
European Journal of Operational Research 230 (2013) 356–363
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Decision Support
Variable neighborhood search for minimum sum-of-squares clustering
on networks
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.04.027

⇑ Corresponding author. Tel.: +34 954557943; fax: +34 954622800.
E-mail addresses: ecarrizosa@us.es (E. Carrizosa), Nenad.Mladenovic@brunel.

ac.uk (N. Mladenović), racatodosijevic@gmail.com (R. Todosijević).
Emilio Carrizosa a,⇑, Nenad Mladenović b, Raca Todosijević c

a Faculdad de Matemáticas, Universidad de Sevilla, Spain
b School of Mathematics, Brunel University-West London, UK
c Mathematical Institute, Serbian Academy of Science and Arts, Serbia
a r t i c l e i n f o

Article history:
Received 1 May 2012
Accepted 16 April 2013
Available online 26 April 2013

Keywords:
Minimum sum-of-squares clustering
Location on networks
Variable neighborhood search
a b s t r a c t

Euclidean Minimum Sum-of-Squares Clustering amounts to finding p prototypes by minimizing the sum
of the squared Euclidean distances from a set of points to their closest prototype. In recent years related
clustering problems have been extensively analyzed under the assumption that the space is a network,
and not any more the Euclidean space. This allows one to properly address community detection prob-
lems, of significant relevance in diverse phenomena in biological, technological and social systems. How-
ever, the problem of minimizing the sum of squared distances on networks have not yet been addressed.
Two versions of the problem are possible: either the p prototypes are sought among the set of nodes of
the network, or also points along edges are taken into account as possible prototypes. While the first
problem is transformed into a classical discrete p-median problem, the latter is new in the literature,
and solved in this paper with the Variable Neighborhood Search heuristic. The solutions of the two prob-
lems are compared in a series of test examples.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction tween some metric and nonmetric properties of the data. Each
Cluster Analysis is a popular and powerful tool in Data Analysis
[24,33] that provides a rich variety of challenging optimization
problems [16]. The aim of Cluster Analysis is to partition a set of
entities into clusters, so that entities within the same cluster are
similar and entities in different clusters are different. The most
well-known model is Minimum Sum-of-Squares Clustering (MSSC).
In its basic form, MSSC assumes the entities to be points in Rn; p
points (called prototypes) are sought by minimizing the sum of
the squares of the Euclidean distances separating the entities from
their closest prototypes. MSSC, recently shown to be NP-hard in
[2], can be solved exactly for data sets of moderate sizes (over
2300 entities) by column generation [3]. For larger data sets, heu-
ristics are used, see [18,22] and the references therein.

Whereas many clustering problems in Data Analysis are prop-
erly accommodated within such Euclidean framework (entities
identified with points in the Euclidean space, entities closeness
measured by the Euclidean distance), many data sets in complex
systems in domains such as Sociology, Biology or Computer Sci-
ence may be more naturally modeled with networks
[1,6,7,14,31,34], where the entities are seen as the nodes, and the
edges of the network model entities interaction. In such cases
the length is usually called weight, in order to avoid confusion be-
edge is assumed to have a positive weight, which in the simplest
case always takes the value 1, indicating only that the two nodes
associated with edges are linked. In many complex systems, how-
ever, the edges may have different cost (weight). Transportation
and mobility networks, Internet, mobile phone networks, power
grids, social and contact networks, and neural networks, are men-
tioned in [7] as contexts in which the network topology alone does
not contain all the information, and community detection should
take into account such different edges weights.

In this paper we assume that the set V of entities to be clustered
is the set of nodes of a connected and undirected network N = (V,E),
where E is a collection of pairs of nodes, and each e 2 E has positive
length le. The set V of nodes is to be split into p disjoint subsets
(clusters, communities), and p prototypes (one per cluster) are to
be chosen so that all entities in a given cluster are close to their
associated prototype. We propose to use a sum-of-squared-dis-
tance criterion, which leads us to address two versions of the prob-
lem, called V-MSSC and E-MSSC. The V-MSSC (vertex-MSSC)
consists of selecting a subset V⁄ of p entities (prototypes) within
the set of vertices of the network, so that the sum of squares of
the distances from each entity v 2 V to its closest prototype is min-
imized. Closeness between any pair of entities u, v 2 V is measured
by the length d(u,v) of the shortest path connecting u and v. The E-
MSSC (edge-MSSC), [12], has the same objective, but the prototypes
are sought not only at vertices, but also at points along the edges of
the network. This way, one may obtain with the E-MSSC clusters
configurations which are impossible if only vertices are allowed

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.04.027&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.04.027
mailto:ecarrizosa@us.es
mailto:Nenad.Mladenovic@brunel.ac.uk
mailto:Nenad.Mladenovic@brunel.ac.uk
mailto:racatodosijevic@gmail.com
http://dx.doi.org/10.1016/j.ejor.2013.04.027
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 356–363 357
to be prototypes. In other words, the clusters class which can be
obtained by solving E-MSSC is richer than the one obtained by
solving V-MSSC problems, and this may lead to more accurate clus-
ters. We emphasize that we use prototypes as a means to cluster
entities, though in some cases there is no direct physical meaning
of the prototype locations: when applied to nonmetric data such as
social networks, the prototype position on the edge that connects
two entities, say Peter and Paul, has no physical meaning, but is
used here as a tool to identify whether the two entities, say Peter
and Paul, belong to the same cluster or not. It is interesting to note
that the difference between vertex minimum sum-of-distances
and edge minimum sum-of-distances (not squared distances) does
not exist, since the optimal solutions of both are equivalent [15].

The purpose of this paper is to introduce these two clustering
models on networks, analyzing some structural properties, com-
paring them, and developing algorithmic tools to cope with data
sets of nontrivial size. The rest of the paper is organized as follows.
In Section 2 the V-MSSC and E-MSSC problems are formally stated.
Some structural properties are presented in Section 3. In Section 4
we describe how VNS can be customized to address E-MSSC. The
paper ends with a battery of numerical experiments in Section 5,
comparing the output of both problems and of different variants
of the VNS designed to solve them. Some concluding remarks
and possible lines of future research are given in Section 6.

