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Abstract

In this paper, we consider the newsvendor model under partial information, i.e.,

where the demand distribution D is partly unknown. We focus on the classical case

where the retailer only knows the expectation and variance of D. The standard

approach is then to determine the order quantity using conservative rules such as

minimax regret or Scarf’s rule. We compute instead the most likely demand distri-

bution in the sense of maximum entropy. We then compare the performance of the

maximum entropy approach with minimax regret and Scarf’s rule on large samples

of randomly drawn demand distributions. We show that the average performance

of the maximum entropy approach is considerably better than either alternative,

and more surprisingly, that it is in most cases a better hedge against bad results.

Keywords: newsvendor model, entropy, partial information

1 Introduction

The single-period newsvendor model is a heavily studied tool that has attracted increas-

ing interest in the last two decades. The basic setting is that a retailer wants to order a

quantity q from a manufacturer, demand D is a random variable, and the retailer wishes

to select an order quantity maximizing the expected profit E[Πr(q,D)]. When the distri-

bution of D is known, this problem is easily solved; see Section 3 below.
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In many cases, the retailer only has partial information on D. The typical case we have in

mind is when the retailer has, e.g., 10–20 observations of D. While this information can

be used to form a qualified opinion on the expectation and possibly the variance of D, it

offers little clue as to the shape of the distribution. In such situations, the retailer wishes

to hedge against bad results, particularly results with negative profits. Two commonly

used rules are Scarf’s rule and minimax regret, both discussed in detail later. We study

the performance of these rules in comparison with an approach where we calculate the

order size using the most likely distribution in the sense of maximum entropy. Initially,

we very briefly discuss Scarf’s rule to focus on a central and seemingly counterintuitive

point in our paper: that is, Scarf’s rule is not necessarily the best hedge.

Scarf’s rule is the solution of the following maximin problem, i.e., given µ and σ, find an

order quantity q such that q is the solution to the problem:

max
q≥0

min
D∈Dµ,σ

E[Πr(q,D)]. (1)

The minimum is taken over all distributions D in the set Dµ,σ of all distributions with

E[D] = µ and Var[D] = σ2. Scarf’s construction is certainly relevant and interesting, but

there is an obvious objection. That is, Scarf’s rule hedges against the worst cases in Dµ,σ,

but what if these worst cases are very unlikely? From a practical viewpoint, we consider

that a manager should seek strategies with small probabilities for bad results, and from

this perspective, Scarf’s rule may not be the optimal choice. To be more precise, the

performance of Scarf’s rule may be challenged where there is a small probability of being

close to the worst-case scenarios hedged by Scarf’s rule.

For example, if a retailer wishes to sell goods in California, they could potentially be

concerned about the worst-case scenario where there is a massive slide in the San An-

dreas Fault. If this expected event materializes, the retailer will incur huge losses, and

to hedge against such losses, the retailer should make an order of zero. In practice, most

retailers would be willing to accept the risk, i.e., they have no wish to hedge against

extremely unlikely events. On the other hand, they may wish to hedge against events

that are rare, but not extremely rare. In such cases, it could be appropriate to compare

performance at, say, the 95% or 99% percentiles. We demonstrate that ordering schemes

based on maximum entropy outperform Scarf’s rule at these percentiles, suggesting that

Scarf’s rule is not an optimal hedge at these levels. As maximum entropy rules also pro-

duce greater expected profits, we suggest that such rules are often superior to Scarf’s rule.

While the point made above may appear obvious at first, on closer inspection it is not,
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as it relies heavily on the assumption that we can discuss the probability of a demand

distribution. As there is no universal choice for a probability measure on Dµ,σ, any par-

ticular choice will have to be subjective, and the results will then depend critically on the

particular choice made. Trivially, we could equip Dµ,σ with a probability measure where

all mass is concentrated at the distributions where Scarf’s rule is optimal, and so also

trivially, Scarf’s rule would be the best choice under this particular scenario. However, in

sampling distributions, we should avoid as a rule sampling schemes that have an obvious

bias in favor of any of the selection rules. We believe that the sampling schemes we apply

in this paper represent a fair way of assessing the performance of different ordering rules.

The newsvendor model under partial information has previously been studied in many

different settings, with regard to both the available information on the demand distribu-

tion and different extensions to the classical newsvendor model. Two ordering rules are

generally discussed when only limited information on the demand distribution is known:

the conservative maximin rule (Scarf’s rule), which minimizes the worst-case performance

(Scarf (1958), Gallego and Moon (1993), Moon and Choi (1995), Gallego et al. (2001));

and the less conservative minimax regret ordering rule (Savage (1951), Yue et al. (2006),

Perakis and Roels (2008)). Ordering schemes based on maximum entropy are also men-

tioned in the literature (Jaynes (1957, 2003), Eren and Maglaras (2006), Perakis and

Roels (2008)).

Perakis and Roels (2008) examine the performance of Scarf’s rule and the minimax regret

rule where both the mean and the variance are known (as is common in the fashion and

sporting goods industries (Gallego and Moon (1993)). In particular, Perakis and Roels

(2008) focus on how this approach performs in relation to maximum regret (as compared

with Scarf’s rule and the newsvendor solution given a normal- or gamma-demand dis-

tribution) and mean expected profit loss (compared with the newsvendor solution when

the demand distribution is truncated normal, gamma, lognormal, or negative binomial).

In their findings, Perakis and Roels (2008) recommend the use of the truncated normal

distribution for situations with large coefficients of variation and the gamma distribution

for large profit margins.

There are very few papers that deal with maximum entropy techniques to estimate de-

mand. The only in-depth contribution appears to be Eren and Maglaras (2009), who

explore maximum entropy techniques to estimate demand in cases with censored sales

obeservations. We quote from their paper “To the best of our knowledge the operations

management and revenue management literatures have not explored the use of maximum
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entropy methods to approximate unknown demand or willingness-to-pay distributions”.

