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Abstract 
This paper studies constrained portfolio problems that may involve constraints on the 
probability or the expected size of a shortfall of wealth or consumption. Our first contribution 
is that we solve the problems by dynamic programming, which is in contrast to the existing 
literature that applies the martingale method. More precisely, we construct the non-separable 
value function by formalizing the optimal constrained terminal wealth to be a (conjectured) 
contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but 
also opens up the opportunity to derive new solutions to constrained problems. As a second 
contribution, we thus derive new results for non-strict constraints on the shortfall of inter-
mediate wealth and/or consumption. 
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1 Introduction

Classical dynamic portfolio optimization is concerned with solving non-constrained portfolio

problems (see, e.g., Merton (1990)). In practice, a lot of realistic portfolio problems however

involve constraints on wealth and consumption. This is because, for instance, financial

institutions hold assets to support their obligations to contract holders and to satisfy other

stakeholders. Particular examples of these financial institutions are pension funds that we

use as a stylized example in this paper.

The objective of this paper is twofold: First, we make a methodological contribution by

solving these constrained portfolio problems applying dynamic programming. The standard

approach to dynamic portfolio optimization with constraints on wealth is the so-called mar-

tingale method. The martingale method was developed by Karatzas et al. (1987) and Cox

and Huang (1989) as an alternative to dynamic programming. The method decomposes the

dynamic optimization problem into a static optimization problem and a dynamic hedging

problem where the latter one is usually involved.1 On the contrary, dynamic programming

gives easy access to the value function and the controls of the problem and thus plays an im-

portant role for solving stochastic control problems in finance. To the best of our knowledge,

problems with constraints on wealth have not been analyzed by dynamic programming yet.2

Our paper closes this gap and shows how to set up Hamilton-Jacobi-Bellman equations for

problems with constraints on both consumption and wealth. We demonstrate how to solve

the corresponding highly non-linear partial differential equations. From a stochastic control

point of view, this is an important contribution by itself.

Furthermore, and this is our second main contribution, the dynamic programming approach

also opens up the opportunity to solve constrained portfolio problems beyond the ones ad-

dressed in the literature so far. We are able to study new problems with constraints on inter-

mediate consumption and/or wealth. This is possible because, in contrast to the martingale

approach, dynamic programming does not introduce a static optimization problem that is

decoupled from the corresponding dynamic hedging problem. For instance, we generalize

1Formally, this is because the martingale representation theorem only guarantees the existence of an

optimal portfolio strategy, but does not provide guidance on how to construct a solution.
2Notice that wealth is a controlled process. Therefore, the problem is different from studying constraints

on controls such as portfolio strategies. We will discuss this point in detail below.
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the terminal utility problem considered by Basak and Shapiro (2001) to include intermedi-

ate consumption. Here, the fundamental ideas are adapted from Lakner and Nygren (2006),

but since we allow for non-strict constraints the results are new. We introduce several ways

to relax constraints on intermediate consumption. We formalize a problem where lump sum

consumption at discrete time points is restricted by a value-at-risk (VaR) or an expected

shortfall constraint. Another situation of special interest for pension asset managers is the

case where there is no utility from (but still constraints on) intermediate consumption. All

these problems can be addressed with our approach.

Our results give guidance on how to allocate funds among assets that serve a dual pur-

pose: On the one hand, the cash-flows from these assets go to stakeholders of an insurance

company. This is described via a goal function that involves utility of consumption and/or

wealth. On the other hand, the assets also protect future obligations (e.g. claims of pol-

icy holders) that are modeled via constraints on consumption and/or wealth. Problems

with no constraints/utility on/from intermediate consumption (Basak and Shapiro (2001))

and with strict constraints on intermediate consumption and/or wealth (Lakner and Nygren

(2006)) are included as special cases. There exists an extensive literature on various types

of constrained portfolio problems. In general, one can distinguish between two different

types of constraints: constraints on terminal wealth (”controlled process”) or constraints on

portfolio strategies (”controls”). In this paper, we focus on problems with constraints on

wealth and also add constraints on intermediate consumption.3 We however abstract from

constraints on portfolio strategies that were extensively studied in recent papers. Further-

more, the literature on consumption-portfolio optimization can also be distinguished w.r.t.

the goal function of the problem. In particular, there are papers considering problems with

utility maximization, whereas others study problems with classical criteria such as mean-

variance maximization. Both problems are relevant, but have to be addressed by applying

different methods.4 Our paper concentrates on utility maximization. Finally, the work in

this area can be distinguished w.r.t. whether martingale or dynamic programming methods

are applied. As mentioned above, we establish a dynamic programming method to study

3Depending on whether consumption is modeled as lump sum payments or as a continuous stream it can

be interpreted as part of the goal function or as control. In this paper, we model consumption as lump sum

payments, which is the more realistic case for insurance companies.
4For instance, it has been realized that continuous-time mean-variance problems are time-inconsistent,

which is in contrast to utility-maximization problem, see Basak and Chabakauri (2010).
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consumption-portfolio problems with constraints on intermediate consumption and wealth.

Both the method and some of the problems are new (e.g. non-strict constraints on consump-

tion) and contribute to the existing literature. In the remainder of this section, we give a

brief overview of this literature.

Constraints on terminal wealth. Grossman and Zhou (1996), Tepla (2001) and Korn (2005)

study optimization problems with strict downward constraints on wealth.5 Basak and

Shapiro (2001) consider both relaxed downward constraints that can be violated with a cer-

tain probability (VaR constraints) and a constraint where the expected tail loss is restricted

(expected shortfall constraint). Basak et al. (2006) and Boyle and Tian (2007) generalize the

results for VaR constraints to the case where wealth must exceed a stochastic, but hedgeable,

benchmark with a given probability. Korn and Wiese (2008) study the case where, essen-

tially, the benchmark for the portfolio is a non-hedgeable insurance claim, but restrict to

certain classes of portfolios with different types of homogeneity assumptions. All these papers

use the martingale method6 and, for instance, do not allow for constraints on intermediate

consumption. Constraints on intermediate consumption and wealth are usually disregarded

in portfolio insurance problems. An exception is Lakner and Nygren (2006) where not only

the terminal wealth but also a continuous consumption rate is restricted downwards in a

strict sense. As all other above-mentioned papers with constraints on wealth, Lakner and

Nygren (2006) use the martingale approach. We distinguish ourselves by using dynamic

programming and by allowing for non-strict constraints.

