;pdfauthor=Ayse Akbalik, Christophe Rapine,pdfkeywords=Inventory, Uncapacitated lot sizing,
Batch delivery, Stepwise cost, Polynomial time algorithm, Complexity,pdfcreator=HAL,pdfproducer=PDFLaT
Science [cs]/Operations Research [math.OC]

N

N

The single item uncapacitated lot-sizing problem with
time-dependent batch sizes: NP-hard and polynomial
cases
Ayse Akbalik, Christophe Rapine

» To cite this version:

Ayse Akbalik, Christophe Rapine. The single item uncapacitated lot-sizing problem with time-
dependent batch sizes: NP-hard and polynomial cases. European Journal of Operational Research,
2013, 229 (2), pp-353-363. 10.1016/j.ejor.2013.02.052 . hal-00820635

HAL Id: hal-00820635
https://hal.science/hal-00820635
Submitted on 6 May 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00820635
https://hal.archives-ouvertes.fr

The single item uncapacitated lot-sizing problem with time-dependent batch
sizes : NP-hard and polynomial cases

A. Akbalik, C. Rapine
Université de Lorraine, Laboratoire LGIPM, Ile du Saulcy, Metz, F-57045, France

Abstract

This paper considers the uncapacitated lot sizing problem with batch delivery, focusing on the general case of time-
dependent batch sizes. We study the complexity of the problem, depending on the other cost parameters, namely
the setup cost, the fixed cost per batch, the unit procurement cost and the unit holding cost. We establish that if any
one of the cost parameters is allowed to be time-dependent, the problem is NP-hard. On the contrary, if all the cost
parameters are stationary, and assuming no unit holding cost, we show that the problem is polynomially solvable in
time O(7?), where T denotes the number of periods of the horizon. We also show that, in the case of divisible batch
sizes, the problem with time varying setup costs, a stationary fixed cost per batch and no unit procurement nor holding
cost can be solved in time O(T3logT).

Keywords: Inventory, uncapacitated lot sizing, batch delivery, stepwise cost, polynomial time algorithm, complexity.

1. Introduction

We consider in this article the single item uncapac-
itated lot-sizing problem where the quantities ordered
are delivered by batch (typically truck or container)
from an external supplier. The same problem can be
seen as a single machine with an unlimited capacity,
producing a single item per batch of a certain size. In
the remaining of the paper this problem is called UBLS
for uncapacitated batch lot sizing. Like in the classical
lot sizing problem, ordering a positive amount incurs
a fixed cost f;, also called setup cost, for ordering in
period ¢, plus a procurement cost p, per unit ordered,
and a holding cost A, per unit of product in stock be-
tween period ¢ and ¢ + 1. In this paper, we adopt an
FTL (Full Truck Load) cost structure, where, in addi-
tion to the classical cost structure above, a fixed cost k;
is paid for each batch used in period ¢. Observe that this
model differs from other batch models where a solution
is constrained to use only full batches. We do allow
in our model incomplete batches, also called fractional
batches, but the same fixed cost k; is paid in period ¢
whatever the number of units actually in a batch. We
denote by B, the size of the batch in period . Demands

Email addresses: ayse.akbalik@univ-lorraine.fr (A.
Akbalik), christophe.rapine@univ-lorraine.fr (C. Rapine)

Preprint submitted to Elsevier

are known over a planning horizon of T periods and are
to be satisfied without backlogging. Note that the de-
mands and the batch sizes are both considered integer
in the whole paper. The overall procurement cost g;(x)
for an amount x of products ordered in period ¢ is thus
given by :

q(0) =0 and ¢q;(x) = f; + p;x+ [x/B,1k; forx >0

A formulation of the problem is given below, where x;
represents the amount of products ordered in period ¢
and s, the stock level at the end of the period 7. Without
loss of generality we assume no initial inventory, that is
S0 = 0.

min Y7 (q:(x) + hesy)

(UBLS) st S +x=d+s, Vt=1,...,T

X, 8, € R, Ve=1,...,T
The first constraint is the classical flow conservation.
Notice that this formulation is non-linear due to the pro-
curement cost g;(x).

The contribution of this article is to classify the
complexity of the UBLS problem with time-dependent
batch sizes according to the different cost parameters,
and to better identify the frontier between polynomi-
ally solvable and NP-hard problems. To the best of our

May 5, 2013

knowledge, while the case of a stationary batch size has
been studied in the literature (see Section 2), the case of
time-dependent batch sizes is mainly unexplored. Our
results show that this problem is NP-hard if none but
one of the cost parameters (setup, fixed cost per batch,
unit procurement or unit holding costs) is allowed to
be time-dependent. Moreover, the N P-hardness results
hold under very stringent conditions, that is even if al-
most all the other cost parameters are null. On the oppo-
site, when all cost parameters are stationary, we estab-
lish that the UBLS problem with time-dependent batch
sizes can be solved in O(7°) time complexity, assuming
no holding cost. Figure 1 gives a synthetic representa-
tion of our results and the corresponding sections where
they appear.

For ease of the reading, in the remaining of the
paper the notation (f;/k:/p:/h;) is used to designate
the assumptions adopted on the cost parameters (setup
cost/fixed cost per batch/unit procurement cost/unit
holding cost). The field for a parameter o will take ei-
ther the value -’ if « is null, '’ if it is assumed sta-
tionary and ', if it is allowed to be time-dependent.
For example, the rightmost problem in Figure 1 is des-
ignated by (f;/k/—/—) in our notation, corresponding to
UBLS instances with time-dependent setup costs, sta-
tionary fixed cost per batch and no unit procurement nor
holding cost.

This paper is organized as follows. We start by pre-
senting in Section 2 some relevant papers studying lot
sizing problems, unbounded or capacitated, with batch
deliveries. All these papers restrict to a stationary batch
size. Section 3 gives some insights of the difficulty
of the UBLS problem with time-dependent batch sizes
and time-dependent cost parameters. The NP-hardness
of the problem is formally proven in the succeeding
sections considering in its turn each cost parameter
as the only time-varying parameter together with the
batch sizes. More precisely, Section 4 is devoted to
the subproblem (—/k;/ — /—), Section 5 considers both
(=/k/p:/-) and (—/k/ — /h,), that is time-varying unit
costs. In Section 6 we study the case (f;/k/ — /—) with
time-dependent setup costs, and propose an O(T), B,)
pseudo-polynomial time algorithm. This section estab-
lishes also that this special case becomes polynomially
solvable if the batch sizes are divisible (i.e. for any pe-
riods u and v, either B,|B, or B,|B, holds). Finally, in
Section 7, we consider the case (f/k/—/—) of stationary
cost parameters and null holding cost, and we propose
an O(T?) time algorithm. We then discuss some open
problems and some possible extensions of this work in
Section 8.

2. Literature review

The UBLS problem is well-studied in the literature,
but as far as we know all the papers restrict to the
case of a stationary batch size. Depending on the au-
thors, the procurement cost considered in this paper
is also called a stepwise cost or multiple setup cost.
To the best of our knowledge, the first study consider-
ing a stepwise cost (but without setup cost) is due to
Lippman (1969). The author proposes an O(T?) algo-
rithm for the single-item UBLS problem for the case
(—/k¢/ p:/h;) without backlogging. For the same prob-
lem, Pochet and Wolsey (1993) improve the result of
Lippman by proposing an O(T? min(7, B)) time algo-
rithm. Lee (1989) studies a similar structure, with a
non null setup cost but assuming stationary cost parame-
ters: in our notation (f/k/p/h). The author proposes an
O(T*) time algorithm. Li et al. (2004) consider the more
general problem both with time-dependent cost param-
eters (f;/k;/p:/h;) and with backlogging, and propose
an O(T?) time algorithm. Table 1 gives an overview of
these different results. Recall that all of them assume a
stationary batch size.

The capacitated lot-sizing problem (CLSP) with
batch delivery has also been studied in the literature.
Recently Van Vyve (2007) proposes an O(T?) algo-
rithm for a general case with time-dependent costs,
(=/k¢/ p:/h;), time-dependent production capacity and
allowing backlog. The time complexity of the algorithm
reduces to O(T*log(T)) in the case without backlogging.
However, the author assumes null setup cost and a sta-
tionary batch size. Another paper on the CLSP with
batch delivery is due to Akbalik and Rapine (2012). The
authors study the constant capacitated CLSP with sta-
tionary batch sizes and propose polynomial time algo-
rithms for two cases: an O(T*) algorithm for the case
with production capacity being a multiple of the batch
size and an O(T®) algorithm for the case of an arbitrary
fixed capacity.

