
The Generalized Assignment Problem

with Minimum Quantities

Sven O. Krumkea, Clemens Thielena,∗

aUniversity of Kaiserslautern, Department of Mathematics

Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern, Germany

Abstract

We consider a variant of the generalized assignment problem (GAP) where the
amount of space used in each bin is restricted to be either zero (if the bin is not
opened) or above a given lower bound (aminimum quantity). We provide several
complexity results for different versions of the problem and give polynomial
time exact algorithms and approximation algorithms for restricted cases. For
the most general version of the problem, we show that it does not admit a
polynomial time approximation algorithm (unless P = NP), even for the case
of a single bin. This motivates to study dual approximation algorithms that
compute solutions violating the bin capacities and minimum quantities by a
constant factor. When the number of bins is fixed and the minimum quantity
of each bin is at least a factor δ > 1 larger than the largest size of an item in the
bin, we show how to obtain a polynomial time dual approximation algorithm
that computes a solution violating the minimum quantities and bin capacities
by at most a factor 1 − 1

δ
and 1 + 1

δ
, respectively, and whose profit is at least

as large as the profit of the best solution that satisfies the minimum quantities
and bin capacities strictly. In particular, for δ = 2, we obtain a polynomial time
(1, 2)-approximation algorithm.

Keywords: assignment problems, combinatorial optimization, approximation
algorithms, computational complexity

1. Introduction

The generalized assignment problem (cf., for example, [1, 2]) is a classical
generalization of both the (multiple) knapsack problem and the bin packing
problem. In the classical version of GAP, one is given m bins, a capacity Bj for
each bin j, and n items such that each item i has size si,j and yields profit pi,j
when packed into bin j. The goal is to find a feasible packing of the items into

∗Corresponding author. Fax: +49 (631) 205-4737. Phone: +49 (631) 205-4590
Email addresses: krumke@mathematik.uni-kl.de (Sven O. Krumke),

thielen@mathematik.uni-kl.de (Clemens Thielen)

1

the bins that maximizes the total profit. Applications of GAP include fixed
charge location problems, grouping and loading for flexible manufacturing sys-
tems, vehicle routing, scheduling projects, allocating storage space, scheduling
payments on accounts, designing communication networks, assigning software
development tasks to programmers, assigning jobs to computers in networks,
scheduling variable length TV commercials, and assigning ships to overhaul fa-
cilities. For details on these applications, we refer to [2] and the references
therein.

In this paper, we consider a variation of the problem where the amount of
space used in each bin is restricted to be either zero (if the bin is not opened) or
above a given lower bound (a minimum quantity). This additional restriction is
motivated from many practical packing problems where it does often not make
sense to open an additional container (bin) if not at least a certain amount of
space in it will be used. For example, in the classical application of GAP where
the bins correspond to workers and the items correspond to jobs that can be
assigned to them, it may be unreasonable to hire an additional worker if not at
least a certain amount of work will be assigned to him.

Another motivation for adding minimum quantities to GAP is its application
in unrelated machine scheduling [3]. Here, the bins correspond to machines and
the items to jobs. In practice, it may be that running a machine is only feasible
if a prescribed minimum load is attained on the machine. In a foundry or steel
works, for example, a machine can only be used if it has a certain minimum
amount of metal to process.

Formally, the generalized assignment problem with minimum quantities (GAP-
MQ) is defined as follows:

Definition 1 (GAP with Minimum Quantities (GAP-MQ)).
INSTANCE: m bins with capacities B1, . . . , Bm ∈ N and minimum quan-

tities q1, . . . , qm ∈ N (where qj ≤ Bj for all j = 1, . . . ,m),
and n items. For each item i and bin j, a size si,j ∈ N and a
profit pi,j ∈ N.

TASK: Find a packing of a subset of the items into a subset S of the
bins such that the total space used in each bin j ∈ S is at least
qj and at most Bj and the total profit is maximized.

In the decision version of the problem, a bound P ∈ N on the total profit
is given and the question is whether there exists a feasible packing with total
profit at least P . When stating results about the computational complexity of
an optimization problem such as GAP-MQ, we will always mean the complexity
of the corresponding decision problem.

Note that, in the above definition and throughout the paper, we always
assume N to contain zero and denote the positive integers by N+. Moreover, we
always assume that qj ≤

∑n
i=1 si,j for each bin j in an instance of GAP-MQ

(otherwise, there does not exist any feasible solution that packs a nonempty set
of items into bin j, so the bin can be removed from the instance).

2

Two important special cases of GAP-MQ motivated from the problem of
assigning students to seminars at a university are the seminar assignment prob-
lem (SAP) and the participant maximization problem (PMP). SAP is the special
case of GAP-MQ in which all item sizes are one. It can be motivated from the
problem of assigning students (items) to seminars (bins) such that the number
of participants in each seminar j is between qj and Bj and the total satisfaction
(profit) of the students is maximized. PMP is the special case of SAP in which
all profits are one, so the objective is simply to maximize the number of students
that receive a place in one of the seminars (the total number of participants). In
these applications, the minimum quantities are a very natural restriction since
holding a seminar only make sense if there is at least a certain minimum number
of students giving a talk in the seminar.

By a polynomial time α-approximation algorithm for a maximization prob-
lem such as GAP-MQ, we mean an algorithm that, for any given instance I of
encoding length |I| ∈ N+, finds a feasible solution with objective value at least
1
α
times optimal in time bounded by a polynomial in |I| if the instance I admits

a feasible solution, and outputs infeasibility of the instance after a number of
steps bounded by a polynomial in |I| if no feasible solution for instance I exists.

For problems which do not admit polynomial time approximation algo-
rithms, a common approach is to study dual approximation algorithms that
compute solutions violating some constraints of the problem by at most a con-
stant factor. By a polynomial time (α, β)-approximation algorithm for a max-
imization problem, we mean an algorithm that, for any given instance I of
encoding length |I| ∈ N+, achieves the following: If the instance I admits a
feasible solution, the algorithm requires only time bounded by a polynomial in
|I| to find a solution that violates the constraints of the problem by at most a
factor β and whose objective value is at least 1

α
times as large as the objective

value of the optimal solution that satisfies the constraints strictly. If the in-
stance I does not admit a feasible solution, the algorithm outputs infeasibility
of the instance after a number of steps bounded by a polynomial in |I|.

1.1. Previous Work

The classical GAP is well-studied in literature. A comprehensive introduc-
tion to the problem can be found in [1]. A survey of algorithms for GAP is
given in [2]. For a survey on different variants of assignment problems studied
in literature, we refer to [4].

GAP is known to be APX-hard [5], but there exists a 2-approximation algo-
rithm [3, 5]. Cohen et al. [6] showed how any polynomial time α-approximation
algorithm for the knapsack problem can be translated into a polynomial time
(1+α)-approximation algorithm for GAP. A (1, 2)-approximation algorithm for
the equivalent minimization version of GAP, assigning item i to bin j causes a
cost ci,j , was provided by Shmoys and Tardos [3]: For every feasible instance
of GAP, their algorithm computes a solution that violates the bin capacities by
at most a factor of 2 and whose cost is at most as large as the cost of the best
solution that satisfies the bin capacities strictly.