Perakis and Roels (2008) briefly discuss the possibility of selecting an order scheme based

on the maximum entropy distribution, listing the classical entropy maximizing distribu-

tions and showing how the ordering decision using these distributions performs, in terms

of maximum regret, compared with Scarf’s rule and the minimax regret decision. Eren

and Maglaras (2006) suggest a maximum entropy approach similar to that in the current

paper. However, while Eren and Maglaras (2006) briefly mention a few relevant formulas,

they never enter into a discussion of much depth. Lastly, Lim and Shanthikumar (2007)

discuss how we can use relative entropy to measure uncertainty in the demand rate for

dynamic revenue management problems.

In this paper, we assume knowledge of the mean and variance of the demand distribu-

tion, and use this information to find the particular distribution that maximizes entropy.

We then calculate the expected profit or loss using the maximum entropy distribution

instead of the real demand distribution. We use this to compare the results with Scarf’s

rule and the minimax regret ordering rule in terms of average expected loss from the real

distribution (mean loss and loss at the 95% and 99% percentiles) using a large sample of

randomly drawn demand distributions. The three ordering rules are also compared (in

terms of mean expected loss) when the real demand distribution is a mixture of normal

and exponential distributions. We find that the average performance of the maximum en-

tropy approach in terms of mean expected loss is considerably better. More surprisingly,

the maximum entropy approach also outperforms Scarf’s rule (as well as the minimax

regret approach) when we consider the 95% and 99% percentiles of the expected loss.

The most recent literature considering the newsvendor model with limited demand infor-

mation discusses both Scarf’s rule (Perakis and Roels (2010), Tajbakhsh et al. (2010),

Berman et al. (2011)) and the minimax regret rule in different settings (Jiang et al.

(2010), Perakis and Roels (2010), Lan et al. (2011), Lin and Ng (2011)). For instance,

Lan et al. (2011) derive optimal overbooking levels and booking limits, minimizing max-

imum relative regret for an overbooking and fare-class allocation model in revenue man-

agement when demand and no-shows are characterized using interval uncertainty. In

other work, Berman et al. (2011) compare a centralized (pooled) system with a decen-

tralized (nonpooled) system using a number of common demand distributions, as well

as the distribution-free approximation when only the first two moments of the demand

distribution are known (Gallego and Moon (1993)). Likewise, Lin and Ng (2011) consider

the minimax regret multimarket newsvendor model when demand is only known to be

bounded within some given interval. Similarly, Jiang et al. (2010) study minimax regret
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where we have multiple newsvendors that compete in a setting with asymmetric informa-

tion, such that each newsvendor knows the support of their own demand distribution but

only have estimates of the demand distribution support for their competitors. Finally,

Perakis and Roels (2010) consider the maximin and the minimax regret decision criteria

for the capacity allocation problem in revenue management under general polyhedral un-

certainty sets.

Benzion et al. (2010) and Lee and Hsu (2011) present other related literature. To start

with, Lee et al. (2011) study the effect of advertising in the newsvendor problem when

only the mean and variance of the demand distribution are known. Benzion et al. (2010)

present an experimental study where all participants should assume the newsvendor role

but only half have knowledge of the underlying demand distribution. This study assumes

that the newsvendor should decide the order quantity each day for 100 days. The findings

in Benzion et al. (2010) indicate that the two groups behave differently, but that knowing

the demand distribution does not necessarily lead to better decisions. The reason is that

the supply surplus in a given period strongly affects the order quantity in the following

period for both groups. In the earlier literature, Perakis and Roels (2008) provide a good

overview of the different distribution-free approaches as well as the concept of entropy.

The remainder of the paper is organized as follows. In Section 2, we set up the framework,

formally state the basic definitions, and specify the central results used later in the paper.

In Section 3, we show how to construct maximum entropy distributions, and illustrate

how we can use these distributions to specify alternative ordering rules. In Section 4,

we compare the maximum entropy approach with Scarf’s rule and minimax regret. We

compute the average expected loss (compared with the situation where the distribution

is fully known) over large samples of randomly drawn discrete distributions. In Section

5, we refine the simplistic framework in Section 4 using mixture distributions. In this, we

equip the set of mixture coefficients with a probability measure, and compute the expected

loss (expectation taken over the random coefficients and the random values of demand).

In Section 6, we compute the optimal ordering rule for a known mixture distribution.

This rule is useful as it provides a lower bound on the expected loss and we can then

compute how close the other ordering rules come to this lower bound. We also consider

the performance of the maximum entropy approach under the worst-case scenario, i.e.,

the distributions where Scarf’s rule is (by definition) the best hedge. In Section 7, we

briefly describe how to construct the maximum entropy distribution in cases where the

higher-order moments and/or percentiles are known. While it is straightforward to solve

maximum entropy problems under such additional information, maximin and minimax
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problems can become very difficult to solve. This shows that the maximum entropy

approach is more flexible. Finally, in Section 8, we offer some concluding remarks.

2 The newsvendor model under partial information

In this section, we offer a brief review of the theory underlying this paper. However, as it is

mostly a summary of classical results, we provide only a minimum of detail. For complete

proofs and detailed discussion, we refer to Scarf (1958), Gallego and Moon (1993), Perakis

and Roels (2008), and Jörnsten et al. (2011).

2.1 The classical newsvendor model

In the classical newsvendor model, a retailer plans to sell a commodity in a market

with uncertain demand. The retailer orders a number of units of the commodity from a

manufacturer, and expects to sell a sufficient number of these units to make a profit. The

manufacturer decides the wholesale price W (which is fixed in this analysis), while the

retailer has an exogenously given selling price (revenue) R and decides the order quantity

q. Any unsold items can be salvaged at the price S.

