred time of day, number of therapists to stretch etc), patient priority 

(scale of zero to five), patient availability (after sessions allocated from other departments), 

therapist attributes (band level, ability to perform certain session types) and therapist 

availability (based on working hours, annual leave, meetings etc). 
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2.2 Constraints 

A number of constraints have been deduced through discussion with clinicians. 

2.2.1 Hard constraints 

There are 17 hard constraints. These range from rather obvious ones like ‘the start time of a 

session must be before the end time’ to ‘the band level of at least one providing therapist 

must be at least the patient’s minimum requirement’. 

2.2.2 Moderate constraints 

These can be thought of as hard constraints whose satisfaction is non-essential. It is thought 

that by representing the most important soft constraint violations by a discrete measure a 

more precise picture of their incidence can be formed. This will allow for a more targeted 

approach in their satisfaction. There are four moderate constraints. One of these relates to the 

importance of ensuring an even spread of treatment sessions throughout the working week. 

For group sessions, the number of violations is determined as follows. First, the minimum, 

min 1

5
d

d

n n


 
  
 
 , and maximum, max 1

5
d

d

n n


 
  
 
 , number of group sessions allowed to 

occur on each day are deduced (where dn  is the number of group sessions that occur on day 

1,...,5d  ). Second, each day is scored depending on whether the number of sessions is 

contained within the acceptable range, i.e. 

 

min max

min max

min min max max

0 if 0 if
      ,       

if if

d d

d d

d d d d

n n n n

n n n n n n n n
 

  
  

    
  

  (1)  

Finally, the number of violations is calculated as 

 min maxmax ,d d

d d

 
 

 
 
 
            (2)  

There are no constraint violations if the difference in number of group sessions assigned on 

any two days is not more than one. 
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2.2.3 Soft constraints 

There are five soft constraints whose weighted addition forms the continuous-valued 

objective function. These measure the extent to which desirable conditions (such as allocation 

to preferred therapist or time of day) are satisfied. Perhaps the most important is attaining a 

fair allocation of sessions. The component of the objective function that relates to this is 

calculated as 

  
10

2
dem sch

, ,

1 1

n

i s i s i s

i s

p w n n
 

            (3)  

where ip  is the priority level of patient 1,...,i n , sw  is the weight applied to session type s , 

and
dem

,i sn  and 
sch

,i sn  are the number of sessions of type s  demanded and scheduled for patient i . 

2.3 Solution 

A three stage local search based approach is used to provide an approximate solution to what 

is a hierarchical multi-objective combinatorial optimisation problem. 

2.3.1 Stage One: Initial construction 

There is a specialised constructive heuristic algorithm for each type of session that produces 

an initial assignment. These stochastic algorithms create an initial solution that is not just 

valid but is also high quality. This reduces the workload of subsequent local search 

algorithms and has been shown to enhance the quality of the final solution (since local search 

algorithms can struggle in highly constrained situations). 

2.3.2 Stage Two: Moderate constraint optimisation 

The objective here is to reduce the number of moderate constraint violations whilst respecting 

hierarchical precedence. Although not referred to at the time, the formulae for the number of 

violations (Section 2.2.2) have been carefully developed to represent a minimal distance to 

feasibility. The number of violations represents the minimal number of moves or swaps 

required to satisfy that moderate constraint for the patient in question. Whilst each moderate 

constraint has a tailor-made algorithm, the approach is essentially the same. First, a patient is 

selected that has one or more violations of the moderate constraint in question. Second, the 

algorithm identifies any ‘problem’ sessions that are causing the violation(s). For each of 

these, a number of corresponding ‘swap’ sessions are intelligently identified that, when 
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exchanged with the problem session, result in fewer violations of the moderate constraint. 

This effectively trims the neighbourhood to consider only improved solutions. Each of these 

is then evaluated and the best one (based on the hierarchy of constraints) is chosen (i.e. 

guided steepest descent). This represents one iteration. If no improvement can be found then 

a lower-priority patient is selected. After all patients have been considered then a lower-order 

moderate constraint is investigated. 

2.3.3 Stage Three: Soft constraint optimisation 

A generic local search based algorithm is used in repetition to further optimise the solution 

with respect to hierarchical precedence. First, a list of all sessions is created. Second, a 

session is picked at random and exchanged, in turn, with the other sessions. Simulated 

annealing is then used to determine whether or not to accept a neighbouring solution. If 

reductions in moderate constraints are possible, then such swaps are accepted regardless of 

objective function value. If a swap is accepted, then the list of sessions is reset. Otherwise, 

the session is removed from the list to avoid it being chosen again (i.e. tabu search). 