2. Problems statement

A connected and undirected network N = (V,E), with node set V
and edge set E, is given. Each edge e 2 E has length le > 0. The
lengths are assumed to satisfy the triangle inequality, and thus
they induce a metric on the set of nodes, namely, the shortest-path
distance. We will consider the network N to be a spatial network:
for any edge e = (u,v) 2 E, and any x 2 [0,1], the pair (e,x) will be
identified with the point in edge e at a distance xle from u, and at
distance (1 � x)le from v. Let us denote with P(N) the set of all pairs
(e,x), i.e., the set of points of the network N. A metric on the set P(N)
is defined: for any two points x, y 2 P(N), d(x,y) is the length of a
shortest path connecting x and y. See [26] for details.

The V-MSSC problem is defined as the problem of finding p pro-
totypes from the set V of vertices such that the weighted sum of
squares of distances from the nodes to their closest prototype is
minimized. V-MSSC is easily formulated as a linear integer pro-
gram. Indeed,

� for each pair (u,v) 2 V � V, define the binary variable xu,v, which
takes the value 1 if entity u is allocated to prototype v, and zero
otherwise,
� for each v 2 V, define the binary variable yv, which takes the

value 1 if entity v is chosen to be one of the prototypes, and zero
otherwise.

With this notation, V-MSSC is written as the Integer Program

min
X

u;v2V

d2ðu; vÞxuv

s:t:
X
v2V

xuv ¼ 1 8 u 2 V

xuv 6 yv 8 u;v 2 VX
v2V

yv ¼ p

xuv 2 f0;1g 8 u;v 2 V

yv 2 f0;1g 8 v 2 V :

ð1Þ

Obviously, Problem (1) is the classical p-median problem with the
finite set V both as set of users and candidate sites for the facilities,
and d2(u,v) as the distance from the user u 2 V to the facility at
v 2 V. Hence, exact and heuristic algorithms as those described in
[4,5,17,28] can be used to successfully address V-MSSC.

The E-MSSC problem is analogous to the V-MSSC, but prototypes
are sought along the edges: we seek a set of p prototypes from the
set P(N) of points on edges such that the weighted sum of squares
of distances from the nodes to their closest prototype is minimized:

min
X
v2V

xvd2ðv; fx1; . . . ; xpgÞ

s:t: x1; . . . ; xp 2 PðNÞ;
ð2Þ

where non-negative weights xv > 0 are given for any v 2 V. The dis-
tance d(v,X) from v to a non-empty finite set X of points of the net-
work is defined as the distance to the closest point in X,

dðv ; fx1; . . . ; xpgÞ ¼ min
16j6p

dðv ; xjÞ: ð3Þ

Once prototypes x�1; . . . ; x�p have been obtained, solving either (1)
or (2), a partition {C1, C2, . . . , Cp} of the set V of entities is defined by
allocating each entity v 2 V to its closest prototype:

d x�i ; v
� �

6 d x�j ; v
� �

8 v 2 Ci; i ¼ 1;2; . . . ;p: ð4Þ
3. Structural properties

V-MSSC and E-MSSC differ in the space in which prototypes are
sought, and thus they may yield different clusters. In [12], 1000
test instances were generated, each having 10 entities uniformly
distributed on the line segment [0,1], and p = 2 prototypes were
sought. In 160 cases, the clusters obtained by the V-MSSC and E-
MSSC models were different. It will be shown in Section 5 that this
percentage is larger in general graphs, in which the E-MSSC yields
clusters which may not be discovered by solving the V-MSSC.

As discussed in Section 2, V-MSSC is a p-median problem with
d2 as distance measure. We refer the reader to [4,5,17,27,32] for
an analysis of p-median problems and algorithmic approaches.
We present now some properties of the E-MSSC, extending the re-
sults given by the authors in [12]. These will be helpful in the de-
sign of the heuristic algorithm described in Section 4.

We assume in what follows that the number p of prototypes to
be located is strictly smaller than the number of nodes. Otherwise,
the problem is solved in a straightforward manner, since locating
prototypes at all nodes would yield objective value of zero, which
is optimal.

First we show that any optimal solution to E-MSSC yields p non-
empty clusters, since, any prototype has at least one entity which is
strictly closer to it than to any other prototype.

Property 3.1. Let x�1; . . . ; x�p
� �

be an optimal solution to (2). Then, for
any x�j there exists v 2 V such that

d v ; x�j
� �

< dðv; x�i Þ 8 i – j:
Proof. Suppose that, for any v there exists x�iðvÞ with

d v ; x�j
� �

P d v; x�iðvÞ
� �

such that i(v) is not equal to j. Take an arbitrary

v0 2 V such that v0 R x�1; . . . ; x�p
n o

. It is clear that the collection of

prototypes replacing x�j by v0 will yield a strictly lower objective

value, which contradicts the optimality of x�1; . . . ; x�p
� �

. h

Since any optimal solution minimizes the sum of increasing
functions of the distance (point,prototype), one has the following.

Property 3.2. At any optimal solution x�1; . . . ; x�p
� �

, the shortest path
from any node v 2 V to its closest prototype cannot pass through any
other prototype.

358 E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 356–363
Whereas prototypes are allowed to be located at the interior of
edges, they cannot be concentrated on a given edge, since each
edge can contain at most one optimal prototype in its interior, as
stated in the following.

Property 3.3. Let x�1; . . . ; x�p
� �

be an optimal solution to (2) and let
e = (u,v) 2 E. The interior of e contains at most one optimal prototype.
If it contains one optimal prototype x�j , then both endpoints u and v
have x�j as the closest prototype.
Proof. By contradiction, suppose that the interior of e contains two
optimal prototypes, x�i ; x

�
j ; x

�
i – x�j . Without loss of generality, we

assume that x�i is between u and x�j , which is between x�i and v.
By Property 3.1, there exist vi,vj 2 V such that

d v i; x�i
� �

6 d v i; x�k
� �

8k

d v j; x�j
� �

6 d v j; x�k
� �

8k:

By Property 3.2, u,v, the ending nodes of e are not optimal pro-
totypes since the shortest path from vi and vj to their closest facility
would otherwise pass through another prototype.