3

GAP is a generalization of both the (multiple) knapsack problem (cf. [1, 5,
7]) and the bin packing problem (cf. [8, 9, 10]). The multiple knapsack problem
is the special case of GAP where the size and profit of an item are independent
of the bin (knapsack) it is packed into. The bin packing problem can be seen as
the special case of the decision version of GAP in which all bins have the same
capacity and all profits are one. The question of deciding whether a packing
of total profit equal to the number of items exists is then equivalent to asking
whether all items can be packed into the given number of bins.

A dual version of bin packing (often called bin covering) in which minimum
quantities are involved was introduced in [11, 12]. Here, the problem is to pack
a given set of items with sizes that do not depend on the bins so as to maximize
the number of bins used, subject to the constraint that each bin contains items
of total size at least a given threshold T (upper bin capacities are not considered
due to the nature of the objective function). Hence, the bin covering problem
can be seen as a variant of GAP-MQ in which the minimum quantity is the
same for each bin and the objective is to maximize the number of bins used.
Since any approximation algorithm with approximation ratio strictly smaller
than 2 would have to solve the NP-complete partition problem when applied to
instances in which the sizes of the items sum up to two, it follows that (unless
P = NP) no polynomial time (2−ǫ)-approximation for bin covering exists for any
ǫ > 0. In contrast, the main result of Assmann et al. [12] is an O(n log2 n) time
algorithm that yields an asymptotic approximation ratio of 4/3 for bin covering,
while easier algorithms based on next fit and first fit decreasing are shown to
yield asymptotic approximation ratios of 2 and 3/2, respectively. Later, an
asymptotic PTAS [13] and an asymptotic FPTAS [14] for bin covering were
developed.

Minimum quantities have recently been studied for minimum cost network
flow problems [15, 16, 17]. In this setting, minimum quantities for the flow
on each arc are considered, which results in the minimum cost flow problem
becoming strongly NP-complete [16]. Moreover, it was shown in [16] that (unless
P = NP) no polynomial time g(|I|)-approximation for the problem exists for any
polynomially computable function g : N+ → N+, where |I| denotes the encoding
length of the given instance.

1.2. Our Contribution

We prove several complexity and approximation results on GAP-MQ and its
special cases (see Table 1 for an overview).

We show that PMP is weakly NP-complete and admits a fully polynomial
time approximation scheme (FPTAS). In contrast, we prove that SAP is strongly
NP-complete and (unless P = NP) does not admit a polynomial time approx-
imation scheme (PTAS) even if all profits are in {0, 1}. We show, however,
that SAP can be solved in polynomial time by linear programming (or, more
efficiently, by minimum cost flow computations) when the number of seminars
(bins) is fixed. For the general case of GAP-MQ (which, by our results on SAP,
is strongly NP-complete even if all item sizes are one), we show that the problem

4

also remains strongly NP-complete if all profits are one or if the profit obtained
from packing an item into any bin equals the size of the item. Both results
hold even for the case that the size of an item is independent of the bin it is
packed into. Moreover, we prove that (unless P = NP) no polynomial time ap-
proximation algorithm exists for GAP-MQ even for these restricted profit values
and only one bin. We show, however, that GAP-MQ can be solved optimally in
polynomial time when the profit of an item is independent of the bin it is packed
into and the maximum bin capacity Bmax as well as the number of different item
types (s1, . . . , sm, p) are fixed.

For the case that the number of bins is fixed, we present a pseudo-polynomial
time dynamic programming algorithm for GAP-MQ. More importantly, when
the number of bins is fixed and qj ≥ δsi,j for all i, j and some δ > 1, we show
how to obtain a polynomial time dual approximation algorithm that computes
a solution violating the minimum quantities and bin capacities by at most a
factor 1 − 1

δ
and 1 + 1

δ
, respectively, and whose profit is at least as large as

the profit of the best solution that satisfies the minimum quantities and bin
capacities strictly. In particular, for δ = 2, we obtain a polynomial time (1, 2)-
approximation algorithm for the problem for the case that the number of bins
is fixed and qj ≥ 2si,j for all i, j. Moreover, we provide computational results,
which show that, on average, this (1, 2)-approximation algorithm produces al-
most feasible solutions with superoptimal profit.

2. The Participant Maximization Problem

In this section, we consider the participant maximization problem (PMP),
which is the special case of GAP-MQ in which all item sizes and profits are
one. It can be thought of as the problem of assigning students to seminars at a
university such that the number of participants in each seminar j is between qj
and Bj and the maximum possible number of students receive a place in one of
the seminars. Formally, the problem is defined as follows:

Definition 2 (Participant Maximization Problem (PMP)).
INSTANCE: The number n of students and m seminars with capaci-

ties B1, . . . , Bm ∈ N and minimum quantities q1, . . . , qm ∈ N

(where qj ≤ Bj for all j = 1, . . . ,m).
TASK: Find an assignment of a subset of the students to a subset S

of the seminars such that the number of students in each sem-
inar j ∈ S is at least qj and at most Bj and the total number
of students assigned to seminars is maximized.

We start by showing that PMP is weakly NP-complete. To show NP-
hardness, we use a reduction from the (weakly) NP-complete subset sum prob-
lem (cf. [18]). An instance of SUBSET SUM consists of l + 1 positive inte-
gers a1, . . . , al, B ∈ N and the question is whether there exists a subset S of
{1, . . . , l} such that

∑

i∈S ai = B.

5

GAP-MQ SAP PMP
complexity strongly strongly weakly

results NP-complete NP-complete NP-complete
and and does not

non-approximable admit a PTAS
(even for (even for

unit profits profits
or profit = size) in {0, 1})

algorithmic polynomially polynomially admits an
results solvable when solvable when FPTAS

profits independent #(seminars)
of bins and fixed

max. bin capacity
and #(item types)

fixed;
polynomial time

(1, 2)-approximation
and pseudo-

polynomial time
dynamic

programming
algorithm

when #(bins)
fixed

Table 1: Summary of our results.

6

Theorem 1. PMP is weakly NP-complete even if the capacity and the minimum
quantity of each seminar are the same (i.e., Bj = qj for each j = 1, . . . ,m).

Proof. Membership in NP is obvious as the number of students assigned to
seminars in a given solution can be calculated easily in polynomial time. To
show NP-hardness, we reduce SUBSET SUM to PMP in polynomial time. Given
an instance a1, . . . , al, B of SUBSET SUM, we construct an instance of PMP
as follows: The number of students is n := B and there are m := l seminars.
The capacity and minimum quantity of seminar j are Bj := qj := aj for each
j = 1, . . . , l.

It is now easy to see that there exists a subset S of {1, . . . , l} such that
∑

i∈S ai = B if and only if all students can be assigned to seminars: Given
such a subset S, we can assign exactly ai = Bi = qi students to seminar i for
each i ∈ S to obtain an assignment of all students to seminars that respects the
seminar capacities and minimum quantities. Conversely, given an assignment
of all n = B students to a subset S ⊆ {1, . . . , l} of the seminars, it follows
that exactly ai = Bi = qi students must be assigned to each seminar i ∈ S, so
∑

i∈S ai = B.

Note that the encoding length of an instance of PMP is polynomial in logn,
whereas encoding an instance of SAP or the general version of GAP-MQ requires
a number of bits that is a polynomial in n. Thus, Theorem 1 has no direct
implications for the complexity of these more general versions of the problem.