2.2 Retailer’s profit

The retailer’s profit is denoted by Πr(q,D). Clearly

Πr(q,D) = (R− S) min[D, q]− (W − S)q. (2)

and

E[Πr] = (R− S)

(
E[min[D, q]]− W − S

R− S

)
q. (3)

Without loss of generality, we can assume that units are chosen such that R − S = 1. If

we define:

β =
W − S
R− S

=
overage cost

underage cost+overage cost
, (4)

(3) can be simplified to:

E[Πr] = E[min[D, q]]− β · q. (5)

If D is a continuous distribution with cumulative distribution FD, the order quantity max-

imizing E[Πr] is q = F−1
D (1− β). If D is a discrete distribution with values d1, d2, . . . , dn

and probabilities p1, p2, . . . , pn, the optimal order quantity can be found as follows: let

1 ≤ k ≤ n be the smallest integer s.t.
∑k

i=1 pi ≥ 1− β. Maximum expected profit in (5)
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is achieved using q = dk. In the degenerate case where
∑k

i=1 pi = 1 − β, the expected

value is constant if q ∈ [dk, dk+1]. In all other cases, the optimal order quantity is unique.

2.3 Scarf’s rule

This rule assumes that the retailer only knows the expected demand µ = E[D] and the

standard deviation σ = sd[D]. Let µ and σ be given and let Dµ,σ denote the collection

of all distributions with E[D] = µ,Var[D] = σ2. Scarf (1958) considered the following

maximin problem:

max
q≥0

min
D∈Dµ,σ

E[Πr(D, q)], (6)

and showed that the optimal maximin order quantity is given by:

q = µ+
σ

2

(
1− 2β√
β(1− β)

)
. (7)

Scarf’s rule is often modified to the form:

q =

µ+ σ
2

(
1−2β√
β(1−β)

)
0 ≤ β ≤ µ2

µ2+σ2

0 otherwise,

(8)

in which case the retailer obtains a nonnegative expected profit for all D ∈ Dµ,σ.

2.4 Minimum regret

In their seminal paper on minimax regret, Perakis and Roels (2008) consider the minimum

regret order, i.e., the solution to:

min
q≥0

max
D∈D

max
z≥0

E[Πr(D, z)]− E[Πr(D, q)], (9)

where the second maximum is taken over some set D of distributions, typically charac-

terized by moment conditions. Perakis and Roels (2008) consider eight different cases in

their paper. Of these, the case most relevant to our analysis is where µ and σ are known,

together with a positivity constraint D ≥ 0. The optimal order quantity q can then be
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obtained (Theorem 8 in Perakis and Roels (2008)) by solving the equation:

max

{
max

max{µ,q}≤x≤(µ2+σ2)/µ

(µ
x
− β

)
(x− q),

max
q≤x≤µ∪max{q,(µ2+σ2)/µ}≤x≤q+

√
(q−µ)2+σ2}

(
σ2

(x− µ)2 + σ2
− β

)
(x− q)

}
(10)

= max
max{0,y−

√
(q−µ)2+σ2}≤x≤min{q,µ}

(
(x− µ)2

(x− µ)2 + σ2
− β

)
(x− q),

w.r.t. q. When µ, σ, β are given, the left-hand side of this equation is a decreasing function

of q alone, while the right-hand side is an increasing function of q. The minimum for the

maximum of both sides is obtained at the unique value q where the two sides are equal,

and q is easily obtained by a numerical method.

3 Maximum entropy

In this section, we discuss how to solve a maximum entropy problem and how we can use

the solution of this problem to select an order quantity for the newsvendor problem.

The maximum entropy principle is often used to derive the prior probability distribution.

Jaynes (1957, 2003), for example, argues that the maximum entropy distribution, as it

is the least informative given the available information, is a good choice for a prior dis-

tribution. Classical examples of entropy-maximizing distributions, among others listed

in Perakis and Roels (2008), are the uniform distribution, when only the range of the

distribution is known; the exponential distribution, when the distribution is known to be

nonnegative and has a certain mean; and the most relevant for our study, the normal

distribution, when the distribution has known mean and variance.

If the mean and variance are known, Perakis and Roels (2008, 2010) claim that the nor-

mal distribution (if not dramatically skewed) performs quite well for a variety of demand

distributions. More specifically, Perakis and Roels (2010) suggest that both the newsven-

dor policy based on the normal distribution and Scarf’s rule (a minimax cost policy)

perform quite well when the true distribution is bell shaped (gamma) or skewed (gamma

and exponential distribution). However, Gallego et al. (2007) caution against the use of

the normal distribution when the coefficient of variation is large as excessive orders and

large financial losses may occur. To avoid this, Gallego et al. (2007) recommend the use

of nonnegative distributions, such as the gamma, negative binomial, or the lognormal,

8



for products with large coefficients of variation. If managers insist on using the normal

distribution, Gallego et al. (2007) provide a tight, distribution-free upper bound to limit

the order size. Finally, in related work, Silver et al. (1998) argued that the normal distri-

bution should not be used when the coefficient of variation of demand was greater than

0.5.

3.1 Equations for maximum entropy

The entropy of a discrete distribution is defined by:

entropy =
n∑
i=1

−pi ln[pi]. (11)

In the continuous case, we have:

entropy =

∫ ∞
−∞
−f(x) ln[f(x)]dx. (12)

In a maximum entropy problem, we want to maximize the entropy over all distributions

with given moments. In this paper, we discuss the case where µ and σ are given together

with the support of the distribution. In the newsvendor problem, it is natural to restrict

the support to the positive real axis. If the maximum value N is known, we can consider

an N + 1-variable problem of the form:

max
p0,...,pN

N∑
i=0

−pi ln[pi], (13)

subject to the constraints:

N∑
i=0

pi = 1
N∑
i=0

i · pi = µ
N∑
i=0

i2 · pi = σ2 + µ2. (14)

Since these constraints are all linear in p, it follows from the first-order conditions that

we find constants a, b, c s.t.:

pi = ea+b·i+c·i
2

. (15)

We find numerical values for these constants using the three constraints. The simple

method is also easily modified to include the case where we have specified the range, i.e.,

find constants a, b, c such that:
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e∑
i=d

ea+b·i+c·i
2

= 1
e∑
i=d

i · ea+b·i+c·i2 = µ

e∑
i=d

i2 · ea+b·i+c·i2 = σ2 + µ2, (16)

where d is the minimum and e is the maximum of D. Passing to the limit, we obtain:

∫ e

d

ea+b·x+c·x
2

dx = 1

∫ e

d

x · ea+b·x+c·x2

dx = µ

∫ e

d

x2 · ea+b·x+c·x2

dx = σ2 + µ2,

(17)

for the continuous case. If D is supported on the whole real axis, it is straightforward to

verify that:

ea+b·x+c·x
2

=
1√
2πσ

e−(x−µ)2/(2σ2), (18)

i.e., the normal distribution is the solution to the maximum entropy problem. If D

is supported on the positive real axis, however, this is no longer true. In particular, if

σ ≥ µ, the difference is considerable as no such distribution can be approximately normal.

