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Abstract

This study proposes an efficient exact algorithm for the precedence-constrained
single-machine scheduling problem to minimize total job completion cost where
machine idle time is forbidden. The proposed algorithm is based on the SSDP
(Successive Sublimation Dynamic Programming) method and is an extension of
the authors’ previous algorithms for the problem without precedence constraints.
In this method, a lower bound is computed by solving a Lagrangian relaxation of
the original problem via dynamic programming and then it is improved succes-
sively by adding constraints to the relaxation until the gap between the lower and
upper bounds vanishes. Numerical experiments will show that the algorithm can
solve all instances with up to 50 jobs of the precedence-constrained total weighted
tardiness and total weighted earliness-tardiness problems, and most instances with
100 jobs of the former problem.
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1. Introduction

In this study we consider the single-machine scheduling problem to minimize
total job completion cost subject to general precedence constraints (1|prec|∑ f j(t)).
It is often the case in practice that some job should be processed before another
job due to limitation of machine functions, tool change restrictions and so on. This
type of constraint is called precedence constraint.
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The precedence-constrained single-machine problem to minimize total weighted
completion time (1|prec|∑w jC j) is well studied in the literature [1–13] and in-
stances with up to 100 jobs were optimally solved even more than twenty years
ago [3], although it is known to be strongly NP-hard [2]. In contrast, the precedence-
constrained single-machine scheduling problem to minimize more general addi-
tive costs has not been studied extensively so far. In [14, 15], labeling proce-
dures necessary for implementing dynamic programming to solve 1|prec|∑ f j(t)
were proposed. In the numerical experiment of [15], instances of the precedence-
constrained single-machine total unweighted tardiness problem (1|prec|∑Ti) and
total weighted tardiness (1|prec|∑wiTi) problem were solved by the dynamic
programming. However, these instances were of the ordinary problems without
precedence constraints, and job dominance properties in [16] were used as the
precedence constraints. In other words, the purpose of the numerical experiment
was to demonstrate the effectiveness of the dominance properties for improving
the dynamic programming to solve the ordinary total tardiness problem without
precedence constraints. It is true that they are applicable to the problem with
precedence constraints that do not originate in dominance properties, but it can-
not be expected that they work well especially when precedence constraints are
not so restrictive and the number of feasible solutions (job sequences) is still very
large. As is a well-known fact, strong dominance properties hold for 1||∑Ti and
the problem is even decomposable into subproblems [17]. On the other hand,
only weak dominance properties have been proved for 1||∑wiTi. The numerical
experiment in [15] seems to reflect this fact: Instances with 50 jobs were solved
for 1||∑Ti, but only those with 20 jobs were for 1||∑wiTi. The more recent study
[18] follows this line of research. In [18], Tang et al. proposed a method to
treat precedence constraints in a Lagrangian relaxation-based lower bound of the
single-machine total weighted tardiness problem. Then, the effect of taking into
account the precedence constraints derived from the dominance properties was
examined by a numerical experiment.

This paper is on an exact algorithm for the precedence-constrained single-
machine scheduling problem to minimize general additive costs. The precedence
constraints considered in this paper are not those derived from the dominance
properties that appear in [15, 18], but more general ones as in [3]. To the best
of the authors’ knowledge, there has been no study on exact algorithms that con-
sider such general precedence constraints directly for objective functions other
than total weighted completion time, although the DP in [15] is applicable as al-
ready explained. For the single-machine problem without precedence constraints
to minimize general additive objective functions, the first author and his col-
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leagues have already proposed efficient exact algorithms that can solve instances
with up to 300 jobs when machine idle time is forbidden [19] and with up to
200 jobs when it is permitted [20]. These results indicate that our algorithms
outperform the other exact algorithms proposed so far for these classes of prob-
lems without precedence constraints. Therefore, it is expected that our frame-
work is also effective for the precedence-constrained problem. Hence, this study
will extend these algorithms to the precedence-constrained problem, but only
the case when machine idle time is forbidden is considered. Numerical experi-
ments will show that the proposed algorithm can solve all 50 jobs instances of
the precedence-constrained total weighted tardiness problem (1|prec|∑wiTi) and
of the precedence-constrained total weighted earliness-tardiness problem with-
out idle times (1|prec,noidle|∑(αiEi +βiTi)), and most of 100 jobs instances of
1|prec|∑wiTi.

The remainder of this paper is organized as follows. First, in Section 2, the
problem considered in this study is formulated as a constrained shortest path prob-
lem. Next, in Section 3, our previous algorithms in [19, 20] are reviewed and
how to extend them to the problem with precedence constraints are shortly stated.
Then, in Section 4, Lagrangian relaxations necessary for constructing the pro-
posed algorithm are given and then how to solve them by dynamic programming
is explained. In Section 5, the proposed algorithm is summarized. Section 6 shows
some numerical results, and finally, Section 7 concludes this study.

2. Problem Description and Network Representation

In this section the precedence-constrained single-machine scheduling problem
treated in this study is described formally and it is formulated as a constrained
shortest path problem.