Even though solving PMP optimally is NP-complete, the following easy
greedy algorithm obtains an approximation ratio of 2 for the problem: We
first sort the seminars by nonincreasing minimum quantities, so that q1 ≥ q2 ≥
· · · ≥ qm. Then we assign exactly qj students to each seminar j = 1, 2, . . . ,m
until one of the following conditions is fulfilled:

1. All students have been assigned,

2. Less than ql students remain unassigned after considering seminar l − 1,

3. Each seminar j ∈ {1, . . . ,m} has been assigned exactly qj students.

In Case 1, we have found an optimal assignment. In Case 3, we continue filling all
seminars j = 1, 2 . . . ,m to their capacities Bj until all students are assigned or
all places in these seminars are filled, which again yields an optimal assignment.
In Case 2, we must have l ≥ 2, and the ordering of the qj implies that

ALG

OPT
≥

∑l−1
j=1 qj

∑l
j=1 qj

≥
l − 1

l
≥

1

2
,

where OPT denotes the number of students assigned to seminars in an optimal
assignment and ALG denotes the number of students assigned by the algorithm.
Hence, the algorithm obtains an approximation ratio of 2 for PMP.

We now show how to obtain a fully polynomial time approximation scheme
(FPTAS) for PMP. To do so, we will show how an arbitrary instance of PMP can

7

be solved by solving a suitable instance of the 0-1-knapsack problem (cf. [18]).
Moreover, this reduction is polynomial time and preserves approximations, so
it follows that we obtain an FPTAS for PMP by simply applying the well-
known FPTAS for the knapsack problem (cf. [9]) to the corresponding knapsack
instance.

An instance of the 0-1-knapsack problem (0-1-KP) consists of l objects with
sizes s1, . . . , sl ∈ N and profits p1, . . . , pl ∈ N, and a knapsack capacity B ∈ N

and the task is to find a subset S of {1, . . . , n} such that
∑

i∈S si ≤ B and such
that the total profit

∑

i∈S pi is maximized.
Now consider an arbitrary instance of PMP. Given the number n of students,

the seminar capacities B1, . . . , Bm, and the minimum quantities q1, . . . , qm, we
define an instance of 0-1-KP as follows: There are l := m objects. The size of
object i is si := qi and its profit is pi := Bi for i = 1, . . . ,m. The knapsack
capacity is B := n. Applying the FPTAS for 0-1-KP to this instance, we obtain,
for any ǫ > 0, a set S ⊆ {1, . . . , n} of objects such that

∑

i∈S

qi =
∑

i∈S

si ≤ B = n (1)

∑

i∈S

Bj =
∑

i∈S

pi ≥ (1 − ǫ) · OPTKP, (2)

where OPTKP denotes the optimal profit possible for the knapsack instance.
Moreover, any assignment of k ≤ n students to a set S of seminars directly
yields a feasible packing of the knapsack with profit at least k: When packing
exactly the objects in S, we obtain that

∑

i∈S

si =
∑

i∈S

qi ≤ k ≤ n = B and

∑

i∈S

pi =
∑

i∈S

Bi ≥ k,

where the first line holds since the assignment of students respects the minimum
quantities and the second line holds since it respects the seminar capacities.
Hence, it follows that OPTKP ≥ OPT holds for the optimal objective value OPT
of the given instance of PMP, so (1) and (2) show that the set S obtained from
the FPTAS for the knapsack instance yields a set of seminars that can all be
filled to at least their minimum quantities (by (1)) and that provide enough
places for at least (1− ǫ) ·OPTKP ≥ (1− ǫ) ·OPT students (by (2)). Filling each
of the seminars in S to its minimum capacity and distributing the remaining
students arbitrarily to the remaining places in the seminars in S, thus, yields a
feasible solution for the given instance of PMP in which at least (1 − ǫ) · OPT
students are assigned, so we have proved the following theorem:

Theorem 2. There is an FPTAS for PMP.

8

3. The Seminar Assignment Problem

In this section, we consider the seminar assignment problem (SAP), which is
the special case of GAP-MQ in which all item sizes are one. It can be thought
of as the problem of assigning students to seminars at a university such that the
number of participants in each seminar j is between qj and Bj and the and the
total satisfaction (profit) of the students is maximized. Formally, the problem
is defined as follows:

Definition 3 (Seminar Assignment Problem (SAP)).
INSTANCE: The number n of students, m seminars with capaci-

ties B1, . . . , Bm ∈ N and minimum quantities q1, . . . , qm ∈ N

(where qj ≤ Bj for all j = 1, . . . ,m), and a profit pi,j ∈ N

resulting from assigning student i to seminar j for i = 1, . . . , n
and j = 1, . . . ,m.

TASK: Find an assignment of a subset of the students to a subset S
of the seminars such that the number of students in each sem-
inar j ∈ S is at least qj and at most Bj and the total profit is
maximized.

We start by showing that SAP does not admit a PTAS. More specifically,
we show that there exists ǫ > 0 such that it is strongly NP-hard to approximate
SAP within a factor larger than (1 − ǫ). In particular, this implies strong NP-
hardness of the problem. For the proof, we use a reduction from the 3-bounded
3-dimensional matching problem (3DM-3) defined as follows:

Definition 4 (3-Bounded 3-Dimensional Matching Problem (3DM-3)).

INSTANCE: A set T ⊆ X × Y × Z, where |X | = |Y | = |Z| = n and
each element of X ∪ Y ∪ Z appears at most three times as a
coordinate of an element of T .

TASK: Find a matching in T of maximum cardinality, i.e., a maximum
cardinality subsetM ⊆ T such that no two elements ofM agree
in any coordinate.

3DM-3 is known to be APX-complete [19]. For our proof, we use a result
of Petrank [20] who showed that 3DM-3 has a hard gap at location 1, i.e.,
there exists ǫ0 > 0 such that it is (strongly) NP-hard to decide whether a given
instance of 3DM-3 has a matching of size n or if every matching has size at most
(1− ǫ0)n.

Theorem 3. Let ǫ0 be such that it is strongly NP-hard to decide whether a
given instance of 3DM-3 has a matching of size n or if every matching has size
at most (1 − ǫ0)n. Then it is strongly NP-hard to approximate SAP within a
factor larger than (1 − 1

3ǫ0) even if the capacity and the minimum quantity of
each seminar are fixed to 3 (i.e., Bj = qj = 3 for each j = 1, . . . ,m) and all
profits pi,j are in {0, 1}. In particular, SAP does not admit a PTAS.

9

Proof. Given an instance of 3DM-3 specified by T ⊆ X × Y × Z with |X | =
|Y | = |Z| = n and |T | = m, we construct an instance of SAP as follows: There
are 3n students corresponding to the 3n elements of X ∪Y ∪Z and m seminars
corresponding to the triples in T . The capacity and minimum quantity of each
seminar are Bj := qj := 3 for each j = 1, . . . ,m. The profit pi,j resulting from
assigning student i to seminar j is one if element i is a coordinate of triple j
and zero otherwise.