Figure 1 depicts two particular cases. In the first case, µ = 100, σ = 100, we can see that

the distribution is far from normal. In the second case, µ = 100, σ = 50, the solution

resembles the normal distribution, but is not exactly equal.

100 200 300 400 500 d

0.002

0.004

0.006

0.008

0.010

f

100 200 300 400 500 d

0.002

0.004

0.006

f

Figure 1: Maximum entropy distributions for the cases

µ = 100, σ = 100 (left), µ = 100, σ = 50 (right)

The qualitative behavior is governed by the fraction σ
µ
. If σ

µ
is small, the maximum entropy

distribution is very close to the normal distribution, i.e., there is hardly any difference

between the two. The newsvendor problem is very well understood where D has a normal

distribution. Henceforth, we focus on cases where σ
µ

is medium/large.

3.2 Predicting order quantities by maximum entropy

The construction above offers an alternative order quantity for the newsvendor model.

Subject to the partial information we have on D, we solve a maximum entropy problem

to find a distribution Dmaxentropy and select the order quantity we would have used if
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Dmaxentropy was the true distribution, i.e.:

q = F−1
Dmaxentropy(1− β). (19)

To examine how this works in a particular case, and to explain how we will evaluate per-

formance later, we assume that the true demand distribution is the discrete distribution

to the left in Figure 2.

0 20 40 60 80 100d

0.05

0.10

0.15

p

0 20 40 60 80 100d

0.05

0.10

0.15

f

Figure 2: True distribution (left) and maximum entropy distribution (right)

Assume that we have available the following (partial) information about the true D:

µ(D) = 56.8 σ(D) = 33.9 min(D) = 16 max(D) = 98 (20)

If we use this information and solve the nonlinear system in (17), we obtain a solution of

the maximum entropy problem that has a density fDmaxentropy given by:

fDmaxentropy(x) =

exp[a+ bx+ cx2] 16 ≤ x ≤ 98

0 otherwise,
(21)

where:

a = 0.770388 b = −0.249481 c = 0.00219509. (22)

Figure 2 illustrates a plot of this density to the right. Assuming that β = 0.6, we can solve

(19) to obtain an order quantity of q = 31.79. In Table 1 we compare the results with the

expected profit we could have obtained under full information, i.e., the case where the

distribution of D is known.

Table 1: Expected profit using different ordering rules; β = 0.6

Order Optimal Maxentropy

Quantity 34.00 31.79

Expected profit 8.58 8.56

In Section 4 we will carry out similar comparisons using maximum entropy, Scarf’s rule

and minimax regret.
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3.3 An example with a more practical twist

To explain how to proceed in a real world example, we now show how to use observed

values to compute the orders quantities suggested by Scarf’s rule, minimax regret and

maximum entropy.

We assume that R = 11,W = 7, S = 1 (known information) and that (unknown to us)

our demand D has a distribution on [0, 200] with density 200−x
20000

. We observed (sampled)

10 values from this distribution, and got the values

29, 108, 150, 23, 111, 27, 112, 82, 66, 46

leading to

µ̂ = 75.4 σ̂ = 44.06

To analyze these data, we first note that β = W−S
R−S = 0.6. Using (8) it is easy to compute

that Scarf’s rule suggests q = 73.44. The calculation for minimax regret is a bit more

involved as we need to solve equation (10), but note that in (10) everything is known

except q. The solution is easily found by a numerical method, and we get q = 71.07. To

solve the maximum entropy problem, we need to solve (17). Since we do not have any

information on the range, we put d = 0 and e = +∞. The density is then specified by

fDmaxentropy(x) = exp[a+ b x+ cx2]

and we solve (17) to get

a = −5.49087 b = 0.0226361 c = −0.000177444

Assuming that D has this particular density, we can then solve the equation∫ q

0

exp[a+ b x+ cx2]dx = 1− W − S
R− S

= 0.4

to get q = 60.06. To summarize, our 3 selection rules give

• Scarf´s rule: q = 73.44, leading to expected profit E[Πr] = 57.09.

• Minimax regret: q = 71.07, leading to expected profit E[Πr] = 61.64.

• Maximum entropy: q = 60.6, leading to expected profit E[Πr] = 77.93.

Expectations are here computed from (3) using the true distribution. The performance
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we observe in this example turns out to be typical. Repeating the experiment above 1000

times, we obtained the following values:

• Scarf´s rule: average expected profit E[Πr] = 53.18.

• Minimax regret: average expected profit E[Πr] = 73.79.

• Maximum entropy: average expected profit E[Πr] = 76.61.

In Section 4 we will demonstrate that the performance we observe in this example is

common, i.e., the maximum entropy approach very often leads to significantly better

profits.

4 Performance evaluation by random sampling

In this section, we evaluate the performance of different ordering rules by sampling from

a reasonably wide class of distributions. From each sampled D, we compute the optimal

order quantity we would have used under full information, and find the expected profit

using that particular order quantity. We then compute µ(D) and σ(D), and use these val-

ues to find the order quantities suggested by Scarf’s rule, minimax regret, and maximum

entropy (assuming D is supported on [0,∞)). Finally, we compute the expected values

we would have obtained if these order quantities were used with the true distribution, i.e.,

the expected values are computed w.r.t. full information on D.

Although the computations needed to solve the non-linear parameter problem associated

with (17) are fairly straightforward, the large amount of cases in our investigation needed

an efficient computation infrastructure. The work was performed on a computer cluster

based on Rocks and utilizing SGE to distribute jobs between nodes. Computations were

run by using the standard version of MatLab r2011a with Parallel Computing Toolbox.