Suppose that n jobs (job 1, job 2, . . ., job n) are to be processed on a single ma-
chine that can process at most one job at a time. An integer processing time pi > 0
is given for each job i ∈ N = {1,2, . . . ,n}. An integer cost function fi(t) (t ≥ pi)
is also given for each job i and the cost fi(Ci) is incurred when job i is completed
at Ci. On some pairs of jobs i and j (i, j ∈ N , i ̸= j), the precedence constraint
that job i should precede job j (i → j) is imposed. All the precedence constraints
are specified by an acyclic directed graph GP = (VP,AP) with VP = {1,2, . . . ,n}
such that i → j when (i, j) ∈ AP. AP is assumed to be transitively closed: if
(i,k),(k, j) ∈ AP, then (i, j) ∈ AP. The minimal expression of the precedence con-
straints is given by GP = (VP,AP), where AP ⊆ AP is the transitive reduction of
AP. Preemption and machine idle time are forbidden and hence all the jobs should
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be processed in the interval [0,T ] where T = ∑i∈N pi. The objective is to find a
job sequence that satisfies the precedence constraints and that minimizes total job
completion cost ∑i∈N fi(Ci).

We treat this problem as a constrained shortest path problem on an acyclic
weighted directed graph G = (V,A,W ). Let us introduce a dummy job n+1 with
pn+1 = 1, fn+1(t) ≡ 0 that should be completed twice at time 0 and T + 1 to
introduce the source node vn+1,0 and the sink node vn+1,T+1

1. Next, define a node
set V by

V = {vn+1,0}∪VO ∪{vn+1,T+1}, (1)
VO = {vit | i ∈ N , pi + ∑

( j,i)∈AP

p j ≤ t ≤ T − ∑
(i, j)∈AP

p j}. (2)

An arc set A is defined by

A = {(vi,t−p j ,v jt) |vi,t−p j ,v jt ∈V}, (3)

where the weight (length) W (e) of an arc e = (vi,t−p j ,v jt) ∈ A is given by f j(t).
Then, our problem is equivalent to find a shortest path from the source node vn+1,0
to the sink node vn+1,T+1 such that vit is visited exactly once for any i ∈ N and
that vis and v jt in the path satisfy s ≤ t − p j if (i, j) ∈ AP. The optimal objective
value is identical to the shortest path length, and vit visited in the shortest path
corresponds to the completion of job i at t in an optimal solution. Figure 1 shows
an example of G for an instance with n = 5. The processing times are given by
p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 1 and a precedence constraint is on jobs 1
and 2 so that 1 → 2.

Hereafter, we use the following notation and definitions. A set of nodes visited
in a path from vn+1,0 to vn+1,T+1 is denoted by P , and the path corresponding to
P is referred to as “path P” for simplicity. Let L(P) be the length of a path P .
Namely, L(P) is defined by

L(P) = ∑
vit∈P
i∈N

fi(t). (4)

For each job i, the number of occurrences of vit in P is denoted by Vi(P), which
is defined by

Vi(P) = |{vit |vit ∈ P}| . (5)

1In [19], another dummy job 0 is introduced and the source node is denoted by v00. However,
only one dummy node is introduced here according to the newer notation in [20]. In [20], job 0
denotes a unit idle time.

4



Then, the constraints that a path P should visit vit (i ∈ N ) exactly once can be
written by

Vi(P) = 1, i ∈ N . (6)

In addition, the precedence constraints can be expressed by

s ≤ t − p j, (i, j) ∈ AP, vis,v jt ∈ P, (7)

or, equivalently,
∑

vis∈P

s ≤ ∑
v jt∈P

t − p j, (i, j) ∈ AP. (8)

We denote the set of all the feasible paths satisfying these constraints by Q. Then,
our problem (P) can be formulated as follows.

(P) : min
P

L(P) s.t. P ∈ Q. (9)

3. Previous Algorithm Overview and Outline of Its Extension

The proposed algorithm is based on the SSDP (Successive Sublimation Dy-
namic Programming) method [21, 22] as our previous algorithms [19, 20]. This
algorithm is similar to the cutting plane algorithm: It first computes a lower bound
by a simple relaxation of the original problem and then improves it successively
by adding constraints (cuts) to the relaxation until the gap between the lower and
upper bounds vanishes. Since all the relaxations are solved by dynamic program-
ming, it is inevitable that the number of dynamic programming states increases
as the number of added constraints increases. To cope with it, unnecessary states
are eliminated in the course of the algorithm, which is the key point of the SSDP
method. In our previous studies [19, 20], several improvements for the original
algorithm in [22] were proposed not only to reduce unnecessary states, but also
to improve the efficiency of the algorithm. These improvements made the algo-
rithm outperform the existing algorithms and instances even with 300 jobs could
be solved optimally. This section gives a brief sketch of our previous algorithms.
Then how to extend it to our problem and where its difficulty lies will be explained
shortly.

The following Lagrangian relaxations are employed in [19, 20]. First, the
constraints on the number of job occurrences (6) are relaxed by penalizing their
violations. Next, the constraints on successive jobs [24] are added to the relax-
ation. These constraints forbid such a sub-path in the network representation that
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nodes representing the same job are visited twice or more. Therefore, they cor-
respond to the cycle elimination constraints that often appear in routing problems
(e.g. [23]) Then, the constraints based on the dominance of adjacent pairs of jobs
[25, 19] are added. These constraints forbid such a processing order of two ad-
jacent jobs that interchanging their order can improve the solution. Finally, the
relaxed constraints (6) are gradually recovered until the gap between the lower
and upper bounds vanishes. An upper bound is computed in the course of the
algorithms by first converting a solution of a relaxation to a feasible solution of
the original problem and then by applying the dynasearch [29, 30].

