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Abstract 

This paper presents a parsimonious review on the definitions, classifications, objectives, constraints, network topology 

decision variables, and solution methods of the Urban Transportation Network Design Problem (UTNDP), which includes both 

the Road Network Design Problem (RNDP) and the Public Transit Network Design Problem (PTNDP). The current trend and 

gap in each class of the problem are discussed and future directions in terms of both modeling and solution approaches are 

given. This review intends to give a bigger picture of transportation network design problems, allow comparisons of 

formulation approaches and solution methods of different problems in various classes of UTNDP, and encourage cross-

fertilization between the RNDP and PTNDP research.  
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1. Introduction 

Transportation is important in the sense that it allows people to take part in human activities. With the increasing 

population, the demand for transportation is increasing. More and more traffic is on roads, which in turn creates 

more and more mobility related problems such as congestion, air pollution, noise pollution, and accidents, 

especially in city centers where the level of human activities is high. Governments need to plan transport networks 

properly and control the urban traffic movements to ensure mobility and mitigate the mobility related problems 

simultaneously. The higher population also leads to more expensive land especially in the city centre and hence 

more people living in new towns or suburbs, thereby requiring new transportation infrastructures for serving new 

towns or improving existing transportation structures to cope with the increasing population in the suburbs. These 

planning, design and management issues are traditionally addressed in UTNDP. This problem can actually include 

the design problems in suburban areas in additional to those in urban areas because the methodology involved is 

basically the same. Moreover, this problem can involve transit networks in addition to road networks since the 

transportation include both public and private transport. 

UTNDP has been continuously studied during the last 5 decades, and the number of related publications is 

growing over time probably because the problem is highly complicated, theoretically interesting, practically 

important, and multidisciplinary. A number of reviews has also been published by Boyce (1984), Magnanti and 

Wong (1984), Friesz (1985), Migdalas (1995), Yang and Bell (1998a), Desaulniers and Hickman (2007), Guihaire 

and Hao (2008), and recently by Kepaptsoglou and Karlaftis (2009). Some of these reviews deal with general 

network design problems but some focus specifically on urban network design or on one part of urban 

transportation networks. For example, the first five reviews only focus on RNDP while the last three reviews only 

focus on PTNDP. As a result, the similarities and differences of the formulation approaches and solution methods 

between the RNDP and PTNDP cannot be addressed in these reviews, which cannot encourage the cross-

fertilization of the two research areas. Moreover, the problem that considers the interaction between road and 

public transit network designs has been ignored in these reviews.  

This paper attempts to provide a holistic view to UTNDP and its classifications by uniting the decisions for 
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improving transportation networks. With regard to this, the current paper covers both problem categories, and 

presents a third problem category for the joint decisions in road and public transit networks with at least two 

modes, which considers the interactions of these modes. This paper also contains an updated literature for both 

fields until early 2011. This contrasts to the last review paper on RNDP which published in late 1990s, and the 

previous reviews of PTNDP which cover the literature until 2007. The main aim of this paper is to cover problems 

related to urban transportation network topology and its configuration. In this regards, only the strategic level and 

a number of tactical level decisions related to network topology are covered in this paper; those papers not related 

to network topology decisions, such as operational level decisions and tactical decisions that are not related to 

network topology, will not be covered unless they are considered together with network topology decisions. The 

problems such as the traffic signal setting, parking pricing, toll setting, and the public transit ticket pricing are 

important sub-problems of UTNDP and even some of these has long history with lots of important features and 

development. These sub-problems are deserved to be examined and reviewed in a comprehensive manner in future 

review papers and hence excluded in this paper. Traffic signal setting has the strongest relevancy with network 

configuration decisions, as the network topology directly affects the flow pattern and the conflict points at 

intersections. This subproblem has been studied extensively and it has a relatively large body of literature (e.g. 

Cantarella et al., 1991; Meneguzzer, 1995; Wong and Yang, 1999; Wey, 2000; Cascetta et al., 2006). 

Moreover, this review focuses on deterministic transport networks and deterministic travel demand. That is, we 

focus on papers that assume no supply and demand uncertainty. For example, there is no randomness in travel 

demand and road capacity considered in the reviewed papers. Nevertheless, we can still identify current trends and 

gaps as shown later, and bring out new research directions in this field as shown in the last section.  

Other than reviewing UTNDP, we also review the solution methods. This allows comparisons of solution 

methods of different problems in various classes of UTNDP and proposes new algorithmic research directions. This 

algorithmic review and the new directions are particularly important given that these methods are required to solve 

practical design problems, and their problem sizes become larger and larger. Real case scenarios are also reviewed 

to give insight about the size of the networks for each problem catalogues currently considered and give some hints 

on the future requirement of the solution methods for practical problems. 

The rest of the paper is organized as follows. Section 2 explains the key definitions, classifications, and general 

formulations of UTNDP. Section 3 reviews the specific problem studied in the literature. Section 4 depicts the 

solution methods used in the literature. Section 5 describes the application to real case scenario. Section 6 presents 

an overall of the research development of UTNDP. Finally, the summary and further research directions are 

presented in Section 7.  
 

2. Definitions, general formulations and classifications of UTNDP  

2.1. Definitions of UTNDP 

There are at least three different definitions of UTNDP in the literature: 

1. UTNDP is concerned with building new streets or expanding the capacity of existing streets (Dantzig et al., 

1979). This definition is quite common in the literature, but most studies use other names for this problem 

catalog such as the Road Network Design Problem (RNDP), the transportation network design problem, and 

the network design problem. 

2. UTNDP is to determine the optimal locations of facilities to be added into a transportation network, or 

determine the optimal capacity enhancements of existing facilities in the network (Friesz, 1985). In this 

definition, the facilities may be represented by either nodes or links. Therefore, this definition is wider than the 
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first one.  

3. UTNDP deals with a complete hierarchy of decision making processes in transportation planning, and includes 

strategic, tactical and operational decisions (Magnanti and Wong, 1984). Strategic decisions are long-term 

decisions related to the infrastructures of transportation networks including both transit and road networks; 

tactical decisions are those for the effective utilization of infrastructures and resources of existing urban 

transportation networks, and operational decisions are short-term decisions, which are mostly related to traffic 

flow control, demand management or scheduling problems. Figure 1 gives examples of strategic, tactical and 

operational decisions in UTNDP. The shaded items are related to network topology. This definition has the 

widest scope among the three since it includes the management aspect on the tactical and operational levels in 

addition to the planning aspect on the strategic level.  

 

 

 

Figure 1. Examples of Decisions in UTNDP 

In order to create a comprehensive and integrated collection of classifications under a single umbrella, this paper 

adopts the third definition to define UTNDP, but mainly limits itself to the decisions specified in the second 

definition – the decision related to network topology. Actually, we believe that this definition encompasses both the 

Road Network Design Problem (RNDP) and the Public Transit Network Design and Scheduling Problem 

(PTNDSP) in which the term public will be omitted in the rest of paper for the sake of brevity, that determines the 

optimal transit routes, frequencies, and time-tables, because transport networks include both transit and road 

networks. In addition, we believe that this definition includes two big classes of UTNDP: 1) the problem of 

developing a new network via adding links, which is related to strategic decisions and 2) the problem of improving 

or managing the current network, which is related to the tactical and operation decisions. 
 

2.2. General Framework of UTNDP 

UTNDP differs from network design problems in other disciplines such as telecommunication because the reaction 

of travelers has to be taken into account when designing a transportation network. Moreover, designing the network 

is associated with certain transport policy. Regarding to these two facts, analyzing and modeling in UTNDP 

involves two issues: (1), policy making for the network improvement, and (2) predicting the network user 

behaviors in response to the formulated design policies. The rest of this section will discuss the problem from the 

mentioned aspects. 
 

2.2.1.  General Mathematical Model for UTNDP 

The problem is usually formulated as a bi-level problem or a leader-follower problem. The upper level problem is 

the leader’s problem, the design problem, or the problem of the decision maker, (e.g., the government), who plans 

or manages the transport network. This upper level problem is related to the policy discussion in practice and 

includes the measurable goal (e.g., reducing total travel time), restrictions (e.g., political, physical, and 

environmental constraints) and the design decisions to be made (e.g., new roads to be built). This upper level 
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problem assumes that the leader can predict the behavior of the travelers. The lower level problem is the followers’ 

problem or the problem of travelers who decide whether to travel, and if so, their travel modes and routes. The bi-

level structure allows the decision maker to consider the reaction of the travelers and improve the network to 

influence the travel choice of travelers but has no direct control on their choice. This structure does not allow the 

travelers to predict the decision of the leader, but only allows them to determine their choice after knowing the 

decision of the leader. Mathematically, the problem can be represented as follows: 

(U0) min   ( ( ))
u

F u,v u  (1) 

s.t.    ( ( )) 0G u,v u   (2) 

where v(u) is implicitly determined by:  

(L0) min   ( )
v

f u,v  (3) 

s.t.    ( ) 0g u,v    (4) 

F and u are, respectively, the objective function and (network design) decision variable vector of the upper level 

problem (U0), and G is a vector function in the upper level constraint. f and v are, respectively, the objective 

function and decision variable (flow) vector of the lower level problem (L0), and g is a vector function in the lower 

level constraint.  

v(u) is called the reaction or response function, which depicts the user reaction in terms of a flow pattern for each 

network design u. Since v(u) is an implicit function that cannot be shown explicitly, it is depicted by L0. In each 

network design problem, v(u) is an optimal solution of L0. In fact, the objective of the bi-level network design 

problem is to find an optimal decision vector u to optimize the objective function F subject to the network design 

constraint (2) as well as the user reaction constraints (3)-(4). 

The above lower-level problem can be expressed as a variational inequality; in this case the bi-level network 

design problem can be formulated as a mathematical program with equilibrium constraints. UTNDP then becomes 

single-level but conceptually, it is bi-level with two different types of games involved, namely the leader-follower 

game and the non-cooperative Nash game.  

Solving a bi-level network design problem using exact solution methods is very difficult because the problem is 

NP-hard. Ben-Ayed et al. (1988) studied bi-level problems and concluded that even a simple bi-level problem with 

both linear upper-level and lower-level problems is also NP-hard. Another reason is the non-convexity of bi-level 

network design problems. Even if both the upper and lower level problems be convex, the convexity of the bi-level 

problem cannot be guaranteed (Luo et al., 1996). 

The presented mathematical model mostly corresponds to RNDPs, while due to the complexity of TNDSPs only 

in some cases formulating the TNDSP as a bi-level network design problem is possible. Most of the TNDP are 

single level problems where the reactions of users are simplified. As mentioned by Chakroborty (2003) it is 

difficult to formulate TNDSP as a mathematical problem, since it is inherently discrete and concepts such as 

transfers and route continuity are hard to represent. Finally, Baaj and Mahmassani (1991) discussed the complexity 

of this problem arised from its combinatorial, nonlinearity, non-convexity and multi-objective nature. They also 

depicted the difficulties in formulating as a mathematical model, and in defining acceptable spatial route layouts.  
 

2.2.2. Classifications of Upper Level Problems or Design Problems in UTNDP 

UTNDP can be classified into problems which arise from variety of possible network design policies and decisions. 

Traditionally, UTNDP is separately considered in two main catalogues, namely RNDP and TNDSP. RNDP mainly 
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considers street networks and does not distinguish the flow of public transit vehicles and other private vehicles. 

RNDP usually supposes all traffic flows as homogenous. Based on the nature of the decisions considered, RNDP 

can be further classified in three groups: (1) Discrete Network Design Problem (DNDP), which only deals with 

discrete design decisions such as constructing new roads, adding new lanes, determining the directions of one-way 

streets, and determining the turning restrictions at intersections, (2) Continuous Network Design Problem (CNDP), 

which is only concerned with continuous design decisions such as expanding capacity of streets, scheduling traffic 

lights, and determining tolls for some specific streets, and (3) Mixed Network Design Problem (MNDP), which 

contains a combination of continuous and discrete decisions.  If the demand, land-use, or network changes over the 

planning horizon are also considered, RNDP can also be further classified into DNDP-T, CNDP-T, and MNDP-T, 

which are respectively the time-dependent extensions of DNDP, CNDP and MNDP. 