Simple cases like those studied in subsection 3.2 and 3.3, can easily be done by making a

short procedure in, e.g., Excel.

4.1 A simple sampling procedure

As a first step, we sample distributions as follows. We sample n = 10 different val-

ues uniformly on the interval [0, 300]; these values are then sorted to provide 10 values

d1, d2, . . . , d10. We then sample 10 new values s1, s2, . . . , s10 from, e.g., a uniform distri-

bution on the unit interval [0, 1]. We do not sort these values, instead normalizing them
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into probabilities using:

pi =
si∑10
j=1 sj

. (23)

The two sets of numbers define a sampled demand distribution where D has the values

d1, d2, . . . , d10 with probabilities p1, p2, . . . , p10. The particular choice of n = 10 here is, of

course, open for discussion, but if n is too small, we believe that the distributions are too

special, whereas if n is very large, we essentially end up with a small perturbation of a

uniform distribution. In our opinion, n = 10 is a fair trade-off between these two effects,

leading to a procedure that is both transparent and easy to implement. Nonetheless, we

discuss some more refined constructions in Section 5.

To evaluate the performance of the different ordering rules, we sampled 100 000 distri-

butions for each of the cases β = 0.2, β = 0.5, β = 0.8 using the above procedure. For

each sample, we compared the expected profit with the profit we would have obtained

with full information. Table 2 provides the mean losses in expected value. In Table 2,

we have computed the mean expected loss. Alternatively, we could have computed the

mean values of the relative losses. We can average relative effects in several different ways,

however, and any particular choice will have its own strengths and weaknesses. For exam-

ple, a very large relative error on a small profit may be misleading in terms of economic

importance. For our part, we believe that the mean expected loss (measured directly in

terms of monetary units) best reflects the economic impact.

Table 2: Expected profit loss using different ordering rules

1− β = 0.8 Mean expected profit 66.17

Scarf’s rule Minimax regret Maxentropy

Mean expected loss 1.14 2.13 0.49

(standard deviation) (1.05) (1.62) (0.47)

1− β = 0.5 Mean expected profit 28.23

Scarf’s rule Minimax regret Maxentropy

Mean expected loss 1.01 0.93 0.72

(standard deviation) (1.09) (0.95) (0.73)

1− β = 0.2 Mean expected profit 6.13

Scarf’s rule Minimax regret Maxentropy

Mean expected loss 2.55 1.90 0.51

(standard deviation) (2.20) (1.50) (0.50)

The mean expected profit in Table 2 is the mean of the expected profits we would have

obtained under full information. This value is relevant here as it makes it possible to
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assess the relative loss. The results in Table 2 very clearly show that the maximum

entropy approach is superior in terms of average loss. The increase in performance is

considerable, particularly when β is large. If β = 0.8, the fraction

Mean expected loss

Mean expected profit
(24)

is reduced from 41.6% using Scarf’s rule to 8.3% using the maximum entropy approach.

To assess the way these rules hedge against bad profits, we computed the expected loss

at the 95% and 99% percentiles. Table 3 details the results.

Table 3: Expected profit loss at 95% and 99% percentiles

1− β = 0.8 Scarf’s rule Minimax regret Maxentropy

Expected loss at 95% percentile 3.27 5.21 1.45

Expected loss at 99% percentile 4.37 6.65 2.03

1− β = 0.5 Scarf’s rule Minimax regret Maxentropy

Expected loss at 95% percentile 3.14 2.87 2.21

Expected loss at 99% percentile 4.93 4.23 3.23

1− β = 0.2 Scarf’s rule Minimax regret Maxentropy

Expected loss at 95% percentile 6.82 4.76 1.53

Expected loss at 99% percentile 8.44 6.20 2.19

From the results in Table 3, we can conclude that the maximum entropy approach is also

superior in performance for results far out in the tail. How is this possible? The answer is

very simple. When we sample distributions using the above procedure, we almost never

sample a distribution that is close to the cases where either Scarf’s rule or minimax regret

is superior.

Small/large critical fractiles

We also carried out the test above for the cases β = 0.05, 0.1, 0.9, 0.95. The cases where β

is small, confirmed the results above, i.e., the best results are obtained with the maximum

entropy approach. If β is large, it appears that Scarf´s rule performs better. If small or

large critical fractiles is an issue, however, a test should be carried out using distributions

with proper tails. The test above is not appropriate for testing such cases. In Section 5

we consider more refined tests handling distributions with continuous tails, and find that

the maximum entropy approach is superior also in cases with extremely low or extremely

high β, see Figure 3 and 4.
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4.2 Large coefficients of variation

To examine how the size of σ
µ

influences performance, we repeated the simulation above

discarding all cases where σ
µ
< 0.5. Table 4 and Table 5 detail the results.

Table 4: Expected profit loss using different ordering rules, σ
µ
≥ 1

2

1− β = 0.8 Mean expected profit 85.02

Scarf’s rule Minimax regret Maxentropy

Mean expected loss 2.06 3.71 0.78

(standard deviation) (1.73) (2.62) (0.73)

1− β = 0.5 Mean expected profit 31.72

Scarf’s rule Minimax regret Maxentropy

Mean expected loss 1.66 1.46 1.15

(standard deviation) (1.79) (1.48) (1.15)

1− β = 0.2 Mean expected profit 5.54

Scarf’s rule Minimax regret Maxentropy

Mean expected loss 5.54 3.51 0.73

(standard deviation) (3.07) (2.35) (0.70)

Table 5: Expected profit loss at 95% and 99% percentiles, σ
µ
≥ 1

2

1− β = 0.8 Scarf’s rule Minimax regret Maxentropy

Expected loss at 95% percentile 5.43 8.47 2.26

Expected loss at 99% percentile 7.07 10.58 3.11

1− β = 0.5 Scarf’s rule Minimax regret Maxentropy

Expected loss at 95% percentile 5.16 4.48 3.50

Expected loss at 99% percentile 8.15 6.49 5.13

1− β = 0.2 Scarf’s rule Minimax regret Maxentropy

Expected loss at 95% percentile 11.11 7.83 2.16

Expected loss at 99% percentile 13.37 9.73 3.03

Comparing Table 2 and 3 with Table 4 and 5, we see that when cases with a small

coefficient of variation are excluded, all expected losses increase by roughly 60%, indicating

that the choice of method is more important when the coefficient of variation σ
µ

is large.