All these relaxations are solvable by dynamic programming algorithms. How-
ever, the number of dynamic programming states, which corresponds to the size of
the underlying network, increases exponentially as the constraints (6) are recov-
ered. Therefore, unnecessary dynamic programming states are eliminated in the
course of the SSDP method. In the original algorithm [22], a lower bound to pass
through each state is computed by applying dynamic programming in both for-
ward and backward directions, and the state is eliminated when the lower bound
is not smaller than the current upper bound. This corresponds to the elimination
of a node or an arc in the network representation. In addition to this, the network
reduction based on the dominance of more than two successive jobs, the con-
straint propagation technique, and the compressed network representation were
introduced in [20] to reduce the network more.

In this paper, we will extend the algorithm in [19] improved by integrating the
techniques in [20] to the problem with precedence constraints. Roughly speaking,
the following are necessary for this purpose:

(a) Relaxations for the problem with precedence constraints that are efficiently
solvable by dynamic programming.

(b) Extension of the network reduction techniques.
(c) Extension of the upper bound computation method.

Among these, (b) is almost obvious and (c) is not difficult, while (a) is not direct.
It is true that we can derive a relaxation of the original problem (P) by penalizing
the violations of the precedence constraints (7) or (8) as well as the violations
of the constraints (6). However, to construct an SSDP algorithm, they should be
recovered again to the relaxation and the obtained relaxation should be solvable
by dynamic programming. One of our main contributions is that it is shown to be
solvable by simple modifications to the previous dynamic programming algorithm
without increasing the time complexity.
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In the next section, we will give the relaxations in the proposed algorithm
and show how to solve them by dynamic programming. Then, in Section 5, the
proposed algorithm will be summarized together with (c).

4. Lagrangian Relaxations in the Proposed Algorithms

This section gives the relaxations used in the proposed algorithm. The primary
difference from those in the previous algorithms [19, 20] is, as already explained
in the preceding section, that the violation of all or part of the precedence con-
straints is penalized by the Lagrangian relaxation technique. However, it does not
follow that the original dynamic programming is applicable to the relaxations con-
sidered here. In the following, the dynamic programming to solve the relaxations
will be stated.

4.1. Lagrangian relaxation of (6) and (8)
Let us penalize the constraints on the number of occurrences (6) by µO

i (i ∈
N ) and the precedence constraints of the form (8) by µP

i j ≥ 0 ((i, j) ∈ AP). Then,
we obtain the following relaxation (LR0):

(LR0) : min
P

{
L(P)+ ∑

i∈N

µO
i (1−Vi(P))+ ∑

(i, j)∈AP

µP
i j

(
∑

vis∈P

s− ∑
v jt∈P

t + p j

)}
.

(10)
By introducing ωi (i ∈ N ) defined by

ωi = ∑
( j,i)∈AP

µP
ji − ∑

(i, j)∈AP

µP
i j, (11)

(10) can be rewritten as

(LR0) : min
P

LR(P; µµµO,µµµP)+ ∑
i∈N

µO
i + ∑

(i, j)∈AP

µP
i j p j, (12)

where LR(P; µµµO,µµµP) is defined by

LR(P; µµµO,µµµP) = L(P)− ∑
i∈N

µO
i Vi(P)+ ∑

(i, j)∈AP

µP
i j

(
∑

vis∈P

s− ∑
v jt∈P

t

)
= ∑

vit∈P
i∈N

fi(t)− ∑
vit∈P
i∈N

µO
i − ∑

vit∈P
i∈N

ωit

= ∑
vit∈P
i∈N

( fi(t)−µO
i −ωit). (13)
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From (13), we can see that (LR0) for a set of multipliers µµµO and µµµP is equivalent to
the unconstrained shortest path problem on G= (V,A,W ′), where W ′(e) is defined
by

W ′((vi,t−p j ,v jt)) = f ′j(t) = f j(t)−µO
j −ω jt. (14)

The relaxation (LR0) is the same as that of the problem without precedence con-
straints except the weights of the arcs, and hence can be solved by dynamic pro-
gramming in O(nT ) time (see [24]).

4.2. Improvement by the constraints on successive jobs
To improve the lower bound obtained by (LR0), the following constraints are

imposed on (LR0) as in the previous algorithms [22, 19, 20]:

For any i ∈ N , nodes representing job i, i.e., vit should not be
visited more than once in any λ +1 > 0 successive nodes in a path. (15)

These constraints forbid such a sub-path that vi,t−pi → vit when λ = 1 and vi,t−pi−p j →
v j,t−pi → vit additionally when λ = 2. A set of paths satisfying these constraints
on successive nodes is denoted by Qλ , and the relaxation with the constraints is
denoted by (LRλ ). Here, we only consider (LR1) and (LR2) as in [19, 20]. By
defining

AS = A\{(vi,t−pi,vit) |vi,t−pi,vit ∈VO}, (16)

we introduce a reduced network GS = (V,AS,W ′). Then, (LR1) becomes equiva-
lent to the unconstrained shortest path problem on GS. On the other hand, (LR2)
remains the constrained shortest path problem even on GS. Since the precedence
constraints are relaxed, the time complexities of (LR1) and (LR2) by dynamic pro-
gramming do not differ from those in [19] and are given by O(nT ) and O(n2T ),
respectively. It is worth noting that the time complexity of (LR2) is the same as
the number of arcs |AS| in GS because each arc is evaluated once in the dynamic
programming. For the detailed recursive equations, please refer to [19].

Figure 2 shows GS derived from G in Fig. 1. In GS, the arcs (vi,t−pi ,vit) are
eliminated for all i and t from G.