TNDSP mainly considers topology of the public transit networks, as well as service frequency and time-table. 

The problem can be classified five types based on the decisions addressed: (1) The Transit Network Design 

Problem (TNDP) exclusively attends to design routes of transit lines including the origins and destinations of the 

transit routes and the sequence of links visited. (2) The Transit Network Design and Frequency Setting Problem 

(TNDFSP) determines the service frequency of each bus line in addition to route design. (3) The transit network 

frequencies setting problem purely deals with frequency setting given the route structure. (4) The transit network 

timetabling problem deals with the time-table issues given the service frequency and routes. (5) The transit network 

scheduling problem considers both the frequency and time-table decisions given the route structure. 

Nearly all RNDP studies deal with improvements in the existing road networks, as most decision variables are 

related to the manipulation of the existing network. Moreover, new city constructions rarely occur in the real world. 

In contrast, TNDSP studies (especially those with topological decisions) mostly deal with new transit network 

configurations, or complete reconfiguration of the existing transit networks. A common characteristic of RNDP and 

TNDSP is that they consider only single mode (i.e., private or public transit mode), and also are often limited to the 

network for the mode studied (i.e., focus on single tier or level network).  

In reality, there are multiple modes and their demands are interrelated. The Multi-Modal Network Design 

Problem (MMNDP) can be a suitable title for another category, which encompasses at least two different modes for 

UTNDP. Traffic flow in MMNDP can cover automobiles, taxis, vans, buses, bicycles, motorcycles, metro, etc. The 

special case of MMNDP is the Bi-Modal Network Design Problem (BMNDP), which considers only two modes. 

Decisions considered in MMNDP can be decisions of a single mode (i.e. road, transit, etc.), or combinations of 

various decision for the modes under focus. In fact, the multimodal problem arises when at least two modes are 

considered and simulated even if design decisions are related only one of the modes.. The multi-modality in urban 

transportation networks is captured in several forms in the literature: 

 No interactions between flows of different modes: In this case, the networks of different modes are not related 

to each other, and thus the flows of one mode do not have any effect on the flows of the other modes. For 

example, in an automobile-metro problem or in an automobile-bus problem where buses move in exclusive 

lanes, transit flows are physically separated from automobile flows. 

 Interactions between flows of different modes: When buses share the same roads with automobiles, the flows of 

bus and automobile affect each other. In such problems road and bus networks are related to each other in terms 

of both nodes and arcs. 

 Interrelations in flows and in decisions: Most multi-modal problems only consider flow interactions, while in 

problems with mode related topographic decisions, the effects of decisions of one mode on the other are 
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addressed. For example, in an automobile-bus mode problem, converting a two-way street into a one-way street 

will affect the bus route on that street. 

MMNDPs usually consider multi-level or multi-tier networks in which the road network and different public 

transit networks are considered to be sub-networks of the urban transportation networks. Another dimension of 

MMNDPs is the number of modes involved in travelling between two points. There are two cases in this dimension. 

First, travelers can only choose a one mode, and second, travelers can choose a combination of modes to finish 

their trips and the number of modes involved is greater than one. In the latter, the trips are called combined-mode 

trips. One example is that a traveler drives to the metro station and then takes a metro to his/her destination. 
 

2.2.3. Classification of Lower Level Problems in UTNDP 

The lower level problem has different forms, depending on the choice dimensions considered and the assumptions 

for the travelers used. The lower level problems in the road network category are different from those of transit 

network category. The road network problems deal with vehicles as flow units, but transit network problems 

consider passengers as flow units. The former allocates the vehicle flows to road networks under a specific 

transport policy scenario, while the latter allocates the passengers to the public transit vehicles after considering a 

fixed flow of public transit vehicles resulted from the specific transit design scenario. 

The most prevalent form of the lower level problem considers the route choice of the users, which is called the 

trip assignment problem. This common form of problem occurs when single mode is under focus in pure road or 

transit network design problem. The problem determines the flow pattern of the transportation network for a 

network design scenario. Since there are two types of networks, namely road networks and transit networks, there 

are two types of trip assignment, namely traffic assignment and transit assignment, for determining the flow 

patterns in road and transit networks respectively. Trip assignment usually assumes some sort of behavior 

principles to depict the route choice behavior. The traditional one is Wardrop’s (1952) principle, which states that 

the traveler selects the shortest route. This principle assumes that all travelers are non-cooperative and know the 

actual travel time for each route. This principle can be easily extended to consider toll, parking cost and excess time 

cost. The resulting flow pattern is called the user-equilibrium (UE) pattern, which is the pattern such that no 

travelers have incentive to switch to other routes. If they switched routes, their travel time would be higher. This 

assignment is called UE assignment. The extension of UE assignment is the stochastic user equilibrium (SUE) 

assignment (Daganzo and Sheffi, 1977), which assumes that travelers select routes based on perceived travel time. 

This equilibrium assumes that travelers may not know the travel time precisely. Opposite to the UE assumption, if 

the travelers are assumed to behave cooperatively, the resulting assignment is called system optimal (SO) 

assignment.  

In all the above traffic assignment problems, congestion effect is normally considered (i.e. the travel costs do 

depend on the traffic flows) but in some cases, the congestion effect is ignored. This leads to congested and 

uncongested assignment respectively. In particular, if the congestion effect is ignored and UE is assumed, the 

conventional UE traffic assignment becomes all-or-nothing (AON) assignment in which all the demand is assigned 

to the shortest route. Moreover, if SUE is assumed instead, the stochastic assignment problem, which is called 

stochastic uncongested assignment.  

The transit assignment problem can also be divided into categories of congested and uncongested transit 

assignment problems. In uncongested transit assignment, no passenger capacity is considered for transit vehicles. 

The congested transit assignment considers the transit passenger capacity restrictions. In both problems, different 

criteria and different passenger behaviors are assumed for this problem, which leads to various approaches of 
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allocation of passenger demands to transit paths. Similar to trip assignment, stochastic version exists for both 

categories of transit assignment.  

Traditional trip assignment problems treat all classes of traffic flow as a single unified traffic flow. Another 

important extension to traffic assignment is to distinguish between different classes of travelers or vehicles. The 

multiclass trip assignment considers different demands and travel cost functions for each user class. Travelers may 

be classified by their vehicle ownership, trip purposes, socioeconomic attributes such as income, etc. Vehicles can 

be classified into different vehicle types such as private cars, taxis, trucks, motorcycles, etc.  

On the other hand, the lower level problem can allow the users to have more than one travel choice other than 

route choice. In such case, if both destination and route choices are considered, it becomes the trip distribution-

assignment problem. In multi-modal problems, the lower level problem has to tackle with more than one travel 

mode. If both mode choice and route choice are considered, the problem becomes the modal split-traffic 

assignment problem. If all destination, mode, and route choices as well as the choice of whether to travel or not are 

incorporated, the lower level problem becomes the combined travel choice problem. Depending on the model 

assumption, users may select different travel choices sequentially or simultaneously. 

In the above problems, demand (for each mode) between each origin-destination (OD) pair can be fixed or 

elastic, based on the assumptions of the main model. Basically, it is called fixed demand when the demand for the 

mode considered is unchanged. When the demand for travel is dependent on various factors such as travel time of 

the mode considered or other system performance attributes, it is called elastic demand. Elastic demand can be 

found in two forms; first when the demand between each OD pair is variable (i.e., simple elasticity is considered), 

and second when the total demand between each OD pair is fixed but the share of each mode for the total demand 

is variable. The first case is defined for circumstances that travelers decide to give up their travel when the travel 

cost is too high or they change their destination, but the second case is for circumstances that travelers only decide 

to change their mode of travel. Moreover, the second case is often found in MMNDP where the total demand is 

divided between various modes of travel. Nevertheless, these lower level problems implicitly consider more than 

one travel choice. 
 

3. Specific Urban Transportation Network Design Problems (UTNDP) 

Tables 1-6 summarize the problems studied and solution methods used in each publication. In the following 

sections, the specific problem being studied in each class of UTNDP is reviewed. Section 3.1 focuses on RNDP. 

Section 3.2 focuses on TNDP and TNDFSP. Section 3.3 focuses on MMNDP. Section 4 focuses on the solution 

method. For each class of the problems, the literature is presented in tables which summarize the problem attributes 

discussed in the current section, and the solution methods addressed in Section 4. 
   

3.1. Studies of the Road Network Design Problem (RNDP) 

Generally, the inputs of RNDP are as follows: (1) The network topology, (2) The travel demand between each 

origin-destination pair for a specific time interval in terms of a matrix or a function, (3) The characteristics of 

streets such as the capacity, the number of lanes, the free flow travel time, and the specifications of the travel time 

function, (4) The upper and lower bounds of decision variables for handling physical or political considerations 

such as the maximum allowable increase in capacity and the maximum toll level, (5) The set of candidate projects 

for network improvement, (6) The available budget, and (7) The cost of each candidate project. For some problems 

such as scheduling traffic light and determining road tolls, inputs (4)-(7) are not necessary.  

The upper level constraints of RNDP may include the following: (1) The simple upper and lower bound 

constraints for the decision variables, (2) The budget constraint, and (3) The definitional constraints such as 
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capacity constraint and cycle time constraint: The capacity constraint is included in the upper level problem for 

preventing the street flow to exceed the street capacity. This constraint is not necessary when the traffic assignment 

problem has considered capacity constraints. The cycle time constraint is used to ensure that the sum of green times 

and all loss times for all approaches equals cycle time.  
 

3.1.1. Studies of Continuous Network Design Problem (CNDP) 

The studies on CNDP are summarized in Table 1. They are categorized based on objectives used, number of 

objectives, travel demand (fixed or elastic), traffic assignments, decisions, and solution methods involved. As 

reflected in Table 1, a significant body of RNDP research has focused on CNDP. One reason for this may be the 

continuousness of variables, which allows many different modeling approaches and solution methodologies as 

shown in Table 1.  

Table 1. A Summary on the Studies of Continuous Network Design Problems. 
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Reference 

Iterative-Optimization-Assignment 
Algorithm ●   F SOS   ●    Steenbrink (1974a) 

Powell's Method, Hooke and Jeeves 
Method 

●   F DUES   ●    Abdulaal and LeBlanc (1979) 

Iterative Decomposition, Lagrangian 
Multiplier ●   F SOS   ●    Dantzig et al. (1979) 

●     ●    Exact Algorithm Based on Constraint 
Accumulation, Heuristic  ●  

F DUES 
●      

Marcotte (1983) 

Bard's Algorithm ●   F DUES   ●    LeBlanc and Boyce (1986) 

Four Heuristics based on Iterative 
Optimization Assignment Algorithms ●   F DUES   ●    Marcotte (1986) 

The authors only discuss on the possible 
solution approaches ●   F SOS   ●    Ben-Ayed et al. (1988) 

Bi-level Descent Algorithm ●   F DUES   ●    Suh and Kim (1992) 

Simulated Annealing + Bertsekas-Gafni’s
projection method ●   F DUES   ●    Friesz et al. (1992) 

Two Heuristics based on Iterative 
Optimization Assignment Algorithms ●   F DUES   ●    Marcotte and Marquis (1992) 

Simulated Annealing ●   F DUEM+W● ●  ●   Friesz et al. (1993) 

Generalized Reduced Gradient Method, 
Sequential Quadratic Programming 

●   F SUES   ●    Davis (1994) 

Sensitivity Analysis Based Method ●  ● E DUES ●     ● Yang (1997) 

Nil ●   F DUES     ●  Yang and Bell (1998b) 

Augmented Lagrangian Method ●   F DUES   ●    Meng et al. (2001) 

Simulated Annealing ●   F DUES ●      Meng and Yang (2002) 

Simulated Annealing ●   F DUEM+W●    ●  Yang and Wang (2002) 

Sensitivity Analysis Based Method ● ●  F DUES     ●  Ziyou and Yifan (2002) 

Four Gradient-based Methods ●   F DUES   ●    Chiou (2005) 

Gradient-based Method  ●   F DUES ●      Gao et al. (2007) 

 ●  F DUES     ●  Hybrid Approach for Simultaneously 
Solving the Two Problems  ●   F DUES ●      

Chiou (2008) 

Genetic Algorithm, Simulated Annealing●   F DUES   ●    Xu et al. (2009) 

Genetic Algorithm ●   F DUES ●      Mathew and Sharma (2009) 
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Transformation into a Mixed Integer 
Linear Program ●   F DUES   ●    Wang and Lo (2010) 

 

In terms of objectives and decisions, travel time related objectives and street capacity expansion have been 

received most attention. Capacity decisions are supposed to be continuous. Some studies also consider both the link 

capacity decision with the decisions on road tolls (e.g., Yang, 1997) and traffic lights (e.g., Ziyou and Yifan, 2002 

and Chiou, 2008) simultaneously.  