As a conclusion, when restricted to stationary batch
sizes, stepwise costs appear not to alter the complexity
status of the lot-sizing problem. That is, both the un-
capacitated and capacitated lot-sizing problems remain
polynomial, even when backlog is allowed. In contrast,
we establish in this paper that problem UBLS with time-
dependent batch sizes is NP-hard, as soon as all but one
cost parameters are stationary.

3. Preliminaries

To our knowledge, no dominance property has been
proposed in the literature for the most general ver-

=0 f fy
k k, k k
h=0 h=0 h, h=0 h=0 h=0
p=0 Py p=0 p=0 p=0 p=0
Polynomial NP-Hard NP-Hard NP-Hard Polynomial NP-Hard
Trivial Section5 Section5 Section 4 Section 7 Section 6

Figure 1: Complexity classification of different extensions of UBLS proposed in this paper.

Table 1: Classification of the studies on the UBLS with stationary
batch size B. (*Additional backlog assumption)

units) and one full batch in the second period (which
represents 2 units), leading to a total cost of 8. Notice

that the optimal policy orders in the second period while

Articles Cost structure Complexity
Lippman (1969) =7k pefho) O(T%)
Pochet and Wolsey (1993) (=/ki/p:/hy) O(T? min(B, T))
Lee (1989) (f/k/p/h) o)
Li et al. (2004) (filk:e/ pe /1Y) O(T3logT)

we have 10 units on hand, which is larger than the maxi-
mal batch size of the instance. We can easily modify the
example by introducing unit procurement costs and de-
creasing the demand by one unit, such that the optimal

sion of UBLS with the cost parameters being all time-
dependent, in our notations (f;/k,/p:/h;). Among the
classical dominance properties in lot-sizing, the ZIO
property is certainly the most common, see the semi-
nal paper from Wagner and Whitin (1958). Recall that a
policy is ZI1O (Zero Inventory ordering) if it orders only
if its current stock level is null. We show with a simple
illustrative example (see Figure 2) that the ZIO property
is not dominant with time-dependent batch sizes. The
example also demonstrates that we can not restrict to
plannings where the entering stock level of an ordering
period is bounded by its batch size. That is, the quan-
tity stored at the beginning of a period where an order
takes place may exceed the current batch size, and in
fact any batch size, in any optimal planning. The in-
stance consists of 2 periods with no demand at the first
period and a demand of 12 units at the second period.
The batch sizes are respectively 5 and 2, the fixed costs
per batch are respectively 3 and 2, the other costs are
null. The only optimal planning consists in producing
two full batches in the first period (which represents 10

policy orders a fractional batch in the second period.

d X
10 units
12] stored
10 _/\
5 -
2 L]
1 2 t 1 2 t

Figure 2: ZIO policies are not dominant for UBLS.

Observe that the UBLS problem allows to have a null
batch size in some periods. It means that ordering in
these periods is simply not possible. We can remove
these periods to obtain an equivalent instance where all
the batch sizes are positive. Indeed, since backlogging is
not allowed, the demand of a period ¢ with a null batch
size is necessarily ordered in a previous period. Pro-
ceeding backward from the end of the time horizon, we

can delete each period with a null batch size from the
instance and shift its demand to the preceding period.
This procedure is a simple scan of the periods and can
be achieved in linear time. This is summarized in the
following remark:

Remark 1. Any instance of the UBLS problem can be
transformed in linear time O(T) into an equivalent in-
stance with only positive batch sizes.

In the literature, some papers propose heuristics and
exact approaches for more general lot-sizing problems,
assuming for instance piecewise concave procurement
costs. In particular, the pseudo-polynomial time dy-
namic programming algorithm proposed by Shaw and
Wagelmans (1998) for piecewise linear procurement
costs and general holding costs can be adapted to solve
the UBLS problem. Their algorithm solves the ca-
pacitated version of the problem in time O(DQ), with
D = ¥, d; the overall demand and Q the overall number
of pieces required to represent the production cost func-
tions. To apply the algorithm of Shaw and Wagelmans
(1998) to the UBLS problem, we can consider a virtual
capacity of D at each period. In a period 7, we have as
many affine pieces as the possible number of batches,
that is O(D/ min{B;, D}). Denoting B, = min{B,, D}, the
time complexity of the problem is then in O(3, D?/B,).
Since we can restrict ourselves to the instances with
only positive batch sizes (cf Remark 1), this complexity
is included in O(T D?).

Theorem 1. Problem UBLS can be solved in pseudo-
polynomial time O(D? > B%),

Though such a pseudo-polynomial algorithm is of lit-
tle practical use for large demands and small batch sizes,
it is important in theory since it implies that the UBLS
problem can not be NP-hard in the strong sense. As
a consequence, the complexity results of the following
sections establish the NP-hardness of UBLS in the ordi-
nary sense.

In the following, we are interested in showing that the
UBLS problem is computationaly difficult to solve even
on very rectricted classes of instances. In particular, we
often restrict to a stationary unit procurement cost p. It
is well known that in this case we can assume without
loss of generality that p = 0, as long as the final inven-
tory level is null. Also, we often consider a null unit
holding cost. Observe that, contrary to the case of unit
procurement cost, an arbitrary stationary holding cost A
can not be reduced to the case of a null holding cost.
Quite inevitably the special case with p = 0Oand h = 0
will be encountered in what follows. Observe that when

p = 0and h = 0, the costs incurred by a batch do not
depend on the number of units in it. Hence we can make
the following remark:

Remark 2. With no unit procurement cost nor holding
cost (p = h = 0), it is dominant to produce only full
batches.

One can legitimately wonder for the instances with a
stationary unit procurement cost p and a null holding
cost if we can both assume that p = 0 and restrict to
full batch plannings. Obviously we have little chance to
end with a null inventory. However, it is easy to see that
the optimal planning obtained with no unit procurement
cost can be transformed into an optimal planning for a
stationary unit procurement cost p, simply by remov-
ing the last batch ordered so that the planning satisfies
exactly the total demand.

Finally, we never consider in this article the case of a
null fixed cost per batch (k = 0). Clearly if £k = 0 we
do not need to pay attention to the size of the batches.
The UBLS problem is then a classical uncapacitated lot
sizing problem, and can be solved in linear time, see Ag-
garwal and Park (1993), even if all the other cost param-
eters are time-dependent.

4. Time-dependent fixed costs per batch

We consider a first restricted version of the UBLS:
The only time-dependent parameters are the fixed cost
per batch (k;) and the batch sizes (B;). The next theo-
rem states that the problem UBLS is NP-hard when both
fixed cost per batch and batch sizes are time-dependent,
even with no setup cost, no unit procurement cost and
no unit holding cost.

Theorem 2 (NP-hardness of (—/k;/ — /—)). Problem
UBLS is NP-hard even with null setup costs and null
unit procurement and holding costs.

Proof. The reduction to our restricted UBLS problem
from the UnBounDED KNaPsack ProBLEM (UKP) is quite
immediate. The UKP has been proven NP-complete
by Lueker (1975). Recall that an instance of the Un-
BOUNDED KNAPsack PROBLEM is constituted of n objects,
each object i being associated with a profit ; and a
weight w;. Given a knapsack of size W and a value
U, it is asked whether there exists an integer vector
y=01,-..,y) satisfying >; w;y; < Wand }; u;y; > U.
Observe that contrary to the 0-1-KNAPsack PROBLEM, we
can select multiple copies of each object in the solution.
We transform an instance / of UKP into an instance f(/)
of the UBLS problem as follows :

e We have T = n + 1 periods. The only positive
demand appears in the last period, with dr = U

o The size of a batch in a period i € [1,n] is B; = u;
and its fixed cost is k; = w;. The batch size in the
last period is null.

e Setup costs, unit procurement and holding costs
are null.

e It is asked if a solution of cost at most W exists.