5 Mixture distributions

In this section, we examine the performance of different ordering rules computing ex-

pected losses over mixtures of distributions. This may appear to be different from the
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sampling procedure carried out in Section 4, but it is not really. Alternatively, we could

have obtained the results in this section by sampling a large number of mixture coeffi-

cients. The advantage of the mixture approach is that with it we can compute expected

values (expectation taken over a set of distributions) instead of mean values, and hence

avoid problems related to finite samples.

A weakness of the simulation approach in Section 4 is that it is inappropriate for the

examination of small or big critical fractiles. Discrete distributions with finite support do

not exhibit tail properties in any meaningful sense, and to examine such cases it is more

appropriate to consider mixtures of continuous distributions.

5.1 General mixtures

The normal distribution is very often used to model demand distributions. As total de-

mand can be viewed as the sum of individual, independent demands, invoking the central

limit theorem is an obvious first step. On closer examination, however, this argumenta-

tion fails because individual demands are not generally identically distributed.

Consider the following special case: we want to sell newspapers. The buyers can be

divided into two groups, regular buyers and people that only buy newspapers on special

events. Conditional on scenario S1, for regular events, the demand is N(µ1, σ
2
1). In the

case of scenario S2, special events, the other group also wants to buy newspapers. If a

special event occurs, the total demand is then N(µ2, σ
2
2) with µ2 > µ1. If we apply the

law of total probability, we obtain:

P (D ≤ d) = P (D ≤ d|S1)P (S1) + P (D ≤ d|S2)P (S2), (25)

and the resulting demand is hence a mixture distribution of the form:

fD(x) = αf1(x) + (1− α)f2(x) 0 ≤ α ≤ 1, (26)

where α = P (S1) and (1−α) = P (S2). This can clearly be generalized to situations with

n different scenarios, resulting in a mixture distribution:

fD(x) =
n∑
i=1

α1fi(x)
n∑
i=1

αi = 1. (27)

Note that the distributions we sampled in Section 4 have an obvious interpretation within

this framework; di is the demand under scenario Si and pi is the probability that scenario
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Si occurs.

Gallego et al. (2001) consider a related setting. They propose expressions for the expected

cost for two similar single-period models when the cost depends on the joint distribution

of two random variables and only limited information on the marginal distributions is

available. Further, Gallego et al. (2001) consider the newsvendor problem when the

demand at the salvage price is a random variable and not indefinite as assumed in the

classical model. Lastly, they examine the one-period seat allocation problem when the

demand for super fare seats is a random variable and not indefinite as generally assumed

in the standard model.

5.2 Mixtures of normal distributions

If D follows a normal distribution, it is well known that the error using Scarf’s rule is

always small. Gallego and Moon (1993) report that the error seldom exceeds 0.36% of

the expected profit. If we know that demand is (approximately) normally distributed,

however, there is little reason to apply Scarf’s rule in the first place, so that argument is

not as good as it first might appear.

To pursue the performance under normal distributions in more detail, we considered a

mix of two normal distributions. Given µ1 = 70, σ1 = 20 and µ2 = 140, σ2 = 30 define a

one-parameter family of distributions Dα with densities:

fα(x) = αf1(x) + (1− α)f2(x). (28)

To work with distributions with positive support, the f1 and f2 were truncated at zero

and renormalized. With expectations and variances as above, the effect of the truncation

is very small. Truncation effects are hence unimportant in this case. To evaluate the

performance of the different ordering rules, we assume that α is uniformly distributed on

[0, 1].

For each fixed choice of α, we can compute µ = µ(Dα), σ = σ(Dα) and use these values to

find the corresponding order quantities using Scarf’s rule, minimax regret, and maximum

entropy. Given a particular value on β, we can then compute the expected loss ELα for

each ordering rule. Given we have assumed that α is uniformly distributed on [0, 1], we

can then take expectation over α to compute expected performance, i.e.:

Expected performance =

∫ 1

0

ELαdα (29)

for each of the different ordering rules. The results are shown as functions of β in Figure 3.
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Figure 3: Expected loss using a mixture of normal distributions

The results in Figure 3 support the conclusions in Section 4. With the exception of a

small interval near β = 0.45, we can see that the performance of the maximum entropy

approach is clearly better than the alternatives. It is particularly interesting to note the

behavior of Scarf’s rule when β ∈ [0.84, 0.96]. Here the interval [0.84, 0.96] is simply the

range of the function:

α 7→ µ2
α

µ2
α + σ2

α

, (30)

where µα and σ2
α are the expectation and variance for the mixture Dα. At β = 0.84,

truncation is activated, and all orders are truncated at β = 0.96. We note that the effect

of the truncation is quite devastating, as while the truncation hedges against negative

expected profit, the hedge is clearly very costly.

The expected profit under full information is roughly 100 at β = 0, and decreases mono-

tonically to 0 at β = 1. For small β, the losses are relatively minor, but increase consid-

erably with β. In the interval β ∈ [0.7, 0.8] (i.e., before truncation comes into play), the

value of the fraction

Expected loss

Expected profit
(31)

is roughly 1.5% with Scarf’s rule and reduces to about 0.5% using the maximum entropy

approach. This supports the effect of relative losses in Table 2. Similar results can be

obtained using mixtures of exponential distributions, in which case the maximum entropy

approach is extremely efficient (the expected loss is of an order of magnitude of 10−3).
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6 Alternative comparisons

In this section, we show how to construct a lower bound for the expected loss for a known

mixture distribution, i.e., the case where the distribution of the mixture parameters is

known, but the actual values of these parameters are unknown. We will also compare the

performance of the ordering rules under the worst-case scenario, i.e., the cases we hedge

using Scarf’s rule.