2.4 Results 

The automated scheduling program (coded in MS VBA owing to user familiarity) was 

trialled in the latter quarter of 2010. During this period it was used alongside the manual 

approach and results were compared (Table 1). Not only was timetable quality considerably 

better, but employee time expended was significantly lower. By hand, the timetable would 

take a therapist eight hours each week to produce, but with the automated program, this is 

reduced to fewer than two. In addition, suitable data for audit purposes and future outcomes 

research are automatically output. Owing to these significant advantages, the program was 

adopted by the physiotherapy department in January 2011 and has been used each week 

since. 
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Table 1 Comparison between manual and automated (12 hours run time) scheduling on a 

standard desktop computer

Week start (2010): 20 Sep 4 Oct 1 Nov

Method: by hand program by hand program by hand program

# Hard constraint violations 0 0 0 0 0 0

# Moderate constraint violations 12 1 5 0 4 0

Objective function 280,435 147,385 207,720 125,350 318,050 151,765

Avg # clinical minutes demanded
279 279 290 290 258 258

for each patient

Avg # clinical minutes scheduled
236 264 270 262 195 192

for each patient

Avg # sessions with neither primary

or secondary thera
48% 28% 37% 16% 37% 18%

pist

 

Figure 1 depicts the number of moderate constraint violations and the objective function 

value over time once the program is set to run for a particular, but typical, week. Stage One 

was complete in two seconds. Stage Two took 20 seconds to perform eight iterations during 

which the number of moderate constraint violations was reduced from five to three and the 

objective function from 294,190 to 285,190. In Stage Three 23,253 iterations were performed 

which further reduced the number of moderate constraint violations to one and the objective 

function to 163,280. Approximately 50,000 unique solutions are checked in the 1.86 seconds 

that it takes, on average, to compute a Stage Three iteration. Note that 92% of the reduction 

in objective function is achieved within the first two hours. 
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Figure 1 Moderate constraint violations and objective function value over time 

3. The queuing system 

Having outlined the scheduling procedure, the queuing process for patients is now 

considered. Arrivals at the system are random, that is, exponentially distributed inter-arrival 

times (with arrival rate given by 0  ). The service time distribution is, in essence, a 

2k   phase (general) phase-type distribution
7
 made up of a 1k   phase Coxian phase-

type distribution
8
 (with service phase rates 0i   for 1,2,..., 1i k   and exit probabilities 

0 1i   for 1,2,..., 2i k  ) followed, in series, by an exponential distribution (with service 

rate 0k  ). There are r  servers and a total capacity of N r  . Hence the buffer 

size is N r . In Kendall’s notation this queuing system is expressed 1,1| | |kM PH r N .
 
 

3.1 Example 

Consider the simple queuing system with 3,  2,  3k r N    depicted in Figure 2. 

                                                      
7
 See Section 2 of Asmussen et al, 1996 for a specification of phase-type distributions. 

8
 See Section 2 of Marshall & Zenga, 2010 for a specification of the Coxian distribution. 
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Figure 2 The 2,1| | 2 | 3M PH  queuing system 

Since the time spent in each service phase is exponentially distributed the Markov property 

holds and so such systems can be represented as a continuous-time Markov chain. The state 

of the system s S  is defined by the 1k  -tuple 1 2, , ,..., kn n n n  where S  is the state space, 

n  is the number in system (i.e. service and queue) and in  is the total number in service phase 

1,2,...,i k . Figure 3 describes the Markov chain for the example. 

Figure 3 Markov chain representation of the 2,1| | 2 | 3M PH  queuing system 

Note this is a generalisation of the birth-death process synonymous with the | |1M M  and 

| |M M r  systems. For steady-state, the rate into each state must equal the rate out. For 

example, the inward rate to state 2,1,0,1  is 
1,0,0,1 1 1 2,2,0,0 2 2,1,1,0 3 3,0,0,22 2P P P P        
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whilst the outward rate is   1 1 1 1 3 2,1,0,11 P         . Equating these rates for each 

state yields the linear system 
TQ P Z   where Q  is the (square) transition rate matrix, P  is 

the column vector of lexicographically ordered steady-state probabilities, and Z  is a null 

column vector. Each is of dimension equal to the number of states in the state space, i.e. the 

cardinality of S . 
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 0 1,1,0,0 1,0,1,0 1,0,0,1 2,2,0,0 2,1,1,0 2,1,0,1 2,0,2,0 2,0,1,1 2,0,0,2 3,2,0,0 3,1,1,0 3,1,0,1 3,0,2,0 3,0,1,1 3,0,0,2

T

SP P P P P P P P P P P P P P P P P

             (5) 

Adding the normalisation equation 1s

s S

P
 

  returns the linear system M P B   where 

TQ
M

Z

 
  
 

 , 
1

Z
B

 
  
 

, and Z  is a row vector of ones. This system can be solved for the 

unknown vector P . The aim is to develop formulae that populate the transition matrix Q  for 

general k , r , N . 