If the given instance of 3DM-3 has a matching of size n, we obtain an assign-
ment of students to seminars with profit 3n by assigning exactly the students
corresponding to the coordinates of each triple in the matching to the corre-
sponding seminar. Conversely, if every matching has size at most (1 − ǫ0)n,
any feasible assignment of students to seminars can contain at most (1 − ǫ0)n
seminars that yield a profit of 3. With the remaining 3nǫ0 students, at most
nǫ0 additional seminars can be opened, each of which can yield a profit of at
most 2. Hence, the profit of any feasible solution is no larger than

3(1− ǫ0)n+ 2nǫ0 = 3n(1− ǫ0 +
2

3
ǫ0) = 3n(1−

1

3
ǫ0),

which shows that it is NP-hard to approximate SAP within a factor larger than
(1− 1

3ǫ0).

We now show how SAP can be solved optimally in polynomial time when
the number m of seminars is fixed. To this end, first assume that the subset S of
the seminars used in an optimal solution for a given instance of SAP is known.
Given S, we can solve the given instance of SAP by solving the following integer
linear program (ILP):

max

n
∑

i=1

∑

j∈S

pi,jxi,j (3)

s.t. qj ≤
n
∑

i=1

xi,j ≤ Bj ∀ j ∈ S (4)

0 ≤
∑

j∈S

xi,j ≤ 1 ∀ i ∈ {1, . . . , n} (5)

0 ≤ xi,j ≤ 1 ∀ i ∈ {1, . . . , n}, j ∈ S (6)

xi,j ∈ Z ∀ i ∈ {1, . . . , n}, j ∈ S (7)

It is now easy to see that the coefficient matrix of the variables xi,j in the
inequalities (4) and (5) is totally unimodular. Hence, the Integrality-Theorem
of Hoffman and Kruskal (cf. [21]) implies that the polyhedron defined by the
inequalities (4) to (6) is integral, so we can solve the ILP by solving the corre-
sponding linear program (LP), which can be done in polynomial time.

Since we assumed that the number m of seminars is fixed, we directly obtain
a polynomial time algorithm for SAP in this case by solving the LP for every
one of the at most 2m possible choices of the set S ⊆ {1, . . . ,m} of seminars to

10

use and then taking the solution obtaining the highest profit. Hence, we proved
the following theorem:

Theorem 4. SAP can be solved optimally in polynomial time when the num-
ber m of seminars is fixed.

Note that, when requiring the linear program above to be solved in poly-
nomial time, one needs to make use of a polynomial time algorithm for linear
programming such as the ellipsoid method, which is rather inefficient in prac-
tice. We now show, however, that the subproblem of computing an optimal
assignment for a given set S of seminars can be solved more efficiently by for-
mulating it as a minimum cost flow problem. We consider the directed graph G
shown in Figure 1. Here, the upper row of nodes corresponds to the students
and the lower row corresponds to the seminars in the current test-set S and, for
each student i and each seminar j, there is an arc (i, j) with cost c = −pi,j and
upper capacity u = 1 from the node corresponding to i to the node correspond-
ing to j. Additionally, there is a source node s that is connected by an arc (s, i)
with cost c = 0 and upper capacity u = 1 to each node i corresponding to a
student and a sink node t connected by an arc (j, t) with cost c = 0 and upper
capacity u = Bj and lower capacity l = qj to each node j corresponding to a
seminar. Finally, there is an arc (s, t) with cost c = 0 and upper capacity u = ∞
connecting the source directly to the sink. All arcs except for the arcs (j, t) have
lower capacity l = 0.

Students

Seminars

t

s

c = 0 c = 0

c = 0

c = 0c = 0

c = −pi,j c = −pi,j

u = 1

u = 1u = 1

u = 1

u = Bj u = Bj

u = ∞

l = qjl = qj

Figure 1: The graph G for n = 4 students and m = 3 seminars.

We now compute a minimum cost (s, t)-flow of flow value n in G (which
can be done in strongly polynomial time, e.g., by the enhanced capacity scaling
algorithm, cf. [22, 23, 24]). Since all capacities in G are integer, this minimum
cost flow will be integer as well and, by construction of G, it corresponds exactly
to an optimal assignment of students to seminars by assigning each student i

11

to the unique seminar j for which the flow on the arc (i, j) is 1 if such an arc
exists, and leaving i unassigned otherwise. The number of unassigned students
corresponds to the flow on the arc (s, t) and the cost of the flow equals minus the
profit of the corresponding assignment. Hence, we can solve SAP by computing
a minimum cost flow in G for every subset S ⊆ {1, . . . ,m} and then taking the
solution obtaining the highest profit.

4. GAP-MQ and GAP-MQ with Unit Profits

In this section, we consider the general case of GAP-MQ as well as the
special case in which all profits are one and the item sizes do not depend on
the bins. For the case of unit profits, we show that (just like SAP, the case of
unit sizes) the problem is strongly NP-complete. Moreover, we show that it is
weakly NP-hard to approximate the problem within any factor. In addition, we
show that the same results also hold for the special case of GAP-MQ in which
the profit obtained from packing an item into any bin equals the size of the
item. In contrast, we show how the general version of GAP-MQ can be solved
optimally in polynomial time when the profit of an item is independent of the bin
it is packed into and the maximum bin capacity Bmax as well as the number of
different item types (s1, . . . , sm, p) are fixed. This approach generalizes methods
which are well-known for the classical bin packing problem.

We start by proving NP-completeness of GAP-MQ with unit profits. To show
NP-hardness, we use a reduction from the NP-complete problem 3-PARTITION
(cf. [18]). An instance of 3-PARTITION consists of l = 3k (k ∈ N) positive
integers a1, . . . , al and a bound L ∈ N such that L/4 < ai < L/2 for each i and
∑l

i=1 ai = kL. The question is whether there exists a partition of {1, . . . , l}
into k disjoint subsets S1, . . . , Sk such that

∑

i∈Sj
ai = L for each j ∈ {1, . . . , k}

(which is only possible if each Sj contains exactly 3 elements).

Theorem 5. GAP-MQ with unit profits (i.e., pi,j = 1 for all i, j) is strongly
NP-complete, even if the item sizes are independent of the bins (i.e., si,j = si
for all i, j).

Proof. Membership in NP is obvious as the total profit of a given solution
can be checked easily in polynomial time. To show NP-hardness, we reduce
3-PARTITION to GAP-MQ with unit profits. Given an instance a1, . . . , al, L
with l = 3k of 3-PARTITION, we construct an instance of GAP-MQ as follows:
There are n := l items and the size of item i is si := ai for each i ∈ {1, . . . , l}.
There are k bins with Bj := qj := L for j = 1, . . . , k. All profits pi,j are one.

Then, since L/4 < ai < L/2 for each i and
∑l

i=1 ai = kL, it follows immediately
that there exists a feasible packing of all items (which yields a total profit of
n) into the k bins (where each bin must contain exactly 3 items) if and only if
there exists a 3-partition of a1, . . . , al (i.e., the given instance of 3-PARTITION
is a yes-instance).

12

Note that, when defining the profit pi,j obtained from packing item i into
any bin j in the proof of Theorem 5 to be equal to the size si of item i, the
same argumentation shows that there exists a 3-partition of a1, . . . , al if and
only if there exists a feasible packing (of all items) that yields a total profit of
∑l

i=1 ai = kL. Hence, we obtain the following result on the complexity of the
special case of GAP-MQ in which the profit obtained from packing an item into
any bin equals the size of the item:

Corollary 6. GAP-MQ remains strongly NP-complete if if the item sizes are
independent of the bins and the profit obtained from packing an item into any
bin equals the size of the item (i.e., pi,j = si,j = si for all i, j).