Constraints on portfolio strategies. Firstly, there are papers studying utility maximization

problems with portfolio constraints. The classical reference is Cvitanic and Karatzas (1992)

who apply duality methods to solve problems with cone constraints.7 These papers disregard

constraints on terminal wealth or intermediate consumption. Furthermore, there is an exten-

sive body of research on the classical mean-variance problem that was originally developed

for a static setting, but can be studied in a continuous-time dynamic setting as shown by

Zhou and Li (2000). This problem can be combined with constraints on portfolio weights.

Typically, such constraints are non-convex and computational methods have to be applied.

5See also Jensen and Sørensen (2001) for an application relevant for the above-mentioned pension fund

managers.
6The only exception is Korn and Wiese (2008), but they face a different type of optimization problem.
7This is a generalization of the martingale method. See, e.g., Cvitanic and Zapatero (2004), Section 4.4,

for further details and additional references.
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Anagnostopoulos and Mamanis (2008) and Branke et al. (2009) use evolutionary algorithms

to search for optimal constrained portfolios in a mean-variance framework. Zhu et al. (2011)

apply the particle swarm optimization approach to mean-variance portfolio optimization.

Crama and Schyns (2003) solve constrained mean-variance problems by means of simulated

annealing. These papers use so-called heuristic optimization methods in order to circumvent

the challenges of non-convexity. Special cases of borrowing constraints have been solved

by dynamic programming methods.8 Besides, Emmer, Klüppelberg, and Korn (2001) show

that portfolio-insurance-like strategies arise under a quadratic criterion. Osorio et al. (2008)

show that a different type of constraints is relevant if mean-variance optimization of post-tax

wealth in non-linear tax regimes is analyzed. We distinguish ourselves by working with con-

vex constraints on wealth and consumption rather than portfolio strategies, by working with

utility optimization rather than mean-variance optimization, and by working with dynamic

programming.

The outline of the paper is as follows: Section 2 presents a general one-period problem and

derives a sufficient condition for presenting the solution to an involved (constrained) invest-

ment problem as a contingent claim on the solution to a simple (unconstrained) investment

problem. Section 3 exemplifies our results from Section 2 and derives the optimal portfolios

for a simple linear case, a VaR constraint, and an expected shortfall constraint, respectively.

Sections 4 and 5 generalize to intermediate consumption with constraints and to intermediate

constraints on wealth. Some proofs can be found in the appendix.9

2 The Portfolio Problem and its Value Function

In this section, we relate the solution to an unconstrained portfolio problem to the solution

of an involved constrained portfolio problem. We study the decisions of an investor (asset

manager) operating in a standard Black-Scholes financial market with two assets, a bond

(B) and a stock (S) the dynamics of which are given by

dBt = rBtdt, B0 = 1, dSt = St (αdt+ σdWt) , S0 = s0 > 0,

8See, e.g., Fu et al. (2010) who allow for non-equal borrowing and lending interest rates.
9Longer versions of these proofs are available from the authors upon request.
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where r, α and σ are constants. The proportion of assets held in stocks is denoted by π such

that the dynamics of the investor’s wealth read

dXt = (r + πt (α− r))Xtdt+ πtσXtdWt,

where X0 = x0 > 0 denotes his initial wealth. Unless otherwise stated, the investor is

assumed to maximize expected utility from terminal wealth with respect to a power utility

function u(x) = xγ/γ, γ < 1, so that his value function (indirect utility) is

V (t, x) = sup
π∈A

E [u (XT )|Xt = x] ,

where A denotes the set of admissible controls. The set A can be restricted to capture

constraints such as a VaR constraint on terminal wealth

P (XT ≤ K) ≤ ε, (1)

where K and ε are constants. The value function is characterized by the so-called Hamilton-

Jacobi-Bellman (HJB) equation that is given by

0 = inf
π

{
Vt + Vx (r + π (α− r)) x+ 0.5Vxxπ

2σ2x2
}
, V (T, x) = u (x) . (2)

Minimizing over π, the optimal control can be expressed in terms of the value function

π = − Vx

Vxxx

θ

σ
,

where θ = (α − r)/σ denotes the market price of risk. Substituting this control into (2)

yields the non-linear PDE

0 = Vt + Vxrx− 0.5θ2 Vx

Vxx
, V (T, x) = u (x) . (3)

Without additional constraints, Merton (1969, 1971) shows that the solution can be written

in form of the separation

V (t, x) = u(x)v(t), (4)

where v is a deterministic function with v(T ) = 1. This implies that the optimal stock

proportion simplifies into π = θ/((1 − γ)σ). Consequently, the investor’s optimal wealth

dynamics without constraints are given by

dYt = Yt

((
r + θ2

1−γ

)
dt+ θ

1−γ
dWt

)
, Y0 = y0 > 0.
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The goal of our paper is to study portfolio problems where additional constraints on wealth

and/or consumption such as (1) are imposed. In these cases, the above separation breaks

down and thus finding the right conjecture for V is involved. For this reason, we suggest

a different approach that reduces the dimension of the problem. It turns out that in many

relevant applications involving constraints the investor’s optimal terminal wealth can be

expressed as an option-like contract on his unconstrained optimal wealth Y . Hence, we

introduce an option (syn. claim) f on Y and relate its price Π to the solution of the HJB

equation. We show that the problem simplifies to finding the one-dimensional function

f (instead of finding the two-dimensional function V ). The investor’s time-t wealth that

corresponds to the claim f is given by the claim price

Π (t, y) = EQ
t,y [f (YT )] e

−r(T−t), (5)

which satisfies a classical Black-Scholes partial differential equation

Πt (t, y) = rΠ(t, y)− ryΠy (t, y)− 0.5
(

θ
1−γ

)2

y2Πyy (t, y) , Π(T, y) = f (y) .