For all nodes v⁄ that have x�i as their closest facility, the shortest
path from v⁄ to x�i passes through the end point u (otherwise, it
would also pass through x�j , contradicting Property 3.2). Hence, if

we replace x�i by u in the set of prototypes, the objective function
would be strictly decreased, contradicting the optimality of

x�1; . . . ; x�p
� �

. Thus, it is not possible to have two different proto-

types in the interior of the edge e.
Now, suppose that only one prototype x�i belongs to the interior

of the edge e. In order to show that both u and v have x�i as their
closest prototype, suppose, by contradiction, that x�j exists with

d u; x�i
� �

> d u; x�j
� �

. For any node v⁄ 2 V, having x�i as its closest

prototype, it follows that the shortest path from v⁄ to x�i must pass
through v and not through u, since otherwise x�j would be closer

than x�i to v⁄. Hence, replacing x�i with v in the set of prototypes, we
would obtain another feasible solution with a strictly smaller

objective value, contradicting the optimality of x�1; . . . ; x�p
� �

. This

shows that both u and v have x�i as their closest prototype. h

By Property 3.3, given a node v, if an edge e adjacent to v con-
tains in its interior some optimal prototype x�j , then both endpoints
of e, including v, must have x�j as their closest prototype, and thus v
cannot be an optimal prototype. This implies the following.

Property 3.4. If an optimal prototype is located at a node v 2 V, then
the interior of all edges adjacent to v contains no optimal prototypes.

We end this section studying in more detail the case p = 1, i.e.,
one single prototype is to be chosen, which can be seen as the cen-
troid of the network. Of course this case has no direct application
for clustering (just one cluster, namely, V, will be obtained), but
it will be useful to design the algorithm for the general case.

For p = 1, it is easy to construct a finite dominating set, [25], i.e.,
a set known to contain an optimal solution, and thus global optimi-
zation of Problem (2) is reduced to inspecting a finite set of candi-
dates. To construct such finite dominating set, it is important to
recall that, given v 2 V, the distance from v to a point x in a given
edge e 2 E with endpoints u1 and u2 is given by

dðv; xÞ ¼minfdðv ;u1Þ þ dðu1; xÞ;dðv; u2Þ þ dðu2; xÞg
¼minfdðv ;u1Þ þ dðu1; xÞ;dðv; u2Þ þ le � dðu1; xÞg:

Whether the minimum above is attained at the first or the sec-
ond term depends on the relative position of point x with respect
to the so-called bottleneck point, [26], z(v), defined as
zðvÞ ¼ 1
2
ðle � dðv ;u1Þ þ dðv ;u2ÞÞ: ð5Þ

Formula (5) allows us to compute the distance from node v to any
point in the edge e:

� If z(v) 6 0, then the shortest path from v to any point x 2 e
passes through u2.
� If z(v) P le, then the shortest path from v to any point x 2 e

passes through u1.
� If 0 < z(v) < le, then the shortest path from v to x 2 e passes

through u1 if x belongs to the sub-edge with endpoints u1 and
z(v), and it passes through u2 if x belongs to the sub-edge with
endpoints z(v) and u2.

In the latter case, such z(v) will be called a bottleneck point. By
definition, for such v, the distance from v to z(v) via u1 is equal to
the distance from v to z(v) via u2, and then two shortest-paths exist
from v to z(v).

Given an edge e 2 E, and v 2 V the distance to v is an affine func-
tion on the two subintervals (possibly degenerate) in which the
bottleneck z(v) splits e. Hence, within each such subinterval, the
squared distance is a quadratic polynomial in the variable x. This
process can be done on any given edge e for all nodes v, calculating
all bottleneck points z(v), and splitting e into O(jVj) subintervals,
such that, within each subinterval, each squared distance is a qua-
dratic polynomial function, and thus the sum of the squared dis-
tances is also a quadratic polynomial function. In other words,
the objective function of Problem (2) is a second-degree polyno-
mial function in one variable on each such interval. Thus, the deriv-
ative of its minimum point should be equal to zero, if it belongs to
the considered interval; otherwise its minimum is achieved at one
of endpoints of the considered interval. Therefore, at each edge e,
the objective function can have at most jVj � 1 local minima, which
are obtained analytically. By doing this process for all edges, we
obtain a finite dominating set D for Problem (2). The pseudo-code
for finding dominating set D is given in Algorithm 1.

Algorithm 1. Finite Dominating Set

Function FDS(N,E));
1 D = ;;
2 for each e 2 E do
3 for each v 2 N do
4 Calculate bottleneck z(v) according to (5)

end
5 Sort all bottleneck values in nondecreasing order;
6 Form set S as a set of sub-edges obtained by splitting edge

e by bottlenecks;
7 for each sub-edge e‘ from S do
8 Find the minimum objective value; denote the

corresponding point with y‘;
9 D = D [{y‘}

end
end

Since the optimal point has to belong to the finite dominating
set D, it can easily be obtained by its inspection.
4. Variable neighborhood search for solving E-MSSC

E-MSSC is a nonlinear optimization problem defined on a net-
work. Finding a globally optimal solution may be done by inspect-
ing, for all possible partitions C1, . . . , Cp of V, the objective value at

E. Carrizosa et al. / European Journal of Ope
x�1; . . . ; x�p
� �

, where each x�j is the optimal solution to E-MSSC for
p = 1. Such x�j can be obtained, as described in Section 3, by inspect-
ing a finite set of points. However, this approach is only applicable
for networks of very small size.

For large data sets, heuristic methods seem to be the only option.
For that purpose, we propose a heuristic based on Variable Neighbor-
hood Search metaheuristic (VNS) [29,20,30], although some other
metaheuristics can be customized for this problem as well.