Table 1 also shows that most studies on CNDP assume fixed demand (denoted by F). However, some studies 

(e.g., Yang, 1997) consider elastic demand (denoted by E). Moreover, most studies only have single objective 

(denoted by S) and limited studies consider multi-objective (denoted by M). Multi-objective problems are all 

handled by the weighted sum approach (denoted by W). Furthermore, most studies focus on DUE traffic 

assignment and total travel time.  
 

3.1.2. Studies of Discrete and Mixed Network Design Problems (DNDP and MNDP) 

A summary of DNDP studies is given in Table 2. The body of DNDP literature is somehow smaller than that of 

CNDP, probably because of the complexity resulted from the presence of discrete variables. These DNDP studies 

have been investigated in three distinct groups. The first group of studies is similar to the classical literature of 

CNDP in the sense that they focus on strategic decisions such as constructing new streets, or increasing the 

capacity of existing streets as the yes-no type decisions. The second group of studies considers the tactical 

decisions such as determining the orientation of one-way streets, allocating lanes in two-way streets, and changing 

some two-way streets into one-way streets. The last group considers both strategic and tactical decisions. 

Compared with CNDP, additional objectives such as minimizing the sum of total network cost and total flow 

entropy  (where the entropy of the link flow provides a measure of flow balance of the link: the larger the flow 

entropy is, the more unsymmetrical flow is), and minimizing total travel distance have been considered. However, 

maximizing consumer surplus, which is used in the elastic demand case, has not been considered. Moreover, the 

problem considered so far has only one objective with fixed demand. Some work can be done for the multi-

objective or elastic demand case. 

Table 2. A Summary on the Studies of Discrete Network Design Problems. 

Decision Objective 

Solution  
Method 

S
treet C

apacity E
xpansion 

N
ew

 S
treet C

onstructing  

M
aking Som

e Streets O
ne-W

ay 

L
ane A

llocation in T
w

o-w
ay 

Streets
T

urning R
estrictions at 

Intersections

D
em

an
d

 

T
raffic A

ssign
m

en
t  

S
in

gle/m
u

ltip
le op

tim
ization

 

M
in. T

otal T
ravel T

im
e/C

ost 

M
in.T

ravel +
 C

onstruction
C

ost
 

M
in. T

otal Societal C
ost 

M
in. T

otal T
ravel D

istances 

M
in. N

etw
ork T

ravel cost +
 

F
low

 E
ntropy 

M
ax. R

eserve C
apacity 

Reference 

DNDP with Strategic Decisions 

Iterative Decomposition 
Algorithm ● ●    F SO S   ●    Steenbrink (1974b) 

Branch and Bound ●     F DUES ●      Leblanc (1975) 

Branch and Backtrack 
Heuristics ● ●    F DUES ●      Poorzahedy and Turnquist 

(1982) 
Branch and Bound+ 
Stochastic Increment 
Assignment 

 ●   
 

F SUE S  ●    
 

Chen and Alfa (1991) 

Nil ●     F DUES      ● Yang and Bell (1998b) 
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Generalized Benders 
Decomposition Method with 
Support Function  

 ●    F DUES ●     
 

Gao et al. (2005) 

Ant Systems ● ●    F DUES ●      Poorzahedy and 
Abulghasemi (2005) 

Hybrids of Ant Systems, 
Ant Colony with Genetic 
Algorithm, Simulated 
Annealing, Tabu Search 

● ●    F DUES ●     

 
Poorzahedy and Rouhani 
(2007) 

DNDP with Tactical Decisions 

Simulated Annealing   ●   F DUES ●      Lee and Yang (1994) 

Branch and Bound, 
Heuristics, Simulated 
Annealing 

  ●  
 

F AONS  
   ●  

 Drezner and Wesolowsky 
(1997) 

Tabu Search   ●   F AONS    ●   Drezner and Salhi (2000) 

Genetic Algorithm, 
Simulated Annealing   ●  

 
F AONS    ●  

 
Drezner and Salhi (2002) 

Particle Swarm 
Optimization    ●  F SUE S ●      Zhang and Gao (2007) 

Chaotic Optimization 
Algorithm    ●  F SUE S     ●  Wu et al. (2009) 

Branch and Bound with 
Sensitivity Analysis Based     ● F SUE S ●      Long et al. (2010) 

DNDP with Both Strategic and Tactical Decisions 

Descent Algorithm, 
Simulated Annealing, Tabu 
Search, Genetic Algorithm 

 ● ●  
 

F AONS    ●  
 Drezner and Wesolowsky 

(2003) 

Hybrid of Simulated 
Annealing and Genetic 
Algorithm, Evolutionary 
Simulated Annealing 

●  ● ●  F DUES      ● Miandoabchi and Farahani 
(2010) 

A review of the studies of MNDP is shown in Table 3. As shown from this table, these studies involve decisions 

that are combinations of those in CNDP and DNDP. More importantly, only a few studies in this field have been 

accomplished in the recent decade. It seems that a lot of work can be done in this area (for example, considering 

lane allocations in two-way streets or considering multiple objectives with environmental concerns). 

Table 3. A Summary on the Studies of Mixed Network Design Problems. 

Decision  

Continuous Discrete 

Solution  
Method 

R
oad T

olls S
etting 

S
treet C

apacity E
xpansion 

T
raffic L

ight S
etting 

O
rienting S

equences of 
Streets

C
onstructing N

ew
 S

treets 

S
treet C

apacity E
xpansion 

M
aking S

om
e S

treets 
O

ne-W
ay

D
em

an
d

 

T
raffic A

ssign
m

en
t 

Objective Reference 

Enumeration Scheme with Other 
Methods   ●   ●   F DUE General Weighted Sum 

Multi-Objective  
Yang and Bell 
(1998a) 

Hill Climbing, Simulated Annealing, 
Tabu Search, Genetic Algorithm, 
Hybrids of Tabu Search 

  ● ●    F DUEMin. Total Travel Time  Cantarella et al. 
(2006) 

Genetic Algorithm ●     ●  E SUEMax. Profit Dimitriou et al. 
(2008a) 

Gradient Based Method with Penalty 
Function   ●   ●   F DUEMin. Total Travel Cost + 

Construction Cost 
Zhang and Gao 
(2009) 

Scatter Search   ●    ● F SUEMin. Total Travel Time  Gallo et al. (2010) 
 

3.1.3. Time-dependent Studies of Road Network Design Problem (RNDP) 

Because demand and land use are changing over time, the consideration on the planning horizon is important to be 

considered in the strategic decision making. However, there are only a few time-dependent studies of the RNDP, 
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which can be classified into two groups, namely the time-dependent Continuous and Discrete Network Design 

Problems (referred to as CNDP-T and DNDP-T respectively) as shown in Table 4.  

Table 4. A Summary on Time-Dependent Network Design Studies. 

Decision  

Continuous Discrete 

Solution  
Method 

R
oad T

olls 
S

etting 

Street C
apacity 

 E
xpansion 

Street C
apacity 

 E
xpansion 

C
onstructing 

N
ew

 S
treets 

D
em

an
d

 

T
raffic A

ssign
m

en
t 

Objective  Reference 

CNDP-T 

Generalized Reduced 
Gradient Method  ●   E DUEMax. Consumer Surplus Lo and Szeto (2004) 

Generalized Reduced 
Gradient Method ● ●   E DUEMax. Discounted Social Surplus Szeto and Lo (2005, 2008) 

Generalized Reduced 
Gradient Method ● ●   E DUEMax. Discounted Social Surplus 

Max. Intergeneration Equity Szeto and Lo (2006) 

Generalized Reduced 
Gradient Method ● ●   E DUEMax. Discounted Consumer 

Surplus Lo and Szeto (2009) 

DNDP-T 

Generalized Reduced 
Gradient and Branch 
and Bound 

●  ●  E DUEMax. Discounted Consumer 
Surplus O’Brien and Szeto (2007) 

All these groups deal with determining the sequence of the decisions to be made within the modeling horizon. 

Their bi-level models can be viewed as an extension of the bi-level network design model (1)-(4) and time indices 

appear in the resulting model as shown below: 

(U1) 1 1 1min  ( ( ), ..., ( ))...
u T T TF u , ,u ,v u v u  (5) 

s.t.    1 1 1( ( ),..., ( )) 0... T T TG u , ,u ,v u v u   (6) 

where vt(ut) is implicitly determined by:  

(L1) ,1 1min   ( ..., , ..., )
v T Tf u , u v v  (7) 

s.t.    ,1 1( ..., ,..., ) 0T Tg u , u v v    (8) 

where  tu u  and  tv v , and the modeling horizon is [1, T]. If tv is not equal to 1tv  , then a project should 

start at time t. In this way, the project phasing is captured. 
 

3.2. Studies of Transit Network Design Problems and Transit Network Design and Frequency Setting 

Problems (TNDP and TNDFSP) 

Usually, the main inputs to TNDP include (1) the network of available infrastructure, which might consist of the 

urban road network (with or without dedicated facilities such as bus stops), rail structures (e.g. tramways) and (2) 

the estimated travel demand. Depending to the type of problem, TNDPs may include various combinations of 

inputs such as (3) the available budget, (4) capacity of buses, (5) maximum or desired number of bus lines, (6) set 

of predefined possible bus lines, (7) maximum and minimum allowable round trip time of bus lines, (8) frequency 

of bus lines, (9) maximum number of bus stops, (10) minimum coverage area by the bus network as the percentage 

of demand that can be served, (11) maximum number of transfers, etc. For TNDFSP, additional information is 

required such as fleet size, and the minimum service frequency, etc. 

As stated in Guihaire and Hao (2008), the typical considerations for TNDP are normally the following: (1) 

dependency on the existing routes, (2) area coverage, (3) route and trip directness, (4) demand satisfaction, (5) the 
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number of lines or total length of routes, and (6) the overall shape of the network. For TNDSFP, additional 

considerations such as the number of runs and frequency bounds for each line are usually included. Depending on 

the decision maker’s policy for transit networks, these considerations can be reflected in constraints or objective 

functions by setting a bound for the measure or optimizing the measure respectively. For example, route length can 

appear in the objective function (e.g., Barra et al., 2007) and route constraints (e.g., Szeto and Wu, 2011). For the 

former, the total route length is minimized whereas for the latter, the route length of each transit line cannot be 

exceeded by a user-predetermined value. 

Regarding to numerous studies in TNDFSP and TNDP, a summary are presented in Table 5. The studies in these 

two fields are very diverse and different in terms of objectives, the constraints, and the solution methods used. The 

problems are usually approached by multiple criteria to consider the public sector’s, line operators’ and the users’ 

interests but normally a weighted sum objective function is eventually used. Also, most of them assume a very 

simplified passenger behavior that leads to a single-level optimization problem. 

In most of the existing bus network design problems, any flows on the road network other than buses such as 

cars, taxis, and bicycles were generally ignored, and hence the interactions between these flows and bus flows were 

not taken into account. 

Table 5. A Summary on TNDP and TNDFSP studies. 