The initial value y0 for the process Y is determined as the solution to the equation

Π (0, y0) = x0, (6)

i.e. the option price exactly equals the initial wealth of the investor. The following theorem

shows how the value function is related to the guess on the claim f and provides a condition

under which this guess is correct. To formulate the result, we define the investor’s utility of

the claim f by

U (t, y) = Et,y [u (f (YT ))] . (7)

The proof of a generalized version of this theorem can be found in Appendix A.

Theorem 1 (Representation of Value Function and Control) (i) If the condition

−yUyy

Uy

= −yΠyy

Πy

+ 1− γ (8)

is satisfied, then the value function is characterized by V (t,Π(t, y)) = U (t, y). (ii) The

optimal stock proportion is characterized by

π∗(t, y) =
1

1− γ

yΠy(t, y)

Π(t, y)

θ

σ
.
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Remarks. a) Both the value function V and the optimal stock demand π∗ depend on time

and wealth. Assuming existence, we define the inverse function of Π with respect to y by

Π−1. Then we can express V and π∗ as functions of t and x,

V (t, x) = U
(
t,Π−1 (t, x)

)
, π∗(t, x) =

1

1− γ

Π−1(t, x)Πy(t,Π
−1(t, x))

x

θ

σ
.

b) One can check that condition (8) is satisfied if there exists some function h such that

Uy (t, y) = h (t) yγ−1Πy (t, y) . (9)

c) Notice that, in the unconstrained case, we have that f(y) = y so that Π(t, y) = y. The

ratio yΠy(t, y)/Π(t, y) is thus equal to one. Therefore, the result by Merton (1969, 1971)

follows.

To understand condition (8), recall that for a utility function u(x) the ratioRRA = −xuxx/ux

is said to be the relative risk aversion. Therefore, (8) is satisfied if U has an RRA of 1 − γ

and Π has an RRA of 0. This is very natural, since U is a value function induced by a power

utility function with RRA of 1− γ. Besides, Π can be interpreted as the value function of a

risk-neutral investor who has an RRA of 0, since γ = 1 for a risk-neutral investor. Without

constraints (8) immediately follows because then (4) holds and f(y) = y. If however f is

not the identity function, but a option-like payoff (as in our applications), then (8) has to

be checked separately. Put differently, (8) tells us that the relation between the relative risk

aversions must be preserved even if constraints are imposed.

3 Constraints on Terminal Wealth

To make the reader familiar with our approach, we first study constraints on terminal wealth.

The most prominent ones are the ones stemming from CPPI-strategies or VaR-constraints.

CPPI (constant proportion portfolio insurance) as well as OBPI (option-based portfolio

insurance) are actively used by asset managers who need down-side protection.
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3.1 CPPI

A utility function that can be used to implement a CPPI-strategy is a power utility function

with constant habit level K, i.e.

u (x) = 1
γ
(x−K)γ . (10)

This could be the utility functional of an investor who has an obligation of K euros at the

investment horizon T . He measures his satisfaction in terms of the utility of the surplus

X − K. Compared to what follows, the resulting portfolio problem is simpler since the

constraint will be satisfied by construction of the utility function (infinite marginal utility at

K). This is sharp contrast to the VaR constraint where the constraint is not directly implied

by the investor’s utility function.

Now, we must find the claim function f and check that condition (8) in Theorem 1 is satisfied.

Since the argument of the power utility function is linear in wealth, we conjecture that the

optimal terminal wealth can be represented as a linear function of the unconstrained optimal

wealth, f (y) = y +K, and obtain the following result.

Proposition 2 (Optimal Portfolio for CPPI) If the investor maximizes expected utility

from terminal wealth with respect to the power utility function with habit level (10), then his

value function has the representations

V (t,Π(t, y)) = 1
γ
yγg (t) or V (t, x) = 1

γ
(x−Ke−r(T−t))γg (t) ,

where Π(t, y) = y +Ke−r(T−t). Thus, his optimal stock demand is given by

π∗(t, y) =
1

1− γ

y

y +Ke−r(T−t)

θ

σ
or π∗(t, x) =

1

1− γ

x−Ke−r(T−t)

x

θ

σ
.

Proof. Consider

Π (t, y) = EQ
t,y

[
e−r(T−t)f (YT )

]
= EQ

t,y

[
e−r(T−t) (YT +K)

]
= y +Ke−r(T−t),

U (t, y) = Et,y [u (f (YT ))] = Et,y

[
1
γ
((YT +K)−K)γ

]
= 1

γ
yγg (t)

with g (t) = exp
(
γ
(
r − 1

2
θ2

1−γ

)
(T − t)

)
. This leads to the partial derivatives Πy = 1 and

Uy = yγ−1g (t), such that condition (9) is satisfied for h = g. Finally, y0 is determined by

the relation x0 = Π(0, y0) = y0 +Ke−rT . This completes the proof. �
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The optimal portfolio does not come as a surprise. The investor should hedge K, which at

time t costs Ke−r(T−t). The residual amount Xt −Ke−r(T−t) is invested in Y meaning that

the proportion θ
1−γ

of Xt−Ke−r(T−t) is invested in stocks and the residual proportion 1− θ
1−γ

is invested in bonds. The portfolio is automatically downwards protected by Ke−r(T−t) due

to infinite marginal utility at K. This investment strategy is called constant proportion

portfolio insurance (CPPI). The surplus Xt − Ke−r(T−t) is said to be the cushion and its

proportion invested in stocks (in our case optimally determined to be θ
1−γ

) is called the

multiplier. Due to the linearity of f in this subsection, the solution is particularly simple

and has been found by others without explicitly referring to constraints, see e.g. Çanakoğlu

and Özekici (2010).