3.2 Number of states 

The transpose transition matrix, TQ , can be partitioned
9
 into  

2
1N   sub-matrices. Each 

sub-matrix 
,i jt  contains the transition rates for all events that take the system from states with 

n j  to states with n i  for , 0,1,...,i j N . Displaying only the non-null sub-matrices for 

the general case, the transpose transition matrix is written 

                                                      
9
 See dashed lines in eqn. (4). 
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t t

t t t

t t tQ

t t t

t t

 

    



 
 
 
 
 

  
 
 
 
 
  

     (6) 

When 1,  ,  1j i i i    the respective 
,i jt  are referred to as the Left, Middle

10
 and Right sub-

matrices. If i  denotes the number of states for which n i  then the dimension of each sub-

matrix is i  (rows) by 
j  (columns). Table 2 details the state space for 0,1,2,3n  , 

1,2,3,4k   with r n  for any phase-type distribution with k  phases. Newly accessible 

states made possible through the addition of a phase are underlined. 

Table 2 State space for a queuing system with phase-type services

0 1 2 3

1 0 1,1 2,2 3,3

2 0 1,1,0 , 1,0,1 2,2,0 , 2,1,1 , 2,0,2 3,3,0 , 3,2,1 , 3,1,2 , 3,0,3

3,3,0,0 , 3,2,1,0 , 3,2,0,1 ,

1,1,0,0 , 1,0,1,0 , 2,2,0,0 , 2,1,1,0 , 2,1,0,1 , 3,1,2,0 , 3,1,1,1 , 3,1,0,2 ,
3 0

1,0,0,1 2,0,2,0 , 2,0,1,1 , 2,0,0,2 3,0,3,0 ,

n

k





3,0,2,1 , 3,0,1,2 ,

3,0,0,3

3,3,0,0,0 , 3,2,1,0,0 , 3,2,0,1,0 ,

3,2,0,0
2,2,0,0,0 , 2,1,1,0,0 , 2,1,0,1,0 ,

1,1,0,0,0 , 1,0,1,0,0 , 2,1,0,0,1 , 2,0,2,0,0 , 2,0,1,1,0 ,
4 0

1,0,0,1,0 , 1,0,0,0,1 2,0,1,0,1 , 2,0,0,2,0 , 2,0,0,1,1 ,

2,0,0,0,2

,1 , 3,1,2,0,0 , 3,1,1,1,0 ,

3,1,1,0,1 , 3,1,0,2,0 , 3,1,0,1,1 ,

3,1,0,0,2 , 3,0,3,0,0 , 3,0,2,1,0 ,

3,0,2,0,1 , 3,0,1,2,0 , 3,0,1,1,1 ,

3,0,1,0,2 , 3,0,0,3,0 , 3,0,0,2,1 ,

3,0,0,1,2 , 3,0,0,0,3  

Clearly the number of states for a given n  is given by the binomial coefficient 

1
n

n k

n


  
  
 

          (7) 

                                                      
10

 Lower-triangular due to the ordering of states. 



 

13 

 

If n r  then the state space is equivalent to that of n r  (i.e. n r rS S  ) except, of course, 

for the value of n .This is because arriving customers join the queue and do not affect the 

number in each service phase. Thus 

 
1

n

r k

r


  
  
 

          (8) 

and so the total number of states is given by 

  
0

1 1r

total

n

n k r k
N r

n r




      
     

   
        (9) 

3.3 Formulae for the population of the transition matrix 

The general idea is to derive formulae to calculate the position and value of non-zero 

elements within each non-null sub-matrix. This is done using the following formula: 

 
,e ee r e c ez                        (10) 

Here 
,i j  denotes the value of the element on the i -th row and j -th column of the sub-matrix 

in question. The 
er

  and 
ec   denote the row and column shift for each non-zero 

element e   within the sub-matrix. 

3.3.1 For n r  

Table 3 contains formulae to populate non-zero elements in the Left, Middle, and Right sub-

matrices 
,i jt  with ,i j r , i.e. those contained in the ‘square’ in eqn. (6). The formulae were 

deduced by observing the patterns and trends associated with transition matrices produced 

with various k  and r . 

As an example, consider the column shift of the Right sub-matrix 
, 1i it 

 with 2k   and 0i  . 

The non-zero elements of this matrix relate to service completion of any of the 1i  customers 

in the system. Such an event can only occur when at least one customer is in the final phase 

of service. The ‘from’ state (column) must therefore have 1n i   and 2 1n  . It can be seen 

from Table 2 that if 0i   this corresponds to the second (underlined) entry in the segment 

with 2, 1k n  , i.e.  1e   and 1 1c  . Similarly, if 1i   then this corresponds to the second 
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and third entries of the segment with 2, 2k n  , i.e.  1,2e   and 1 2 1c c  . The value of 

ec  can be deduced as the value contained in the e -th set of curly brackets in the expansion of 

 
1

1 1
1

1 1 1

i

l p

l p

p



 

   
  

  
                     (11) 

If 3k   then the ‘from’ state (column) must have 3 1n  . If 0i  , then  1e   and 1 2c  . If 

1i  , then  1,2,3e   and 1 2c  , 2 3 3c c   (see eqn. (4)). If 2i  , then  1,2,...,6e   and 

1 2c  , 2 3 3c c  , 4 5 6 4c c c   . It becomes apparent that the value of ec  is contained in 

the e -th set of curly brackets in the expansion of 

 
1

1 2

1 2
1

1 1 1

1

2

li

l l p

l p

p



  

    
  

  
                    (12) 

For 4k  , this becomes 

 
1 2

1 2 3

1 3
1

1 1 1 1

2

3

l li

l l l p

l p

p



   

    
  

  
                    (13) 

It is found that for general 2k   the value of  ec  is contained in the e -th set of curly brackets 

in the expansion of 
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1 2 1

1 1

1 1 1 1

2

1

k

k

lli k
p

l l l p

l p k

k p





 

   

     
  

   
                    (14) 

where 1, 2,..., ie  . 