6.1 Maximizing double expectation

Performance in this paper is measured in terms of double expectation, i.e., expectation

taken over both D ∈ D and ω ∈ Ω. If we consider a mixture distribution Dα with density:

fDα(x) =
n∑
i=1

αifi(x)
n∑
i=1

αi = 1, (32)

where α = (α1, . . . , αn) is a random variable on a probability space (A,Q), we can eas-

ily compute the fixed order q that maximizes double expectation. The reason is that

D(α, ω) = Dα(ω) defines a random variable on the product space A×Ω, and the problem

of finding the optimal q reduces to a standard newsvendor problem. Note that the value

of q must be determined before the draw, i.e., at a point in time where the value of α is

still unknown.

If α has a density g, the density of D = D(α, ω) can be computed via:

fD(x) =

∫
A

fDα(x)g(α)dQ(α). (33)

In particular, if α is uniformly distributed, it is straightforward to verify that fD(x) =
1
n

∑n
i=1 fi(x), and the optimal fixed order quantity q∗ = F−1

D (1 − β) is found by solving

the equation: ∫ q∗

0

1

n

n∑
i=1

fi(x)dx = 1− β. (34)

The scenario we focus on in this paper is the case where µ = µ(D) and σ = σ(D) are

known, and infinitely many distributions have the same µ and σ. In the above context,

it is hence natural to focus on the particular case where all the distributions making up

the mixture have the same µ and σ. When this happens, for any α, we have µ(Dα) = µ

and σ(Dα) = σ, i.e., any mixture leads to the same µ and σ. Moreover, in the double
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expectation:

E[D(α, ω)] =

∫ ∞
0

∫
A

xfDα(x)g(α)dQ(α)dx =

∫
A

(∫ ∞
0

xfDα(x)dx

)
g(α)dQ(α) = µ,

(35)

Var[D(α, ω)] =

∫ ∞
0

∫
A

(x− µ)2fDα(x)g(α)dQ(α)dx

=

∫
A

(∫ ∞
0

(x− µ)2fDα(x)dx

)
g(α)dQ(α) = σ2. (36)

In that case, the order quantity q∗ = F−1
D (1−β) provides a lower bound on the loss, in the

sense that no strategy depending only on µ and σ can achieve a higher double expectation.

Example

Assume that we have a uniform mixture of two distributions, where:

f1(x) =
1√

2πσ1

e−(x−µ1)2/(2σ2
1) f2(x) =

1

2
· 1√

2πσ2

e−(x−µ2)2/(2σ2
2)+

1

2
· 1√

2πσ3

e−(x−µ3)2/(2σ2
3).

(37)

If µ1 = 100, σ1 = 25 and µ2 = 77.088, µ3 = 122.912, σ2 = 10, σ3 = 10, it is easy to verify

that both distributions have µ = 100, σ = 25. For this mixture, we can carry out the

same exercise as shown in Figure 3. This time, however, we can include an additional

strategy based on q∗ from (34). The result is shown in Figure 4.

0.2 0.4 0.6 0.8 β
0.1

0.2
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0.5

0.6

0.7

Loss

Figure 4: Expected loss using minimax regret (short dashed line), Scarf’s rule (medium dashed line),

maximum entropy (long dashed line), and q∗ from (34) (undashed line)

Figure 4 supports a strategy based on q∗ from (34) that provides a lower bound on the

expected loss.

6.2 Worst-case scenarios

To put the above results into perspective, we wish to test performance under the worst-

case scenario. A worst case under Scarf’s rule, see Gallego and Moon (1993), occurs using
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a two-point distribution where:

d1 = µ− σ

√
β

1− β
d2 = µ+ σ

√
1− β
β

, (38)

p1 = 1− β p2 = β. (39)

For simplicity, we assume that β ≤ µ2

µ2+σ2 , in which case d1 and d2 are both nonnegative

and no truncation occurs. A close examination of this case reveals that the hedging is

more subtle than it at first appears. As p1 = 1 − β, this case is degenerate (see Section

2.2) and the expected value is in fact constant when q ∈ [d1, d2]. Hence, all the ordering

rules offer a perfect fit for this particular distribution. The hedge in Scarf’s rule, however,

is against all the worst cases that might occur if we make an order different from that

suggested by Scarf’s rule. We should then not only consider the case given by (38) and

(39), but all those other cases as well.

Given values for µ, σ, β, we can compute the order quantities q1 for Scarf’s rule and q2

for the maximum entropy approach. The particular cases where µ = 100, σ = 50 and

µ = 100, σ = 100 are shown as functions of β in Figure 5. In the left plot, we have used

µ = 100, σ = 50, while the values µ = 100, σ = 100 were used in the plot to the right.
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Figure 5: Ordering quantities using Scarf’s rule and maximum entropy (dashed line)

To assess the performance of Scarf’s rule, we examine the expected loss for the worst case

that can occur when the “wrong order” q2 is made. A distribution leading to the worst

expected profit given q2, see Gallego and Moon (1993), occurs on a two-point distribution

where:

d1 = µ− σ
√

γ

1− γ
d2 = µ+ σ

√
1− γ
γ

, (40)

p1 = 1− γ p2 = γ, (41)

γ = 1−
√
σ2 + (q2 − µ)2 + (q2 − µ)

2
√
σ2 + (q2 − µ)2

. (42)
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It is straightforward to verify that if q2 equals q1 (given by (7)), then γ = β. In Figure 5

(left part), the two curves intersect at β = 0.1 and β = 0.43. At points q2 = q1, there is

a perfect fit for both strategies. At any other point q2 6= q1, Scarf’s rule performs better.