3.2 VaR Constraint

We now consider the problem of maximizing expected utility with a constraint on the prob-

ability of terminal wealth being smaller than a given tolerance level. Thus, we consider the

problem

sup
π:P (XT<K)≤ε

E [u (XT )] . (11)

For instance, this could be the optimization problem of an asset manager measuring the

stakeholders’ satisfaction in terms of the utility of the whole asset position at time T . The

future obligation K at time T is now taken care of by a constraint on terminal wealth.

Whereas in the previous subsection the constraint was build into the utility function, this is

not the case in this application. Thus, we deal with the constraint by introducing a Lagrange

multiplier λε and define the auxiliary utility function

ũ (x) = 1
γ
xγ − λε1{x<K}. (12)

[INSERT FIGURE 1 ABOUT HERE]

Figure 1 illustrates the auxiliary utility function of this problem. The black line is the original

utility function without constraints (γ = 0.5). The red line is the auxiliary utility function

including the Lagrange term (λε = 1, K = 5). This auxiliary utility function is not concave.

However, the straight line (part of the blue line) concavifies this auxiliary utility function

and connects linearly the points
(
5; 1

γ
5γ
)
and

(
kε;

1
γ
kγ
ε

)
. If now the optimal wealth process

9



for the concavified auxiliary utility function never ends up in the concavification area, then

this is clearly also the optimal solution for the non-concavified utility function. Thus, we

need to make sure that the optimal wealth never ends up in the concavification area.

We now have to conjecture the form of f in terms of y. Recall that the VaR risk measure is

connected with a confidence level. If this level were 100%, then a VaR constraint can only

be satisfied given that the investor protects the portfolio by buying an insurance with full

coverage against downside risk. This can be achieved by buying a put option on his terminal

wealth. If the level is smaller than 100%, then extreme losses are not considered as to be

relevant. Thus, it is natural that the investor sells another put with lower strike than the

first put. This suggests the following conjecture

f (y) = y + (K − y)1{kε<y<K}, (13)

where kε and K can be interpreted as the exercise prices (syn. strikes) of the two options.

The functions f and u (f) are illustrated in Figure 2. We see that the optimal wealth, in

case our guess is correct, never ends up in the concavification area.

[INSERT FIGURE 2 ABOUT HERE]

To formulate the solution to our portfolio problems, we introduce the following notation:

Put (t, y, r, σ,K) denotes the price of a European put option calculated with interest rate

r, volatility σ, and strike K, given that the underlying price is y at time t. The expiry

date is T . Pr P
t,y denotes the conditional P -probability, given that Yt = y. Pr Q

t,y denotes the

conditional Q-probability, given that Yt = y.

Proposition 3 (Optimal Portfolio for VaR-constraints) If the investor maximizes ex-

pected utility from terminal wealth with respect to a power utility function and a VaR con-

straint (11), then his value function has the representation

V (t,Π(t, y)) = 1
γ
er̃(T−t)

(
yγ + Put

(
t, yγ, r̃, γθ

1−γ
, Kγ

)
− Put

(
t, yγ, r̃, γθ

1−γ
, kγ

ε

))
− 1

γ
er̃(T−t) (Kγ − kγ

ε + γλε) e
−r̃(T−t) Pr P

t,y (YT < kε) ,

where r̃ = γ(r + 0.5θ2/(1− γ)) and

Π(t, y) = y + Put
(
t, y, r, θ

1−γ
, K

)
− Put

(
t, y, r, θ

1−γ
, kε

)
(14)

− (K − kε) e
−r(T−t) Pr Q

t,y (YT < kε) .

10



His optimal stock demand is given by

π∗(t, y) =
1

1− γ

yΠy(t, y)

Π(t, y)

θ

σ
.

Proof. Consider the value given by (14) derived through

Π (t, y) = EQ
t,y

[
e−r(T−t)

{
YT + (K − YT )1{kε<Y (T )<K}

}]
(15)

= y + EQ
t,y

[
e−r(T−t)

{
(K − YT )1{YT<K} − (K − YT )1{YT<kε}

}]
= y + Put

(
t, y, r, θ

1−γ
, K

)
− Put

(
t, y, r, θ

1−γ
, kε

)
− (K − kε) e

−r(T−t) Pr Q
t,y (YT < kε) .

We now calculate the function ũ (f (y))

ũ (f (y)) = 1
γ
f (y)γ − λε1{f(y)<K} = 1

γ

(
y + (K − y)1{kε<y<K}

)γ − λε1{y<kε}.

This leads to the following expression for U

U (t, y) = Et,y [ũ (f (YT ))] = Et,y

[
1
γ

(
YT + (K − YT )1{kε<YT<K}

)γ − λε1{YT<kε}
]

= er̃(T−t)

γ
Et,y

[
e−r̃(T−t)

(
Y γ
T + (Kγ − Y γ

T )1{kγε<Y γ
T <Kγ}

)]
− λε Pr

P
t,y (YT < kε)

= er̃(T−t)

γ

(
yγ + Put

(
t, yγ, r̃, γθ

1−γ
, Kγ

)
− Put

(
t, yγ, r̃, γθ

1−γ
, kγ

ε

))
− er̃(T−t)

γ
(Kγ − kγ

ε + γλε) e
−r̃(T−t) Pr P

t,y (YT < kε) .

Appendix B shows that for Π (t, y) and U (t, y) condition (9) holds if 1
γ
Kγ − 1

γ
kγ
ε + λε =

(K − kε) k
γ−1
ε . This link between λε and kε conforms with the concavification argument. It

just remains to find λε and hereby kε such that P (XT < K) = ε. Finally, due to the form

of claim (13) we must solve two equations in the two unknowns kε and y0 that are given by

P (f (YT ) < K) = ε and Π (0, y0) = x0. �

Figure 2 illustrates the optimal asset allocation. The asset manager buys a put option pro-

tection for the ’small’ losses kε < Y < K and lets the ’big’ losses where Y < kε go, such that

the shortfall probability tolerance level is used to maximize expected utility. The solution

reflects the drawback of the VaR risk measure that it is ’blind’ to loss sizes. Therefore, the

manager only insures ’small’ losses that are cheap to insure and does not protect his portfolio

against ’large’ losses.