Reference Constraints Objective(s) Solution Method 

TNDP Studies 

Patz (1925) - Bus Capacity. 
- Demand.  Min. Number of Empty Seats. Heuristic 

Sonntag (1977)  Restricted Set of Possible Lines. - Min. Average Travel Time. 
- Min. Number of Transfers. Heuristic 

Mandl (1980) - Constant Frequency. 
- Area Coverage. 

- Min. Travel Time. 
- Max. Route Directness. Heuristic 

Pape et al. (1992) Area Coverage. - Min. Number of Lines. 
- Max. Number of Direct Passengers. Heuristic 

Xiong and Schneider 
(1992) Nil - Min. Total Travel Time. 

- Min. Construction Cost. 
Cumulative Genetic 
Algorithm 

Chakroborty and Dwivedi 
(2002) 

Route feasibility. 
 

- Min. Total Travel Time. 
- Min. Unsatisfied Demand. 
- Max. Number of Passengers, Who Travel with 
at Most Two Transfers. 

Genetic Algorithm 

Zhao and Gan (2003) 

Greedy Search, Hill 
Climbing, Hybrid of 
Tabu Search, 
Simulated 
Annealing, and 
Greedy Search 

Zhao and Ubaka (2004) 

- Predefined Routes and Areas  
- The Number of Lines and Stops. 
- Route and Network Directness. 
- Deviation from Main Routes. 
- Route Length 

- Min. Number of Transfers. 
- Max. Route Directness.  
- Max. Area Coverage.  

Greedy Search, Fast 
Hill Climb Search 

Yu et al. (2005) - The Length of Lines. 
- Route Directness. 

- Min. Total Number of transfers. 
- Min. Maximum Passenger Flow in Each Route Parallel Ant Colony 

Guan et al. (2006) 
- The Link Capacity. 
- The Length of Line. 
- Number of Transfers. 

- Min. Total Length of Routes. 
- Min. Total Numbers of Routes Taken by 
Passengers. 
- Min. Total Distances Traveled by Passengers. 

Mathematical 
Method 

Zhao and Zeng (2006) 

- Route Directness. 
- Route Feasibility. 
- Number of Routes. 
- Route Length. 
- Budget. 

- Min. Average Number of Transfers 
- Max Service Coverage 

Hybrid 
Metaheuristics 

Barra et al. (2007) 
- Travel Demand Satisfaction. 
- Budget. 
- Service Level. 

 Min. Total Length of Routes. Mathematical 
Method 

Yang et al. (2007) The Length of Routes. - Max. Number of Direct Travelers Per Unit 
Length. Parallel Ant Colony 

Mauttone and Urquhart 
(2009) Travel Demand Satisfaction. - Min. Number of Routes. 

- Min. Total Travel Time. Heuristic 

Fan and Mumford (2010) The Number of Lines. - Min. Total Travel Time. 
- Min. Total Number of Transfers. 

Hill-Climbing, 
Simulated Annealing
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TNDFSP Studies 

Lampkin and Saalmans 
(1967) Fleet Size. - Max. Number of Direct Passengers. 

- Min. Total Travel Time. Heuristic 

Silman et al. (1974) Budget. 
- Min. Fleet Size. 
- Min. Journey Time. 
- Min. Overcrowding. 

Heuristic 

Dubois et al. (1979) Budget. Min. Total Travel Time. Heuristic 

Hasselström (1979; 1981) Budget. - Min. Number of Transfers. 
- Max. Number of Passengers. 

Mathematical 
Method 

Ceder and Wilson (1986) 
- Minimum Frequency. 
- Fleet Size. 
- Route Length. 

- Min. Excess Travel Time, Transfer and Waiting 
Time. 
- Min. Vehicle Costs. 

Heuristic 

Van Nes et al. (1988) Fleet Size. - Max. Demand Satisfaction. 
- Max. Number of Direct Trips. 

Mathematical 
Method+ heuristic 

Shih and Mahmassani 
(1994); Shih et al. (1998) Nil 

- Min. Travel Time. 
- Max. Demand Satisfaction. 
- Min. Fleet Size. 

Heuristic 

Baaj and Mahmassani 
(1995) 

- Headway. 
- Fleet Size. 
- Capacity. 

- Max. Number of Direct Trips. 
- Min. Waiting Time, Transfer Time. Heuristic 

Bussieck (1998) 
- Number of Transit Vehicles. 
- Frequency. 
- Line and Vehicle Capacity. 

- Max. Number of Direct Passengers. 
- Min. Operator Costs. 

Mathematical 
Method 

Pattnaik et al. (1998) - Headway. 
- Load Factor 

- Min. Operator Costs. 
- Min. Passengers’ Travel Time. Genetic Algorithm 

Carrese and Gori (2002) 

- Demand Satisfaction. 
- Routes Length. 
- Number of Transfers. 
- Total Travel Time. 
- Fleet Size. 

- Min. Users Waiting Time and Excess Time 
Compared to the Minimum Path. 
- Min. Operator Costs. 

Heuristic 

Bielli et al. (2002) Using Predetermined Lines.  Max. 24 Criteria of Network Performance. Genetic Algorithm 

Fusco et al. (2002) 

- Level of Service. 
- Satisfied Demand. 
- Lines Configuration. 
- Frequency. 

Min. Overall Cost. Heuristics 

Ceder (2003) - Route Length. 
- Deviation from Shortest Path.  

- Min. Operator and Users Costs. 
- Min. Fleet Size Heuristic 

Ngamchai and Lovell 
(2003) Area Coverage. - Min. Cost of Waiting and Traveling.  

- Min. Fleet Size or Fleet Cost. Genetic Algorithm 

Tom and Mohan (2003)  Nil - Min. Operation Costs. 
- Min. Total Travel Time. Genetic Algorithm 

Wan and Lo (2003) 
- Service Frequencies of Lines. 
- Bus Capacity. 

 Min. Operation Costs. MIP Solver in 
CPLEX 

Agarwal and Mathew 
(2004) 

- Frequency. 
- Load Factor. - Min. Operator and Users Cost Heuristic, Parallel 

Genetic Algorithm 

Fan and Machemehl 
(2004) Route Length. 

- Min. Time of Waiting, Traveling, and Walking  
- Min. Fleet Size. 
- Min. Cost of Unsatisfied Demands. 

Genetic Algorithm 

Hu et al. (2005) 
- Route Length. 
- Average Transfer Times, Station 
Stopping Times and Headways. 

- Max. the Nonstop Passenger Flow 
- Min. Sum of Passengers’ and Operator Costs 

Genetic Algorithm, 
Ant Colony 

Zhao (2006) Route Directness. 
- Min. Total No. of Transfers. 
- Max. Demand Coverage. Simulated Annealing

Zhao and Zeng (2007) 

- Headway Bound. 
- Fleet Size. 
- Route Length. 
- Load Factor. 

Min. Weighted Sum of Users’ and Operator Cost. Heuristics, 
Simulated Annealing

Borndörfer et al. (2008)  Demand Satisfaction - Min. Operation Cost. 
- Min. Total Travel Time.  Column Generation 

Pacheco et al. (2009) 
- Number of Routes. 
- Fleet Size. 
- Location of the Bus Stops. 

Min. Total Time of Waiting and Traveling. Local Search, 
Tabu Search 

Cipriani et al. (2010) 
- Bus Capacity. 
- Frequency. 
- Route Length. 

Min. Sum of Operator and User Costs. 
Heuristic, 
Parallel Genetic 
Algorithm 

Szeto and Wu (2011) 

- Fleet Size. 
- Number of Transit Stops. 
- Frequency. 
- Route Length. 

Min. Weighted Sum of the Number of Transfers 
and Network Travel Time. Genetic Algorithm 

 

3.3. Studies of the Multi-Modal Network Design Problem (MMNDP) 

A summary of the studies of MMNDP is mentioned in Table 6. The lower-level problem of these studies is 
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formulated as the modal split-traffic assignment problem to capture the interaction of the demand between modes. 

As we can see, these studies can be divided into two groups. The first group covers the studies in allocating 

exclusive lanes to specific transportation modes. There are few works in this group, in which most of them analyze 

some restricted scenarios as decision making options, and there is just one case dealing with mathematical 

modeling. The second group encompasses the studies which only deal with transit network design decisions. The 

third group covers studies that simultaneously consider various strategic and tactical decisions of UTNDP. Again, 

limited works are in this group. Moreover, these two groups assume that travelers can reach their destinations by 

using one mode and combined mode trips such as bus-metro trips and Park'n Ride trips are not considered. Indeed, 

there is a third group that further considers the operational decisions of RNDP and TNDP. We do not cite them 

here, as they fall outside the scope of this paper.  

Table 6. A Summary on MMNDP studies. 

Reference Decision(s)  Lower-Level 
Problem 

Modes
Flow 
Inter-
action

Approach Objective(s) Solution  
Method 

First Group Problems 

Seo et al. (2005) Allocating Exclusive 
Bus Lanes Nil (Software) Car and 

Bus Yes Scenario  
Comparison - - 

Elshafei 
(2006) 

Allocating Exclusive 
Bus or Bicycle Lanes   Nil (Software) Car, Bus,

Bicycle Yes Scenario  
Comparison - - 

Mesbah et al. 
(2008) 

Allocating Exclusive 
Lanes for Buses 

Logit Model, 
DUE, 

Uncongested 
Transit 

Assignment 

Car and 
Bus Yes Mathematical 

Model Min. Total Travel Time Enumeration 
Method 

Li and Ju  
(2009) 

Allocating Exclusive 
Bus Lanes 

Combined 
Mode-Split 

Dynamic DUE

Car and 
Bus Yes Scenario  

Comparison - - 

Second Group Problems 

Lee and Vuchic 
(2005) 

- Determining Bus 
Routes 
- Determining Bus Line 
Frequencies 

Logit Model, 
Congested 

Transit 
Assignment 

Car and 
Bus No 

(No 
mathematical 

model) 
 Min. Total Travel Time. Heuristic 

Cipriani et al. 
(2006) 

- Determining Bus 
Routes 
- Determining Bus Line 
Frequencies 

Logit Model, 
DUE, 

Congested 
Transit 

Assignment 

Car and 
Bus No Mathematical 

Model 
Min. Sum of Operator, 
Users and External Costs. Heuristic 

Fan and Machemehl 
(2006a) 

- Determining Bus 
Routes 
- Determining Bus Line 
Frequencies 

Logit Model, 
Congested 

Transit 
Assignment 

Car and 
Bus No Mathematical 

Model  Min. Total Travel Time. Genetic Algorithm 

Fan and Machemehl 
(2006b) 

- Determining Bus 
Routes 
- Determining Bus Line 
Frequencies 

Logit Model, 
Congested 

Transit 
Assignment 

Car and 
Bus No Mathematical 

Model Min. Total Travel Time. Simulated 
Annealing 

Fan and Machemehl 
(2008) 
 

- Determining Bus 
Routes 
- Determining Bus Line 
Frequencies 

Logit Model, 
Congested 

Transit 
Assignment 

Car and 
Bus No Mathematical 

Model 

Min. Sum of Operator 
Cost, User Cost, and 
Unsatisfied Demand Costs 

Tabu Search 

Beltran et al. (2009) 

- Determining Bus 
Routes 
- Determining Bus Line 
Frequencies 

Logit Model, 
DUE, 

Congested 
Transit 

Assignment, 

Car and 
Bus No Mathematical

Model 
Min. Sum of Operator, 
Users and External Costs. 

Heuristic, 
Genetic Algorithm 

Gallo et al. (2011) Determining Bus Line 
Frequencies 

Combined 
Mode-Split 
/Assignment 

Car, Bus, 
Metro Yes Mathematical

Model 
Min. Sum of Operator, 
Users and External Costs. 