3.3.2 For n r  

The Left, Middle, and Right sub-matrices are all square and of dimension given by eqn. (8). 

The Left sub-matrices are defined on 1, 2,...,i r r N    and are diagonal with elements 

equal to  . The Middle sub-matrices are defined on 1, 2,...,i r r N    and are equivalent 

to 
,r rt . The Right sub-matrices are defined on , 1,..., 1i r r N    and equal 

1,r rt

Z

 
 
 

 where Z  

is a null matrix with 1r r    rows and r  columns. 
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3.3.3 Diagonal entries 

The rates of transition from a particular state to another have been considered in this sub-

section thus far. What has not been studied, however, is the rate at which a current state is 

occupied. These negative-valued rates populate the diagonal entries of the transition matrix 

(and Middle sub-matrices). Since row totals must equal zero in a transition matrix the 

diagonal entries of 
TQ  are populated by subtracting column totals from zero. 

Table 3 Formulae to populate non-zero, non-negative entries of non-null sub-matrices with 

number in system no greater than number of servers
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3.4 Balking and reneging 

Balking is a concept in which arriving customers decide not to join the queue. It is 

incorporated into the queuing system to model the dissuading effect that long queue lengths 

or waiting times may have on arrival rates. The arrival rate given n  in system is defined by 
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  1n nPb                      (15) 

where nPb  is the probability of an arriving customer balking. Clearly, this probability should 

be zero when there is at least one service channel available and one when capacity is reached 

(thus balking is technically part of any finite-buffer system). In between, the probability of 

balking decreases polynomially (with exponent 0  ), i.e. 

 

0 0

1
1

1

n

n r

n r
Pb r n N

N r

n N



 


  
    

 
 

                 (16)  

Reneging is a concept in which arriving customers join the queue, but leave before entering 

service. Here the probability of a queuing customer reneging given n r  in system is defined 

by 

  
n

n r
Pr

N r




 

  
 

                   (17) 

with exponent 0   and scaling factor 0  . Whilst balking affects the Left sub-matrices 

, 1i it 
 for 1, 2,...,i r r N   , reneging affects the Right sub-matrices 

, 1i it 
 for 

, 1,..., 1i r r N   . More specifically it affects the diagonal entries of these sub-matrices 

which represent the rate of transition from state 1, ,..., kn n n  to 11, ,..., kn n n  for n r . The 

actual rates 
,e e  for 1,..., re   are determined from the sum of all other non-negative column 

values in 
TQ  (i.e. the other outward rates) and the nPr  such that 

 
,

, column total

e e

n

e e

Pr






                  (18) 

3.5 Performance measures 

Once the steady-state probabilities, SP , have been found, some performance measures of the 

system can be deduced (Table 4). 
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Table 4 Performance measures of the 1,1| | |kM PH r N  system with balking and reneging
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It is important to note that since the system is in steady-state, the mean effective arrival rate 

must equal the mean departure rate, i.e. 

  
1

E Pr  


                      (19) 

3.6 Computer automation 

A computer program in Maple has been set up to firstly populate the transition matrix (using 

the formulae of Section 3.3); then to solve it (using LinearSolve); and finally to output 

performance measures (Section 3.5) in addition to providing some graphical outputs. Before 

running the program the user must input numeric values for k , r , N , and numeric or 

symbolic values for  , 1,..., k  , 1 2,..., k    and  ,  ,   if balking and reneging are 

included (both optional).  
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The solution of the linear system is by far the most time-consuming of the three tasks. The 

time taken is dependent on the dimension and density of the transition matrix and the 

precision used in operations. For example, on a standard desktop computer, a 

1,1| |10 | 20M PH  system has 176 states and takes 12 seconds to solve analytically for 

numeric results whilst a 1,1| | 20 | 50M PH  has 861 states and requires almost ten minutes. 

However, a 2,1| |10 |15M PH  has fewer states (616) but takes slightly more time due to a 

denser
11

 transition matrix. 

4. Data 

4.1 Arrivals dataset 

Data is only available for the sixteen months from January 2010 until April 2011. In this time 

the mean arrival rate is 0.36364   referrals
12

 per day. The assumption of random arrivals is 

justified (Figure 4). The average queue length is 15.83qE L     with a standard deviation of 

3.43, a minimum of nine and a maximum of 25. The average waiting time is bounded below 

(since some observations are censored) at   38E W   days. Only one quarter of referrals have 

resulted in admission to Rookwood Hospital. No evidence has been found to suggest that the 

probability of reneging is based on queue size or duration of time in queue. 