4.3. Improvement by the constraints on adjacent pairs of jobs
The second constraints are derived from the dominance theorem of dynamic

programming [26] for adjacent pairs of jobs [25, 19, 20]. For the problem without
precedence constraints, they restrict processing orders of adjacent pairs of jobs by
checking their total costs. Here, we should slightly modify them to ensure the
consistency with the precedence constraints.
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Suppose that two jobs i and j (i, j ∈ N , i ̸= j) are processed adjacently. If
(i, j) ∈ AP and (i, j) /∈ AP (or, ( j, i) ∈ AP and ( j, i) /∈ AP), this situation cannot
happen because there should exist another job k satisfying (i,k),(k, j) ∈ AP (or,
( j,k),(k, i)∈ AP). In this case, we forbid the two jobs i and j to be processed adja-
cently. On the other hand, if (i, j)∈AP or ( j, i)∈AP, the two jobs can be processed
adjacently, but their processing order is restricted by the precedence constraint. If
no precedence constraint exists between the jobs i and j, i.e., (i, j),( j, i) /∈ AP, we
compare the total completion costs of the two jobs when they are completed at
t: fi(t − p j)+ f j(t) when job i precedes job j, and f j(t − pi)+ fi(t) when job j
precedes job i. Then, the processing order that yields the larger cost is forbidden.
If the two costs are identical, either (but not arbitrary) processing order can be
forbidden without loss of optimality. To summarize, the processing orders of any
adjacent pairs of jobs can be restricted and these restrictions are imposed on (LR2)
as constraints. This yields a new relaxation (L̂R2).

In the network representation, these adjacency constraints eliminate from GS,
those edges corresponding to the forbidden processing orders. Thus, we define
ĜS = (V, ÂS,W ′) by

ÂS = AS\{(vi,t−p j ,v jt) | job j cannot be preceded adjacently by job i at t}. (17)

Then, (L̂R2) becomes equivalent to the shortest path problem on ĜS under the
constraints (15) on three successive nodes (for λ = 2). The time complexity of
(L̂R2) does not increase from (LR2) and it can be solved in O(n2T ) time because
ĜS ⊂ GS (and |ÂS| is O(n2T )). Figure 3 shows an example of ĜS derived from
GS in Fig. 2 under some dominance properties on adjacent pairs of jobs. For
example, we assume that the processing order 3 → 1 is better than 1 → 3 if they
are completed before t = 6 and the converse is true when they are completed after
t = 7. Hence (v1,t−2,v3t) are eliminated for t ≤ 6 and (v3,t−1,v1t) are eliminated
for t ≥ 7. In addition, (v2,t−1,v1t) are eliminated for all t due to the precedence
constraint 1 → 2.

4.4. Recovering the relaxed constraints
In our previous algorithms without precedence constraints [19, 20], the relaxed

constraints (6) are gradually recovered to (L̂R2). More specifically, for some M =
{ϕ1, . . . ,ϕm} ⊆ N ,

Vϕk(P) = 1, 1 ≤ k ≤ m, (18)

are imposed on the relaxation corresponding to (L̂R2). It is easy to see that the
relaxation approaches the original problem as m = |M | increases and it becomes
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equivalent when m= n. Hence, the lower bound obtained by solving the relaxation
improves as the relaxed constraints are recovered, and the gap between the lower
and upper bounds vanishes in a finite number of iterations. To solve the relaxation
in each iteration, it takes O(n22mT ) time [19].

In this study some of the precedence constraints (7), i.e.,

s ≤ t − pi, (ϕk, i) ∈ AP, vϕks,vit ∈ P, 1 ≤ k ≤ m, (19)

s ≤ t − pϕk , (i,ϕk) ∈ AP, vis,vϕkt ∈ P, 1 ≤ k ≤ m, (20)

are recovered at the same time. In addition, µP
i j is set to zero if i, j ∈ M . Clearly,

the relaxation generated in this manner, which is referred to as (L̂R
m
2 ), becomes

equivalent to (P) when M = N . Therefore, an optimal solution of (P) is obtain-
able in a finite number of iterations by solving (L̂R

m
2 ) with m increased until the

gap between the lower and upper bounds vanishes (in practice, the algorithm can
be terminated the gap becomes less than one because the optimal objective value
of the original problem (P) is integral). Our claim here is that (L̂R

m
2 ) is solvable in

O(n22mT ) time and hence the time complexity does not increase even under the
existence of the precedence constraints (19) and (20). In the following, it will be
shown step by step.

First, assume that only the constraints (18) are imposed on (L̂R2) and denote
the resulting relaxation by (L̃R

m
2 ). To solve it, define an m-dimensional vector qqqm

i
(i ∈ N ) by qqqm

i = (qi1, . . . ,qim), where

qik =

{
1 i = ϕk,
0 otherwise. (21)

Let us also define an m-dimensional vector qqqm
n+1 by qqqm

n+1 = (0, . . . ,0). Next, we
introduce a weighted directed graph Gm

S = (V m,Am
S ,W

′). The node set V m is de-
fined by

V m = {v000m
n+1,0}∪V m

O ∪{v111m
n+1,T+1}, (22)

V m
O = {vbbb

it |vit ∈VO, qqqm
i ≤ bbb ≤ 111m}, (23)

where 000m and 111m denote m-dimensional vectors whose elements are all zero and
all one, respectively. The arc set Am