VNS is a flexible framework for building heuristics to solve
approximately combinatorial and global optimization problems. It
exploits systematically the possibility of changing the definition of
neighborhood structures within the search for a globally optimal
(or near-optimal) solution. VNS is based on the following simple
observations: (i) An optimum for one neighborhood structure is
not necessarily optimal for another neighborhood structure; (ii) a
global optimum is a local optimum with respect to all neighborhood
structures; and (iii) empirical evidence shows that for many prob-
lems all local optima are relatively close to each other. The first prop-
erty is exploited by using increasingly complex moves in so-called
Variable Neighborhood Descent (VND) in order to find local optima.
The second property suggests using more neighborhoods if the local
optima found are of poor quality. Finally, the third property allows,
once a local optimum is reached, to exploit this information to find
a better local optimum in its vicinity. See [19,20,30] for further de-
tails and applications.

Three important choices for the implementation of VNS are how a
starting solution is generated, how the shaking is performed, and
how local searches are implemented. We describe now such issues.

4.1. Building an initial solution

The simplest way to build an initial solution is to follow an iter-
ate process by randomly selecting points which do not violate the
structural properties described in Section 3. Given a k-uple (k < p)
of protopypes already selected, we say that a point of the network
is feasible if, together with those prototypes previously chosen,
Properties 3.3 and 3.4 are satisfied. We say an edge is feasible if
it contains feasible points. In our randomized procedure, at each
step one feasible edge is chosen at random, and then one feasible
point in such edge is chosen at random. The process is repeated un-
til p points are obtained.

After calculating, as preprocessing, all-pairs shortest path dis-
tances, the set of feasible edges E1 initially contains all edges, and
the set of feasible points N1 contains all points of the network. Once
a prototype has been chosen, we fathom points and edges according
to Properties 3.2 and 3.4. If the chosen prototype belongs to the inte-
rior of one edge, then we eliminate all points of such edge from the
set of feasible points. If the prototype is equal to one endpoint, we
eliminate such endpoint and all interior points of each edge adjacent
with such prototype as well. After that, each edge that does not con-
tain feasible points is excluded from the set of feasible edges. So, a
random initial solution X is generated by the procedure described
as Algorithm 2.

Algorithm 2. Find initial solution at random

Function RIS (N,E,p,X);
1 Calculate all-pairs shortest distances;
2 X = ;; E1 = E; N1 = N;
3 for i :¼ 1, . . . , p do
4 choose an edge e from the set E1 at random;
5 choose a feasible point y on the edge e at random;
6 X = X [{y};
7 reduce sets E1 and N1;

end
Since using a good starting solution may be crucial to speed up
the convergence of the procedure, we can enhance the quality of

the solution obtained in Algorithm 2 by running a heuristic for
the V-MSSC instead. Both strategies will be analyzed in the compu-
tational results reported in Section 5.

4.2. Shaking

Feasible solutions of E-MSSC are identified with sets X � P(N) of
cardinality p. The distance between two solutions X1,X2 is equal to
k if and only if the sets X1 and X2 differ exactly in k locations. A
(symmetric) distance function q can be defined on the set of solu-
tions as

qðX1;X2Þ ¼ jX1 n X2j ¼ jX2 n X1j 8X1;X2:

Neighborhood structures are induced by the metric q, i.e., k
locations of facilities (k 6 p) from the current solution are replaced
with k locations that are not in the current solution. We denote by
Nk, k = 1, . . . , kmax (kmax 6 p) the set of such neighborhood struc-
tures, and by Nk(X) we denote the set of solutions forming neigh-
borhood Nk of a current solution X. In our implementation kmax,
the highest radius considered, is set to p.

4.3. Local search

The most popular local-search approach for the Euclidean MSSC
is the so-called k-means algorithm, [23]. The k-means is a location–
allocation procedure, in which location and allocation steps are re-
peated until convergence: in the location step (the allocations are
assumed to be given), the optimal locations for the p prototypes
are obtained; later, in the allocation step (the prototype locations
are assumed to be given), all entities are allocated to their closest
prototype. The process is repeated until convergence is reached.
The key property is that, in the location step, since the allocations
are assumed to be fixed, the problem is split into p independent
problems, namely, finding one optimal prototype for each cluster.

Here we follow the very same strategy: we propose a location–
allocation heuristic, Algorithm 3, in which we exploit the fact that,
in the location step, the p independent subproblems to be solved
are easy, since, as discussed in Section 3, they can be solved by
inspection of the low-cardinality set of candidate points con-
structed as in Algorithm 1.

Algorithm 3. K-Net-Means algorithm (Net-KM) for the NMSSC
problem

Function NetKM (n,p,X);
1 Cj = ;, j = 1, . . . , p;
2 repeat
3 for i :¼ 1, . . . , n do

4 mðuiÞ arg minxj2x d2ðui; xjÞ; mðuiÞ 2 f1; . . . ; pg
5 CmðuiÞ ¼ CmðuiÞ [fuig

end
6 RemoveDeg(n,p,C);
7 for j :¼ 1,. . . , p do
8 calculate prototype xj

end
until m does not change or ‘ = Maxit;

Starting from a set of p initial prototypes (e.g. taken at random,
as explained in Algorithm 2), users are assigned to their closest
prototype (steps 3–5). m(ui) denotes the membership index of a
user ui. Each user ui is assigned to the cluster CmðuiÞ, where m(u1)
is the index of a prototype closest to ui. In the case of ties, i.e., if

rational Research 230 (2013) 356–363 359

360 E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 356–363
there are more than one prototype with the same distance to ui, the
one with the smallest index is chosen. Steps 7 and 8 are location
steps, where prototypes xj, j = 1, . . . , p are found for a given clusters
Cj. More precisely, for each cluster a 1-prototype problem is solved
Allocation step of K-Net-Means is repeated with the new loca-
tions of the prototypes. These steps are repeated until no more
changes in assignments occur.

When using this local-search procedure, we may face degener-
acy [10,13] problems: when customers are allocated to proto-
types, some prototypes may remain with no customers
assigned. Obviously, if we move one of such prototypes to any
node, we will strictly improve the objective value. So, if a degen-
erate configuration is obtained during this local-search proce-
dure, all prototypes without nodes allocated can be moved
randomly to remaining nodes that are not used already as a pro-
totype, improving the objective value. The algorithm for
removing degeneracy, as used in Algorithm 3, is described as
Algorithm 4.