We now consider the question of approximability of GAP-MQ with unit
profits and show that approximating the problem within any factor is weakly
NP-hard. For the proof, we use a reduction from SUBSET SUM (cf. Section 2).

Theorem 7. Unless P = NP, there does not exists a polynomial time approx-
imation algorithm for GAP-MQ with unit profits even for instances in which
there is only one bin.

Proof. Given an instance a1, . . . , al, B of SUBSET SUM, we construct an in-
stance of GAP-MQ as follows: There are l items with sizes si := ai and one
bin with B1 := q1 := B. All profits are one. It is then clear that the given
instance of SUBSET SUM has a solution if and only if there exists a solution
of the GAP-MQ instance with positive profit. Hence, any approximation algo-
rithm for GAP-MQ could be used to solve the weakly NP-complete subset sum
problem.

Again, the same argumentation can be used for the case that the profit ob-
tained from packing an item equals its size, which yields the following corollary:

Corollary 8. Unless P = NP, there does not exists a polynomial time approx-
imation algorithm for GAP-MQ even for instances in which there is only one
bin and the profit obtained from packing an item into the bin equals the size of
the item.

We now consider the general case of GAP-MQ and show how it can be solved
optimally in polynomial time when the profit of an item is independent of the
bin it is packed into and the maximum bin capacity Bmax as well as the number
of different item types (s1, . . . , sm, p) are fixed.

So assume that the profit of an item is independent of the bin it is packed into
and the maximum bin capacity Bmax as well as the number z of different item
types (s1, . . . , sm, p) are fixed independently of the input size. For any given
instance with m bins (B1, q1), . . . , (Bm, qm), we let N = {(s11, . . . , s

1
m, p1), . . . ,

(sz1, . . . , s
z
m, pz)} denote the set of different item types and let n1, . . . , nz be the

numbers of items of each type.

Definition 5. A (feasible) packing of bin j is a vector T = (T1, . . . , Tz) of non-
negative integers such that Tl ≤ nl for each l ∈ {1, . . . , z} and qj ≤

∑z

l=1 Tls
l
j ≤

Bj .

13

Since each item size sij is at least one, at most Bmax = maxj=1,...,m Bj

items fit into any bin. Hence, since there are z possible item types, the num-

ber δ of possible packings satisfies δ ≤ (z+1)Bmax

Bmax!
and a solution can be specified

by providing the numbers x1, . . . , xδ of bins of each of the δ possible pack-
ings T 1, . . . , T δ used. However, not every integral vector (x1, . . . , xδ) corre-
sponds to a feasible solution of the problem. Denoting the set of bins for which
packing T t is feasible by J(t), we need to make sure that the following conditions
are satisfied:

δ
∑

t=1

xtT
t
l ≤ nl ∀ l ∈ {1, . . . , z} (8)

∑

t∈S

xt ≤ | ∪t∈S J(t)| ∀ S ⊂ {1, . . . , δ} (9)

xt ≥ 0 ∀ t ∈ {1, . . . , δ} (10)

Here, constraint (8) ensures that at most the available number nl of items of the
lth type are used. Constraint (9) ensures that every packing can be assigned to
a bin it is feasible for such that no bin is assigned to more than one packing:

Lemma 9. Given any integer solution (xt)t to (9) and (10), it is possible to
assign all packings T t used by (xt)t (where xt determines the number of copies
of packing T t that are used) to the bins such that no bin is assigned to more
than one packing.

Proof. Consider the following bipartite graph G = (U ∪̇V,E): The set of
vertices is U ∪̇V , where U = {u1, . . . , um} corresponds to the m bins and
V = ∪t=1,...,δ{v

t
1, . . . , v

t
xt
} contains xt vertices vt1, . . . , v

t
xt

for each packing T t.
There are edges between all vertices vt1, . . . , v

t
xt

and the vertex uj corresponding
to bin j if and only if packing T t is feasible for bin j.

For every subset S′ ⊆ V , we denote the set of vertices in U adjacent to the
vertices in S′ by Adj(S′) and denote the set of packings to which the vertices
in S′ belong by P (S′). Since (xt)t satisfies (9), we then have

|S′| ≤
∑

t∈P (S′)

xt ≤ | ∪t∈P (S′) J(t)| = |Adj(S′)| ∀ S′ ⊆ V.

Hence, Hall’s Theorem (cf. [25]) implies that there exists a matching of V into
U in the bipartite graph G, i.e., a matching that matches each vertex in V
to exactly one vertex in U . By construction of the graph G, this proves the
claim.

We can now formulate the given instance of GAP-MQ as the following integer

14

linear program (ILP):

max

δ
∑

t=1

z
∑

l=1

xtT
t
l p

l

s.t.
δ

∑

t=1

xtT
t
l ≤ nl ∀ l ∈ {1, . . . , z}

∑

t∈S

xt ≤ | ∪t∈S J(t)| ∀ S ⊂ {1, . . . , δ}

xt ∈ N ∀ t ∈ {1, . . . , δ}

This ILP has δ variables and z + 2δ + δ constraints. Thus, as δ ≤ (z+1)Bmax

Bmax!
with z and Bmax fixed, the ILP has constant size and can be solved in time
only depending on the encoding length of the numbers occurring in the ILP.
Given an optimal solution (xt)t, Lemma 9 implies that there exists a matching
of packings to bins, which can be computed in time O(m2.376) by applying a
suitable matching algorithm (cf. [25]) to the bipartite graph G with at most
2m vertices defined in the proof of Lemma 9. Hence, we proved the following
theorem:

Theorem 10. GAP-MQ can be solved optimally in time O(m2.376) when the
profit of an item is independent of the bin it is packed into and the maximum
bin capacity Bmax as well as the number of different item types (s1, . . . , sm, p)
are fixed.

5. GAP-MQ with Fixed Number of Bins

In this section, we present a pseudo-polynomial time dynamic programming
algorithm and a polynomial time dual approximation algorithm for GAP-MQ
in case that the number m of bins is fixed.

We start by deriving the dynamic programming algorithm. For a given
instance of GAP-MQ, integers P, S1, . . . , Sm ∈ N, and i ∈ {1, . . . ,m}, we define
T (P, S1, . . . , Sm, i) to be one if there exists a packing of the items 1, . . . , i into
the m bins that yields a profit of exactly P and packs items of size exactly Sj

into bin j for each j = 1, . . . ,m. If such a packing does not exist, we define
T (P, S1, . . . , Sm, i) to be zero.

For i = 1, each value T (P, S1, . . . , Sm, 1) can then be calculated inO(m) time
as

T (P, S1, . . . , Sm, 1) =







1 if P = S1 = · · · = Sm = 0
or ∃j : P = p1,j , Sj = s1,j , Sk = 0 for k 6= j

0 else

15

The values T (P, S1, . . . , Sm, i) for i > 1 can then be computed recursively as

T (P, S1, . . . , Sm, i+ 1) = max

{

T
(

P, S1, . . . , Sm, i), max
j=1,...,m

T (P − pi+1,j ,

S1, . . . , Sj−1, Sj − si+1,j , Sj+1, . . . , Sm, i
)

}

,

so computing each value takes time O(m).