S is defined by

Am
S = {(v

bbb−qqqm
j

i,t−p j
,vbbb

jt) |(vi,t−p j ,v jt) ∈ ÂS, qqqm
i +qqqm

j ≤ bbb ≤ 111m}. (24)
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Then, the shortest path problem on Gm
S under the constraints (15) for λ = 2 is

equivalent to (L̃R
m
2 ). To solve it by (forward) dynamic programming, the con-

strained shortest path from the source node v000m
n+1,0 to vbbb

jt through (v
bbb−qqqm

j
i,t−p j

,vbbb
jt) is

recursively computed. Since, in this shortest path, the number of occurrences of
the nodes representing job ϕk (1 ≤ k ≤ m) is equal to the k-th element of bbb, it is
ensured that vbbb

ϕkt appears exactly once for all k (1 ≤ k ≤ m) in the obtained shortest

path from v000m
n+1,0 to v111m

n+1,T+1. The time complexity is given by O(n22mT ) because
|Am| is O(n22mT ) (|V m| is O(n2mT ) and the in-degree of each node is at most n).

Figure 4 gives Gm
S derived from ĜS in Fig. 3 for M = {1} and m = 1. It can

be verified from the structure of the network that any path cannot reach the sink
node v1

6,10 without passing through v1
1t exactly once for some t. However, the path

shown in thick arrows, v0
6,0 → v0

5,1 → v0
2,3 → v0

3,5 → v1
1,6 → v1

4,9 → v1
6,10, does not

satisfy the precedence constraint because it passes through v0
2,3 before v1

1,6.

Next, consider (L̂R
m
2 ), i.e., (L̃R

m
2 ) with the precedence constraints (19) and

(20). As we have already seen, the number of occurrences of the nodes repre-
senting job ϕk in the path from v000m

n+1,0 to vbbb
jt is equal to bk. It implies that this

path breaks the precedence constraint (19) if (ϕk, j) ∈ AP and bk = 0. Similarly, it
breaks the constraint (20) if ( j,ϕk) ∈ AP and bk = 1. Therefore, we can satisfy the
precedence constraints (19) and (20), only by removing from Gm

S all the nodes vbbb
jt

with such bbb. Clearly, the time complexity of the constrained shortest path prob-
lem on Gm

S does not change even when some nodes are removed. Hence, we can
conclude that (L̂R

m
2 ) is solvable in O(n22mT ) time.

Notice that Gm
S with ϕk ∈ M only forbids ϕk → i under the precedence con-

straint i→ ϕk (or i→ ϕk under ϕk → i). Since it is possible that a node representing
job i does not appear in a feasible path from v000m

n+1,0 to v111m
n+1,T+1 if i /∈ M , we can-

not say that i → ϕk (or ϕk → i) is satisfied in this case. However, i → j for any
(i, j) ∈ AP is satisfied when M = N because the constraints (6) are all recovered
and hence all the jobs should appear exactly once in any feasible path.

We can apply the above arguments not only to the minimal precedence con-
straints (i → j for (i, j) ∈ AP), but also to the transitive closure (i → j for (i, j) ∈
AP), which improves the lower bound and reduces the network more. To sum-
marize, we are to solve the shortest path problem on a directed graph Ĝm

S =

11



(V̂ m, Âm
S ,W

′) under the constraints (15) for λ = 2, where

V̂ m = V m\
(
{vbbb

it |∃k, (ϕk, i) ∈ AP, bk = 0}∪{vbbb
it |∃k, (i,ϕk) ∈ AP, bk = 1}

)
,

(25)

Âm
S = {(v

bbb−qqqm
j

i,t−p j
,vbbb

jt) |(v
bbb−qqqm

j
i,t−p j

,vbbb
jt) ∈ Am

S , v
bbb−qqqm

j
i,t−p j

,vbbb
jt ∈ V̂ m}. (26)

Figure 5 shows Ĝm
S derived from Gm

S in Fig. 4, where v0
2t are eliminated for all

t. It is obvious that this network ensures that v0
2• is never visited before job v1

1•.
The path shown in thick arrows, v0

6,0 → v0
3,2 → v1

1,3 → v1
5,4 → v1

4,7 → v1
3,9 → v1

6,10,

is still feasible in Ĝm
S , where v1

2t is not visited for any t. However, it is eliminated
or at least becomes infeasible when job 2 is added to M .

4.5. Improvement by slack variable optimization
Since the precedence constraints (7) are inequality constraints, the lower bound

can be improved by converting them to equality constraints with slack variables
and then solving optimization problems with regard to the slack variables [4]. We
apply this method to all the relaxations (LR1), (L̂R2) and (L̂R

m
2 ).

5. Proposed Algorithm

Our proposed algorithm utilizes the Lagrangian relaxations (LR1), (L̂R2) and
(L̂R

m
2 ) in the preceding section. The algorithm is composed of three stages: (LR1)

is solved first, (L̂R2) is solved next, and then (L̂R
m
2 ) is solved with M (m = |M |)

increased. These correspond to the main loop of the SSDP method that generates
and solves better relaxations by adding constraints. Since the size of the network
Gm

S corresponding to (L̂R
m
2 ) increases exponentially as the algorithm proceeds and

constraints are recovered, it is crucial to suppress the increase of the network size
as much as possible.

The algorithm is summarized as follows.

Stage 1 An initial upper bound UB is computed. Then, the conjugate subgradient
algorithm [27, 28] is applied to the Lagrangian dual corresponding to
(LR1). The algorithm is terminated without entering the next stage if the
gap between the best lower bound and UB is less than one.

Stage 2 The multipliers are re-adjusted by the conjugate subgradient algorithm
for the Lagrangian dual corresponding to (L̂R2). An upper bound is com-
puted every 5 iterations and UB is updated if necessary. The algorithm
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is terminated without entering the next stage if the gap between the best
lower bound and UB is less than one.