Heuristic, Scatter 
Search, Genetic 
Algorithm 

Third Group Problems 
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Reference Decision(s)  Lower-Level 
Problem Modes

Flow 
Inter-
action

Approach Objective(s) Solution  
Method 

Cantarella and 
Vitetta (2006) 

- Determining Signal 
Setting 
- Determining Parking 
Spaces 
- Lane Allocation in 
Two-Way Streets 
- Determining One-Way 
Street Directions 

Logit Model, 
DUE, 

Uncongested 
Transit 

Assignment 

Car and 
Bus No Mathematical 

Model 

- Min. Total Travel Time 
of Cars and Buses 
- Min. Total Pedestrian 
Travel Time  
- Min. CO Emission  
- Min. Number of Vehicles 
that Park Outside Desired 
Destinations 
- Max. Number of Users 
that shifts to Bus 

Genetic Algorithm 

Szeto et al. (2010) 
- Lane additions over 
time 
- Toll setting over time 

Combined 
Mode-Split 
/Assignment 

Car and 
Bus No Mathematical 

Model Max. Social Surplus 

Generalized 
Reduced Gradient 
Method and Branch 
and Bound 

Miandoabchi  
et al. (2011a) 

- Determining One-Way 
Street Directions 
- Lane Allocation in 
Two-way Streets 
- Constructing New 
Streets 
- Lane additions 
- Designing Bus Routes 

Combined 
Mode-Split 
/Assignment 

Car and 
Bus 

Yes Mathematical 
Model 

- Max. Total User Benefit 
- Max. Bus Demand Share  
- Max. Bus Demand 
Coverage  
-Min. Average Generalized 
Cost of Bus Trips 

Simulated 
Annealing Hybrids 
with: 
- Genetic 
Algorithm 
- Clonal Selection 
Algorithm 

Miandoabchi  
et al. (2011b) 

 Same as Miandoabchi  
et al. (2011a) Except 
Allocating Exclusive 
Bus Lanes Instead of 
Designing Bus Routes 

Combined 
Mode-Split 
/Assignment 

Car and 
Bus Yes Mathematical

Model 
- Max. Total User Benefit 
- Max. Bus Demand Share  

SA Hybrids with:  
- Genetic 
Algorithm 
- Particle Swarm 
Optimization 
- Harmony Search 

 

4. Review of Solution Techniques to Urban Transportation Network Design Problem (UTNDP) 

The solution methods mentioned in Tables 1-6 can be classified into three categories: (1) exact or mathematical 

methods, (2) heuristics, and (3) metaheuristics. Exact methods such as the branch and bound method, branch-

backtrack based algorithms or mathematical programming techniques rely on some mathematical properties to 

solve the problem to at least local optimality. Although some of them such as mathematical programming 

techniques for solving linear and nonlinear problems can be used to solve for realistic, large networks efficiently, 

others for integer programming problems such as the branch and bound method is inapplicable for medium or large 

sized networks because of computationally inefficiency.  

Heuristics are usually developed from the insight of the problem but they may not be convergence. However, 

they are always more efficient than the branch and bound method and can be applied to large networks.  

Metaheuristics such as Simulated Annealing (SA) and Genetic Algorithm (GA) were proposed based on the 

analogy on the physical, chemical, or biological process. They do not require any mathematical property of the 

problem to solve for solutions and can be used for obtaining nearly global optimal solutions. The computation 

speed of these methods is much faster than exact methods for integer programming problems in general at the 

expense of the solution accuracy. Figure 2 summarizes the applications of some metaheuristics. This figure shows 

that GA and SA have been mostly used to solve UTNDP, probably because they are classical metaheuristics. Some 

other common methods such as Tabu Search (TS), Scatter Search (SS), Ant Colony (AC), Ant Systems (AS), and 

Particle Swarm Optimization (PSO) have been used in a few studies. Also, some studies have developed hybrid (H) 

metaheuristics to achieve a better solution quality than non-hybrid metaheuristics. This figure also reveals that 

metaheuristics have been mostly applied to TNDFSP, DNDP, and MMNDP, mainly because of the presence of 

discrete decision variables in these problems and their non-convexity which causes computational burden if exact 

methods were used.  
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Figure 2. A Summary of metaheuristics used for UTNDP. 

In the following, more discussion of solution techniques to RNDP, TNDP and TNDFSP, and MMNDP will be 

given in Sections 4.1-4.3 respectively. 
 

4.1. Solution Techniques to the Road Network Design Problem (RNDP) 

The literature of the Continuous Network Design Problem (CNDP) encompasses a variety of solution techniques, 

given the differentiability of the continuous variables. This diversity is very noticeable in 1970 and 1980 works. 

For Discrete and Mixed Network Design Problems (DNDP and MNDP), discrete variables make these problems 

NP-hard and non-convex so the exact methods such as the Branch and Bound (BB) method cannot solve these 

problems efficiently. We have noted that due to the intrinsic complexity of these problems, diversity of solution 

algorithms is somehow limited. A large amount of solution algorithms belong to the metaheuristics category and 

the few remaining algorithms are of exact and heuristic type methods. For time-dependent problems, very limited 

solution algorithms have been developed as the problems are relatively new.  

As expected, the solution techniques to RNDP can be categorized into exact methods, heuristic methods and 

metaheuristics, since RNDP belongs to UTNDP. Exact methods such as branch and bound can be found mostly in 

DNDP. Examples of using such methods include LeBlanc (1975), Chen and Alfa (1991), Drezner and Wesolowsky 

(1997), and Long et al. (2010). They developed the BB algorithm to directly solve their (upper) problems. LeBlanc 

(1975) and Long et al. (2010) solved the 24-nodes and 76-links Sioux Falls network, and Chen and Alfa (1991) 

solved four networks, the largest of them being the 41-nodes and 73-links Winnipeg network. Drezner and 

Wesolowsky (1997) solved small and medium sized networks, the largest being a 40-nodes and 99-links randomly 

made network.  

Some studies transformed RNDP to a single level problem and used exact methods to solve the resultant 

problem. For example, Gao et al. (2005) transformed DNDP to a nonlinear programming problem using support 

function concept and solve the nonlinear problem by existing nonlinear programming techniques. Gao et al. (2007) 

developed a gradient-based method for CNDP using lower-level problem’s optimal-value function. Zhang and Gao 

(2009) reformulated MNDP as CNDP, and solved the bi-level model by the use of optimal-value function of the 

lower-level model in a gradient-based method.  

Other studies directly formulated RNDP into a mathematical program with equilibrium constraints, and then 

exact methods to solve the resultant problem. Not many studies adopted this approach. For CNDP, Lo and Szeto 
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(2004, 2006, 2007, 2009) and Szeto and Lo (2005, 2009) adopted the generalized reduced gradient based method to 

solve the resultant nonlinear program while for MMNDP, Szeto et al. (2010) used the branch-and-bound algorithm 

to the mixed-integer problem and the generalized reduced gradient based method was employed to solve the 

relaxed problem.  

The second category is heuristics. There exists a wide variety of heuristics for RNDP and especially for CNDP. 

Before applying heuristics, a number of studies of RNDP use the indirect approach, in which the proposed bi-level 

model is first transformed to a single level optimization model or a mathematical program with equilibrium 

constraints, and then the resultant model is solved. For instance, Steenbrink (1974b) approximated user optimal 

flows with system optimal flows and solved DNDP using iterative decomposition method. Abdulaal and LeBlanc 

(1979) reformulated their problem as an unconstrained optimization and solved it by a direct search method. 

Marcotte (1983) transformed CNDP into a single level equivalent differentiable optimization problem and solved it 

using a constraint accumulation algorithm. Poorzahedy and Turnquist (1982) approximated the bi-level problem to 

a single level problem, using the objective function of the lower-level problem as the objective function, and all 

constraints of upper and lower-level problems as the constraints set, and then used two branch-backtrack based 

algorithms to solve the Sioux Falls network. Davis (1984) transformed CNDP into a single level problem by 

including constraints to represent the SUE condition and solved it using the sequential quadratic programming and 

generalized reduced gradient methods. LeBlanc and Boyce (1986) reformulated CNDP into a single level linear 

model with the combined lower and upper-level objective functions and solved it using Bard's method. Marcotte 

(1986) and Marcotte and Marquis (1992) both transformed the UE conditions into variational inequalities and 

developed heuristics for CNDP based on iterative optimization assignment method. Meng et al. (2001) developed 

augmented Lagrangian method in which the DUE conditions are represented by a single constraint in terms of the 

marginal function. Finally, Wang and Lo (2010) transformed CNDP into a mixed integer linear program and solved 

it using CPLEX.  

The other group of RNDP studies has developed heuristics to directly solve the bi-level model of the problem. 

They mostly used descent search methods and exploit the derivative information of the implicit response function 

of v(u) that can be obtained from the lower-level problem. Most of these studies are of CNDP type. For example, 

Suh and Kim (1992) used a bi-level descent algorithm based on variational inequality sensitivity analysis. Yang 

(1997) applied sensitivity analysis based method to set road tolls. Ziyou and Yifan (2002) used the sensitivity 

analysis based method to determine signal setting and link expansion. To solve CNDP, Chiou (2005) employed 

four gradient-based methods, namely  Rosen’s gradient projection method, conjugate gradient projection method, 

quasi-Newton projection method, and Rosen’s gradient projection method with the techniques of parallel tangents 

(PARTAN), with the use of derivative information. Chiou (2008) proposed a hybrid approach to iteratively solve 

the two bi-level models (one for reserved capacity maximization and one for delay-minimization) and used 

projected quasi-Newton in part of it. Again, the sensitivity analysis based method was also incorporated to find the 

gradient information. 

There are few studies from 1970s that developed single level models because of using system optimization for 

the traffic assignment, and directly solved them by using heuristic methods. For instance, Dantzig et al. (1979) 

developed an iterative decomposition method and Steenbrink (1974a) used iterative-optimization-assignment. 

The third category of solution methods belongs to metaheuristics. In almost all of the proposed metaheuristics, 

the lower level problem is solved for each newly generated solution to calculate the objective function value. The 

application of this type of solution methods is prevalently found in DNDP and MNDP as mentioned earlier. 
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Therefore, many works available in the literature (as shown in Tables 2-3) rely on metaheuristics or their hybrids.  

CNDP has the fewest applications of metaheuristics with few applications of SA and GA. The budget limit as the 

main constraint of CNDP has been considered as the penalty for the objective function by Meng and Yang (2002) 

and Yang and Wang (2002) in SA and by Mathew and Sharma (2009) in GA.  

In contrast, DNDP has a variety of metaheuristics and their hybrids and these solution techniques usually handle 

constraints directly within the algorithmic steps. For DNDP with strategic decisions, AS and its hybrids have been 

applied. For DNDP with tactical decisions, classical metaheuristics such as SA, GA, TS have been proposed for 

orientation of one-way streets and PSO has been used to solve the lane allocation problem. In DNDP with strategic 

and tactical decisions, a number of classical metaheuristics and two hybrid metaheuristics of GA have been 

developed. The construction budget in DNDP is tackled inside the algorithmic steps rather than by penalties in the 

objective function. For instance, Poorzahedy and Abolghasemi (2005) and Poorzahedy and Rouhani (2007) 

considered budget feasibility when new solutions were generated by the ants. In Miandoabchi and Farahani (2010), 

budget feasibility was maintained when perturbation was performed or it was repaired when generating new 

solutions (e.g. by crossover operator in GA). In DNDP including tactical decisions, constraints some are related to 

street orientations (e.g. connectivity between OD pairs) or lanes configurations. These are either considered in the 

move generation phase (e.g. in SA), or are checked after generating new solutions (e.g. in GA) and the infeasible 

solutions are discarded. Only in lane allocation problem by Zhang and Zhao (2007), the out of bound lane 

allocations resulting from solution update by PSO were repaired.  

For MNDP, various metaheuristics such as SA, TS, GA and SS have been used to solve the problems. Signal 

timing constraints are sometimes imposed in problems with signal setting decisions (e.g. Cantarella et al., 2006; 

Gallo et al., 2010). Signal timings are obtained before solving the lower level model for each network design 

scenario. 
  