In order to obtain an optimal solution of the given instance of GAP-MQ,
the algorithm computes the values T (P, S1, . . . , Sm, i) for 0 ≤ P ≤ n · pmax,
0 ≤ Sj ≤ Bj for j = 1, . . . ,m, and 1 ≤ i ≤ n, where pmax := maxi,j pi,j denotes
the maximum profit achievable from packing a single item. The optimum profit
is then given as

max{0 ≤ P ≤ n · pmax : ∃S1, . . . , Sm with T (P, S1, . . . , Sm, n) = 1

and qj ≤ Sj ≤ Bj∀j}

and the corresponding packing is an optimal solution of the instance.

Denoting the maximum bin capacity by Bmax := maxj Bj , the total number
of values T (P, S1, . . . , Sm, i) computed in the algorithm can be upper bounded
by (n · pmax+1) · (Bmax+1)m ·n = O(n2 · pmax ·B

m
max). Since each value can be

computed in time O(m), the algorithm computes an optimum solution of the
given instance of GAP-MQ in time O(n2 ·m · pmax ·B

m
max).

When the number of bins is fixed and qj ≥ δsi,j for all i, j and some δ > 1,
we now show how to obtain a polynomial time dual approximation algorithm
that computes a solution violating the minimum quantities and bin capacities
by at most a factor 1 − 1

δ
and 1 + 1

δ
, respectively, and whose profit is at least

as large as the profit of the best solution that satisfies the minimum quantities
and bin capacities strictly. In particular, for δ = 2, we obtain a polynomial time
(1, 2)-approximation algorithm.

Our algorithm works by testing all 2m possible subsets of bins that could be
opened in a feasible solution, which are only a fixed number since m is assumed
to be fixed. For a given subset S ⊆ {1, . . . ,m} of bins, we then consider the
following linear program:

max

n
∑

i=1

∑

j∈S

pi,jxi,j

s.t.
∑

j∈S

xi,j ≤ 1 ∀ i ∈ {1, . . . , n}

qj ≤

n
∑

i=1

si,jxi,j ≤ Bj ∀ j ∈ S

xi,j ≥ 0 ∀ i ∈ {1, . . . , n},

∀ j ∈ S

(LP(S))

16

Note that adding the constraint xi,j ∈ {0, 1} to (LP(S)) would yield a fea-
sible integer programming formulation of the problem of finding a packing of
maximum profit that uses exactly the bins in S. Hence, infeasibility of (LP(S))
implies that no feasible packing using exactly the bins in S exists. Our main
result will be the following theorem:

Theorem 11. Given a feasible solution x of (LP(S)) of profit P , we can com-
pute in polynomial time an integer solution x̄ ∈ {0, 1}n×|S| of profit at least P
for which (1− 1

δ
)qj ≤

∑n

i=1 si,j x̄i,j ≤ (1 + 1
δ
)Bj for each j ∈ S.

Theorem 11 directly implies that we obtain a dual approximation for the
given instance of GAP-MQ by computing an optimal solution of (LP(S)) for
every possible subset S ⊆ {1, . . . ,m} and then computing the corresponding
integer solution for the fractional solution of highest profit. Hence, we obtain:

Theorem 12. Let the number of bins be fixed and let δ > 1 such that qj ≥ δsi,j
for all i, j. Then there exists a polynomial time algorithm for the given instance
of GAP-MQ that computes a solution violating the minimum quantities and bin
capacities by at most a factor 1 − 1

δ
and 1 + 1

δ
, respectively, and whose profit

is at least as large as the profit of the best solution that satisfies the minimum
quantities and bin capacities strictly.

In particular, for δ = 2, the solution computed by the algorithm from The-
orem 12 violates the minimum quantities by at most a factor 1

2 and the bin
capacities by at most a factor 3

2 , so we obtain a (1, 2)-approximation algorithm.
This shows the following result:

Corollary 13. There exists a (1, 2)-approximation algorithm for GAP-MQ for
the case that the number of bins is fixed and qj ≥ 2si,j for all i, j.

For the proof of Theorem 11, we need the following result about feasible
solutions of (LP(S)):

Lemma 14. If x is a feasible solution to (LP(S)), then
∑n

i=1 xi,j > 1 for each
j ∈ S.

Proof. If
∑n

i=1 xi,j ≤ 1 for some j ∈ S, then

qj ≤

n
∑

i=1

si,jxi,j ≤ max
i=1,...,n

si,j ·

n
∑

i=1

xi,j ≤ max
i=1,...,n

si,j .

As δ > 1, this contradicts the assumption that qj ≥ δsi,j for all i, j.

We now present the proof of Theorem 11 by providing an explicit algorithm
that constructs the desired integer solution x̄ from a given solution x. Our
proof uses the same weighted bipartite graph G(x) constructed from the given
(fractional) solution x of (LP(S)) as in [3], where a (1, 2)-approximation algo-
rithm for the classical GAP was presented. We repeat the construction here for
completeness. We note that our overall approach is similar to the one in [3],

17

but we need to modify the computation of the matching in the graph in order
to ensure that the minimum quantities are only violated by certain factors.

In the bipartite graph G(x) = (V,W,E), there is a vertex wi ∈ W for each
item i, so we have W = {wi : i = 1, . . . , n}. For each bin j ∈ S, there are
kj := ⌈

∑n

i=1 xi,j⌉ vertices vj,l, so V = {vj,l : j = 1, . . . ,m, l = 1, . . . , kj}. Note
that Lemma 14 implies that kj ≥ 2 for each j ∈ S.

The edges of G(x) incident to the vertices vj,l corresponding to bin j ∈ S and
their weights x′ are constructed as follows: We sort the items by nonincreasing
size in bin j, so that s1,j ≥ s2,j ≥ · · · ≥ sn,j . We then let î be the minimum

index such that
∑î

i=1 xi,j ≥ 1 (such an index exists by Lemma 14).

There is an edge (vj,1, wi) for each i ∈ {1, . . . , î − 1} for which xi,j > 0,
and for each of these edges, we set x′(vj,1, wi) := xi,j . Moreover, there is

an edge (vj,1, wî) with x′(vj,1, wî) := 1 −
∑î−1

i=1 x
′(vj,1, wi) (so the sum of the

components of x′ for edges incident to vj,1 is exactly 1).

If
∑î

i=1 xi,j > 1, a fraction of xî,j is still unassigned, so there is an edge (vj,2, wî)
with

x′(vj,2, wî) := xî,j − x′(vj,1, wî) =





î
∑

i=1

xi,j



− 1.

We then continue with the items i > î of smaller size and construct edges (vj,2, wi)
until the sum of the components of x′ for edges incident to vj,2 have a weight
of exactly 1, and so on. At the end, the definition of kj implies that, for each of
the vertices vj,1, . . . , vj,kj−1, the sum of the components of x′ for edges incident
to the vertex is exactly one, but this sum may be less than one for vj,kj

.

It now follows that the vector x′ on the edges ofG(x) is a fractional matching,
i.e., all components are nonnegative and the sum of the components of x′ on
edges incident to each vertex is at most 1. Moreover, as we saw above, this
fractional matching exactly matches each vertex vj,l for l = 1, . . . , kj − 1, i.e.,
for each of these vertices, the sum of the components of x′ on edges incident
to it is exactly 1. Moreover, if we define the profit of each edge (vj,l, wi) to be
pi,j , the profit of x′ is exactly equal to the profit P of x. Denoting, for each
vertex vj,l, the maximum and minimum size of an item i with (vj,l, wi) ∈ E by
smax
j,l and smin

j,l , respectively, this shows the following lemma:

Lemma 15. The vector x′ is a fractional matching in G(x) of profit at least P .
It exactly matches each vertex vj,l for j ∈ S and l = 1, . . . , kj − 1. Moreover,
smin
j,l ≥ smax

j,l+1 for j ∈ S and l = 1, . . . , kj − 1.