Algorithm 4. Removing degeneracy

Function RemoveDeg(n,p,C);
1 Find prototypes without users, i.e., find indices ‘ with C‘ = ;,
‘ = 1, . . . , q;

2 if q > 0 then
3 for ‘ = 1, . . . , q do
4 Relocate prototype x‘ to random non-occupied node u.

end
end
4.4. A VNS heuristic for E-MSSC

The basic VNS rules, as described above, for solving the E-MSSC
problem, lead to Algorithm 5.

Algorithm 5. Basic VNS for E-MSSC

Function Net-VNS (x,kmax, tmax);
1 Get an initial solution X;
2 repeat
3 k 1;
4 repeat
5 X0 Shake(X,k) /⁄ Shaking ⁄/;
6 X00 NetKM(n,p,X0) /⁄ Local search ⁄/;
7 if f(X00) < f(X) then
8 X X0; k 1 /⁄ Make a move ⁄/;

else
9 k k + 1 /⁄ Next neighborhood⁄/;

end
10 t CpuTime ()

until k = kmax;
until t > tmax;
5. Computational results

The aim of this section is twofold: first, we want to explore
whether the new model, E-MSSC, is essentially different from the
V-MSSC, by checking if the clusters obtained are the same or not
to those given when only entities (nodes) are allowed to be proto-
types. In [12] some experiments were performed on line segment
networks, showing that different clusters are obtained by V-MSSC
and E-MSSC in around 20% of cases. We will show that, for more
complex and larger networks, the differences are larger. Second,
we want to explore the influence of the starting solution strategy,
as described in Section 4.1.

For solving V-MSSC we use a VNS based heuristics described in
[17], called here VNS-0. As an initial solution, p nodes are selected
at random. Then, the algorithm explores neighborhood structures,
induced by metric q, (see Section 4.2) using Interchange (or vertex
substitution) heuristic as a local search.

For solving E-MSSC, three different VNS-based heuristic, called
VNS-1, VNS-2 and VNS-3, are applied. Algorithm VNS-1 starts
with the solution obtained by VNS-0, and then the local-search de-
scribed in Algorithm 3 is performed. Algorithm VNS-2 uses as
starting solution the one obtained by VNS-1, and then our Network
VNS, Net-VNS (X,kmax, tmax), explained in Algorithm 5, is run. Final-
ly, VNS-3 starts with a random initial solution, obtained by RIS(-
N,E,p,X), followed by our Net-VNS(X,kmax, tmax).

All algorithms described in the previous paragraph have been
tested on 40 p-median instances taken from the OR-Lib [8]. Each
algorithm has been run on each instance 10 times for different
choices of the random seed, with the time limit of 10 seconds.
The results, obtained with a personal computer with a 2.53 giga-
hertz CPU and 3 gigabytes of RAM, are reported in Tables 1 and
2. The first three columns are common to both tables. The first col-
umn, Instance, gives the name of the OR-Lib instances. Instances
parameters, namely, the number n of entities, and the number p of
prototypes sought, are given in columns 2 and 3 respectively.

Effect of the initial solution. In Table 1 we provide numerical re-
sults which give us more insight into the behavior of the VNS algo-
rithm VNS-0 for solving V-MSSC, as well as into the behavior of
VNS algorithms for solving E-MSSC. More specifically, we were
interested in exploring the ability of Algorithm 3 to improve a solu-
tion found by VNS-0 as well as the ability of VNS-2 to improve the
output solution of VNS-1. Also, we wanted to check the influence
of the initial solution on our Network VNS. For this purpose, for
each chosen random seed, we compared the objective values of
the solutions found by VNS-0, VNS-1, VNS-2, VNS-3, i.e. fVNS�0,
fVNS�1, fVNS�2, fVNS�3, by calculating % deviations using the following
formula:

devða; bÞ ¼ fa � fb
fa
� 100:

More precisely, for each chosen seed we calculated the following %
deviations: dev (VNS-0,VNS-1), dev (VNS-1,VNS-2) and dev (VNS-
3,VNS-2). The average values as well as standard deviations for
each of these % deviations regarding ten different seeds are reported
in Table 1.

From Table 1 the following observations may be derived.

1. VNS-2, which uses the most sophisticated strategy for building
its starting solution (it solves heuristically the V-MSSC and then
runs Algorithm 3) clearly outperforms VNS-3, which is initial-
ized with a random solution. Indeed, only for instance pmed3

VNS-3 behaves better (average % deviation dev (VNS-3,VNS-
2) is equal to-0.384). On the other hand, the overall average %
deviation is 13.394, thus favorable for VNS-2. Therefore, the
best known solutions for all instances, except one, were found
by VNS-2. This stresses the importance of having a good initial
solution for solving E-MSSC, in accordance with previous obser-
vations on solving the continuous p-median problem (also
called multi-source Weber problem) [9,21] and MSSC on Rn

[18]. It is apparent that the best results for these problems are
obtained if the algorithm takes its time to find the V-MSSC solu-
tion first, to be used as starting solution.

Table 1
VNS comparison.

Instance n p Average dev
(VNS-0,VNS-1)

St. dev r Average dev
(VNS-1,VNS-2)

St. dev. r Average dev
(VNS-3,VNS-2)