Finally, notice that if the investor has no tolerance for losses, he must buy a full put option

protection of Y . This is the special case ε = 0 that corresponds to λε = ∞ and has
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the solution kε = 0. Such a strategy is called an option based portfolio insurance (OBPI)

strategy. Although it is not surprising that a put option can protect a portfolio, the important

lesson to learn is that it is also the optimal solution to problem (11).

3.3 Expected Shortfall Constraint

We now turn to a different terminal wealth problem and consider the problem of maximizing

expected utility with a shortfall constraint on terminal wealth. More precisely, we impose

a restriction on the expected shortfall under the risk-neutral measure Q,10 which essentially

means that we work with a tolerance level for the price of this shortfall. This is different from

using the physically expected shortfall as risk measure. Rather than limiting the expected

shortfall our approach limits the price of the portfolio insurance it would take to protect the

optimal portfolio. Therefore, the following problem is studied

sup
π:EQ[(K−XT )+]e−rT≤ε

E [u (XT )] . (16)

To understand how we should now define the auxiliary utility function ũ, we remark that

the VaR constraint can be rewritten as follows:

P (XT ≤ K) = E[1{XT≤K}] ≤ ε. (17)

On the other hand, the expected shortfall constraint can be rewritten as

EQ
[
(K −XT )

+ e−rT
]
= E

[
1{XT≤K} (K −XT )LT

]
, (18)

where L denotes the deflator with dynamics

dLt = Lt (−rdt− θdWt) . (19)

Recalling definition (12) and comparing the arguments of the P -expectations in (17) and

(18), it is reasonable to define

ũ (x, l) = 1
γ
xγ − λε1{x<K} (K − x) l.

[INSERT FIGURES 3 AND 4 ABOUT HERE]

10See, e.g., Basak and Shapiro (2001).
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Figure 3 depicts the auxiliary utility function of this problem for l = 1. The black line is the

original utility function without constraints (γ = 0.5). The red line is the auxiliary utility

function including the Lagrange term (λε = 1, K = 5). This auxiliary utility is already

concave and thus we need no concavification argument. Now, we guess that the claim f on

y is given by

f (y) = cy1{y<kε} +K1{kε<y<K} + y1{y>K}, (20)

where c = K/kε. The functions f and u (f) are depicted in Figure 4.

Proposition 4 (Optimal Portfolio for Q-Expected Shortfall constraints) If the in-

vestor maximizes expected utility from terminal wealth with respect to a power utility function

and a Q-expected shortfall constraint (16), then his value function has the representation

V (t,Π(t, y), l) = 1
γ
er̃(T−t)

(
yγ + Put

(
t, yγ, r̃, γθ

1−γ
, Kγ

)
− cγPut

(
t, yγ, r̃, γθ

1−γ
, kγ

ε

))
−λεclPut

(
t, y, r, θ

1−γ
, kε

)
,

where

Π(t, y) = y + Put
(
t, y, r, θ

1−γ
, K

)
− cPut

(
t, y, r, θ

1−γ
, kε

)
. (21)

His optimal stock demand is given by

π∗(t, y) =
1

1− γ

yΠy(t, y)

Π(t, y)

θ

σ
.

Proof. For (21) we obtain

Πy (t, y) = 1 + Puty (K)− cPuty (kε) , Πyy (t, y) = Putyy (K)− cPutyy (kε) , (22)

where Put(x) = Put(t, y, r, θ
1−γ

, x). One can show that ũ (f (y) , l) = 1
γ
(cy1{y<kε}+K1{kε<y<K}+

y1{y>K})γ − λεc1{y<kε}(kε − y)l and thus

U (t, y, l) = Et,y [ũ (f (YT ) , LT )]

= Et,y

[
1
γ

(
cγY γ

T 1{Y γ
T <kγε } +Kγ1{kγε<Y (T )γ<Kγ} + Y γ

T 1{Y γ
T >Kγ}

) ]
−λεcEt,y,l

[
1{Y (T )<kε} (kε − YT )LT

]
= er̃(T−t)

γ

(
yγ + Put

(
t, yγ, r̃, γθ

1−γ
, Kγ

)
− cγPut

(
t, yγ, r̃, γθ

1−γ
, kγ

ε

))
− λεclPut

(
t, y, r, θ

1−γ
, kε

)
.

In Appendix C, we show that the functions Π (t, y) and U (t, y, l) satisfy the (to L-dependence

generalized version of the) conditions in Theorem 1 provided that λε = yγ−1
0 er̃T (1− cγ−1).
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Recalling that c = K/kε, this is exactly our link between λε and kε. Due to the form

of the claim (20) we are left with two equations in the two unknowns kε and y0 given by

EQ
[
e−rT (K − f (YT ))

+] = ε and Π (0, y0) = x0. �

Figure 4 illustrates the optimal asset position. As in the previous section, the asset manager

buys a put option protection for the ’small’ losses kε < Y < K, but he now cares also about

’big’ losses with Y < kε. For these ’big’ losses he buys, in addition to Y , an extra linear

claim (c− 1)Y such that the claim on Y is continuous at kε. Again the special case ε = 0

corresponds to λε = ∞ and has the solution kε = 0. This corresponds to the OBPI strategy

mentioned at the beginning of the section.

4 Intermediate Constraints

4.1 Constraints on Consumption

Until now we have only considered final wealth problems. Now, we allow for intermediate

lump sum consumption at discrete time points. To highlight our main ideas, we firstly

restrict ourselves to the case of one intermediate consumption date T1 ≤ T . This is however

without loss of generality. Later on we also explain how these ideas generalizes to multiple

periods. For the moment, we consider lump sum consumption CT1 at time T1: We measure

its utility and allow for constraints such as VaR or Q-expected shortfall constraints, e.g.

P (CT1 < K1) ≤ ε1. We present the arguments only for the case of a VaR constraint. Other

constraints can be handled in a similar way.