                                        

Figure 4 Frequency chart for empirical data and the geometric distribution 

 

                                                      
11

 Since there are more service phases for which transitions can occur. 
12

 Referred patients are added to the waiting list where they remain until either admitted or reneged. 
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4.2 Service dataset 

Data is available for the eight years from 2003 until 2011
13

. The mean LOS of the 358 

episodes for which data is available is  ˆ 149.3LOS E    days, with a coefficient of 

variation of 1.018. Each episode contains data on admission age, gender, local health board, 

primary diagnosis, admission source, admission method, discharge destination. Typical 

occupancy is about 21 beds in recent years. Figure 5 depicts the relationship between 

treatment intensity and active LOS for the 89 episodes that have such information. 

                                  

Figure 5 Plot of physiotherapy treatment intensity against active LOS 

5. Model construction 

The | | 21M M  system serves as a simple queuing model of the unit at Rookwood Hospital. 

A more representative model is attained by partitioning LOS into its active (admission date 

until readiness date) and blocked (readiness date until discharge date) components. If the 

former is modelled by the Coxian distribution and the latter by the exponential then the 

1,1| | |kM PH r N  system of Section 3 can be used. However, this does not take into account 

patient attributes that affect LOS. These are included by allowing the service rates and 

number of phases in the Coxian distribution to differ from server to server. It has been found 

(Wood, 2011) that, for fixed k , the number of states is given by 

                                                      
13

 Earlier records are available but are not used in order to promote time-heterogeneity of data – the current 

superintendent physiotherapist took up his post in 2003.  
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  
0

r
i r

total

i

r
k N r k

i




 
   

 
                   (20) 

So for a system with 3k  , 20r   and 50N  , the dimension of the transition matrix would 

be 2,229,556 compared with just 1,606 with homogeneous servers (i.e. same number of 

phases and service rates in each service channel). Clearly this is too large for analysis, and so 

an alternative is favoured. 

Here, a small number, p , of patient groups are formed based on the values of the most 

significant patient attributes that return a low variance of active LOS within each group 

(Stage One). The homogenous-server queuing system of Section 3 (i.e. 
1,1| | |

ik i iM PH r N
 for 

1,...,i p  with 21ir r  ) is thereafter used to model the LOS of each patient group 

(Stage Four). But the active service phase rates are dependent on treatment intensity. The 

automated scheduling program is used to produce group average values for physiotherapy 

intensity (Stage Two). This is done using typical values of the input variables (Section 2) 

since, for model construction, a representation of reality is sought. The resulting treatment 

intensity levels must equal the empirical averages for each patient group. Graphs plotting 

group treatment intensity against group active LOS (Stage Three) are then used to obtain 

average values of active LOS for each patient group. For model construction these must equal 

their empirical counterparts. 

5.1 Stage One: Patient groups 

Classification and Regression Tree (CART) analysis is used to produce a binary decision tree 

by performing, at each iteration, a two-way split on a particular variable based on the largest 

reduction in variance. In this case, the target variable is active LOS and the predictor 

variables are listed in Section 4.2. The program Treeworks (Harper & Leite, 2008) is used to 

produce four mutually exclusive groups (Table 5) with a 21% reduction in variance. The 

appendix contains summary statistics for LOS based on the three patient attributes that were 

branched on. 
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Table 5 Specification of the four patient groups

Group Discharge destination Admission Source Diagnosis

Usual residence, Cardiff University hospital,
1 (any)

Temporary residence Usual residence

Usual residence,
2 Other NHS hospital (any)

Temporary residence

Inter
3

nal transfer, Other GBS, Anoxia, MS,
(any)

Trust, Non-NHS nursing home Other neuropathies

Internal transfer, Other
4 (any) ABI, TBI, Other

Trust, Non-NHS nursing home

 

If in  and ˆ
iLOS  denote the sample size and mean LOS of group i , then 1 183n  , 2 40n  , 

3 41n  , 4 94n   and 1
ˆ 86.27LOS  , 2

ˆ 162.02LOS  , 3
ˆ 175.49LOS  , 4

ˆ 255.21LOS  . The 

proportion of service channels assigned to the queuing system of each group is set equal to 

the proportion of bed days occupied by patients of that group, i.e. 

 

1

ˆ

ˆ

i i
i p

i i

i

n LOS
r r

n LOS



 


                   (21) 

Since 
ir

  they are rounded such that 1 6r  , 2 3 3r r  , 4 9r  . 