Our algorithm for constructing the desired integer solution x̄ from x now
works as follows:

18

Algorithm 1 (Constructing an Integer Solution x̄ from a Fractional Solution x).

Step 1: Construct the bipartite graph G(x) and the fractional matching x′.
Step 2: Compute a maximum profit (integer) matching M that exactly

matches all vertices vj,l for j ∈ S and l = 1, . . . , kj − 1.
Step 3: For each edge (vj,l, wi) ∈ M , assign item i to bin j, i.e., set x̄i,j := 1

if (vj,l, wi) ∈ M and x̄i,j := 0, otherwise.

We are now ready to prove Theorem 11. Here, the arguments used to show
that the bin capacities will be violated by at most a factor of (1+ 1

δ
) are similar

to the ones used in the proof of the main result in [3]. Additionally, we need to
ensure that the minimum quantities of all bins containing items are also violated
by a factor of at most (1− 1

δ
). For this reason, we choose a matching that exactly

matches all vertices vj,l for j ∈ S and l = 1, . . . , kj−1 in Step 2 of our algorithm,
while the algorithm presented in [3] used a matching that exactly matches all
the item vertices wi in order to ensure that all items are packed (which is not
required in our problem).

Proof of Theorem 11. We show that the integer solution x̄ computed by Al-
gorithm 1 is as desired. By Lemma 15, the vector x′ is a fractional match-
ing in G(x) of profit at least P and matches all vertices vj,l for j ∈ S and
l = 1, . . . , kj − 1 exactly. The polytope of all fractional matchings in G(x) is
defined by the following constraints:

n
∑

i=1

y(vj,l, wi) ≤ 1 ∀j ∈ S, l = 1, . . . , kj ,

∑

j∈S,l=1,...,kj

y(vj,l, wi) ≤ 1 ∀i = 1, . . . , n,

y(vj,l, wi) ≥ 0 ∀j ∈ S, l = 1, . . . , kj , i = 1, . . . , n

Writing these constraints as Ay ≤ 1, y ≥ 0, the corresponding matrix A is to-
tally unimodular (cf., for example, [8]). Moreover, the requirement that the
vertices vj,l for j ∈ S and l = 1, . . . , kj − 1 are matched exactly only means
adding the constraint −

∑n

i=1 y(vj,l, wi) ≤ −1 for each such vj,l, and the coef-
ficient vector of this constraint is exactly the negative of the coefficient vector
of the constraint

∑n

i=1 y(vj,l, wi) ≤ 1. Hence, the matrix including these addi-
tional constraints is also totally unimodular (cf., for example, [8]), so the poly-
tope of all fractional matchings that exactly match the vertices vj,l for j ∈ S
and l = 1, . . . , kj − 1 is integral. Consequently, we can compute a maximum
profit (integer) matching in Step 2 of the algorithm in polynomial time and this
matching has profit at least P . Since the integer solution x̄ has exactly the
same profit, this shows that x̄ has profit at least P .

We now consider the total size of the items assigned to bin j for each
j = 1, . . . ,m and first show that this size is at most (1+ 1

δ
)Bj . There are kj ver-

tices vj,l corresponding to bin j in G(x) and, for each of these, at most one item
corresponding to an incident edge will be assigned to bin j. Hence, the total

19

size of the items assigned to bin j is at most
∑kj

l=1 s
max
j,l . Since Bj ≥ qj ≥ δsi,j

for all i, we have smax
j,1 ≤ 1

δ
Bj . Moreover, Lemma 15 and the construction of x′

imply that

kj
∑

l=2

smax
j,l ≤

kj−1
∑

l=1

smin
j,l ≤

kj−1
∑

l=1

∑

i:(vj,l,wi)∈E

si,jx
′(vj,l, wi)

≤

kj
∑

l=1

∑

i:(vj,l,wi)∈E

si,jx
′(vj,l, wi) =

n
∑

i=1

si,jxi,j ≤ Bj ,

where the last inequality holds since x is a feasible solution for (LP(S)). Con-
sequently, we obtain that the total size of the items assigned to bin j is at most
(1 + 1

δ
)Bj .

It remains to show that the total size of the items assigned to bin j is at
least (1 − 1

δ
)qj . Since the matching M computed in Step 2 of the algorithm

matches all vertices vj,l for l = 1, . . . , kj − 1 exactly, the total size of the items

assigned to bin j is at least
∑kj−1

l=1 smin
j,l and, by Lemma 15,

kj−1
∑

l=1

smin
j,l ≥

kj
∑

l=2

smax
j,l =

kj
∑

l=1

smax
j,l − smax

j,1 ≥

kj
∑

l=1

∑

i:(vj,l,wi)∈E

smax
j,l x′(vj,l, wi)− smax

j,1

≥

kj
∑

l=1

∑

i:(vj,l,wi)∈E

si,jx
′(vj,l, wi)− smax

j,1 =

n
∑

i=1

si,jxi,j − smax
j,1

≥ qj − smax
j,1 ≥ qj −

1

δ
qj = (1−

1

δ
)qj ,

where we used that qj ≥ δsmax
j,1 . This shows that the total size of the items

assigned to bin j is at least (1 − 1
δ
)qj , which finishes the proof.

6. Computational Results

In this section, we present computational results that provide insights into
the average quality of the solutions obtained by our dual approximation al-
gorithm presented in Section 5. For our tests, we choose instances for which
qj ≥ 2si,j for all i, j, so by choosing δ := 2 our algorithm is guaranteed to
provide a (1, 2)-approximation on these instances.

Note that, since the algorithm has to solve the linear program (LP(S)) for
all 2m possible subsets of bins that could be opened, the running time is of
course prohibitive for large values of m. Hence, we tested only instances with
at most 10 bins. The running time of our algorithm on each of these instances
was less than 5 minutes on a standard desktop computer equipped with an Intel
Core 2 Quad Q6700 CPU (2.66 GHz) and 8 gigabytes of memory.

20

In order to compute the optimum profit of a solution that respects all bin
capacities and minimum quantities, we use the natural integer programming
formulation of the problem:

max

n
∑

i=1

m
∑

j=1

pi,jxi,j

s.t.

m
∑

j=1

xi,j ≤ 1 ∀ i ∈ {1, . . . , n}

qjyj ≤

n
∑

i=1

sixi,j ≤ Bjyj ∀ j ∈ {1, . . . ,m}

xi,j , yj ∈ {0, 1} ∀ i ∈ {1, . . . , n},

∀ j ∈ {1, . . . ,m}

Here, variable xi,j is one if and only if item i is packed into bin j and variable yj
is one if and only if bin j is opened.