Stage 3 The relaxation (L̂R
m
2 ) is solved with M increased from M = /0. When M

is increased, an upper bound is computed and UB is updated if necessary.
Then, multipliers are re-adjusted by the conjugate subgradient algorithm
for a smaller number of iterations than those in Stage 1 and Stage 2. After
it terminates, new jobs are chosen from N \M and added to M . It is
repeated until the gap between the lower bound and UB becomes less
than one.

Elimination of unnecessary dynamic programming states in the SSDP method
is performed in the course of the algorithm by the network reduction techniques in
[20], which were explained in Section 3. These are applicable to our problem with
minor modifications. An upper bound is computed also in a similar way to that in
[20]: A solution of a relaxation is converted to a feasible solution of (P), and then
the enhanced dynasearch [29, 30] is applied to improve it. To convert to a feasible
solution, we first remove all the jobs that break the precedence constraints or that
occur more than once. Then, the jobs that do not appear in the partial schedule are
inserted into it optimally or greedily so as not to break the precedence constraints.
To insert the absent jobs optimally, the dynamic programming algorithm in [22]
is applied with a modification to satisfy the precedence constraints. However, the
time complexity of the algorithm depends exponentially on the number of absent
jobs n′ and is given by O((n− n′+ 1)n′2n′). Therefore, a heuristic algorithm is
employed instead to insert the absent jobs one by one according to the SPT (short-
est processing time) order, when the number of such jobs is large. It takes only
O(n′ logn′) for ordering the absent jobs and O((2n−n′+1)n′) for inserting them
one by one (the number of candidate positions for the i-th absent job is n−n′+ i).
The obtained solution is improved by the enhanced dynasearch extended to our
problem by forbidding moves in the neighborhood that break the precedence con-
straints. The dynasearch is a local search algorithm that employs a neighborhood
called dynasearch neighborhood. It is defined by solutions obtained via any num-
ber of pairwise interchanges (PIs) that do not intersect with each other. In addi-
tion to PIs, extraction and forward shifted re-insertions (EFSRs), and extraction
and backward shifted re-insertions (EFSRs) are considered in the enhanced dy-
nasearch neighborhood. The primary advantage of these neighborhoods is that
the best solution in the neighborhoods is obtainable in polynomial time by dy-
namic programming although they are composed of an exponential number of
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solutions. To extend them to the problem with precedence constraints, we simply
forbid such PIs, EFSRs and EFSRs that break the precedence constraints, and this
does not increase the time complexity of the dynamic programming. The initial
upper bound is computed in the same manner, except that the length of the partial
schedule is zero and all the jobs are inserted greedily.

In [19, 20], the Lagrangian multipliers obtained in Stage 2 are also used in
Stage 3, while in the proposed algorithm they are re-adjusted for (L̂R

m
2 ) in Stage

3. It is because the duality gap of our problem is larger than that of the prob-
lem without precedence constraints and hence it is necessary to improve the lower
bound as much as possible. Another reason is that if jobs i and j appear in M ,
µP

i j is set to zero to remove the corresponding penalty term from the objective
function because the corresponding precedence constraint i → j is always satis-
fied. This affects the optimal Lagrangian multipliers much and thus justifies the
re-adjustment.

The jobs to be added to M in Stage 3 are determined as follows. For each job
i ∈ N \M ,

∑
( j,i)∈AP

µP
ji + ∑

(i, j)∈AP

µP
i j (27)

is computed and a job with a larger (27) is chosen first. By doing this, precedence
constraints that affect the objective value are supposed to be satisfied as early as
possible. Ties are broken by the occurrences of corresponding nodes in Ĝm

S , and a
job that occurs less frequently is chosen first.

6. Numerical Experiment

The proposed algorithm is applied to the precedence-constrained single-machine
total weighted tardiness problem (1|prec|∑wiTi) and the precedence-constrained
single-machine total weighted earliness-tardiness problem without machine idle
time (1|prec,noidle|∑(αiEi+βiTi)). Instances are generated from the OR-Library
instances of 1||∑wiTi with 40, 50 and 100 jobs that are available from http://people.
brunel.ac.uk/˜mastjjb/jeb/orlib/wtinfo.html. In the OR-Library instances, the pro-
cessing time pi, the tardiness weight wi and the duedate di of each job i were
generated from the integer uniform distributions [1,100] and [1,10], [T (1−TF−
RDD/2),T (1−TF+RDD/2)], respectively. Here, TF and RDD are the tardi-
ness factor and the range of duedates, respectively, and they are chosen from
{0.2,0.4,0.6,0.8,1.0}. There are five instances for each combination of n, TF and
RDD, and hence 125 instances for each n. To generate instances of 1|prec|∑wiTi
from these, precedence constraints are added as in [3, 4]: For every pair of i and j
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(i, j ∈ N , i < j), whether the precedence constraint i → j is imposed on or not is
determined by a specified probability P. The instances of 1|prec,noidle|∑(αiEi+
βiTi) are generated by adding precedence constraints in a similar way to the in-
stances of 1|noidle|∑(αiEi + βiTi) used in [19], which were generated from the
OR-Library instances by choosing the tardiness weight βi = wi and by gener-
ating the earliness weight αi from the integer uniform distribution [1,10]. We
choose P from {0.005,0.01,0.02,0.05,0.1,0.2} and thus there are 125 instances
for each combination of n, P and the problem type. The computation is per-
formed on a desktop computer with Core i7 960 (3.2GHz) CPU and 12GB RAM.
The maximum memory size for storing the network structure is set to 3GB and
the time limit is set to 10000s. For comparison, the dynamic programming in
[15] is implemented and applied to these instances. Since this algorithm was
originally proposed for employing dominance properties, the precedence rela-
tions derived from the dominance properties summarized in [31] are used for
1|prec|∑wiTi additionally, as far as they are consistent with the original prece-
dence constraints. In other words, the precedence relations are put into GP as far
as no cycle is formed. Note that these additional precedence constraints are avail-
able only for 1|prec|∑wiTi because no such dominance properties are known for
1|prec,noidle|∑(αiEi +βiTi).