5.2 Stage Two: Treatment intensity 

The automated scheduling program described in Section 2 is amended to deal with groups of 

patients instead of individuals. Here, typical values of patient demand, details and priority are 

entered for each group (not for each patient). On the supply-side, a typical skill-mix is 

entered alongside typical working hours and availabilities. Once the schedule is run, a 

number of performance measures are output – the most important being ‘group average 

clinical minutes received’. After five runs of the program the average intensity of 

physiotherapy for each group is 1
ˆ 0.4333INT  , 2

ˆ 0.3905INT  , 3
ˆ 0.6262INT  , 

4
ˆ 0.5214INT   hours per day. These are all very close to the actual/empirical group averages 

obtained through the Service dataset. 

 

 



 

22 

 

5.3 Stage Three: Service rates 

Scatter plots similar to Figure 5 are produced for each patient group. A line of best fit of 

active LOS against treatment intensity is then fitted to each graph. If ˆ
in  denotes the number 

of episodes of each group i  that have data on physiotherapy intensity and date ready for 

discharge then 1̂ 46n  , 2
ˆ 13n  , 3

ˆ 7n  , 4
ˆ 23n  . Let 

jx  and 
jy  denote the physiotherapy 

intensity and active LOS of observation  ˆ1,..., ij n  for group i . The line of best fit given 

by the equation 

2
1j

j

y
x


                      (22) 

is fitted to the plot by the method of least squares by minimising 

 

2

2
1j

j j

y
x






 
   

 
                    (23) 

The constraint 

 2
1

ˆ
ˆ

active

i

i

LOS
INT


                     (24) 

is added to ensure that the average level of physiotherapy intensity corresponds to the average 

active LOS for each group (obtained in Section 5.4). 

5.4 Stage Four: Queuing system 

Coxian distributions are fitted to active LOS by maximum likelihood through the Nelder-

Mead ‘simplex’ algorithm in Matlab. The approximations are displayed in Figure 6. 
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Figure 6 Coxian approximations to active LOS for each patient group 

Here, 
1 4 2active activek k   and 

2 3 3active activek k   where active

ik  is the number of phases in the 

Coxian distribution of patient group i . The Bayesian Information Criterion and Akaike 

Information Criterion are used to balance goodness of fit with tractability (as more phases 

implies higher transition matrix dimension). The mean of each distribution is 

1
ˆ 72.22activeLOS  , 2

ˆ 136.55activeLOS  , 3
ˆ 120.87activeLOS  , 4

ˆ 177.53activeLOS  . These are 

approximately equal to their empirical counterparts. The exponential distribution is fitted to 

blocked LOS for each group by taking the rate parameter as the reciprocal of the empirical 

averages, 1
ˆ 13.63blockedLOS  , 2

ˆ 26.35blockedLOS  , 3
ˆ 53.12blockedLOS  , 4

ˆ 77.09blockedLOS   .  

The buffer size of each system is calculated as the proportion of beds allocated to each group 

multiplied by total buffer size, i.e. 

 i
i i

r
N r N

r
                      (25) 

The total buffer size is set at 28 (maximal queue size from Arrivals dataset is 25) and so 

1 14N  , 2 3 7N N  , 4 21N  . 

The final step in parameterising the model is to estimate the four remaining parameters,  , 

 ,  ,  . Estimations of these cannot be found directly and so they are determined by trial 
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and error such that the performance measures of the resulting model are equivalent to some 

target values. Unfortunately, the results of Section 4.1 cannot be used as targets since the 

timescales of the Arrivals and Service datasets do not correspond. Moreover, it is clinical 

opinion that LOS has been noticeably larger in the sixteen months of the Arrivals dataset than 

in years past. However, there is no reason to suppose that the effective arrival rate has 

changed over time. The targets for the effective arrival rates into each of the four systems are 

deduced. They cannot be derived exactly through the Arrivals dataset since the patient 

attributes (listed in Section 4.2) are not recorded for each referral. Instead the proportion of 

total arrivals (0.36364) to each patient group is set equal to their proportion of total 

throughput, i.e. 

 
4

1

ˆ

ˆ

i

i
i

t

t t

r

LOS

r

LOS

 



 


                   (26) 

Thus, 1 0.18010  , 2 0.04795  , 3 0.04427  , 4 0.09132  . Appropriate targets for the 

mean probabilities of reneging are now deduced using the mean service time from the Service 

dataset. Since the mean occupancy of each system is bounded above by the number of servers 

then, from eqn. (19), 

  
1

i i i i ir E Pr 


                      (27) 

By substitution of eqn. (26) into eqn. (27), and noting   ˆ
i iE LOS  , returns 

 
 

1

1 0.614
t t

i

r E
Pr






  


                  (28) 

The parameters  ,  ,  ,   are now varied such that the i  and 
iPr  are approximately equal 

to these targets. Steady-state probabilities are deduced for the holistic system by the 

multiplication of those for each of the four constituent systems (due to independence). Thus, 

  
 

 

1 2 3 41 1,1 1, 2 2,1 2, 3 3,1 3, 4 4,1 4,

4

,1 ,

1

, ,..., , ,..., , ,..., , ,...,

, ,...,
i

r r r r

i i i r

i

P n n n n n n n n n n n n

P n n n


  


                 (29) 

Figure 7 depicts the probability density for the number in system.  
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Figure 7 Graph of probability density for number in system 

The performance measures for the holistic system are deduced as follows. If 

 , , , ,qL L Tp   then 

  
4

1

sys i

i

E E


                         (30) 

If  , ,W T Pr  then each measure is weighted by their throughput, i.e. 