It is dominant to produce only full batches, and thus
a planning is entirely described by the number y; of
batches ordered in each period i. Clearly f([) is positive
if and only if there exists y € Z; such that }}; B;y; > dr
and }; k;y; < W, that is, if and only if the instance [is

positive. (|

Theorem 2 still holds even for stationary demands,
that is d; = d for all periods. For this, one can modify
the reduction of the proof, adding a first period 0 with
fixed cost kg = W + 1 and batch size By = nU. The
demand to satisfy in each period is now equal to U. It is
asked if a solution of cost at most 2W + 1 exists. Clearly,
any feasible solution must order in period 0. Thus a
solution of cost at most 2W + 1 orders exactly one (full)
batch at the first period, leaving only the demand dr =
U to satisfy. Hence we are exactly in the situation of the
reduction of Theorem 2, that is we are asked if we can
satisfy the last demand dr at cost at most W from the
periods 1 to n. We assume in the rest of this paper that
the fixed costs per batch are stationary.

5. Time-dependent unit procurement or holding
costs

We consider next the case of a time-dependent unit
procurement cost p;. We show that even if all other cost
parameters are stationary, problem UBLS with time-
dependent batch sizes is NP-hard :

Theorem 3 (NP-hardness of (—/k/p;/—)). Problem
UBLS is NP-hard even with stationary fixed costs per
batch, no setup cost and no holding costs.

Proof. The proof is very similar to the proof pro-
posed by Florian and Klein (1971) for the capacitated
lot-sizing problem (CLSP), except that the reduction is
done from a restricted version of the UNBoUNDED KNap-
sack ProBLEM called MoNEY CHANGE ProBLEM (MCP),
see Bocker and Liptdk (2007). In the MoNEY CHANGE
ProBLEM, we are given n + 1 integers ay, ..., a, and A.
It is asked whether there exists an integer vector y € Z';

such that }; a;y; = A. That is, is it possible to constitute
exactly the amount A of money by using coins of facial
values ajy,...,a,? For a proof of the NP-completeness
of MCP, the reader is referred to Lueker (1975).

We transform an instance I of the MoNEY CHANGE
ProBLEM into an instance f(/) of UBLS problem as fol-
lows :

e We have T = n + 1| periods. The only positive
demand appears in the last period, with dr = A

e The size of a batch in a period i € [1,n] is B; = a;
and its unit procurement cost is p; = “’a—fl The
batch size in the last period is null.

e The fixed cost per batch equals 1 in each period
e Setup costs and holding costs are null in all periods

e It is asked if a solution of cost at most A exists.

As in Florian and Klein (1971), the keystone of the
proof is to notice that for any period i = 1,...,n, the
overall procurement cost g;(x) = [x/a;] + (a; — 1)(x/a;)
for an amount x satisfies g;(x) > x, and, ¢;(x) = x if
and only if x is a multiple of a;. That is, only full batch
deliveries permit an average cost per product of 1. If
the MCP instance [is positive, clearly ordering y; full
batches in each period i results in a feasible planning for
the UBLS instance f([), of cost exactly A. Conversely,
if f(I) is positive, since the total demand to serve is of
A units and the average procurement cost per product is
at least 1, there must exist a feasible planning ordering
exactly A units in total and using only full batches. The
number y; of batches ordered in each period is thus a
valid vector for the instance /. g

We have the counterpart of Theorem 3 for time-
dependent holding costs:

Theorem 4 (NP-hardness of (—/k/ — /h;)). Problem
UBLS is NP-hard even with stationary fixed costs per
batch, no setup costs and no unit procurement costs.

Proof. We use the classical result, see Pochet and
Wolsey (2006) or Wagelmans et al. (1992), that any in-
stance of the lot-sizing problem can be transformed into
an equivalent instance with no holding costs and mod-
ified unit procurement costs. For this, we redefine the
unit procurement cost at period 7 as p; = p; + ZZ:, h,. O

Once again Theorem 3 and 4 state very restrictive
conditions under which the problem UBLS is NP-hard
if the fixed cost per batch is stationary and unit (pro-
curement or holding) costs are time-dependent. In the
following we assume that both unit costs are stationary.

6. Time-dependent setup costs

We consider here the setup costs (f;) as the only
time-dependent cost parameters. In addition, we restrict
ourselves to instances with no unit procurement cost
(p = 0) and no unit holding cost (& = 0). This means
that once the setup paid, any batch in any period has the
same cost k. But of course the size of the batches may
differ from one period to another. Obviously, it is dom-
inant to produce only full batches. Although this prob-
lem seems simple, it happens to be NP-hard as stated
in section 6.1. In section 6.2 we show that the problem
is pseudopolynomially solvable and it becomes polyno-
mially solvable in the case of divisible batch sizes (see
section 6.3).

6.1. NP-hardness proof for UBLS (f;/k] — |-)
Theorem 5 (NP-hardness of (f;/k/ — /—)). Problem
UBLS is NP-hard even with stationary fixed cost per
batch and null unit procurement and holding costs.

Proof. We show that the 0-1-Knapsack PROBLEM can
be polynomially reduced to the problem UBLS. Recall
that in the Knapsack PrOBLEM we are given n objects,
with a profit u; and a weight w; for each object i, to-
gether with a knapsack size W and a utility value U.
It is asked whether there exists a subset S of objects
whose total weight does not exceed W and whose total
profit is at least U. That is, if there exists a binary vec-
tory = (y1,...,y) € {0, 1}" satisfying Y, w;y; < W and
Z Uy = U.

The transformation f. We transform an instance I of
the Knapsack PROBLEM into an instance f(/) of UBLS as
follows: We have T = 2n + 1 periods. Each couple of
consecutive periods (2i—1, 2i) is related somehow to the
objecti. The same idea is used in Helmrich ef al. (2012).
We call the couple (2i — 1, 2i) of periods the pair i. The
last period T is different and has a particular role. The
idea of the reduction is to constrain f(/) to be positive if
and only if there exists a planning which orders exactly
one batch in each pair and no batch in period 7. In
each pair 7, the choice between ordering in the even or
in the odd period will correspond to the choice between
selecting or not the object i in the instance /. We now
define explicitly the instance f(/) :

e The demand in each period ¢ is:

0 iftisodd, t < T
d = 3?B iftiseven,t<T
U ift=T

where B = }; u; the total utility of the knapsack
instance /.

The batch size in each period 7 is:

3+hi2p iftisodd,t < T
B, =3 3B+u,, iftiseven,t<T
U ifr=T

The setup cost in each period 7 is:

fi= 0 if ¢ is odd
"7\ wyp iftiseven

For all periods the fixed cost per batchis k = W+1

It is asked if a solution of cost at most Z = nk + W
exists.

The resulting instance f(/) looks as follows:

t demand | batch size setup cost
1 0 3B 0
2 3B 3B+ u; w1
3 0 9B 0
4 9B 9B + u, wy
2i—-1 0 3'B 0
2i 3'B 3B+ u; wi
2n -1 0 3"B 0
2n 3"B 3'"B+u, w,
T U U 0

This transformation f is polynomial. The number of
periods in the instance f(/) is clearly polynomial in the
size of instance x; the non-trivial point to check is that
too large numbers do not appear in the transformation.
The largest value Max(f(/)) appearing in the instance is
either k = W + 1, or the demand d,, = 3"B. This value
can clearly be encoded in space O(n +log (Max(/))) and
thus the size of f(/) is polynomially bounded by the size
of I.

The transformation f is a reduction. To prove that
f is a reduction, we introduce 2 particular types of
plannings, namely the 1-plannings and the extended
1—plannings. We say that a planning is a 1—planning
if it orders exactly one batch in each pair i, either at
period 2i — 1 or at period 2i, and does not order at
the last period. An extended 1—planning is simply a
1—planning plus eventually an additional batch ordered
at the last period T'. In the following, we establish that :

a. There is a natural one-to-one mapping between
subsets of objects of I and 1—plannings of f(I), such
that,

if a subset S of objects and a 1-planning 7 are in cor-
respondence, we have the following relations between
the feasibility of these solutions and their costs :

any subset S and 1-planning n, we have n = 7y if and
only if § = S,. Consider a subset S and a planning 7 in
correspondence (thatis 7 = g and § = §,). We want
to establish Equivalences 1 and 2 between S and 7.