St. dev. r

pmed1 100 5 0.000 0.000 0.042 0.000 0.000 0.000
pmed2 100 10 0.818 0.000 0.175 0.217 0.027 0.364
pmed3 100 10 0.131 0.000 0.913 0.464 �0.384 0.470
pmed4 100 20 1.667 0.000 1.503 0.990 1.190 2.005
pmed5 100 33 5.378 0.549 0.212 0.260 5.522 3.810
pmed6 200 5 0.000 0.000 0.000 0.000 2.306 1.583
pmed7 200 10 0.013 0.000 0.000 0.000 3.004 1.548
pmed8 200 20 0.256 0.000 0.010 0.020 3.093 1.530
pmed9 200 40 4.607 0.000 0.211 0.258 9.129 1.810
pmed10 200 67 5.154 0.015 0.243 0.489 18.162 5.043
pmed11 300 5 0.000 0.000 0.001 0.002 6.089 2.900
pmed12 300 10 0.000 0.000 0.000 0.000 6.783 2.590
pmed13 300 30 0.731 0.020 0.000 0.000 10.062 1.464
pmed14 300 60 1.649 0.078 0.000 0.000 15.313 1.927
pmed15 300 100 7.387 0.368 0.000 0.000 21.353 2.444
pmed16 400 5 0.000 0.000 0.000 0.000 10.670 6.125
pmed17 400 10 0.000 0.000 0.000 0.000 8.344 2.484
pmed18 400 40 0.666 0.176 0.000 0.000 10.610 1.540
pmed19 400 80 4.035 0.335 0.000 0.000 17.134 2.596
pmed20 400 133 6.394 0.197 0.029 0.087 20.576 3.095
pmed21 500 5 0.000 0.000 0.000 0.000 15.474 5.457
pmed22 500 10 0.000 0.000 0.000 0.000 13.806 5.127
pmed23 500 50 0.649 0.024 0.000 0.000 11.703 1.529
pmed24 500 100 3.077 0.135 0.000 0.000 19.524 2.076
pmed25 500 167 6.300 0.192 0.000 0.000 26.485 4.165
pmed26 600 5 0.000 0.000 0.000 0.000 15.628 6.088
pmed27 600 10 0.000 0.000 0.000 0.000 18.697 4.768
pmed28 600 60 0.295 0.100 0.000 0.000 15.623 2.170
pmed29 600 120 1.864 0.291 0.000 0.000 21.985 3.296
pmed30 600 200 6.697 0.433 0.000 0.000 26.962 2.910
pmed31 700 5 0.000 0.000 0.000 0.000 16.115 4.773
pmed32 700 10 0.000 0.000 0.000 0.000 21.323 4.163
pmed33 700 70 0.187 0.049 0.000 0.000 14.340 0.815
pmed34 700 140 2.298 0.123 0.000 0.000 21.700 2.842
pmed35 800 5 0.000 0.000 0.000 0.000 15.701 3.852
pmed36 800 10 0.000 0.000 0.000 0.000 22.618 4.696
pmed37 800 80 0.394 0.053 0.000 0.000 14.431 2.048
pmed38 900 5 0.000 0.000 0.000 0.000 14.346 6.649
pmed39 900 10 0.000 0.000 0.000 0.000 23.625 6.168
pmed40 900 90 0.402 0.112 0.000 0.000 16.700 2.165

Average 1.526 0.081 0.083 0.070 13.394 3.027

E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 356–363 361
2. VNS-2 does not significantly improve VNS-1: on 30 instances
out of 40 the average % deviation dev (VNS-1,VNS-2) is equal
to 0, while on the others the average % deviation is between
1.503 and 0.001. Therefore, the overall % deviation is very close
to 0, i.e. 0.083. This means that the V-MSSC solution obtained
with a standard VNS, followed by a local search, already yields
excellent results.

3. The average % deviation dev (VNS-0,VNS-1) on all instances is
between 7.387 and 0, while the overall average % deviation is
equal to 1.526. Furthermore, just on 16 instances out of 40
the average ratio is equal to 0. Therefore, we may conclude that
the local search (Algorithm 3) is usually capable to improve the
V-MSSC solution.

5.1. Comparison of V-MSSC vs. E-MSSC

Table 2 presents a comparison of V-MSSC and E-MSSC model.
The first three columns are the same as those in the Table 1. Col-
umns 4 and 5 report the results of two different heuristics: in col-
umn V-MS we have chosen as prototypes those p entities
minimizing the sum of distances from the entities to the closest
prototype, i.e., the optimal solution to the p-median problem,
while in column V-MSS we report the value of the best solution
of V-MSSC obtained in ten runs. In both cases, the problem is not
solved exactly, but using the version of the VNS for solving p-med-
ian described in [17], i.e. VNS-0. The best objective values fV�MS
and fV�MSS of the prototypes obtained when solving both problems
are compared: column dev reports the % deviation between these
two values (i.e., dev (V-MS,V-MSS)). The next column reports the
best solution value (column E-MSSC) obtained by one of three dif-
ferent variants of VNS applied to the E-MSSC problem (VNS-1,
VNS-2, VNS-3) in ten runs. The deviation of this value from the va-
lue reported in column V-MSS is reported in column 8. It should be
emphasized that almost all values reported in column E-MSSC

were found by VNS-2. The only exception is instance pmed2, on
which VNS-3 found the best value. Finally, the last two columns
analyze whether E-MSSC yields solutions which are not obtained
when only entities are considered as prototypes. Column Node

indicates whether the set of optimal prototypes, which corre-
sponds to the value reported in column E-MSSC only contains
nodes (and coincides with the optimal prototypes for the V-MSSC
problem). Even of the set of optimal prototypes of E-MSSC and
V-MSSC do not coincide, it may be the case that they yield identical
clusters. This is reported in the last column, Same.

From Table 2 the following observations may be derived.

1. Comparing the values reported in columns V-MSS and E-MSS,
one can observe that the difference between these values
mostly depend on the value of p. For almost all instances with
p = 5 or 10, especially those with large n, the best obtained val-
ues for V-MSSC and E-MSSC are the same, as well as yielded

Table 2
Computational results.