Figure 6 shows the expected loss for both strategies.
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Figure 6: Expected loss using Scarf’s rule and maximum entropy (dashed line)

In the left plot, we have used µ = 100, σ = 50, while the values µ = 100, σ = 100 were

used in the plot to the right. For each β in Figure 6, we have used the distribution given

by (40)–(42), and computed the expected loss (compared with full information) for this

particular distribution. Note, we are using different distributions for different values of

β. We can see that the performance of Scarf’s rule is better in this case. That is hardly

surprising as it is true by definition of Scarf’s rule. From the figures, however, we can

also conclude that the effect is moderate for most values of β. If β is beyond 0.7 and 0.5

in Figure 6, truncation comes into play and Scarf’s rule is no longer hedging the worst

distribution. These parts of the graphs are hence omitted. Note that the distributions

depend on the alternative to Scarf’s rule and hence a comparison between maximum en-

tropy and minimax regret is inappropriate.

7 More general cases

A general formulation of the maximum entropy problem can be found in Eren and

Maglaras (2009). With m linear restrictions on p, and p supported on J , the problem

max
p

{
−
∑
j∈J

pj ln[pj] :
∑
j∈J

ri(j)pj = bi for i = 1, . . . ,m, p ≥ 0

}
(43)

has the solution

p∗j = exp

[
m∑
i=1

λiri(j)

]
j ∈ J (44)

In this paper, we have focused on the case where µ, σ are known and D ≥ 0. As is clear
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from (43)-(44) we can easily cover more general moments/percentiles. For example, if the

median m is known, it amounts to a linear restriction:
∫ m

0
fD(x)dx = 1

2
. This leads to a

density on the form:

fD(x) = ea+b x+c x
2+dX[0,m](x) =

ea+b x+c x
2+d if 0 ≤ x ≤ m

ea+b x+c x
2

if x > m.
(45)

In general, we can handle any moment restriction on the form:∫ s

r

xufD(x)dx = α, (46)

when r, s, u, α are known; see the introductory example in Section 3.2 where we specified

r = min[D], s = max[D] and used this to construct the maximum entropy distribution. It

thus appears to be straightforward to cover cases where we have such extra information.

By comparison, maximin and minimax problems become very difficult to solve in these

cases. The case covered in Section 2.4 is already quite difficult to solve, and to our best

knowledge no explicit formulas exist for more general cases.

Even if systems such as (17) are nonlinear, they appear to contract quickly to a solution.

Fixing all but one parameter, we could update that parameter such that it gives perfect

fit in the restriction creating the parameter. This is repeated until all the parameters are

updated. This idea is similar to the Bregman-balancing algorithm in Bregman (1967).

Each iteration is linear in computation time with respect to the number of parameters,

hinting that systems with several extra parameters can be handled numerically. We leave

discussion of such extended cases to future research.

A plus in favor of Scarf´s rule is that calculations are very simple. An Excel spreadsheet of

observed demand will produce µ̂ and σ̂, after which the calculation of the order quantity

q in (8) can be done with a calculator or even coded directly into the spreadsheet. In

comparison the solution of (17) is a bit more involved, as this is a non-linear system. The

system can be coded quite easily, and it would be fairly easy to offer a web calculator

automating these procedures. Makris and Chryssolouris (2010) and Makris et al. (2011)

demonstrate cases where Bayesian networks methods are coded on web platforms, mak-

ing these methods readily available to non-expert users. Clearly a similar approach could

make maximum entropy methods easily available.

The entropy maximizing approach can potentially be extended in several directions. One

possibility is to allow for price-dependent demand in a multi period framework, see, e.g.,

24



Sandal and Ubøe (2012). An entropy-based solution to this problem would contain the

component of finding a multivariate distribution based on available information. In a

continuous-time framework it would even involve the challenge of finding an infinite-

dimensional distribution. The solutions to these models appears to be quite hard to

implement. Finding a well working solution that is more straightforward to implement,

would certainly be a significant contribution.

One promising feature with the entroby-based approach is that it directly exploits the

theoretical solution to the newsvendor problem in its basic form. In cases where other

objective functions than the profit function are optimized, the method should be rather

straightforward to implement. One such case is when the newsvendor is allowed to be risk

averse. See, e.g., Lau (1980) for an example of a newsvendor model with risk aversion.

8 Concluding remarks

While several authors briefly mention maximum entropy as a possible line of approach,

we believe that the current paper is the first that provides an in-depth analysis on how

maximum entropy performs in comparison with other alternatives. The intention of this

work has not been to disparage Scarf’s rule or minimax regret as both are interesting and

relevant theories. Instead, we wished to focus on the positive performance of the maxi-

mum entropy approach. In the maximum entropy approach, we seek the most probable

distribution given the information we have at hand. It then follows intuitively that this

approach leads to a better average simply because many distributions are fairly close to

the most likely one.

The interesting question then is not that the maximum entropy approach does better on

average, but rather to form a qualified opinion about how much better it performs in a

wide variety of cases. From the experiments reported in this paper, it came as a complete

surprise that this approach also appears to perform better at the tails, e.g., the worst case

remaining when the 5% or 1% worst cases are excluded. In fact, we initially examined

the tails merely to verify that Scarf’s rule was performing better and were quite puzzled

to see the opposite.

In summary, the experiments carried out in Sections 4 and 5 yield a very clear vote in

favor of the maximum entropy approach. Overall, it provides better expected profits,

while at the same time offering better profits in cases that are rare, i.e., at the 95% or

99% percentiles. In cases with small/large critical fractiles, the conclusion is less clear.
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The tests carried out in Section 5 indicate better performance of maximum entropy for

distribution with proper tails, while more conservative rules might be better for handling

distributions with no particular tail structure. As the latter case leads very unstable sit-

uations, decisions should probably not be based on partial information in the first place.

When compared with Scarf’s rule and minimax regret, the maximum entropy approach

can be more easily adjusted to take into account additional information on range, mo-

ments and percentiles. If the reader agrees that the performance of the maximum entropy

approach is at least as good as the alternatives, the extra versatility provides an additional

vote in favor of this approach.

Given µ and σ, it is fairly straightforward to solve the system in (17) (with d = 0 and

e = ∞). Once this is done, one can easily find the optimal order quantity using (19).

Of course, we cannot do this using a calculator, but can do so using very few lines of

programming code. Why not give it a go?
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