In portfolio theory, consumption can be implemented either as a continuous stream (con-

sumption rate) or as lump sum payments. We have chosen the second alternative since from

a practical point of view it seems to be the more realistic one. For instance, a fund manager

has inflows and outflows on a daily basis, so his grid could be daily. Although the dispersion

of payments during a day might be random, the clearing of the payments might be well

approximated by this approach. Furthermore, a consumption rate can be interpreted as the

continuous-time limit of lump sum payments. Therefore, by making the grid finer we can

also approximate models with consumption rates well.

We are interested in allocating wealth such as to maximize total expected utility under the

14



constraints that P (CT1 < K1) ≤ ε1 and P (XT < K) ≤ ε. Here XT is the residual wealth

after financing T1-consumption CT1 . The wealth dynamics now read

dXt = (r + πt (α− r))Xtdt+ πtσXtdWt − Ctd1{t≥T1}, X0 = x0.

The investor is interested in maximizing time-T1 utility of consumption and final wealth by

choosing an investment strategy and time-T1 consumption. For VaR constraints on both

lump sum consumption and terminal wealth, the optimization problem becomes

V (x, ε1, ε2) ≡ sup
π,C:P(CT1

<K1)≤ε1,P (XT<K)≤ε2

E [w1u1 (CT1 , LT1) + wu (XT , LT )|X0 = x0] ,

(23)

where w1 and w are the weights on utility of consumption and terminal wealth, respec-

tively. We now decompose this two-period problem into two one-period problems and a

one-dimensional maximization problem. The line of arguments is adapted from Lakner and

Nygren (2006), but since our constraints are not strict we need to deal with ε1 and ε2 in the

right way. We start with an admissible pair (π, C) and define x1 = E [LT1CT1 ] as the time-0

value of consumption CT1 and x2 = x0 − x1 as the residual initial amount. The T -problem

is that of finding

V2 (x2, ε2) ≡ sup
π:P (XT<K)≤ε2

E [wu (XT , LT )|X0 = x2] . (24)

It has an optimal solution πε2
2 and an optimal wealth process Xε2

2 , since this is just the

original terminal wealth problem with an adjusted initial wealth. Adding the argument ε2

emphasizes that the optimal solution is a function of ε2. The T1-problem is that of finding

V1 (x1, ε1) ≡ sup
π,C:P(CT1

<K1)≤ε1

E [w1u (CT1 , LT1)|X0 = x1] . (25)

This problem has an optimal solution (πε1
1 , Cε1

1 ) and an optimal wealth process Xε1
1 = X −

Xε2
2 . Notice that this can be interpreted as a terminal wealth problem terminating at time

T1. Now define C̃, X̃, and π̃ by

C̃ε1,ε2 = Cε1
1 , X̃ε1,ε2 = Xε1

1 +Xε2
2 , π̃ε1,ε2X̃ε1,ε2 = πε1

1 Xε1
1 + πε2

2 Xε2
2 .

Then X̃ is the wealth process corresponding to the pair (π̃, C̃). Since we have formed the

solutions for each sub-problem, we can compare the expected utility of these strategies to

our original admissible strategy (π, C) with wealth process X. We then know that

V1 (x1, ε1) ≥ E [w1u (CT1 , LT1)|X0 = x1] , V2 (x2, ε2) ≥ E [wu (XT , LT )|X0 = x2] ,

15



such that also V1 (x1, ε1)+V2 (x2, ε2) ≥ E [u (C,LT1) + u (XT , LT )|X (0) = x0]. Here we first

take maximum on the left hand side over all combinations (x1, x2) adding up to x0. Second

we take supremum over all admissible pairs (π, C) on the right hand side, which yields

max
x1,x2:x1+x2=x0

[V1 (x1, ε1) + V2 (x2, ε2)] ≥ V (x, ε1, ε2) . (26)

Notice that the pair (π̃, C̃) corresponding to x1 and x2 achieves the maximum on the left

hand side of (26). Besides, following the optimal constrained strategies in the two sub-

problems is an admissible strategy itself. Therefore, (26) holds with equality. This implies

that the pair (π̃, C̃) based on x1 and x2 solving the maximization problem in (26) is indeed

optimal for (23).

The optimal solution (x1, x2) to the maximization problem on the left hand side of (26) is

described by the following equation in x1,

∂

∂x
V1 (x1, ε1)

∣∣∣∣
x=x1

=
∂

∂x
V2 (x2, ε2)

∣∣∣∣
x=x0−x1

. (27)

This condition connects the time-T1 and the time-T problem via the budget constraint

x0 = x1 + x2. Now, the full problem reduces to solving three non-linear equations with

three unknowns: Two of theses equations are the Lagrange equations setting the Lagrange

multipliers such that the two constraints are fulfilled,

P (CT1 < K1) = ε1, P (XT < K) = ε2. (28)

The third equation is (27). The three unknowns are (kε1
1 , kε2

2 , x1). The intuition of the

result is that the total asset allocation decomposes into a capital allocation problem and two

terminal wealth asset allocation problems with different time horizons.

The multi-period case. The generalization to a finer grid for lump sum consumption

is straight-forward. If we have n time points of intermediate consumption T1, . . . , Tn from

which we measure power utility with constraints on consumption at each time point, we get

2n + 1 non-linear equations with 2n + 1 unknowns: For each intermediate constraint we

have one equation that determines the Lagrange multiplier λi (εi) such that the constraint

E [fi (CTi
, LTi

)] ≤ εi is satisfied. For the terminal constraint we have one equation that

determines the Lagrange multiplier λn+1 (εn+1) such that the constraint E [fn+1 (XT , LT )] ≤
εn+1 is fulfilled. This gives the first n + 1 equations and n + 1 unknowns. Furthermore,
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the initial wealth x0 constrains the wealth allocated to each consumption by the budget

constraint x1 + . . .+ xn + xn+1 = x0 yielding to n equations for n unknowns:

∂

∂x
V1 (x, ε1)

∣∣∣∣
x=x1

= . . . =
∂

∂x
Vn (x, εn)

∣∣∣∣
x=xn

=
∂

∂x
Vn+1 (x, εn+1)

∣∣∣∣
x=x0−

n∑
i=1

xi

.