S hasautility > U <& satisfies all the demands (1) To prove the first equivalence, observe that any

S hasaweight <W <& smhasacost <Z

b. Extended 1-—plannings are dominant for the
instance f(I).

Based on these 2 results, the proof that f is a reduc-
tion is quite straightforward. Assume that / is a positive
instance. It implies that there exists a subset S of utility
at least U and of weight at most W. Due to Equiva-
lences 1 and 2, its associated 1—planning r is feasible
and costs at most Z, showing that f(/) is a positive in-
stance.

Conversely, assume that f(I) is a positive instance:
There exists a feasible planning 7 of cost at most Z.
Due to the dominance of extended 1—plannings, we can
choose 7 to be an extended 1—planning. Now observe
that an extended 1—planning ordering at the last period
costs at least (n + 1)k > Z. It follows that an extended
1—planning of cost at most Z is in fact a 1—planning.
Since m is a feasible 1-planning of cost at most Z,
Equivalences 1 and 2 imply that its associated subset
S of objects has a weight at most W and a utility at least
U, showing that / is a positive instance.

The remaining of the proof of Theorem 5 is thus de-
voted to prove (a) and (b): the correspondence between
subsets S and 1-plannings, and the dominance of ex-
tended 1-plannings.

Correspondence with 1-plannings. Recall that a
1—planning is a planning ordering exactly one batch in
each pair i/, either at period 2i — 1 or at period 2, and or-
dering no batch at the last period. We exhibit now a nat-
ural one-to-one correspondence between 1—plannings
for f(I) and subset S of objects for [:

e To any 1-planning 7, we associate the subset S,
defined as the objects i such that & orders a batch
in the even period of the pair i. That is S, =
{i|m orders in period 2i }

e To any subset S, we associate the planning rg
where for each pair 7, a batch is ordered in the even
period (2i) if the object i belongs to S, and in the
odd period (2i—1)ifi ¢ S and i < T. By construc-
tion, exactly one batch is produced in any couple
(2i — 1, 2i) of periods, and thus 75 is a 1 —planning.

These transformations clearly define a mapping be-
tween subsets of objects and 1—plannings. That is, for

(Q-planning satisfies all the demands, except possibly in

the last period. Thus, the planning 7 is feasible if and
only if the last demand can be satisfied, which is equiva-
lent to have a stock level sy, at the end of period 2n that
covers dr = U. By definition s;, is equal to the total ca-
pacity of the batches produced minus the total demand
on [1,2n], that is :

Son = [Zies (3'B+u)+ DigS in 3iB] - 21'221 di
= Dlies Ui
Hence r satisfies all the demands if and only if)5 u; >

U. To prove the second equivalence, we simply write
that the cost of the planning 7y is equal to:

2ms) = Xigsiznk + Xies(wi +k)
nk + ies Wi

Hence 7 is of cost at most Z = nk + W if and only if
Dies Wi < W, which establishes Equivalence 2.

Dominance of extended 1-plannings. Recall that an ex-
tended 1—planning is a 1—planning plus eventually an
additional batch ordered at the last period T. We estab-
lish here that these plannings are dominant for the in-
stance f(I). Notice that any extended 1—planning order-
ing at the last period is feasible. To prove the dominance
of extended 1—plannings, consider an optimal planning
m*. Let us denote by a; the number of batches ordered in
the pair i, i = 1,...,n, with a; | being by extension the
number of batches ordered in the last period. For the
sake of contradiction assume that no optimal planning
is an extended 1—planning. Since backlogging is not al-
lowed, any policy does not need to order more than U
units, the demand of the last period, at the last period.
The size of a batch in the last period being precisely U,
an optimal planning clearly orders at most one batch in
period T, that is, a: 41 < 1. It implies that for some in-
dices i < n, we have a} # 1, otherwise by definition 7*
would be an extended 1—planning. Let m be the first in-
dex such that a;, # 1. Among all the optimal plannings,
we assume that we have chosen 7* such that the index
m is maximal. We distinguish 3 cases according to the
number of batches ordered in the pair m:

1. a;, = 0. By construction exactly one batch is or-
dered in the pairs 1 to m—1. Itis easy to see that the
stock level at the beginning of the period (2m — 1)

is at most u; + ...+ u,_; < B. As a consequence,
the demand of the period 2m can not be satisfied,
which contradicts that * is a feasible solution.

2. a;, > 3. Consider the planning n identical to 7
except that 2 batches are suppressed in the pair m
and replaced by one additional batch ordered in pe-
riod (2m + 1), that is in the odd period of the pair
m + 1 (or the last period T if m = n). We claim
that 7 is feasible: Since at least one batch is still
ordered in m, the demands of periods 1,...,m can
clearly be satisfied. For the following periods, the
two batches suppressed in the pair m represent at
most 2(3"B + u,,) units, which is less than the ad-
ditional batch of size 3”*! B added in period 2m + 1
if m < n. In case where m is the last pair, the
batch added in period T is only of size U, but this
is clearly sufficient to serve the demand dr. If we
compute the cost of this feasible planning, noticing
that the setup is null in period (2m + 1), we obtain
that z(m) < z(n*) — k, which contradicts that 7* is
optimal.

3. a,, = 2. Consider the planning n identical to 7"
except that 1 batch is suppressed in the pair m and
replaced by one additional batch ordered in period
(2m + 1). As in the previous case the planning 7 is
feasible, and costs at most the cost of 7* since we
have a null setup cost in period (2m + 1). It follows
that r is also optimal, and orders exactly one batch
in periods 1 to m included. This contradicts our
choice of 7" such that its index m is maximal.

In any case we obtain a contradiction. It results that ex-
tended 1—plannings are dominant for the instance f(/).
d

6.2. A pseudo-polynomial time algorithm for UBLS
(filk] = /=)

We show in this section that the problem UBLS with
a stationary fixed cost per batch k and no unit procure-
ment nor holding cost ((f;/k/ — /—), see Theorem 5) can
be solved in pseudo-polynomial time more efficiently
than with the general dynamic algorithm of Section 3.
However, the main purpose of this section is to exhibit
some simple dominance properties which will be useful
to derive polynomial time algorithms for special cases,
namely the divisible batch sizes case and the stationary
setup cost case.

We restrict our attention to policies ordering only full
batches, see Remark 2. Without loss of generality we
can also assume that there is no null batch size due to
Remark 1. Notice that if the setup costs are stationary,

we can also consider without loss of generality that the
batch sizes are increasing over the periods, that is u <
v = B, < B,. Indeed if B, happens to be greater than
B,, there exists an optimal solution that does not order
in period v. Thus, again we can discard the period v
and shift its demand to the previous period. The next
proposition states that it is still true for time-dependent
setup costs, in the sense that it is dominant for the batch
sizes of the ordering periods of a policy to be increasing.
In addition, it is also dominant that the stock level at the
beginning of an ordering period be lower than the batch
size of the preceding ordering period.

Property 1. For problem UBLS (f;/k/ — |-), there ex-
ists an optimal policy such that, for any two consecutive
ordering periods u and v, with u < v, the inequalities
Sy—1 < B, < B, hold.