The results are shown in Tables 1 and 2, where average (ave) and maximum
(max) CPU times over optimally solved instances (solved) are given in seconds
for the proposed algorithm (Proposed) and the dynamic programming in [15] (DP
in [15]). In “proposed”, the instances without precedence constraints (P= 0.0) are
solved not by the proposed algorithm but by an improved version of the algorithm
in [19]. From the tables, we can verify that the proposed algorithm successfully
solved all the instances with 40 and 50 jobs, and almost all the instances with 100
jobs of 1|prec|∑wiTi. For the unsolved instances, the proposed algorithm reached
the memory limit or the time limit. On the other hand, the dynamic programming
in [15] failed to solve instances only due to the memory limit. The latter algorithm
could not solve some instances with 40 jobs. In particular, it could not solve even
a single instance of 1|prec,noidle|∑(αiEi+βiTi) when n = 40 and P = 0.0, 0.005,
0.01, 0.02, or 0.05 because dominance properties cannot be exploited for this type
of problem. However, the precedence constraints are so restrictive when P = 0.2
and the algorithm worked better than the proposed algorithm. Nevertheless, it
could not solve some of the instances with n = 100 and P = 0.2. For both the
algorithms, the hardest instances seems those with P = 0.02 or P = 0.05.

Next, the lower bounds obtained in Stage 2 of the proposed algorithm and
those by the method in [18] are compared for the instances with n = 40. The
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Table 1: Computational Results for Benchmark Instances of 1|prec|∑wiTi

Proposed DP in [15]
n P solved CPU time (s) solved CPU time (s)

ave max ave max
0.0 125 0.04 0.09 121 0.27 2.82
0.005 125 0.46 2.33 111 0.52 6.40
0.01 125 0.62 7.78 99 0.61 9.37

40 0.02 125 2.13 58.84 61 0.41 4.12
0.05 125 7.66 32.15 40 0.09 0.43
0.1 125 12.78 35.83 93 0.06 0.47
0.2 125 1.97 13.99 125 0.00 0.01
0.0 125 0.09 0.19 89 0.93 21.05
0.005 125 0.96 11.65 61 0.63 5.81
0.01 125 2.49 27.49 44 1.03 16.54

50 0.02 125 8.54 133.29 24 0.06 0.63
0.05 125 42.63 541.49 22 0.06 0.54
0.1 125 41.65 164.99 40 0.04 0.17
0.2 125 4.56 29.77 125 0.00 0.02
0.0 125 0.91 2.43 31 0.19 5.58
0.005 125 53.92 3781.20 25 0.12 1.97
0.01 124 72.06 3129.99 22 0.01 0.27

100 0.02 123 341.60 9860.74 20 0.17 3.14
0.05 121 907.46 8812.20 7 0.08 0.20
0.1 125 151.37 1236.93 22 0.16 0.72
0.2 125 6.41 37.06 115 0.01 0.04

method in [18] is to exploit precedence constraints in the Lagrangian relaxation
based-lower bound obtained by relaxing the machine availability constraint. To
apply it, precedence relations derived from the dominance properties in [31] are
also used as precedence constraints and put into the precedence graph GP. Since
the method in [18] cannot treat precedence constraints that form an undirected
cycle in GP, such cycles are broken randomly.

The results are summarized in Tables 3 and 4, where the average (ave) and
maximum (max) relative gaps are given in percent. Here, the relative gap is com-
puted by 100((optimal value)-(lower bound))/(optimal value) and when the ab-
solute gap (optimal value)-(lower bound) is less than one, it is regarded as zero.
From Table 3, we can see that much better lower bounds are obtained by our algo-
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Table 2: Computational Results for Benchmark Instances of 1|prec,noidle|∑(αiEi +βiTi)

Proposed DP in [15]
n P solved CPU time (s) solved CPU time (s)

ave max ave max
0.0 125 0.06 0.11 0 — —
0.005 125 0.52 2.32 0 — —
0.01 125 1.21 10.47 0 — —

40 0.02 125 3.65 42.62 0 — —
0.05 125 17.36 68.98 0 — —
0.1 125 21.77 111.49 25 0.14 0.36
0.2 125 4.17 15.33 125 0.01 0.03
0.0 125 0.11 0.22 0 — —
0.005 125 1.88 37.68 0 — —
0.01 125 5.67 45.52 0 — —

50 0.02 125 18.83 110.47 0 — —
0.05 125 108.92 1755.38 0 — —
0.1 125 81.50 394.23 1 0.06 0.06
0.2 125 8.96 29.93 125 0.01 0.06
0.0 125 1.48 3.38 0 — —
0.005 123 224.12 1987.94 0 — —
0.01 110 1050.39 9581.78 0 — —