The random instances in our computational experiments are generated as
follows: The size of each item in each bin is chosen uniformly at random in
{1, . . . , 20}. For each bin j, we then choose the bin capacity Bj uniformly at
random in {2 · smax(j), . . . , 2 · smax(j) + 50}, where smax(j) denotes the max-
imum size of an item in bin j. The minimum quantity qj of bin j is chosen
uniformly at random in {2 · smax(j) + 25, . . . , 2 · smax(j) + 50}, where the values
of Bj and qj are exchanged in case that qj > Bj . For the profits, we choose a
profit parameter pj uniformly at random from {0, . . . , 100} for each bin j. The
profit pi,j obtained from packing item i into bin j is then chosen uniformly at
random from {0, . . . , pj} (hence, pj can be interpreted as the “attractiveness”
of bin j).

For every combination of n ∈ {10, 20, 30, 40, 50} and m ∈ {5, 7, 10}, we sam-
pled 100 instances in this way and solved the integer program obtained from
the formulation above using CPLEX 12.4. Our dual approximation algorithm
was implemented as an OPL model in IBM ILOG CPLEX Optimization Stu-
dio 12.4. An optimal solution of the linear program (LP(S)) for each possible
subset S of bins and the maximum profit matching M in Step 2 of Algorithm 1
were computed using CPLEX 12.4.

Table 2 shows the results of our computational experiments. For each in-
stance size, the table shows the average values of the optimum profit of a solution
that respects all bin capacities and minimum quantities (calculated by solving
the integer program), the profit obtained by the dual approximation algorithm,
the number of bins with violated minimum quantity, and the number of bins
with violated bin capacity. Moreover, the last two columns provide the average
factor by which the minimum quantity or the bin capacity are violated, each
averaged over the violated values only.

21

n m average average average # average # average average
optimum profit profit qj violated Bj violated qj violation Bj violation

10 5 471.31 504.01 0.96 0.23 0.87 1.07
20 5 996.35 1023.15 1.07 1.09 0.88 1.09
30 5 1476.83 1514.89 0.95 1.83 0.88 1.10
40 5 1882.67 1934.72 0.68 2.41 0.89 1.10
50 5 2119.95 2175.68 0.53 2.70 0.92 1.09
10 7 484.4 515.10 0.90 0.25 0.86 1.09
20 7 1122.83 1147.56 1.15 0.92 0.89 1.10
30 7 1656.65 1688.9 1.18 1.67 0.89 1.09
40 7 2154.71 2201.17 1.00 2.43 0.90 1.09
50 7 2547.76 2596.52 0.94 2.86 0.90 1.09
10 10 540.85 569.74 0.92 0.19 0.87 1.10
20 10 1238.03 1266.28 1.37 0.69 0.87 1.10
30 10 1870.65 1900.90 1.39 1.58 0.87 1.09
40 10 2443.44 2481.04 1.19 2.29 0.89 1.10
50 10 2995.02 3043.72 1.34 3.00 0.90 1.09

Table 2: Computational results.

As the results show, our dual approximation algorithm produces solutions in
which the minimum quantity is violated only for a very small number of bins on
average. The bin capacity is violated slightly more often for the instances with
larger numbers of items, but it is still respected for most bins. More importantly,
the results show that the minimum quantities and bin capacities of the violated
bins are only violated by about 9-14% on average for every instance size tested.
Hence, the algorithm produces solutions with superoptimal profit that violate
the constraints of the problem only by a small factor.

7. Future Research

An interesting theoretical question is whether there exist good polynomial
time approximation algorithms for SAP or whether the problem is inapprox-
imable (which we proved for GAP-MQ). We suspect that such approximation
algorithms exist, but achieving a constant factor may be hard as most standard
techniques for designing approximation algorithms fail for this problem.

References

[1] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Im-
plementations, John Wiley & Sons, Chichester, 1990.

[2] D. G. Cattrysse, L. N. Van Wassenhove, A survey of algorithms for the gen-
eralized assignment problem, European Journal of Operational Research
60 (3) (1992) 260–272.

22

[3] D. B. Shmoys, É. Tardos, An approximation algorithm for the generalized
assignment problem, Mathematical Programming 62 (1993) 461–474.

[4] D. W. Pentico, Assignment problems: A golden anniversary survey, Euro-
pean Journal of Operational Research 176 (2) (2007) 774–793.

[5] C. Chekuri, S. Khanna, A PTAS for the multiple knapsack problem, SIAM
Journal on Computing 35 (3) (2006) 713–728.

[6] R. Cohen, L. Katzir, D. Raz, An efficient approximation algorithm for the
generalized assignment problem, Information Processing Letters 100 (4)
(2006) 162–166.

[7] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, 2004.

[8] G. L. Nemhauser, L. A. Wolsey, Integer and Combinatorial Optimization,
Wiley-Interscience, New York, 1988.

[9] V. V. Vazirani, Approximation Algorithms, Springer, 2001.

[10] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, Approximation algorithms
for bin packing: A survey, in: Hochbaum [26], pp. 46–93.

[11] S. F. Assmann, Problems in discrete applied mathematics, Ph.D. thesis,
Massachusetts Institute of Technology (1983).

[12] S. F. Assmann, D. S. Johnson, D. J. Kleinman, J. Y.-T. Leung, On a dual
version of the one-dimensional bin packing problem, Journal of Algorithms
5 (4) (1984) 502–525.

[13] J. Csirik, D. S. Johnson, C. Kenyon, Better approximation algorithms for
bin covering, in: Proceedings of the 12th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2001, pp. 557–566.

[14] K. Jansen, R. Solis-Oba, An asymptotic fully polynomial time approxi-
mation scheme for bin covering, Theoretical Computer Science 306 (2003)
543–551.

[15] H. G. Seedig, Network flow optimization with minimum quantities, in: Op-
erations Research Proceedings 2010: Selected Papers of the Annual Inter-
national Conference of the German Operations Research Society, Springer,
2011, pp. 295–300.

[16] S. O. Krumke, C. Thielen, Minimum cost flows with minimum quantities,
Information Processing Letters 111 (11) (2011) 533–537.

[17] X. Zhu, Q. Yuan, A. Garcia-Diaz, L. Dong, Minimal-cost network flow
problems with variable lower bounds on arc flows, Computers and Opera-
tions Research 38 (8) (2011) 1210–1218.

23

[18] M. R. Garey, D. S. Johnson, Computers and Intractability (A Guide to the
Theory of NP-Completeness), W.H. Freeman and Company, New York,
1979.

[19] V. Kann, Maximum bounded 3-dimensional matching is MAX SNP-
complete, Information Processing Letters 37 (1) (1991) 27–35.

[20] E. Petrank, The hardness of approximation: Gap location, Computational
Complexity 4 (2) (1994) 133–157.

[21] A. J. Hoffman, J. B. Kruskal, Integral boundary points of convex polyhedra,
in: Kuhn and Tucker [27], pp. 223–246.

[22] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, in:
Proceedings of the 20th ACM Symposium on the Theory of Computing
(STOC), 1988, pp. 377–387.

[23] S. Plotkin, É. Tardos, Improved dual network simplex, in: Proceedings of
the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), 1990, pp.
367–376.

[24] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Prentice Hall,
1993.

[25] A. Schrijver, Combinatorial Optimization, Vol. 24 of Algorithms and Com-
binatorics, Springer, 2003.

[26] D. S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems,
PWS Publishing, Boston, 1997.

[27] H. W. Kuhn, A. J. Tucker (Eds.), Linear Inequalities and Related Systems,
Princeton University Press, 1956.

24