This has clear applications in pension fund management, where the obligations typically

are formalized in terms of a cash flow that essentially consists of periodical (e.g. annual)

obligations up to 50 or more years into the future.

The multi-constraint one-period case. For the above calculations, it is not necessary

that T1 is strictly smaller than T . In fact, consumption can take place at time T and then the

utility of the residual wealth XT = XT−−CT is measured. This idea leads to an optimization

problem where utility is measured separately for CT and XT−−CT . Therefore, one can also

impose separate constraints on both parts. Similarly, if we have n lump sum consumptions at

time T from which utility is measured and on which we have constraints, then all equations

above hold true for T1 = . . . = Tn = T . This pattern of thinking can be applied to pension

fund management since the total cash flow at a particular time point is the sum over all

payouts to all contract holders. The fund could measure the individual utility of payouts

and add them up to measure the total utility of the cash flow at that time point.

The strict constraint case. Now, we consider the case where ε1 = ε2 = 0. This is simple

since the two equations (28) have obvious solutions: kε1
1 = kε2

2 = 0. This leaves us with

one equation with one unknown. In the general above-discussed multi-period case, there are

n+ 1 constraints and 2n+ 1 equations with 2n+ 1 unknowns. In the strict constraint case,

n + 1 of these equations have similarly simple solutions, such that we are left with only n

equations with n unknowns corresponding to the wealth allocated to consumption at each

of the intermediate time points. This is of course much simpler than the non-strict case.

The case of no utility from consumption. Another interesting special case arises if there

is no utility from intermediate consumption (w1 = 0), but intermediate consumption is still

constrained. This changes the time-T1 problem. But the separation of the total problem

into two terminal value problems still holds. Since V2 is increasing in x2, it is clear that we

now have to find the cheapest way to satisfy the probability constraint, i.e. find the payoff

C, the investment strategy, and its price such that

arg inf
π,C:P(CT1

<K1)≤ε1

E [CT1LT1 ] , x1 = inf
π,C:P(CT1

<K1)≤ε1

E [CT1LT1 ] .
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The residual amount x2 = x0−x1 is then spent on the time-T utility maximization problem.

The problem of minimizing the hedging cost for a given shortfall probability was addressed

by Föllmer and Leukert (1999). We now give an intuitive argument for their solution in

terms of our setup. For the time-T1 problem the solution is given as the solution to the

terminal utility problem for a log-utility investor, since the log utility investor essentially

invests so as to hedge a multiple of L. The solution of the log-utility case is found above by

setting γ = 0. So to solve the time T1 problem we set γ = 0 and consider the claim (13) on

Y with K = K1. So far the final step has been to find the initial point y0 which is essentially

the slope of the linear part of f (y) such that the price of the claim equals a given value.

Here, instead, we need to find y0 such that the value of the claim x1 is minimized, since this

maximizes the residual amount x2 = x0 − x1, which again maximizes utility. This slope is

zero leading to the claimf (y) = K1{kε<y}. The constant kε is determined by the constraint

P (CT1 < K1) = P (Y > kε) = ε.

Complicated and interesting problems not addressed here. The solution to the

consumption problem involves an allocation of capital at time 0 to the two consumption

plans at time T1 and T . This feature of the solution is not destroyed by the constraints.

This connects to the fact that utility of consumption at T1 and T is linked together by

the budget constraint only. In two popular generalizations, however, there is a second link

via preferences. For habit formation the utility of consumption at time T depends on the

consumption level at time T1. For recursive utility the utility consumption at time T1 depends

on the consumption level at time T through the value function at time T1. In these cases,

the simple capital allocation at time 0 satisfying the budget constraint is insufficient and one

needs to move capital between the consumption plans during the investment period. This is

however a considerably more difficult task and it is not addressed here.

4.2 Constraints on Intermediate Wealth

Strictly speaking, Theorem 1 can only be applied to constraints on terminal wealth. However,

in the following, we wish to study intermediate constraints such as

P (XT1 ≤ K1) ≤ ε1, (29)

where T1 < T and K1 as well as ε1 are constants. In the light of Theorem 1, this means

that we have to deal with constraints on Xt = Π(t, Yt) instead on XT . For simplicity, we
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assume that constraints are imposed at two time points T1 and T only. For t ∈ [T1, T ], there

is only one constraint and we are in the situation of Theorem 1. Therefore, we can solve for

the optimal wealth X∗
t = Π(t, Yt) expressed in terms of the claim value Π. For t ∈ [0, T1],

Theorem 1 does not directly apply. However, by the Bellman principle, the value function

for t ≤ T1 reads

V (t, x) = sup
π

Et,x[V (T1, XT1)].

Therefore, we define for t ≤ T1

Π̂(t, y) = EQ
t,y[f̂(Π(T1, YT1)]e

−r(T1−t), Û(t, y) = Et,y[V (T1, f̂(Π(T1, YT1))]

for a claim function f̂ related to the constraint at time T1.

Proposition 5 If Û satisfies

1− γ

y
Ûy + Ûyy =

Π̂yyÛy

Π̂y

, (30)

then V̂ (t, Π̂(t, y)) = Û(t, y).

Remark. The only difference to Section 2 is that the ordinary option Π is replaced by

the compound option Π̂. Compound options are well-known in finance where they are for

instance used to model equity as a call option on firm value, see Geske (1979). From this

point of view, a call on equity can be interpreted as a call on a call. In principle, the situation

is the same here, but the computations are much more complicated since we are interested

in a more general ’derivative on a derivative’ where the payoff structures of the derivatives

are given in (13). Geske (1979) considers two different maturities, one for the horizon of the

firm valuation and one for the maturity of the option on firm value. This is the same here

where the underlying derivative has maturity T and the derivative on that derivative has

maturity T1.