4.2. Solution Techniques to the Transit Network Design Problem and the Transit Network Design and 

Frequency Setting Problem (TNDP and TNDFSP) 

As in DNDP and MNDP, the NP-hard nature of TNDFSP and TNDP requires developing innovative solution 

methods to get nearly optimal solutions efficiently for practical sized problems. For this reason, heuristics and 

metaheuristics were always used and sometimes parallel computing strategies were incorporated (e.g. Agarwal and 

Mathew, 2004; Yu et al., 2005; Yang et al., 2007; Cipriani et al., 2010), although not many studies were found to 

apply parallel computing strategies. They usually include methods to generate candidate routes using heuristic 

algorithms and to define the configuration of routes using heuristics or metaheuristics (e.g. Chakroborty and 

Dwivedi, 2002; Zhao and Zheng, 2006; Pattnaik et al., 1998; Bielli et al., 2002; Tom and Mohan, 2003; Agarwal 

and Mathew, 2004; Lee and Vuchic, 2005; Fan and Muchemehl, 2004; Zhao and Zeng, 2007). Other methods 

construct a set of routes and then try to improve them usually by metaheuristics (e.g. Hu et al., 2005; Yang et al., 

2007; Mauttone and Urquhart, 2009). Generation of candidate routes is usually done using shortest-path-based 

algorithms which add nodes or links to the route, until some sort of defined constraints for route length, travel time 

or etc. are violated. The configuration of routes is usually defined by selecting and improving the generated routes 

which is accompanied by line frequency determination where required. Assignment of passenger demand values to 

the network is performed at this stage. According to Kepaptsoglou and Karlaftis (2009), the procedure for route 

configuration can be categorized based on the algorithms used (such as mathematical programming, iterative 

heuristic procedures, local search heuristics, or metaheuristic procedures), and based on whether frequencies and 

routes are determined sequentially or simultaneously. 
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Although a large collection of metaheuristic applications to these problems can be found in the literature, the 

applications are limited to very few numbers of classical and non-classical metaheuristics. Classical metaheuristics 

such as GA and SA are most prevalent among the other classical and non-classical methods such as TS and AC. 

Among these four methods, GA has the most number of applications especially in TNDFSP. Further research on 

testing the efficiency and solution quality of metaheuristics that have not been applied to TNDP and TNDFSP can 

be done. 

There are limited studies that employed mathematical methods for obtaining solutions. For example, Bussieck 

(1998) applied a relaxation, branch-and-bound method in combination with commercial solvers to obtain solutions. 

Wan and Lo (2003) used MIP solver in CPLEX to solve their mixed integer problem. Guan et al. (2006) employed 

a standard branch and bound method to solve their problem. Barra et al. (2007) applied the constraint programming 

technique for their problem. Although these solution methods are exact, they can normally obtain solutions for 

small networks.  
 

4.3. Solution Techniques to the Multi-Modal Network Design Problem (MMNDP) 

Given the relatively small body of the literature in MMNDP, the solution techniques proposed in this field are few. 

In fact, to our best knowledge, only Mesbah et al. (2008) obtained exact solutions using simple enumeration for the 

exclusive lane allocation problem, which belong to the first group problems. Almost all of the studies in the second 

and third group of MMNDP, which includes various combinations of UTNDP decisions, developed metaheuristics 

to solve the problem. This is because the high complexity arising from the problem structure. The only exception is 

Szeto et al. (2010) which applied a generalized reduced gradient method together with the branch-and-bound 

algorithm. 

A wide variety of metaheuristics such as SA, TS, GA, and non-classical hybrid metaheuristics such as hybrids of 

SA with PSO, clonal selection algorithm and harmony search have been proposed to solve the problems. For 

example, Miandoabchi et al. (2011a; 2011b) applied SA as an improvement heuristic to the new solutions 

generated by PSO, clonal selection algorithm and harmony search. In other multi-modal network design problems, 

the values of non-topological decision variables such as signal timings or bus line frequencies are determined after 

a new solution is generated by the metaheuristics. In such problems, the values of these variables are obtained after 

solving the lower level problem to calculate the value of the objective function (e.g. Cantarella and Vitetta, 2006; 

Beltran et al., 2009). However, parallel computing strategies have not been implemented. 
 

4.4. Solution Techniques to Lower-Level Problems 

The lower-level problems in RNDP are always in the form of pure traffic assignment problem. The most prevalent 

forms of traffic assignment in these problems are the DUE assignment with SUE and AON assignments as the 

other forms. These lower level problems are often solved many times in some solution methods such as 

metaheuristics, and hence the computation burden of the overall solution method can be due to solving these 

problems too often.   

The most common method to solve DUE assignment in the literature is the convex-combination method (the 

Frank-Wolfe (1956) method) and its variants. Few different solution methods can be found such as the method of 

successive averages based on the flow averaging proposed by Powell and Sheffi (1982) or cost averaging proposed 

by Cantarella et al. (2006). The most common algorithm applied in the literature to solve the SUE problem is the 

Method of Successive Averages (MSA) (e.g. Chen and Alfa, 1991; Zhang and Gao, 2007; Gallo et al., 2010; Long 

et al., 2010) based on flow averaging. 

Transit assignment in TNDP and TNDFSP is mostly based on uncongested transit assignment which is 
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considered as constraints of mathematical models (if any) or in computation steps of the algorithms. In such 

assignment problems, concepts of shortest path assignment are used. Transit assignment models with the hyperpath 

concept of Spiess and Florian (1989) are absent in TNDP and can scarcely be found in TNDFSP. For instance, 

Cipriani et al. (2010) solved a TNDFSP considering the concept of hyperpath. Although they did not mention how 

to solve the transit assignment model, it is believed that they adopted Spiess and Florian’ solution strategy. 

In MMNDP, the modal-split and trip assignment problem is solved using variant approaches. Some used 

simulation software packages such as NETSIM (Seo et al., 2005) and VISSIM (Elshafei et al., 2006) to solve the 

lower-level problem. The others considered mode split and assignment in separate steps. Cantarella and Vitetta 

(2006) solved the mode split problem, then equilibrium traffic assignment and considered fixed travel times for 

transit network. Mesbah et al. (2009) solved the mode split problem, traffic assignment and transit assignment in 

iterative steps until convergence was met, and Beltran et al. (2009) solved the mode split and equilibrium traffic 

and transit assignment problems in two iterations. Transit assignment was solved using the hyperpath approach. 

Moreover, some studies used logit formula for mode split, and then solved the assignment problems for one or all 

modes. The others considered the joint mode split and traffic assignment problem. Li and Ju (2009) proposed a 

heuristic algorithm, and Miandoabchi et al. (2011) used the diagonalization algorithm to solve their joint problem. 
 

4.5. Conclusions for Solution Techniques to UTNDP 

From the investigation of solution techniques, many conclusions on metaheuristics can be drawn. For example, it 

can be concluded that most metaheuristic techniques developed for UTNDP belong to the category of classic 

metaheuristics. Although a number of studies attempted to use some newer techniques, none of them have explored 

the application of the more recent metaheuristics in UTNDP. Furthermore, even though some versions of hybrid 

metaheuristics have been proposed for many other problems, no such applications are present in CNDP, and only 

one such study can be found in TNDFSP. Another point is that, most proposed metaheuristics in UTNDP are of 

conventional type, and very few of them have used parallelizing strategies to improve the computational efficiency. 

Similarly, multi-objective type metaheuristics are rarely used in UTNDP and most studies have used the 

conventional weighted-sum approach to obtain a single objective function and then applied single objective type 

metaheuristics to obtain solutions. Another observation from the literature is that, the branch and bound algorithm 

and metaheuristics have been used separately from each other and no attempt has been made to combine them. 

Finally, the above discussions suggest that most efforts to solve UNTDP are directed towards metaheuristic 

methods and little attention has been devoted to non-metaheuristics.  

In addition, two points can be addressed about solution techniques for the lower-level problem. One point is that 

the studies that used SUE or transit assignment mostly rely on method of successive averages which is not fast 

enough to solve such problems. Another point is that nearly all studies have used the conventional algorithm to 

solve the lower level problem, which is the most important source of computational effort. No study has attempted 

to speed up the solution process of lower level problems using other approaches, other than solving every single 

lower level problem.  

Lastly, we find that that descent search methods, such as SAB which are prevalent in RNDP, have not been used 

in TNDSP and MMNDP. This observation together with conclusions for metaheuristics and solution methods for 

the lower-level problem give us hints on the future research directions. 

 
5. Applications in real-world case studies 

In this section, some real-world case studies in the literature of UTNDP are reviewed. The aim is to provide 
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information about real world examples solved in the studies and give insight about the size of the networks for each 

problem catalogues to be handled in the future. As UTNDP is a practical problem, some studies have applied their 

developed models to design realistic city networks. Table 7 summarizes the real world networks studied in RNDP 

publications. The city names, countries, and numbers of nodes and links of the networks are reported if they can be 

found in the publications. Tables 8 and 9 summarize real-world case studied in TNDP, TNDFSP, and MMNDP, 

including city names, countries, and attributes of the basic network of infrastructures for designing public transit 

networks. As we can see, the size of the network varies substantially from study to study even under the same 

problem catalogue, probably because the scope of the study varies from one to another. Some requires more nodes 

to cover more locations or larger areas but some do not. 

 When we compared the number of papers with case studies with those without as shown in Tables 1-6, we can 

conclude that most of UTNDP papers do not include a case study. 18 out of 47 studies for transit networks 

reviewed in this paper have solved real world cases. The case studies in RNDP are fewer than that in TNDP and 

TNDFSP and only 6 out of 51 studies cited here, have reported case studies. CNDP with 29 cited studies 

constitutes a major part of RNDP literature, but only 1 recent case study can be found in this category. This is a 

good indication of non-practicality of continuous street expansion decisions. For DNDP, 3 out of 17 studies have 

used real world problems and this is limited to DNDP with only strategic decisions. For MNDP, 2 out of 5 studies 

have cited real problems, in which the decisions are traffic light settings and street orientations. Again, continuous 

street expansion decisions with case study applications are absent in MNDP. Finally for MMNDP, 4 out of 9 

studies have reported case studies. We believe that most of the studies do not include a case study because their 

focuses may be on developing efficient solution methods for practical problems and the authors have no real data to 

show the applications of the method.  

Table 7. A Summary of Case Studies in RNDP. 

Problem References City, Country No. of  
Nodes 

No. of  
Links 

No. of  
OD pairs 

CNDP (Continuous ) Mathew and Sharma (2009) Pune, India 273 1131 4083 
Steenbrink (1974b) Part of the Netherlands Road Network not reported 
Chen and Alfa (1991) Winnipeg, Canada 41 73 23 DNDP (Discrete) 
Poorzahedy and Rouhani (2007) Mashhad, I.R. Iran 1298 1726 not reported

Barcellona Pozzo di Gotto, Italy 176 510 650 
Villa San Giovanni, Italy 88 225 380 Cantarella et al. (2006) 
Melito Porto Salvo, Italy 96 189 342 

MNDP (Mixed) 

Gallo et al. (2010) Benevento, Italy 104 175 1260 

Table 8. A Summary of Case Studies in TNDP and TNDFSP. 
Problem  References City, Country Size of the Basic Network  

Mandl (1980) Swiss Network 14 nodes and 20 links  

Zhao and Zeng (2006) Miami-Dade County, USA 4,300 street segments, 2,804 nodes and 
120,000 OD pairs 

Yu et al. (2005); Yang et al. (2007) Dalian, China 3200 links, 2300 nodes and 1500 bus stops 

Guan et al. (2006) The Hong Kong Mass Transit 
Railway, China 9 nodes and 36 OD pairs  

TNDP 
(Transit 

Network) 

Mauttone and Urquhart (2009) Rivera, Uruguay 84 nodes and 143 links  

Dubois et al. (1979) 
Ten towns in France For town of Niece: 700 nodes, 250 zones 

and 5400 links.  
No data provided for the all towns 

Shih et al. (1998);  
Baaj and Mahmassani (1995) Austin, USA 177 bus stops 

Carrese and Gori (2002); Cipriani et 
al. (2010) 

Rome, Italy 1300 nodes and 7000 unidirectional links  

Pattnaik et al. (1998) A part of Madras, India 25 nodes and 35 links  

Bielli et al. (2002) Parma, Italy 459 bus stops + A network of 99 centroids 
and 685 pedestrian nodes 

Agarwal and Mathew (2004) New Delhi, India 1,332 bus stops with 4,076 links 

TNDFSP 
(Transit 
Network 

and 
Frequency) 

Hu et al. (2005) Changchun, China 
The Hong Kong Mass Transit 

No data provided for number of bus stops or 
railway stations 
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Problem  References City, Country Size of the Basic Network  

Railway, China 

Zhao (2006) Miami-Dade County, USA 4,300 street segments, and 2,804 nodes 
120,000 OD pairs 

Pacheco et al. (2009) Burgos, Spain 382 bus stops 
Szeto and Wu (2011) Tin Shui Wai, Hong Kong, China 23 nodes (zones), and 28 bus stops 

Table 9. A Summary on Case Studies in MMNDP. 