Instance n p V-MS V-MSS Dev. (%) E-MSS Dev. (%) Node Same

pmed1 100 5 450,233 450,233 0.00 450043.94 0.04 No No
pmed2 100 10 271,829 256,874 5.50 253067.60 1.48 No No
pmed3 100 10 295,752 263,385 10.94 259643.17 1.42 No No
pmed4 100 20 159,678 153,963 3.58 147685.50 4.08 No No
pmed5 100 33 45,055 42,671 5.29 40066.36 6.10 No No
pmed6 200 5 410,360 406,195 1.01 386642.24 4.81 No No
pmed7 200 10 222,901 221,631 0.57 221602.83 0.01 No Yes
pmed8 200 20 157,807 151,558 3.96 151094.71 0.31 No No
pmed9 200 40 68,886 66,525 3.43 63126.34 5.11 No No
pmed10 200 67 16,199 15,938 1.61 14917.01 6.41 No No
pmed11 300 5 256,532 256,532 0.00 256512.74 0.01 No No
pmed12 300 10 197,970 197,814 0.08 197814.00 0.00 Yes Yes
pmed13 300 30 100,398 99,210 1.18 98471.40 0.74 No Yes
pmed14 300 60 53,604 49,977 6.77 49152.57 1.65 No No
pmed15 300 100 20,593 20,213 1.85 18653.68 7.71 No Yes
pmed16 400 5 210,452 209,886 0.27 209886.00 0.00 Yes Yes
pmed17 400 10 160,401 160,401 0.00 160401.00 0.00 Yes Yes
pmed18 400 40 92,325 88,234 4.43 87499.01 0.83 No No
pmed19 400 80 35,678 33,782 5.31 32292.46 4.41 No No
pmed20 400 133 16,769 16,032 4.40 14930.55 6.87 No No
pmed21 500 5 203,552 203,552 0.00 203552.00 0.00 Yes Yes
pmed22 500 10 189,091 188,857 0.12 188857.00 0.00 Yes Yes
pmed23 500 50 67,359 66,257 1.64 65834.72 0.64 No No
pmed24 500 100 30,715 29,478 4.03 28533.80 3.20 No No
pmed25 500 167 13,736 13,377 2.61 12502.12 6.54 No No
pmed26 600 5 199,503 199,503 0.00 199503.00 0.00 Yes Yes
pmed27 600 10 147,401 147,096 0.21 147096.00 0.00 Yes Yes
pmed28 600 60 52,546 51,239 2.49 51030.45 0.41 No Yes
pmed29 600 120 27,143 25,848 4.77 25335.36 1.98 No No
pmed30 600 200 12,755 12,533 1.74 11671.78 6.87 No No
pmed31 700 5 172,938 171,963 0.56 171963.00 0.00 Yes Yes
pmed32 700 10 157,283 157,177 0.07 157177.00 0.00 Yes Yes
pmed33 700 70 49,432 47,255 4.40 47188.77 0.14 No Yes
pmed34 700 140 22,807 21,981 3.62 21461.21 2.36 No Yes
pmed35 800 5 160,564 160,564 0.00 160541.91 0.01 No No
pmed36 800 10 153,164 152,914 0.16 152914.00 0.00 Yes Yes
pmed37 800 80 50,665 48,246 4.77 48195.16 0.11 No Yes
pmed38 900 5 161,102 161,102 0.00 161102.00 0.00 Yes Yes
pmed39 900 10 126,553 125,175 1.09 125175.00 0.00 Yes Yes
pmed40 900 90 44,596 43,035 3.50 42877.82 0.37 No No

362 E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 356–363
clusters. On the other hand, for larger values of p, a significant
lower value for E-MSSC is given, yielding different clusters than
those obtained by V-MSSC.

2. In 12 out of 40 instances, the prototypes of E-MSSC and V-MSSC
coincide (see column Node). On the other hand, in 19 instances
out of 40 (47.5%, see column Same), the clusters obtained by the
two methods are the same. This ratio is much lower than the
one reported by the authors in [12], whose preliminary results
on clustering on the line showed that 80% of the cases consid-
ered gave the same partitions.

3. The classical p-median problem usually yields very good solu-
tions for V-MSSC, as seen when comparing columns V-MS and
V-MSS, so they could be used almost indifferently to build the
starting solution of VNS-2.

6. Concluding remarks

Minimum Sum-of-Squares Clustering problem (MSSC) in Rn is
probably the most studied clustering problem in the literature.
Only recently such MSSC model has been extended to networks,
[12], which is a more natural framework for clustering problems
from complex systems. In this paper we suggest a basic Variable
Neighborhood Search approach for solving E-MSSC, namely, the
MSSC when prototypes can be located at vertices or on edges of
the network.

Perturbations of the incumbent solution are obtained by using
the symmetric difference between two sets (solutions) of common
cardinality p, i.e., a random solution at distance k from the incum-
bent solution is the one that has k different elements. The well-
known k-means algorithm is adapted to be used as a local-search
routine.

Different VNS-based heuristics developed differ in the way ini-
tial solutions are generated. From the computational analysis per-
formed on test instances, several conclusions can be obtained.
First, it appears that approximately in 52% of the cases, clusters ob-
tained by E-MSSC and V-MSSC (when prototypes are restricted to
be nodes of the network) are different. In addition, finding a good
initial solution is shown to be crucial for getting a final solution of
good quality.

Several possible directions for future work exist. First, new VNS-
based heuristics for solving E-MSSC problem, such as General VNS
or Decomposition VNS can be developed; second, the proposed
methodology can be extended to similar and more complex clus-
tering models on networks, such as those including additional con-
straints; third, further testing of our VNS-based heuristic on larger
and real world test instances would allow to support strongly our
conclusions; finally, while the paper assumes the number p of clus-
ters to be fixed, one may consider p as a decision variable, as done
in [11] for the p-median problem.

Acknowledgements

This research is partially supported by the bilateral Serbian–
Spanish project AIB2010SE-00318, and projects MTM2009-14039,

E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 356–363 363
MTM2012-36163 (Ministry of Science and Innovation, Spain),
FQM-329 (Junta de Andalucia, Spain) and EU European Regional
Development Funds. The last two authors are also partially sup-
ported by Project #172010, financed by Serbian Ministry of
Sciences.

References

[1] Y.-Y. Ahn, J.P. Bagrow, S. Lehmann, Link communities reveal multiscale
complexity in networks, Nature 466 (2010) 761–764.

[2] D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean sum-of-
squares clustering, Machine Learning 75 (2009) 245–248.

[3] D. Aloise, P. Hansen, L. Liberti, An improved column generation algorithm for
minimum sum-of-squares clustering, Mathematical Programming 131 (2012)
195–220.

[4] P. Avella, A. Sassano, On the p-median polytope, Mathematical Programming
89 (2001) 395–411.

[5] P. Avella, A. Sassano, I. Vasil’ev, Computational study of large-scale p-median
problems, Mathematical Programming 109 (2007) 89–114.