Proof. By the Feynman-Kac theorem, the function Û satisfies the same PDE as U

0 = Ût + yμyÛy + 0.5y2σ2
yÛyy

with the generalized boundary condition Û(T1, y) = V (T1, f̂(Π(T1, y))). Notice that the

boundary condition for U can be interpreted as a special case of this boundary condition by

formally setting V (T1, f̂(Π(T1, y))) = u(f(y)). The boundary conditions coincide since

Û(T1, y) = V (T1, f̂(Π(T1, y))) = V (T1, Π̂(T1, y)) = V̂ (T1, Π̂(T1, y)).
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We set V̂ ∗(t, Π̂(t, y)) = Û(t, y). The relevant non-linear PDE is 0 = V̂t+ rxV̂x− 0.5θ2V̂ 2
x /V̂xx

with the generalized boundary condition V̂ (T1, x) = V (T1, x). The compound option satisfies

Π̂t − rΠ̂ + ryΠ̂y + 0.5y2σ2
yΠ̂yy = 0

with the generalized boundary condition Π̂(T1, y) = f̂(Π(T1, y)). If we now use the fact that

for 0 ≤ t ≤ T1 the optimal wealth process equals the compound option, i.e. x = Π̂(t, y), then

the proof works exactly as the proof of Theorem 1. �

5 Conclusion

This paper provides a new approach to solve constrained portfolio problems. We use control

theory to construct the value functions to these problems and show how to solve the corre-

sponding highly non-linear partial differential equations. Although important by itself, our

approach opens up the opportunity to derive new closed-form solutions. We demonstrate

that for non-strict constraints on the shortfall of intermediate wealth and/or consumption.

Interesting generalizations might be problems with recursive utility and habit formation.

This is left for future research.
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A Proof of Theorem 1

Here we prove Theorem 1 for the generalized case where the deflator L is added as state

process. In that case the condition (8) reads

− yUyy

Uy − Ulyl
= −yΠyy

Πy

+ 1− γ. (31)
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We have to check two conditions, namely a terminal condition and a PDE condition. First,

for the terminal condition we calculate from (7), (5), and (3),

U (T, y, l) = u (f (y) , l) = u (Π (T, y) , l) = V (T,Π(T, y) , l) .

Second, we define V ∗ as V ∗ (t,Π(t, y) , l) = U (t, y, l). One can then express the derivatives

of V in terms of the derivatives of U . Notice that U is characterized by the PDE

Ut (t, y, l) = −
(
r + θ2

1−γ

)
yUy (t, y, l)− 0.5

(
θ

1−γ

)2

y2Uyy (t, y, l) + rlUl (t, y, l) (32)

−0.5θ2l2Ull (t, y, l) +
y

1−γ
θ2lUly (t, y, l) , U (T, y, l) = u (f (y) , l) .

Finally, one can check that V ∗ (t,Π(t, y)) is a candidate for our value function by calculating

the right hand side of (3) with V replaced by V ∗. We skip the corresponding calculations.�

B Verification for the VaR Constraint

Defining d1 (t, y, k, r, σ) = (log (y/k) + (r + 0.5σ2) (T − t)) /(σ
√
T − t), one can show that

d1

(
t, yγ, Kγ, r̃, γθ

1−γ

)
= d1

(
t, y,K, r, θ

1−γ

)
. This implies

∂

∂y
Put

(
t, yγ, r̃, γθ

1−γ
, Kγ

)
= γyγ−1 ∂

∂y
Put

(
t, y, r, θ

1−γ
, K

)
. (33)

Furthermore, one can show that

e−r(T−t) ∂

∂y
Pr Q

t,y (YT < kε) =
y

kε
N ′

(
d1

(
t, y, kε, r,

θ
1−γ

))
d′1

(
t, y, kε, r,

θ
1−γ

)
,

and

e−r̃(T−t) ∂

∂y
Pr P

t,y (YT < kε) =
1

kγ−1
ε

yγ−1e−r(T−t) ∂

∂y
Pr Q

t,y (YT < kε) . (34)

Now, substituting (33) and (34) into the derivatives of (15) and (16), one gets the relation

Uy (t, y) = er̃(T−t)yγ−1Πy (t, y) ,

under the condition 1
γ
Kγ − 1

γ
kγ
ε + λε = (K − kε) k

γ−1
ε . �

C Verification for the Expected Shortfall Constraint

One can calculate the derivatives of U to show that

Uy − Ulyl = er̃(T−t)yγ−1 (1 + Puty (K)− cγPuty (kε)) . (35)
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We now check condition (31) which is the generalized condition in Theorem 1 if L is a state

process. From (35), (22), the derivatives of U and a series of calculations, we get(
1− γ

y
(Uy − Ulyl) + Uyy

)
Πy − ΠyyUy (36)

= (Puty (kε) Putyy (K)− Putyy (kε)− Putyy (kε) Puty (K))
(
λεcl − er̃(T−t)yγ−1 (c− cγ)

)
.

Notice that this does not have to be zero at any point in the state space. Since, almost surely,

Lt = e−r̃t (Yt/y0)
γ−1, we only need to check the plane in (t, y, l) given by l = e−r̃t

(
y
y0

)γ−1

.

But then the second factor in (36) can be written as

λεce
−r̃t

(
y

y0

)γ−1

− er̃(T−t)yγ−1 (c− cγ) = yγ−1ce−r̃t

(
λε

(
1

y0

)γ−1

− er̃T
(
1− cγ−1

))
,

which is zero if λε = yγ−1
0 er̃T (1− cγ−1). �
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Figure 1: Utility function, utility function with Lagrange term, and concavified utility func-

tion for the VaR-constraint case.
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Figure 2: Optimal wealth and utility of optimal wealth as a function of Y for the VaR-

constraint case.

25



7

Utility without Lagrange Utility with Lagrange
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Figure 3: Utility function and utility function with Lagrange term for the expected shortfall

constraint case.
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Figure 4: Optimal wealth and utility of optimal wealth as a function of Y for the expected

shortfall constraint case.
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