Proof. The proof is immediate by an interchange argu-
ment. Consider any optimal policy 7 and let u and v be
two consecutive ordering periods. Let m, be the number
of batches ordered in period ¢ by m. Consider first that
B, > B,. We can modify x by ordering (m, +m,) batches
in period u and nothing in period v. The resulting plan-
ning is clearly still feasible and optimal. Repeating this
transformation we obtain an optimal policy where the
batch sizes of the ordering periods are increasing. Now
consider that in this optimal policy we have s,_; > B,,.
Write s, as aB,, +b with b < B,. We can again modify
the policy by cancelling a batches in period u# and or-
dering a additional batches in period v. Since the batch
sizes are increasing, the resulting policy is still feasible
and also optimal. Repeating this transformation leads to
an optimal planning verifying the inequalities of Prop-
erty 1. g

Property 1 implies that it is dominant to order at a
period the minimum number of batches needed to sat-
isfy the demands till the next ordering period. More
precisely consider an optimal policy &, and u and v two
consecutive ordering periods. We denote by D,,_; =
d, + ...+ d,_| the sum of the demands between the pe-
riod u and the period v, v excluded. We introduce b,, as
the rest in the Euclidean division of this demand by the
batch size B, that is :

buv = Du,v—l mod Bu (3)

Let 5,1 be the stock level at the beginning of period
u. Since it is dominant to have a stock level at the begin-
ning of period v lower than B,, it results that it is dom-
inant to order in period u a number of batches equal to
[(Dyy-1 — Su—1)/ B,/ 1. Moreover, Property 1 also implies

that s,_; < B,. It results that the number m,, ordered in
a dominant planning, depending on the stock level s at
the beginning of period u, is equal to :

|_Du,v—1 /BuJ +1
I.Du,v—l /BuJ

We simply use the notation m,, in the following if the
stock level s,_; is clear from the context. Notice that
m,, corresponds to the minimal number of full batches
needed to satisfy the demands till the beginning of pe-
riod v. In a dominant planning we also have a simple
relation between the entering stock level of two con-
secutive ordering periods # and v. Indeed using the
fact that s,-; € {0,1,...,B, — 1} due to Property 1,
we can write modulo B, the flow conservation equation
Sy—1 = Sy—1 + my,B, — D,,,,_; to obtain:

if s < by,
if s > b,

My () = { “)

Sy-1 = (Sy-1 — buv) mod B, (5)

For short we denote by o, the function that associates
to a value s the quantity o,(s) = (s — b,,) mod B,. A
representation of o, is given in Figure 3. Notice that
this function in not monotone with s.

(9

uv

Figure 3: The entering stock level o, (s) at v in terms of the entering
stock level at u.

We summarize our results and notations in Property 2
below, which is a corollary of Property 1:

Property 2. For problem UBLS (f;/k/ — [-), there ex-
ists an optimal policy such that the number m; of batches
ordered at period t and the stock level s, at the end of
period t verify, for any two consecutive ordering periods
uandv:

Sy-1 = Tp(su-1) and m, = My (84-1)

Property 2 means that, given a set of ordering periods,
an optimal policy orders each time the minimal num-
ber of (full) batches to avoid a backlog. It also implies
that if one can guess the ordering periods of an opti-
mal policy, the quantities to order can be determined in
linear time. Based on these dominance properties, it is
easy to derive a dynamic programming algorithm. Let
OPT(u, s) be the minimal cost to satisfy all the demands
over [u, T] given an entering stock level of s at period
u, and assuming that u is an ordering period. By con-
vention we set OPT(T + 1, s) = 0 for any stock level s.
From what precedes, we have:

OPT(u, s) = fu+m>in{ My ($)k+OPT(v, 0 (5))) (6)

The optimal cost is given by min,{OPT(«,0) | d; +...+
d,—1 = 0}. We now analyze the time complexity of this
dynamic programming approach. Consider a period u
and a stock level s. Observe that all the D, values for
u < v < T can be computed in linear time by accu-
mulation, and thus all the quantities m,,(s) and b,, can
also be determined in time O(T). It results from Equa-
tion 6 that each value OPT(u, s) can be determined in
time O(T), that is each state can be evaluated in linear
time. Due to Property 1, it is sufficient for each period
u to consider the values of s in the set {0,...,B, — 1}.
Thus the number of states in the formulation is equal to
> B;. We have the following result :

Theorem 6. Problem UBLS (f;/k] — |—) with station-
ary fixed cost per batch and null unit procurement and
holding costs can be solved in pseudo-polynomial time
O(T %, By).

Hence if the largest batch size Bpn,x appearing in the
instance is reasonably small, we have an efficient algo-
rithm running in time O(T?Bpax). We show in the next
section how this pseudo-polynomial time algorithm can
be transformed into a polynomial one in the case of di-
visible batch sizes.

6.3. A polynomial time algorithm for UBLS (f;/k/—/-)
with divisible batches

We consider in this section the special case of divis-
ible batch sizes: For any periods u# and v, either B,|B,
or B,|B, holds. To derive a polynomial time algorithm
from the dynamic programming of the previous section,
the basic idea is to reduce the number of states to con-
sider in the recursive equation (6). That is, we want to
show that among the B, possible stock levels at the be-
ginning of a period u, only a small subset (of cardinality
polynomially bounded in T') is of interest for the optimal
policy. Observe that Equation (4) implies that, to decide

how many batches to order in a period u, given that v
is the next ordering period, we do not need to know the
precise value of the stock level s,_; but only if s,_; is
lower than b, or not. Going along this line, for a given
period u, consider all the different values b,, for v > u.
These values partition the set [0, B, — 1] into at most T
intervals. More precisely, assuming that the b,,’s take
[distinct positive values, let 0 < af < ... < a;‘ < B,
be these values indexed in increasing order. For conve-
nience we introduce oy = 0 and o}, = B,. We call for
short the interval [a}, aty) the ith o —interval.

Notice that Equation (4) implies that the number of
batches ordered in a dominant planning is the same for
any stock level of a given a“—interval. Indeed, the num-
ber m,, of batches only depends on the relative position
of s,-1 and b,,. If 5,1 belongs to the interval [}, @},),
clearly we have the equivalence s,_; > b,, if and only
if @} = b,,. Since all the stock levels in an a"~interval
lead to the same optimal ordering decision, we can rep-
resent the B, states (i, s) of the dynamic programming
in a compact way, namely {(«,0), (u, 1),...,(u,l + 1)},
where the new state («, i) means that the entering stock
level at period u belongs to the ith a*—interval. This
compact description reduces the number of states from
> B; to at most T2,

The matter is that in general we can not deduce from
the fact that s, € [a}, @},,) in which interval [a;f, af}i)
the next entering stock level s,_; = o,,(s,-1) belongs.
In fact, the next entering stock level s,_; does depend
on the current stock level s,_; and not only on its
a“—interval. That is, contrary to the number of batches
to order, depending on the actual value of s,_; inside
its @"—interval, the resulting stock level o,,(s,—1) may
belong to different @’ —intervals. To illustrate this fact,
consider the case where s, > b,,. The entering stock
level at period v is 0, (S,—1) = Sy—1 — byy. It results that
for a given period w > v, we have o, (s,-1) > b,,, if and
only if s,, > b,, + b,,. Though this latter condition is
simple, in general the quantity b,, + b,,, does not corre-
spond to any of the values a}, and thus we have no clue
to determine the position of o,,(s,-1) relatively to the
a@]’s. The rest of this section is devoted to show that in
the case of divisible batch sizes, all the entering stock
levels s,_; in the same a*—interval lead to stock levels
sy—1 all in the same a”—interval (see Figure 4 and Prop-
erty 3 below), and that the index of this interval can be
computed quite efficiently (see the end of this section).
Observe that to determine in which o”—interval belongs
sy—1, it is by definition sufficient to be able to decide for
any period w > v if s,_; > b,,. This is precisely the
purpose of Property 3:

10

v
B, — —
R S Gll\
o ——
j

. 1
a -

0o —— 0o ——

u v

Figure 4: An example of the image of an o —interval by the applica-
tion of o,. All the resulting stock levels o,(s) belong to the same
a’—interval.

Property 3. If the batch sizes are divisible, for any
periods u < v < w, we have in a dominant planning:

For any stock level s > b,,, 0,,(s) > b,,, if and only if
(S Z bMW) and (bLtV + bVM/ < BM)

For any stock level s < b, 0,,(s) > b,,, if and only if
(s > b,y) and (b, + b,,, < 2B,) or (b, + b,,, < B,)

Proof. We first establish that for any periods u < v < w,
we have:

B,|B, = (b, +by,,) mod B, = b,, @)

Assume that B,|B,. We use the definition of the b,,,
given by Equation (3) to write that b,, mod B, =
(Dyw-1 mod B,) mod B, = D,,_; mod B,. Notice that
b,,, is the rest in the Euclidean division by B,, and not
B,, and thus the divisibility of B, by B, is required
for the previous equation. Now writing also the defi-
nition of b,, we get: (b,, + by,) mod B, = (Dy,-1 +
D,,_1) mod B, = D,,_; mod B,, which is equal by
definition to b, .