  
1

4 4

1 1

sys i i i

i i

E Tp Tp E



 

 
     

 
                   (31) 

The value of these performance measures are displayed in Table 6. 

Table 6 Performance measures of the model                                              

,

0.3629 referrals/day

20.76 beds

0.617

50.79 episodes/year

31.16 referrals or patients

10.4 referrals

85.89 days

28.66 days

sys

sys

sys

sys

sys

q sys

sys

sys

Pr

Tp

E L

E L

E T

E W





  

  

  

  
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Thus there is a 0.2% difference between the model and target mean effective arrival rates and 

a 0.5% difference between the model and target mean probabilities of reneging. In the 

absence of other numerical targets, clinicians have examined graphical outputs and other 

performance measures in order to confirm an accurate representation of the unit. The annual 

running cost of the unit (with a bed-cost per day of £480) is estimated through the formulae 

 £480 365 £3.637msys                      (32) 

6. Hypothetical scenarios 

Many what-if type scenarios have been considered in this study involving changes to the 

number of beds, composition of therapy, and skill-mix of staff. The effects of an ageing 

population have also been studied by creating two patient groups based on age and increasing 

the arrival rate into the one that contains older patients. Two hypothetical scenarios are 

forthwith examined in further detail. 

6.1 Reduction in blocked LOS 

The scenario concerning a 50% reduction in blocked LOS can be evaluated by making a 

change only to Stage Four. Here the blocked service rates for each system are increased two-

fold. This yields a mean occupancy of 20.65  , a mean probability of reneging of 

0.576Pr  , an annual throughput of 56.68Tp  , an average wait of   25.71E W   and an 

expected queue length of 9.42qE L    . Using eqn. (32) returns an annual running cost of 

£3.618m. Thus the average cost per patient episode has decreased from £72k to £64k. 

If a 100% reduction can be achieved then 20.4  , 0.452Pr  , 59.54Tp  ,   22.33E W   

and 8.21qE L    . Annual costs are reduced to £3.574m (£60k per episode). 

6.2 Workforce enlargement 

This hypothetical scenario involves making a change to the automated scheduling program 

(Stage Two) since the size (and skill-mix) of the workforce affects group average treatment 

intensity values. In this example the number of FTEs is increased by one third (whilst 

retaining a proportionate skill-mix). After five runs of the program the average intensity of 

physiotherapy for each group is 1
ˆ 0.6INT  , 2

ˆ 0.4929INT  , 3
ˆ 0.7857INT  , 4

ˆ 0.7143INT  . 
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Using these and eqn. (22) for each system yields 1
ˆ 70.01activeLOS  , 2

ˆ 125.61activeLOS  , 

3
ˆ 112.44activeLOS  , 4

ˆ 164.88activeLOS   (Stage Three). Finally, the active LOS distributions are 

amended such that their means are equivalent to these values. This is done by making 

proportionate adjustments to the service rates whilst holding constant the transition 

probabilities. This ensures that the underlying shape of the approximating distribution 

remains the same but the expected values are appropriately scaled. It is done by solving the 

following equation (based on 'expected service time' in Table 4) for ˆ
ip : 

  
1

2 1,1 ,

1 1ˆ 1
ˆ ˆ

active
ik l

active

i j

l ji i i i l

LOS
p p


 



 

                    (33) 

The new active service rates are the product of the old service rates and the respective ˆ
ip . 

Solving the holistic queuing system yields 20.73  . 0.604Pr  , 52.78Tp  , 

  27.62E W   and 10.08qE L    . The annual cost is 20.73 £480 365 £3.632m    in 

addition to the cost of the extra physiotherapists, £77k. However, in order to affect active 

LOS, these changes to the workforce must be made to all other departments at a cost of £73k. 

So the total annual cost is £3.782m and the cost per episode is just under £72k. 

7. Discussion 

A queuing model of a neurological rehabilitation unit has been presented. Two major 

components of this model, the automated scheduling program and a relevant queuing system, 

are described separately in Sections 2 and 3. The data is then introduced in the following 

section and the four-stage model is constructed in Section 5. Two hypothetical scenarios are 

thereafter evaluated in Section 6. The results of these are now discussed. 

Clearly there are significant advantages in reducing the delay to discharge. With a 50% 

reduction in blocked LOS, there is lower bed occupancy and so annual running costs are £19k 

less. The 12% increase in throughput and 7% decrease in the probability of reneging mean 

that more patients are benefitting from a specialist rehabilitation programme. Such patients 

are less of a burden on social services (Turner-Stokes et al, 2006) and are more likely to re-

enter the workforce (Cullen et al, 2007). Referred patients can also expect a 17% shorter wait 

in the queue. This has physical as well as psychological benefit since the condition of the 

patient can deteriorate in an inappropriate setting (Cope & Hall, 1982). Decreased waiting 
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time also has a consequent effect in reducing bed-blocking at the referring facilities upstream 

where bed costs are much higher. 