References City, Country Network Attributes 

Seo et al. (2005) Two arterial roads in Seoul, South Korea - 
Elshafei (2006) A single roadway in Washington, USA - 
Cantarella and Vitetta (2006) Crotone, Italy 254 nodes, 449 links, 21 origins and 21 destinations
Beltran et al. (2009) Rome, Italy 1300 nodes and 7000 unidirectional links  
Gallo et al. (2011) Campania, Italy 262 road nodes, 43 rail nodes, 764 road links, 98 rail 

links, and 91 centroids 
 

6. An Overview to the Literature of UTNDP  

The literature of UTNDP can be dated back to the second decade of 20th century, when modern cities started to 

emerge and their design issues and the related complexities gradually grew over time. RNDP proposed in 1970 and 

80s focused on both continuous and discrete decisions for street expansion or construction. The complexity of the 

bi-level model led to the use of SO concept in the design model, resulting in a single level model, and the resultant 

model was solved by branch and bound methods and heuristics that didn't rely on derivatives. In the 70s both 

DNDP and CNDP were researched, but later CNDP became more common since it was easier to solve. In the 

1980s, following the trend in using derivative based heuristic methods and their applicability to bi-level models, the 

use of SO concept in CNDP and DNDP became nearly abandoned and the concept of DUE was incorporated into 

CNDP and DNDP. In 1990s orientation of one-way streets was proposed which further increased the complexity of 

DNDP. This led to the use of newly emerged metaheuristic methods at that time such as simulated annealing. On 

the other hand, the studies of CNDP commonly used descent search methods and simulated annealing to obtain 

solutions.  

The availability of various metaheuristics and the development of computing technology in the 2000s resulted in 

the increased number of DNDP with variant decisions which was solved by metaheuristics. In the late 2000s, lane 

allocation in two-way streets and turning restrictions at intersections were proposed as new decisions. Heuristic 

methods were not applied for solving DNDP in 2000s, except for a new street construction problem which 

possessed specific attributes that made it possible to be solved by such a method. Also, a branch and bound method 

was used for solving the turning restriction design problem, which belongs to DNDP. Inclusion of movement 

direction decisions such as street orientation leads to new problems and applications of metaheuristics. SUE traffic 

assignment was used in the lower level problem of DNDP in limited number of studies since it increased the 

computation complexity of the bi-level problem by introducing more paths than DUE traffic assignment. SUE 

traffic assignment has been considered in 3 studies in the late 2000s in which used metaheuristics to solve for 

solutions.  

A separate line of RNDP was proposed in 2000s based on the decision making over a time horizon. This line 

does not restrict the choice of design variables but increases the complexity of the problem since the user 

equilibrium problem in each time period have to be considered simultaneously.  

The first study of MNDP was proposed in 90s, while it was not studied until the mid 2000s. These studies used 

various combinations of decisions and nearly all of them were solved by metaheuristics because of their high 

degree of complexity.  

Unlike RNDP, TNDP and TNDFSP have such a high complexity that exact methods or local search heuristics 

have rarely been applied on them. These problems have been studied since 1920s. Researchers seem to be more 
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interested in TNDFSP than TNDP, probably because transit network configuration with frequency setting is more 

realistic. The number of TNDFSP studied in the 2000s is almost 1.6 times of that of TNDP. The development of 

computing technology in the recent years have facilitated the application of advanced computing strategies such as 

parallelized computing in metaheuristics, and a number of recent studies of TNDP and TNDFSP have deployed 

them to develop more efficient solution methods. 

MMNDP was studied after mid 2000s and all of them used some form of modal-split traffic assignment in the 

lower level model. There are three main groups of studies. The first group is related exclusive bus lanes. Although 

exclusive bus lanes have been used since 1930s, this problem had not been studied thoroughly until 2000s. All 

exclusive bus lane allocation problems were studied as MMNDP. The researchers have used scenario comparison 

to determine solutions or developed a model that was the enumeration method.  

The second group encompasses the studies that only focus on transit network design decisions. All of the studies 

in this group, use the total travel time, or total costs as the single objective function of their problems. The third 

group covers studies that simultaneously consider various strategic and tactical decisions of UTNDP. The inclusion 

of various combinations of road and public transit network decisions led to the consideration of various criteria for 

the users of both networks and for the community in the second group. For this reason, all of MMNDPs in the third 

group are multi-objective. Also, due to the high complexity of the above problems, only metaheuristic methods 

have been applied. 

In conclusion, the development trends in UTNDP are related to the development of computer technology, the 

cumulative knowledge on the solution methods and travel behavior, and the hot policies topic at that time. In the 

past, the computer technology was limited so big problems could not be solved quickly or exactly by the computer. 

Therefore, to solve for solutions at that time, highly simplified design problems were considered. Very often, linear 

functions and continuous variables were used as an approximation of the nonlinear and discrete variables and a 

single-level transit network design problem was studied with the consideration of a simplified passenger choice 

behavior. With development of new solution methods such as branch-and-cut method and metaheuristics and the 

advanced of computer technology, more design problems includes integer decision variables could be solved 

efficiently for at least nearly optimal solutions, and the approximation of continuous variables by discrete variables 

may not be necessarily. Moreover, the problem to be solved became bigger and bigger and more design decisions 

can be simultaneously incorporated in the design problem.  

As time goes, more understanding on the travel behavior is obtained and more realistic travel behavior was 

included in the lower level problem. Hence, the design problems became more complicated but could still be 

solved efficiently due to the improvement of computer technology and solution methods. Furthermore, the hot 

policy discussion in the past leads to new design problems or at least new objective functions and constraints. From 

the above discussion, it seems that the existing network design studies try to find a balance between the computer 

technology available, cumulative knowledge on the solution methods and travel behavior, and the hot policy topic 

at that time. 
 

7. Outlook 

After reviewing major publications of UTNDP, we realized that there are some gaps in the literature, which need 

more studies. This section proposes future directions that are believed to be able to lead to essential improvements 

over the existing literature because the suggested directions are related to two major needs: First, the need to define 

problems that are more realistic in terms of policy (or design) requirement and travelers' behavior. Second, the need 

for more efficient solution methods after taking into account the development and the limitations of computing 
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technology, and the applicability of solution methods in practice. 

In the following, we have categorized our future suggestions for each problem type and for solution methods 

separately. This categorization reflects the three axes of UTNDP, namely policy discussions in the upper level 

problems (problem approach, decision types, objective functions, etc.), lower level problems and solution methods 

(for the whole problem and for lower level problems). The future research suggestions are summarized in Table 10 

and elaborated in Sections 7.1-7.4. 

Table 10. Summary of Future Research Directions for the UTNDP. 

Problem/Solution 
Techniques 

Subject  
category Possible Extension 

Using environmental related objective functions such as pollutions with traditional 
objective functions (for all RNDPs) 

Using objective functions that consider equity (for all RNDPs) 

Including delays incurred in intersections in the travel times (for Continuous and 
Discrete NDPs) 

Objective Functions 
and Constraints 

Using reliability and robustness concepts in objective functions or in the constraints 
(for all RNDPs) 

Decisions Considering operational decisions such as signal setting together with network 
topology decisions 

Demand Considering elastic demand (for Discrete NDPs) 

Using the SUE assignment problem (for Continuous NDPs) 

Using multiclass user equilibrium assignment problems 

Road Network Design 
Problem (RNDP) 

Lower-Level  
Problem 

Using dynamic traffic assignment problems (for all RNDPs) 

Objective Functions Using environmental related objective functions such as pollutions with traditional 
objective functions (for all problems) 

Decisions Using the time dependent design approach (for both problems) 

Transit Network Design 
Problem (TNDP) and 

Transit Network Design 
and Frequency Setting 

Problem  
(TNDFSP) 

Lower-Level Problem Adopting more realistic passenger behaviors that consider the effects of advanced 
passenger information system, real time transit information, and seat availability 

Decisions Using the time-dependent design approach (for problems with strategic decisions) 

Including fixed public transit networks with no effects on private vehicle flows, 
considering elastic demands and the related objective functions for each mode (for 
RNDPs) 
Including a fixed bus network on the existing road network that share the roads with 
private vehicle, considering the restrictions on road network improvement decisions 
and using elastic demands and the related objective functions for each mode (for 
RNDPs) 

Multi-Modality 

Defining new combinations of multi-modal decisions to define MMNDPs 

Inter-Modal 
Connectivity 

Considering inter-modal connection issue in combined mode trips (e.g. bus + metro 
networks, road + metro networks) 

Developing behavioral principles that can capture transfer penalty 

Develop methods to model non-additive transfer penalty 

Multi-Modal Network 
Design Problem 

(MMNDP) 

Lower-Level Problem 
Develop approaches to determine waiting time at transfer locations over time while 
taking both public and private modes into account 
Using recently proposed metaheuristics and comparing their performance with 
genetic algorithm. 

Using various hybrids of recent and conventional metaheuristics 

Using parallelizing and distributed computing to enhance the efficiency of 
metaheuristics 

Metaheuristics 

For multi-objective problems, developing metaheuristics that use Pareto frontier in 
the solution process rather than those relying on the weighted sum objective 
functions 

Incorporating SAB heuristic into TNDSP and MMNDP 

Using hybrids of BB method and metaheuristics 
Hybrid Methods and 
Non-Metaheuristics 

Developing heuristic methods for problems with discrete decisions 

Using self-regulated method to solve SUE or transit assignment problems 

Solution Techniques 

Lower-Level Problem  
Solution Methods Using approximation schemes such as neural networks to solve traffic assignment 

problems 
 

7.1. Future Research for Road Network Design Problem (RNDP) 
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Objective functions and constraints 

 Most studies of CNDP and DNDP have only one objective and very often the objective is related to travel time. 

This implies that much emphasis is on congestion. Moreover, there is only one research in MNDP (Cantarella 

and Vitetta, 2006) that considers CO emissions minimization as one of the problem objective functions. 

Environmental objectives should be considered in these problems since there are usually tradeoffs between 

different objectives and the environmental impact is one of the hot topics nowadays. Optimizing one objective 

is at the expense of the others. Moreover, the impacts of emissions on health and global warming have been 

received attention recently. Hence, more studies of RNDP with environmental concerns can be proposed and 

studied in the future.  

 Minimization of total travel time/cost is the most prevalent form of objective function in RNDPs. This objective 

accounts for the aggregate network congestion, and this may lead to unbalanced congestion levels throughout 

the network and hence some OD pairs can be benefited more than the others in terms of travel time. Using 

equity measures in the objective function can ensure more equitable benefit to be introduced to each OD pair. 

 Most studies in RNDP only consider travel times in street segments, and ignore the delays incurred at 

intersections (e.g. signalized or priority related intersections). Intersection delays may significantly contribute 

to the trip time. Inclusion of intersection delays in the objective function can lead to more realistic travel times. 

However, there are only few related studies in DNDP and MNDP. For example, Lee and Yang (1994) 

considered intersection delay for the street orientation network design problem; Cantarella et al. (2006) and 

Gallo et al. (2010) included signal setting in the network design decisions. Intersection delays can be included 

in other CNDPs and DNDPs. 