Based on this result, we now prove Property 3. Ob-
serve that, due to Property 1, the fact that u and v are
two consecutive ordering periods implies that B, < B,,
and thus we necessarily have B,|B, when considering a
divisible batch size instance.

First, assume that s > b,,, and thus o,,(s) = s — b,,,
see Equation (5). We have o,,(s) > b,,, if and only if:

s > by, + by,

(S = buv + bvw and Bu > buv + bvw)

or (s > b,, +b,, and b,, + b,,, > B,)
(s > by, + by, and B, > b, + b,,,)

s > b,, and B, > b,, + b,,,

&

(54
=4

The equivalence between the first and the second lines
is simply due to the tautology (b,, + b,,, < B,) or (b, +
by, > B,). The equivalence between the second and the
third lines comes from the fact that s < B,, in a dominant
policy due to Property 1, which implies that the second
clause is always false. Finally, the equivalence between
the last two lines is due to Equation (7), since B, >
b, + b,,, is equivalent to b, + b,,, = (b, + b,,,) mod B,
for integers.

Second, consider that s < b,,, and thus o,,(s) = s —
by, + B,. In a similar way we have o,(s) > b,,, if and
only if:

s+ B, = by, + by,

(s+ B, > b,, + b, and b,, + b,,, < B,)

or(s+ B, > b, +b,, and B, < b,, +b,,, <2B,)
or(s+ B, > b,, +b,, and 2B, < b,, + b,,,)

& (s+B,=b, +by,,)
or(s+B,>b, +b,,and B, < b,, +b,, <2B,)
< (buv + bvw < Bu) or (S > buw and buv + bvw < ZBM)

The first equivalence simply uses the fact that the quan-
tity (b, + b,,) is either smaller than B,, or is in the
interval [B,,2B,), or is greater than 2B,. The second
equivalence comes from the fact that s < B, due to
Property 1, which implies that the third clause of the
second line is always false. Again, Equation (7) allows
to write the last equivalence, since B, < b, + by, <
2B, © b,, +b,, = b,, + B,. [l

Property 3 implies that for any stock level s,_; in the
ith a*—interval, the resulting stock level o,,(s,-1) is in
the same jth o”—interval, for some index j. We now
turn our attention to the computation of this index. To
simplify the forthcoming expressions, instead of repre-
senting the interval [a, at)) by its index i, we choose
to give a period ¥ such that b,; = ;. By convention, if
af =0,wesetv = 0and b, = 0. Clearly, for any period
v > u, if we know that v = arg max,{ b,, | b,, < s}, with
the convention that arg max @ = 0, then we have s > b,
if and only if b,, < b,;. Now let w be a period such that
by = a;. Property 3 allows us to determine w from ¥ as
follows:

If b,, < b,y then

w = arg ma}x{bvw | by < by and b, < B, — b}

11

Similarly, if b,, < b3, then

(buw < bu\'/) and (bvw < 2Bu
or (bvw < Bu - buv)}

W = arg max,, (b, | = buy)

Notice that if we pre-compute all the values b,,’s for
any couple of periods and sort them for each period u,
then determining w for a given v using the preceding
expressions can be done in time O(log T') by dichotomic
search. We are now ready to give the description of the
dynamic programming algorithm.

Let us denote OpT(u, ¥) the minimal cost to satisfy all
the demands over the periods [u, T], assuming that u is
an ordering period, and given any entering stock level
s such that b,; = max,{b,,|b,, < s}. We can write the
sub-optimality principle as:

OPT(u, V) = fu + min{ [(Dyy—1 = bus)/ Bu Tk + OPT(v, W) }

In this dynamic programming, we have O(T?) states
to consider. For each state (u, V), the computation of
OPT(u, ¥) can be done in time O(7 log T') by inspection
on the different periods v > u, each period v requir-
ing the determination of w. Since the precomputing and
sorting of the b,,’s is negligible compared to the time
complexity of computing OpT(u, ¥) for all the states, we
obtain the following result:

Theorem 7. Problem UBLS (f;/k/ — |—) with station-
ary fixed cost per batch and null unit procurement and
holding costs can be solved in time O(T>logT) if the
batch sizes are divisible.

7. Stationary setup cost and fixed cost per batch, no
unit cost

We finally consider the case where only the batch
sizes are time-dependent, all the cost parameters (f, &,
p and h) being stationary. In addition we restrict our
attention to a null unit holding cost, that is 2 = 0. For
short we note this problem as (f/k/ — /—). Notice that
even with no holding cost, this problem becomes NP-
hard as soon as one cost parameter is time-dependent.
Without loss of generality we can assume that the batch
sizes are increasing with respect to the periods, see Sec-
tion 6.2. In the following section 7.1, we derive a poly-
nomial time algorithm in O(73) time complexity using
the property that the cost of a policy belongs to a re-
stricted set of possible values. In Section 7.2 a linear
time algorithm is derived for the case with no setup cost

(=/kf = =)

7.1. A polynomial time algorithm for UBLS (f/k/—/-)

The basic idea to derive a polynomial time algorithm
is to observe that the cost of a policy belongs to a re-
stricted set of possible values. Indeed, a policy mak-
ing a setups and ordering 8 batches over the time hori-
zon incurs a cost of af + Sk, whenever it does actually
order. Thus we propose a dynamic programming ap-
proach where the states are based upon the cost paid by
a policy.

To introduce this approach, consider the set [1(u, a,)
of feasible plannings incurring exactly @ setups and or-
dering exactly 8 batches on the time interval [1,...,u —
1], and such that u is an ordering period. Recall that
OPT(u, s), introduced in section 6.2, denotes the mini-
mal cost of a policy to satisfy the remaining demands
on time interval [u, T'] given an entering stock level of s
at period u. The optimal cost over the whole horizon for
a policy of Il(u, @, 8) assuming an entering stock level
of s at period u is clearly equal to @ f + Sk + OPT(u, s).
Now observe that OPT(u, s) is a non-increasing func-
tion of the stock level s. This is due to the fact that a
feasible policy for a stock level s is also feasible for any
stock level s” > s. Thus the minimal cost z*(u, @, 8) of a
planning belonging to I1(u, @, B) is realized by the policy
maximizing the stock level s,_;. Let us define 5(u, @, 3)
as the maximal stock level at the beginning of the period
u over all plannings in I1(x, @, 8). By convention we set
§ = —oo if II(u, @, B) is empty, that is no feasible plan-
ning can make only « setups and orders only 8 batches
over [1,...,u — 1]. From what precedes we have

Z(u,a, B) = af + Bk + OPT(u, 5(u, @, B))
And obviously

OPT:rgiﬁn {af +Bk|5(T +1,a,8) > 0} ®)
Hence our goal is to compute dynamically the maxi-
mum stock level 5(u, @, 8) of a feasible policy. Due to
Property 2, we can restrict to policies whose evolution
of the stock levels obeys o, that is 5,1 = 0, (s,-1) for
any two successive ordering periods # and v. But it turns
out that the computation of 5(u, @, 8) is quite intricate,
for s = o0,,(s) is not an increasing function, see Fig-
ure 3. In particular the entering stock level s at ¥ maxi-
mizing the stock level o, (s) at period v may be different
from 5(u, @, B8): for instance if 5(u, @,) equals b,,, the
resulting entering stock level o, (b,,) is null while any
stock level s < b, leads to a positive entering stock at
period v.

However, we are not interested in computing
5(u, a, B) for any values of @ and g, but ideally only for

12

the ones corresponding to an optimal planning. For this
reason, we restrict our attention to a class of dominant
policies, that we call the 8-policies. The following of
this section is devoted to define these policies, to prove
their dominance, and to show that they can be efficiently
computed.