But how can delays to discharge actually be reduced at Rookwood Hospital? One idea is to 

inform discharge destinations of the expected discharge readiness dates as early as possible. 

This should allow plenty of time for them to make the necessary arrangements to receive the 

patient on time. Accurate estimations of expected LOS can be deduced from a binary 

decision tree (similar to that described in Section 5.1) using the values of the attributes listed 

in Section 4.2. 

Increasing the size of the workforce affects the active component of LOS. Like the previous 

scenario this has a positive effect on throughput, reneging and waiting times but requires 

additional resources. A rival option to improve throughput is to increase the number of beds 

whilst holding constant treatment intensity. This would cost £70k more per annum but would 

increase throughput to 53.78 and decrease the probability of reneging to 0.595. The cost per 

episode would be approximately equivalent. The purpose of this study is not to recommend a 

particular strategy but to lay out the pros and cons of a variety of scenarios that have been 

suggested by clinicians. Management can then determine whether additional costs are 

outweighed by improvements in performance. 

As would be expected there are limitations associated with such a complex model – many of 

which relate to the (potentially unknown) extent to which assumptions are satisfied. For 

example, it is assumed in Stage Two that the amount of treatment scheduled by the automated 

program is equivalent to the amount received. Due to 'shocks' such as employee absence or 

patient illness this is not always the case. In Stage Four it is assumed that the queue discipline 

is first-in first-out, whilst in reality the condition of the patient is also a factor. But perhaps 

the largest limitation of this project has been the availability of data. In populating the Service 

dataset it was necessary to strike a balance between the quality and quantity of data. Whilst it 

was possible to collect more data (from years earlier than 2003), the relevancy of this data 

would be questionable (since clinical practices change over time). 

There is plenty of scope for further work. Patient outcome is part of the trilateral relationship 

(with treatment intensity and LOS) that has been held constant in this study. That is, changes 

to treatment intensity affect active LOS such that outcome is unaltered. The ability to have 

this as a free variable would permit the evaluation of some interesting scenarios. Other 

studies (such as Turner-Stokes, 2007) suggest that a greater outcome equates to less cost per 
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unit time post-discharge. Here, the time required to offset the additional costs associated with 

a higher outcome is studied. According to the relationship, a higher outcome can be achieved 

through increased LOS or treatment intensity or both. If included in the queuing model, then 

the consequent effect of such alterations on outcome could be evaluated. If the relationship 

between outcome and cost per unit time post-discharge is known then a number of valuable 

what-if questions can be asked. For example, is it cost-effective to provide younger patients 

with a better outcome? Clearly, the integration of inpatient rehabilitation with related 

facilities (in this case, downstream) presents some interesting opportunities. 

In conclusion, this study has showcased the benefits of academic advancement in operational 

research; the application of novel techniques to novel settings. Not only have theoretical 

advancements been made in this work but these have been successfully applied to an 

important real-life process that has seen little research to date. Mr Jakko Brouwers MSc 

MCSP, Senior Service Improvement Programme Manager and Superintendent 

Physiotherapist at Rookwood Hospital, remarks that this work has ‘had a huge impact in how 

resources are utilised’. On the timetabling of physiotherapy treatment he says that 

‘automated computer scheduling has created a fairer system for patients’. Mr Brouwers also 

confirms the benefits bought about by the holistic model, claiming that it ‘has been a real 

asset in that it has opened the eyes of the operational service managers to the issues 

regarding patient flow’. He continues: ‘These insights are now used on a regular basis in 

waiting list management and admissions meetings’. In summary, Mr Brouwers concludes that 

‘the investment from the department in support of the research has been well worth it’. 
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Table A.1 Basis statistics for LOS categorised by discharge destination

Discharge Destination: Usual residence Internal transfer Other Trust Non-NHS nurs. home Temporary residence

212 61 50 15 6

100.5 253.8 208.2 206.9 114.7

. . 109.1 215.4 136.6 111.5 135

n

mean

LOS

s d

 

Table A.2 Basic statistics for LOS categorised by admission source

Admission Source: Cardiff University hosp Other NHS hosp Usual residence Temp Unknown

229 78 49 1 1

146.3 200.1 73.6 352 387

. . 148.1 172.4 85.1 . .

n

mean

LOS

s d
 

Table A.3 Basic statistics for LOS categorised by primary diagnosis

Primary diagnosis: ABI MS TBI Anoxia GBS Other Other neuropathies

187 44 42 26 22 14 10

172.8 95.7 132.8 193.1 99 104.6 83.5

. . 170.3 100.9 126.8 155.1 88.3 91 131.2

n

mean

LOS

s d
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