 Nearly all RNDPs adopted the deterministic modeling. However, travel demands or link capacities are 

stochastic in nature. Robustness and reliability in transportation networks thus drew attention. Nevertheless, up 

to now, only few studies incorporated these dimensions in UTNDPs. For example, Ukkusuri et al. (2007) 

considered robustness in the objective function, and Dimitriou et al. (2008b) developed CNDP with travel time 

reliability constraints. These two concepts can be adopted for other problems in RNDP.  

Decisions 

 As shown in this review, network topology decisions are seldom considered with operational decisions such as 

signal setting simultaneously. Indeed, traffic signal setting has the strongest relevancy with network 

configuration decisions, as the network topology directly affects the flow pattern and the conflict points at 

intersections. Although traffic signal setting problem has been studied extensively and it has a relatively large 

body of literature (e.g. Cantarella et al., 1991; Meneguzzer, 1995; Wong and Yang, 1999; Wey, 2000; Cascetta 

et al., 2006), not many network design papers considered both signal setting and network topology decisions. 

Hence, more works can be done in this direction in the future. Similar conclusions applied to other operational 

decisions such as road pricing and scheduling of repairs of urban streets. 

 

Demand 

 For DNDP, elastic demand can be studied in the future given that no studies can be found on this so far. 

Lower-level problems 

 Although the Stochastic User Equilibrium (SUE) problem has been used in several DNDPs, its application in 

CNDPs is limited to only very few studies (e.g., Davis, 1994; Long et al., 2010). Its application in CNDPs can 

provide more realistic behavior of the users in these problems. 
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 In almost all user equilibrium problems are considered with single class users only. While multiclass-user 

equilibrium problems have been discussed in many studies, they have been rarely applied in RNDPs. The 

inclusion of multiple user classes is a possible extension. 

 All RNDPs in this review considered traffic assignment or its time-dependent extension in the lower level 

problem. These traffic assignment problems assume that the traffic condition is in a steady state, in which the 

traffic condition does not vary with time. Hence, they are not suitable to analyze the traffic congestion effect at 

the fine-grained temporal level. To examine this effect, it is more appropriate to adopt Dynamic Traffic 

Assignment (DTA). This problem can provide a higher degree of realism and capture changing traffic 

conditions. It is also essential for designing dynamic tolls, since they are changing with traffic conditions. 

However, most of the existing UTNDPs rarely capture DTA in the lower level problem and very few studies 

(Ukkusuri and Waller, 2007) did capture it. Hence, more research can be done in this direction.  
 

7.2. Future Research for Transit Network and Transit Network Design and Frequency Setting Problem 

(TNDP and TNDFSP) 

Objective functions 

 Similar to RNDP, environmental objectives are largely ignored in these problems. More focus can be put on 

addressing the environmental cost in this field.  

Decisions 

 The time-dependent approach mentioned in Section 3.1.3 has not been considered in TNDSP, which also 

involve long-term, strategic decisions. Therefore, one future direction can be to develop time-dependent 

models for TNDP and TNDFSP. However, this adds to the complexity of the problem and needs fast and 

efficient solution procedures to handle this. 

Lower-level problems 

 Most existing studies of TNDP or TNDFSP assume simplified passengers’ line choice behavior when 

designing transit routes. This can lead to a single level TNDSP, which is easier to solve but not too realistic. 

For those studies with the consideration of transit passengers’ behavior, they usually adopt classic assumptions 

for boarding and alighting, and ignore the effect of advanced passenger information system, real time transit 

information, and seat availability on their choice. More realistic passenger’s behavior should be captured in this 

field in the future. 
 

7.3. Future Research for Multi-Modal Network Design Problem (MMNDP) 

Decisions 

 The time-dependent approach for MMNDP has not been considered and can be a future extension for this field. 

However, it adds to the complexity of the problem.  

Multi-modality  

 As previously mentioned, the issue of multi-modality has been largely ignored in road and transit network 

design problems. In fact, the literature of MMNDP is very limited, while a number of future directions are 

possible in this field by extending the single mode problems to include various forms of multi-modality. 

 Multimodality with no interaction between flows of different modes: In RNDP, public transit modes such as 

buses in exclusive lanes, trams, or metro can be considered such that they have no effects on vehicle flows on 

roads. The demand shares will vary as road network configuration changes and consequently disutility levels of 

modes compared to each other will change. The existence of private and public transit modes in the problem 
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can imply the multi-objective nature of the problem because of the existence of different objectives that can be 

related to individual modes, all travelers, community, etc. The only two existing studies in this field are 

Cantarella and Vitetta (2006) for multi-objective signal setting and one-way street orientation problem with a 

fixed travel time bus network, and Szeto et al. (2010) for lane additions and toll setting. New problems can be 

proposed by considering other road network improvement decisions, in the presence of a tram or a metro 

network. Such problems may have multiple objective functions (e.g. total user benefit, demand share of metro 

or tram, air pollution, etc.).  

 Multimodality with interaction between flows of different modes: In an existing fixed bus network that shares 

the same roads with other vehicles, the road network improvement decisions must take into account the 

restrictions caused by the bus network, the changes in mode demand shares, and both bus and non-bus travel 

times. Different objective functions and various constraints are required in these problems to consider multiple 

performance criteria such as the demand share of each mode, total user benefit, travel cost by bus mode, etc.  

 Multimodality with interrelations between flows of different modes and in decisions: Although this issue has 

been recently studied by some researchers (e.g., Miandoabchi et al., 2011a, b), more new problems can be 

proposed along this direction. For example, the turn-restriction problem (Long et al., 2009) has been proposed 

but the impact of turn-restrictions on transit routes has been ignored. One new problem can be to 

simultaneously design the turn restrictions and transit routes. Besides, the previous studies only consider 

changes in the routes of existing bus lines between terminal stations. Another extension can be designing the 

whole bus network in combination with various RNDP and MMNDP decisions. 

Inter-modal Connectivity 

 MMNDP traditionally assumes single mode trips and ignore the possibility of combined mode trips such as 

Park'n Ride. Combined mode trips (i.e. multi-modal trips) indeed arise the inter-modal connection issue. This 

has been considered in the literature for some operational level decisions such as pricing, but no network 

topology design problem has yet considered this. In such problems, an important issue for travelers is to be able 

to transfer conveniently from one mode to another to finish their trips. This means that the network of each 

transit mode must be connected in the best way to provide an integrated and connected public transit network. 

This integration can only become possible under the condition that when designing the transit network of one 

mode, the locations of transit stops of other modes are explicitly considered. Another extension would be an 

RNDP that considers an existing metro network (for car-metro travels) and accounts for the allocation of 

parking spaces in the proximity of metro stations, such that travelers can access the metro network by their cars 

in the most convenient way. 

Lower-level problems 

 The adoption of combined trip concept for inter-modal connectivity problems also sets new requirements for 

the lower level problem to be used. One requirement is to capture transfer penalty in the behavior principle 

used within the lower level problem, since some travelers weigh transfer penalty heavily and they do not just 

select a combination of modes based on the out-of-pocket cost. Whether a transfer involving long walking 

time, long waiting time and walking uphill or going up stairs are important considerations from the travelers’ 

perspective. The transfer penalty may not be additive because having two transfers can be weighed more than 

double than having one transfer. Hence, developing a realistic travel choice principle that can capture transfer 

penalty and how to model transfer penalty in the lower level network are two future research directions. 

 Another requirement is to model the waiting time accurately since travelers often need to wait at transit stops 
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when they transfer from one mode to another. In reality, the waiting time varies from time to time due to 

different service frequency of various public transit modes and time-varying road congestion.  However, in the 

literature, most of them only capture expected waiting time in the lower level problem since the micro-grained 

temporal level is not considered. Hence, one future research direction is to develop a methodology to determine 

waiting time at transfer locations over time while taking into account both public and private modes.  
 

7.4. Future Research for Solution Techniques 

Metaheuristics  

 The metaheuristics shown in Figure 2 are actually those classic or well-known metaheuristics that have also 

been applied to other problems. It is observed that genetic algorithm and simulated annealing are the most 

prevalent metaheuristics among the others. Furthermore, applications of a number of recently developed 

methods such as artificial bee colony, swarm particle optimization, harmonic search, and clonal selection 

algorithm can be found in some studies. Although genetic algorithm has been proved to give better results than 

other algorithms in several studies, it is not clear whether other recently developed metaheuristics can 

outperform it. Instances of such algorithms are differential evolution method, firefly algorithm, cuckoo search, 

artificial immune systems, and generalized evolutionary walk algorithm (Gendreau and Potivn, 2010; Koziel 

and Yang, 2011; Yang, 2011). Therefore, one future direction can be to compare the performance of recently 

developed heuristics with genetic algorithm and the most commonly used algorithms to solve UTNDP. 

 Each metaheuristic has its own strength and each problem has its own properties. It is therefore important to 

identify and analyze the problem properties, and develop tailored solution methods for the problem. Solution 

methods can be developed for new and existing network design problems based on hybrids of different 

metaheuristics. Most of hybridization research in UTNDP has been done with simulated annealing and tabu 

search with genetic algorithm and a number of metaheuristics. While other possibilities still remain to 

hybridize recently developed metaheuristics or to incorporate the strength of various well-known 

metaheuristics to solve UTNDP. 

 Computational complexity of many classes of UTNDP is a major barrier of efficiency of conventional 

metaheuristics. Parallelizing strategies and distributed computing can improve the efficiency but there are few 

applications in TNDP and TNDFSP (e.g. Agarwal and Mathew, 2004; Yu et al., 2005; Yang et al., 2007; 

Cipriani et al., 2010) and have never considered in RNDP and MMNDP to the best of our knowledge. Hence 

the incorporation of these considerations into solution algorithms is definitely one future direction. 

 Most studies of TNDSP and most multi-objective analyses of RNDP consider more than one objective but the 

resultant problems are usually formulated as a single objective problem using a weighted sum objective 

function. This approach can actually simplify the problem but we need to predetermine the weight for each 

objective function. Consequently, this method precludes some Pareto solutions. Alternatively, we can avoid 

presetting the weight and solve the multi-objective problem directly using existing multi-objective 

metaheuristics to determine the Pareto frontier and the modeler can then determine the best solution in the 

frontier. This alternative is rarely considered in TNDSP and should be considered in the future. 

Hybrid methods and non-metaheuristics 

 For UTNDP with discrete variables, it was usually solved by metaheuristics or the branch and bound method. 

Metaheuristics can give nearly optimal solutions quickly whereas the branch and bound method can be global 

optimal solutions at the expensive of computation time. To make a good tradeoff between solution speed and 

quality, one can be developed a hybrid of the branch and bound method and metaheuristics, where the 
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metaheuristics are used to find good upper and lower bounds whereas the branch and bound method is used to 

check for global optimality. 

 SAB heuristic has been used for finding descent directions of RNDP but the heuristic has rarely extended and 

applied to solve TNDSP or MMNDP with a bi-level structure, probably because there are few TNDSPs or 

MMNDPs with a bi-level structure. Incorporating SAB heuristic into TNDSP and MMNDP can surely speed 

up the computation process and is one potential research direction. Other speeding up strategies should also be 

considered. 

 As reflected in Section 4.1, most of studies of RNDP are directed towards finding more efficient non-

metaheuristic solution methods for continuous variable problems. There are few works which has attempted to 

develop efficient non-metaheuristic solution procedures to solve discrete variable problems. It seems that more 

effort can be put on developing faster and better heuristics for RNDP. 

Solution procedures for lower level problems 

 When solving the SUE problem or the transit assignment problem in UTNDP, current methods rely on the 

method of successive averages, which has a slow convergence rate. To speed up the computation process, one 

can employ newly developed self-regulated method proposed by Liu et al. (2009). This method can be 

integrated with existing solution methods for solving bi-level UTNDP.  

 Solving the lower-level problem is often the major source of the computational burden in UTNDP. This can be 

done by devising faster solution methods, or by incorporating approximation methods such as neural networks 

(as proposed by Cantarella et al. (2006)) to obtain the travel time and flow values. 
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