For a given period u# and a given number of setups
a, we say that a number of batches 8 is minimal if
(u, @, — 1) is empty and I1(u, @, 5) contains at least
one feasible planning. That is, there exists no feasible
planning with « ordering periods and ordering strictly
less than g batches over the time interval [1,...,u — 1].
We denote by S(u, @) this minimal value. We have by
definition:

B, @) = min {B| 5(u, @,) = 0}

By convention we set S(u,a@) = +oo if there does
not exist a feasible policy making only a setups over
[1,u—1]. Equation (8) immediately implies that OPT =
miny{af+B(T +1, a)k}. Thus we can switch attention to
computing dynamically the s values instead of the 5’s
values. To derive a recursive expression of 5, we con-
sider the class of the 8-policies, using a minimal (over-
all) number of batches and having a maximal entering
stock level at each period it orders :

Definition 1. A policy of Il(u, a,) is B at period u if
the number 3, of batches incurred by ron [1,...,u—1]
is minimal with respect to its number « of setups, and
its entering stock level s,_1 is maximal with respect to a
and B:

B =Bu,a) and s, = 5(u,a,p)

We say that m is a B-policy if mis B at each of its ordering
period.

Observe that for any period u and any number of se-
tups a, if there exists a feasible policy incurring « setups
over [1,u — 1], then, by definition of S(u, @), there exists
a feasible policy that is S at period u. On the contrary,
the existence of S-policies is not immediate: as previ-
ously claimed, there does not necessarily exist a plan-
ning maximizing the entering stock level of each of its
ordering periods. Property 4 proves that S-policies do
exist and are dominant.

Property 4. S-policies are dominant

Proof. For short we denote by Il(u, @) the subset of
policies r of I1(u, @, 8) which are g at period u. By def-
inition, it implies that 8 = S(u, @) and that the enter-
ing stock level at u is 5(u, @,3). We will establish that

any policy that is 8 at a period v is also § at its pre-
ceding ordering period u. By a direct induction, such
a policy is thus g at each of its ordering periods up to
v. Property 4 follows, since for some value of o*, set
II(T + 1, @) contains only optimal policies. Thus any
policy of II(T + 1,a") is both an optimal policy and a
B-policy over the whole horizon.

Consider a period v and a number of setups @ > 0
such that II(v, @) is not empty. Let m be a policy of
II(v, @), that is a 8 at a period v. For any period ¢, we
denote by @, and 3, the number of setups and the num-
ber of batches, respectively, incurred by 7 on the time
horizon [1,...,7—1], and by s, the stock level at the end
of period ¢. By definition of II(v, @) we have 3, = S(v, @)
and s,-1 = 5(v, @, 5,).

Let u be the preceding ordering period. Recall that
we want to prove that r is also g at period u. First, ob-
serve that the policy 7 obeys the relations of Property 2
between periods u and v. More precisely let m be the
number of batches ordered by n at period u. Readily,
for 7 to be feasible and to be minimal in the number
of batches used over the time interval [1,...,v — 1], we
should have m = m,,(s,-1). That is, the policy should
order the minimum possible number of batches at period
u to satisfy the demand till period v. As a consequence,
the entering stock level s,_; at period v is lower than B,,.
Also, for s,_; to be maximal with respect to @, and §3,,
the entering stock level s,_; at u should be less than B,:
Otherwise the same interchange procedure as in Prop-
erty 1 would increase by at least one unit s,_;. It results
that the stock levels verify the relation s,_; = 0, (8,-1)-

To prove that 7 is 8 at period u, we compare it with
another policy 7/, constructed as follows.

Clearly the policy & incurs exactly @, = a — 1 se-
tups on the time horizon [1,u — 1]. In particular the
set II(u, @,) is not empty, and we can choose a policy
€ H(u, @), which is by definition 8 at period u. So,
we are in the situation where we have:

e apolicy (mr) which is § at period u ; more precisely
melu,a-1)

e apolicy () which is g at period v ; more precisely
mell(v,a)

Using intuitive notations, we denote in the following
with ¢’ all the quantities relative to the policy n’. The
policy 7’ simply follows the policy n till period u. At pe-
riod u, 7" orders m’" = m,,(s;_|) = [(Dyy-1 = 5,_;)/By]1
batches, according to its entering stock level s/_,, that
is the minimal number of batches m,, to satisfy the de-
mands till period v. Notice that our choice of & implies

that s” | = 3(u, ay,5,), which is maximal with respect

13

to @, and G;,. Finally on the time interval [v, T + 1], the
policy n” follows an optimal policy. By construction, the
stock level s/ _, at period v can not be negative, since we
have chosen m’ such that s, _, = 07,(s;). It follows that
n’ is feasible, and belongs to the set I(v, @, 5,).

By construction, the policy n’ is S8 at period u. Since
both policies incur the same number of setups over
[1,...,u — 1], to prove that the policy = is also 8 period
u, it is sufficient to show that 8, = 8, and 5,1 = s/_,.
Recall that m and m’ are the number of batches ordered
at period u by the policies 7 and 7', respectively. With
our notations we thus have 8, = S,+mand 8, = 8, +m’.
Also observe that we have @, = @, = @ — 1 and
a, = a, = a by construction. Hence using the fact
that the policy n” is 8 at period u, we obtain 8], < 3.
In the same way, since the policy « is § at period v, we
have 8, < 3;. We thus have :

B, <P, and B, +m< B, +m’

€))

Observe that Equation 9 implies in particular that m <
m’, that is at period u the policy n’ orders at least the
same number of batches as . We first establish that
Bu = B

For the sake of contradiction, assume that 8, # ().
Due to Equation 9 we thus have g; < B4, which implies
that m < m’. Observe that m’ is the minimum number of
batches to order to satisfy the demands till period v with
an entering stock level s/ _, at period u. Thus, necessar-
ily we have 5,1 > s/_,. We are in the situation where
the policy 7 has ordered more batches on the time inter-
val [1,...,u — 1] than the policy 7/, thus ending with a
larger inventory at period u#, which enables it in its turn
to order less batches to cover the demands till period v.
We now show that it would contradict the fact that 7 is
B at period v. Recall that the number m of batches or-
dered by r at period u is also minimal with respect to its
entering stock s,_1, that is m = m,,(s,—;). Now, since

I.Du,v—l /BuJ +1
I.Du,v—l /BuJ

it is clear that the minimal number of batches m,,
to order differs by at most one unit depending on
the current inventory level. Thus we necessarily
have m’ = m + 1, which implies, again according
to Equation (9), that 8, = ,. Turning our atten-
tion to the stock levels, we have by construction
si =8 _+m+1)B,—Dyy1 2B, +mB, = Dy,1.
Similarly s,-; = s,-1 + mB, — D,,—;. As already
noticed, we can assume that s, < B,, which implies
that s’,_; > s,-1. As a conclusion, both policies 7 and
7’ belongs to the set I1(v, @, B,), but the policy 7’ has a

if s < b,

if 5> by (10)

My, (8) = {

larger entering stock level at period v. This contradicts
the fact that r is 8 at period v.

As a consequence, we necessarily have 8, = g,. To
be able to conclude that 7 is also 8 at period u, we need
to establish now that s, ; = s/_,. Since 7’ is g at pe-
riod u, its entering stock level s/ _, is the largest pos-
sible among all policies of Il(u, @], 8;). It implies that
Su—1 < S:¢—1- For the sake of contradiction, assume that
Su—1 < s;_ |- We show that, again, it would contradict
the fact that 7 is 8 at period v. Observe that the policy
n’ orders at period u the minimal number of batches,
with respect to its stock level, to satisfy the demands till
the beginning of period v. Hence for the policy r to be
feasible starting from a lower inventory level than 7,
certainly it has to order at least m’ batches at period u.
Together with Equation 9, we can conclude that m’ = m
(both policies order the same number of batches at pe-
riod u) and by consequence that 5, = §,. In addition,
the fact that 5,1 < s; _, and that both policies order the
same amount mB,, of units at period u obviously implies
that s,-; < s|_,. We arrive at the same situation that
both policies 7 and 7’ belong to the set I1(v, a,, 5,), but
the policy 7’ has a larger entering stock level at period
v. This contradicts the fact that 7 is 8 at period v.