100 0.02 61 1140.46 9564.18 0 — —
0.05 40 1199.38 7709.55 0 — —
0.1 79 1649.30 9442.81 0 — —
0.2 125 32.56 230.23 5 0.02 0.04

rithm than the method in [18] for 1|prec|∑wiTi. On the other hand, the difference
is smaller for 1|prec,noidle|∑(αiEi + βiTi) in Table 4, and the method in [18]
yields rather better lower bounds on average when P = 0.02, although it cannot
exploit any dominance properties for this class of problem. The reason why the
method in [18] yields better lower bounds for 1|prec,noidle|∑(αiEi +βiTi) than
for 1|prec|∑wiTi will be that taking into account precedence constraints affects
the objective value much because the completion cost of a job is zero only when
it is just-in-time. In contrast, the completion cost of a job is zero for 1|prec|∑wiTi
when it is before the duedate and hence precedence constraints do not affect the
objective value compared to 1|prec,noidle|∑(αiEi +βiTi).

It is direct to show that the best lower bound obtained by (LR0) and that by the
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Lagrangian relaxation of the machine availability constraint in [18] are identical
when precedence constraints do not exist. Therefore, the advantages of our lower
bound are the constraints in 4.2 and 4.3, and the improvement by the method in
[4], while the advantage of the method in [18] is that precedence constraints are
not relaxed. Therefore, it was expected that the method in [18] yields better lower
bounds as P increases, but the results were not so. One reason might be that
the method in [18] cannot be applied to the problem with precedence constraints
including cycles and hence such precedence constraints are broken randomly. It
follows that precedence constraints that are actually taken into account do not
increase much even if P becomes large. On the other hand, all the precedence
constraints are penalized in our method and, moreover, exactly considered for
every pair of jobs in an adjacent position. This advantage seems to dominate
over the advantage of the method in [18]. Nevertheless, the difference between
the lower bounds in Stage 2 of our algorithm and those in [18] is not large and
it might be difficult to solve the instances of 1|prec,noidle|∑(αiEi + βiTi) with
n = 100 and P = 0.02 even if we succeeded in integrating the method in [18] into
our SSDP framework.

Tables 3 and 4 also suggest difficulties in obtaining good lower bounds for
this type of problem. The gaps are large and widely distributed when P ̸= 0 com-
pared to those when P = 0. If a precedence constraint i → j is imposed on two
jobs i and j that are processed in this order in an optimal solution for the problem
without precedence constraints, it has no effect on the gap (when the correspond-
ing Lagrangian multiplier is appropriately adjusted and is set to zero). Since the
precedence constraints in the benchmark instances are generated randomly, the
number of such precedence constraints also varies randomly. Nevertheless, it will
not affect the gap much if precedence constraints are handled successfully when
computing lower bounds. However, in practice, the gap is widely distributed and
totally affected by the randomness of the precedence constraints, which together
with the large gap implies the difficulties in obtaining good lower bounds.

7. Conclusion

This study constructed an efficient exact algorithm for the precedence-constrained
single-machine scheduling problem by extending our previous algorithms for the
problem without precedence constraints. Numerical experiments showed that it
can solve all the instances with 50 jobs of 1|prec|∑wiTi and 1|prec,noidle|∑(αiEi+
βiTi), and most instances with 100 jobs of 1|prec|∑wiTi, although CPU time is not
so impressive for larger instances. To improve the algorithm, it seems necessary
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Table 3: Tightness of Lower Bounds for 1|prec|∑wiTi (n = 40)

P Stage 2 (%) Tang et al. [18] (%)
ave max ave max

0.0 0.00 0.00 0.75 13.89
0.005 0.04 2.83 1.59 28.45
0.01 0.43 43.19 3.64 35.17
0.02 1.11 27.64 7.47 90.93
0.05 6.03 100.00 20.21 100.00
0.1 6.94 57.04 34.81 100.00
0.2 1.24 13.87 33.85 81.37

Table 4: Tightness of Lower Bounds for 1|prec,noidle|∑(αiEi +βiTi) (n = 40)

P Stage 2 (%) Tang et al. [18] (%)
ave max ave max

0.0 0.04 2.71 1.35 9.05
0.005 0.25 8.75 1.27 8.19
0.01 0.76 7.92 1.09 5.94
0.02 1.69 14.41 1.34 22.80
0.05 4.51 18.14 5.46 31.74
0.1 5.64 22.67 17.71 48.74
0.2 1.72 7.42 26.25 51.57

to reduce the size of the network more by improving the lower bound via impos-
ing some new constraints on the relaxations. It will also be necessary to extend
the algorithm for the problem with machine idle time permitted. These are left for
future research.

Another direction of research will be to construct a branch-and-bound al-
gorithm. Although the SSDP framework is much more efficient than branch-
and-bound algorithms [26, 32] for the problem without precedence constraints,
a branch-and-bound scheme may work better when the number of imposed prece-
dence constraints is large because the search space is restricted. Therefore, it will
be worthwhile to compare a branch-and-bound algorithm with the proposed algo-
rithm.
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Figure 1: An Example of the Network G (p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 1, a precedence
constraint: 1 → 2)
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Figure 2: An Example of the Network GS (p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 1, a precedence
constraint: 1 → 2)
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Figure 3: An Example of the Network ĜS (p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 1, a precedence
constraint: 1 → 2)
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Figure 4: An Example of the Network Gm
S (p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 1, a precedence

constraint: 1 → 2, M = {1}, m = 1)
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Figure 5: An Example of the Network Ĝm
S (p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 1, a precedence
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