[6] A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, The architecture of
complex weighted networks, Proceedings of the National Academy of Sciences
of the United States of America 101 (2004) 3747–3754.

[7] M. Barthélemy, Spatial networks, Physics Reports 499 (2011) 1–101.
[8] J.E. Beasley, A note on solving large p-median problems, European Journal of

Operational Research 21 (1985) 270–273.
[9] J. Brimberg, P. Hansen, N. Mladenović, E. Taillard, Improvements and

comparison of heuristics for solving the multisource Weber problem,
Operations Research 48 (2000) 444–460.

[10] J. Brimberg, N. Mladenović, Degeneracy in the multi-source Weber problem,
Mathematical Programming 85 (1999) 13–220.

[11] E. Carrizosa, A. Ushakov, I. Vasilyev, A computational study of a nonlinear
minsum facility location problem, Computers and Operations Research 39
(2012) 2625–2633.

[12] E. Carrizosa, N. Mladenović, R. Todosijević, Sum-of-squares clustering on
networks, Yugoslav Journal of Operations research 21 (2011) 157–161.

[13] E. Carrizosa, A. Al-Guwaizani, P. Hansen, N. Mladenović, Degeneracy of
Harmonic Means Clustering. Working paper, 2013.

[14] S. Fortunato, Community detection in graphs, Physics Reports 486 (2010) 75–
174.

[15] S.L. Hakimi, Optimum distribution of switching centers in a communication
network and some related graph theoretic problems, Operations Research 13
(1965) 462–475.
[16] P. Hansen, B. Jaumard, Cluster Analysis and Mathematical Programming,
Mathematical Programming. 79 (1997) 191–215.

[17] P. Hansen, N. Mladenović, Variable neighborhood search for the p-median,
Location Science 5 (1997) 207–226.

[18] P. Hansen, N. Mladenović, J-Means: a new local search heuristic for minimum
sum-of-squares clustering, Pattern Recognition 34 (2001) 405–413.

[19] P. Hansen, N. Mladenovic, J.A. Moreno-Pérez, Variable neighbourhood search:
methods and applications, 4OR 6 (2008) 319–360.

[20] P. Hansen, N. Mladenovic, J.A. Moreno-Pérez, Variable neighbourhood search:
methods and applications, Annals of Operation Research 175 (2010) 367–407.

[21] P. Hansen, N. Mladenović, E. Taillard, Heuristic solution of the multisource
Weber problem as a p-median problem, Operations Research Letters 22 (1998)
55–62.

[22] P. Hansen, E. Ngai, B. Cheung, N. Mladenović, Analysis of global k-means, an
incremental heuristic for minimum sum-of-squares clustering, Journal of
Classification 22 (2005) 287–310.

[23] J.A. Hartigan, Clustering Algorithms, John Wiley & Sons Inc., New York, 1975.
[24] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,

second ed., Springer, New York, 2009.
[25] J.N. Hooker, R.S. Garfinkel, C.K. Chen, Finite dominating sets for network

location problems, Operations Research 39 (2001) 100–118.
[26] M. Labbé, D. Peeters, J.F. Thisse, Location on networks, in: M.O. Ball, T.L.

Magnanti, C.L. Monma, G.L. Nemhauser (Eds.), Handbooks in OR & MS,
Elsevier, Amsterdam, 1995, pp. 551–624.

[27] P. Mirchandani, R. Francis, Discrete Location Theory, Wiley-Interscience, New
York, 1990.

[28] N. Mladenović, J. Brimberg, P. Hansen, J.A. Moreno-Pérez, The p-median
problem survey of metaheuristic approaches, European Journal of Operational
Research 179 (2007) 927–939.

[29] N. Mladenović, P. Hansen, Variable neighborhood search, Computers and
Operations Research 24 (1997) 1097–1100.

[30] N. Mladenović, R. Todosijević, D. Urošević, An efficient General variable
neighborhood search for large TSP problem with time windows, Yugoslav
Journal of Operations Research 23 (in press), http://yujor.fon.bg.ac.rs/
index.php/journal/article/view/1008/501.

[31] M.C.V. Nascimento, A. de Carvalho, Spectral methods for graph clustering-A
survey, European Journal of Operational Research 211 (2) (2011) 221–231.

[32] J. Reese, Solution methods for the p-median problem: an annotated
bibliography, Networks 48 (2006) 125–142.

[33] H. Späth, Cluster Analysis Algorithms for Data Reduction and Classification of
Objects, Ellis Horwood, Chichester, 1980.

[34] A. Veremyev, V. Boginski, Identifying large robust network clusters via new
compact formulations of maximum k-club problems, European Journal of
Operational Research 218 (2) (2012) 316–326.

http://refhub.elsevier.com/S0377-2217(13)00341-X/h0005
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0005
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0010
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0010
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0015
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0015
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0015
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0020
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0020
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0025
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0025
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0030
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0030
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0030
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0035
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0040
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0040
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0045
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0045
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0045
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0050
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0050
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0055
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0055
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0055
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0060
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0060
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0070
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0070
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0075
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0075
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0075
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0080
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0080
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0085
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0085
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0090
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0090
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0095
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0095
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0100
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0100
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0105
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0105
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0105
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0110
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0110
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0110
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0115
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0115
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0120
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0120
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0120
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0125
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0125
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0130
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0135
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0135
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0135
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0140
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0145
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0145
http://yujor.fon.bg.ac.rs/index.php/journal/article/view/1008/501
http://yujor.fon.bg.ac.rs/index.php/journal/article/view/1008/501
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0150
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0150
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0155
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0155
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0160
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0160
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0160
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0165
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0165
http://refhub.elsevier.com/S0377-2217(13)00341-X/h0165

	Variable neighborhood search for minimum sum-of-squares clustering on networks
	1 Introduction
	2 Problems statement
	3 Structural properties
	4 Variable neighborhood search for solving E-MSSC
	4.1 Building an initial solution
	4.2 Shaking
	4.3 Local search
	4.4 A VNS heuristic for E-MSSC

	5 Computational results
	5.1 Comparison of V-MSSC vs. E-MSSC

	6 Concluding remarks
	Acknowledgements
	References