As a consequence we have 8, = 8, = B(u, — 1) and
Su-1 =5 _, = 5@u,a~1,4,). It implies that the policy

is 8 at period u, which concludes the proof. (I

Property 4 allows us to compute dynamically the dif-
ferent values B(u, @), using the fact that there exists a
policy in II(u, @) using a minimal number of batches
at each of its ordering period. In addition, the proof
of Property 4 also shows that Property 2 is also dom-
inant for g policies. The definition of g still requires
to compute the maximum stock level 5(u, @, 3), but we
can restrict ourselves to the following function §(u, @, 3)
defined by:

Su,a,p) ifp=Lu,a)

—00 otherwise

S(u,a,B) = {

The values 8 and § can be jointly computed dynamically
as follows: For any period v and any value @ > 1:

Bu,a = 1)+ |Dy,-1/B,]

lf §(M’a' - l,ﬂ - LDu,V—I/BuJ) > buv
Q(u, @ — 1) + rDu,v—l/Bu-l

if S‘\(M,(I - l’ﬂ - rDu,v—l/Bu-l) < buv

B, @) = min
u<v

and for 8 = B(v,@) > 1, we have :

{ §(u’a - 13[3 - LDtt,v—l/Bu_]) - buv

S0 @f) =AY o) o~ 1,8~ Dyt /Bu]) - bur + B

u<y

and §(v,@,8) = —oco for B # B(v,).
For a = 0, the basis of the recursion is given for any
period u by:

0 if Dy, =0
+oo otherwise

B(u,0) = {
and 5(u,0,8) = —Bu,0)

These expressions simply correspond to the behavior of
a dominant policy as defined by Property 2. We obtain
the following theorem :

Theorem 8 (Polynomiality of (f/k/ — /—)). Problem
UBLS with stationary setup cost, stationary fixed cost
per batch and null unit procurement and holding costs
can be solved in time complexity O(T?).

Proof. The dynamic computation of the S values re-
quires to evaluate O(T?) states. The value of each
B(v, @) can be determined in time O(T) if all quantities
by, are precomputed (this requires only O(T?) opera-
tions). For the stock levels §(v, @, 8), we have O(T?)
states to explore. However for a given pair (v, @), only
the computation for the case § = (v, @) requires O(T)
operations. For all other values of 3, the computation of
S(v, a, B) requires only O(1) operations. The determina-
tion of the optimal value OPT is then performed in time
O(T). The overall time complexity is hence in O(T?).
(]

7.2. A more efficient algorithm for UBLS (—/k/ — |-)
In the restricted case with no setup cost, (—/k/ — /-),
the problem can be solved very efficiently in O(T) by a
simple greedy algorithm. First observe that the cheapest
way to satisfy a demand is to order in a previous period
with the largest possible batch size. Thus an optimal
planning orders the first (non null) demand, say d;, in
the period u < ¢ with the largest batch capacity. The
number of full batches to order to satisfy the demand d,
is rg—;}. The algorithm then sequentially scans through
the periods till the demand of a period ¢ can not be en-
tirely satisfied by the quantity ordered at u. The algo-
rithm again should order in the period before ¢ with the
largest batch size, that is ¥’ = argmax{B;|l < i < '},
to serve this remaining demand in #. We repeat these
steps until the end of the horizon is reached. A straight-
forward implementation requires O(72) steps, since at
each period we may have to search for the largest batch
size. However we can use the fact that for any periods
t <t we have max{B;|l1 < i < ¢} = max{max{B;|l <
i <t},max{B;|t+1 < i <t'}}tofind for each period # the
largest batch size period u < ¢ in constant time. Thus

the overall complexity of the algorithm is linear.

8. Conclusion and perspectives

In this paper we have studied the complexity of the
UBLS problem with time-dependent batch sizes, ac-
cording to the behavior of the cost parameters. To the
best of our knowledge no anterior complexity study has
been published on the time-varying batch size cases.
We have proven that UBLS is NP-hard as soon as one
of the cost parameters is allowed to be time-dependent.
On the contrary, when all cost parameters are stationary
(but assuming no holding cost), we have established that
UBLS with time-dependent batch sizes can be solved in
time O(T?). Another non trivial polynomial case cor-
responds to UBLS with the cost structure (f;/k/ — /-)
and divisible batch sizes, for which an O(T3log(T)) al-
gorithm is proposed.

There are two remaining open cases to be explored
for the UBLS problem with time-dependent batch sizes,
namely (f/k/ — /h) and (—/k/ — /h). They correspond
to the cases of stationary cost parameters but non null
holding cost. Indeed, if a stationary procurement cost is
equivalent to a null procurement cost, this is not the case
for the holding cost. While these problems are NP-hard
for time-dependent holding cost and polynomial for a
null holding cost, their complexity status is open for a
stationary holding cost.

Another open question is the approximability of the
UBLS problem. Since the UBLS problem is NP-hard in
the ordinary sense, one may hope that it belongs to fully
polynomial time approximation scheme. It would be of
interest to answer, positively or negatively, to the exis-
tence of a fully approximation scheme for this problem.

The polynomial time algorithms proposed in this pa-
per are based on a dynamic programming approach. In
the literature, polyhedral approaches have also been in-
vestigated for the CLSP with batch delivery. Akbalik
and Pochet (2009) propose new classes of valid inequal-
ities for the CLSP with the cost structure (f;/k;/p:/h;),
a stationary production capacity and a stationary batch
size. Pochet and Wolsey (1993) gives a linear formula-
tion with O(T?) variables and constraints for the UBLS
problem with the cost structure (—/k;/p;/h;). The reader
can find a detailed description of the polyhedral ap-
proach for various extensions of the lot sizing problem
in Pochet and Wolsey (2006). One perspective is to look
for interesting valid inequalities for the UBLS prob-
lem with a general cost structure (f;/k;/p;/h;), which
is proven in our paper to be NP-hard. For the different
polynomial cases, finding a compact linear formulation
would also be of great interest.

15

Acknowledgments

We are grateful to the anonymous referees for their
very careful reading and suggestions which helped to
improve the presentation of this paper.

References

A. Akbalik, Y. Pochet, Valid inequalities for the single-item capaci-
tated lot sizing problem with stepwise costs, European Journal of
Operational Research198 (2009) 412-434.

A. Akbalik, C. Rapine, Polynomial time algorithms for the constant
capacitated single-item lot sizing problem with stepwise produc-
tion cost, Operations Research Letters, 40 (2012) 390-397.

A. Aggarwal, J.K. Park. Improved algorithm for economic lot-size
problems, Operations Research, 41 (3) (1993) 549-571.

S. Bocker, Z. Liptdk, A Fast and Simple Algorithm for the Money
Changing Problem, Algorithmica 48 (2007) 413-432.

M. Florian, M. Klein, Deterministic production planning with concave
costs and capacity constraints, Management Science 18 (1) (1971)
12-20.

M.J.R. Helmrich, R. Jans, W. van den Heuvel, A.P.M. Wagelmans,
The economic lot-sizing problem with an emission constraint,
Econometric Institute Report EI 2011-41.

C.-Y. Lee, A solution to the multiple setup problem with dynamic
demand, IIE Transactions 21 (3) (1989) 266-270.

C.-L. Li, V.N. Hsu, W.-Q. Xiao, Dynamic lot sizing with batch or-
dering and truckload discounts, Operations Research 52 (4) (2004)
639-654.

S.A. Lippman, Optimal inventory policy with multiple set-up costs,
Management Science 16 (1) (1969) 118-138.

G.S. Lueker, Two NP-Complete Problems in Nonnegative Integer Pro-
gramming, Technical Report TR-178, Department of Electrical
Engineering, Princeton University (1975).

Y. Pochet, L.A. Wolsey, Lot-sizing with constant batches: Formula-
tion and valid inequalities, Mathematics of Operations Research
18 (4) (1993) 767-785.

Y. Pochet, L.A. Wolsey, Production Planning by Mixed Integer Pro-
gramming, Springer, 2006.

D.X. Shaw, A.PM. Wagelmans, An Algorithm for Single-Item Ca-
pacitated Economic Lot Sizing with Piecewise Linear Production
Costs and General Holding Costs, Management Science 44 (6)
(1998) 831-838.

M. Van Vyve, Algorithms for single-item lot-sizing problems with
constant batch size, Mathematics of Operations Research 32 (3)
(2007) 594-613.

A. Wagelmans, S. van Hoesel, A. Kolen, Economic Lot Sizing: An
O(n log n) Algorithm That Runs in Linear Time in the Wagner-
Whitin Case, Operations Research 40 (1) (1992) S145-156.

H.M. Wagner and T.M. Whitin,Dynamic version of the economic lot
size model, Management Science 5 (1) (1958) 89-96.

