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Abstract: There are some specific features of the non-radial DEA (data envelopment 

analysis) models which cause some problems under the returns to scale measurement. In the 

scientific literature on DEA, some methods were suggested to deal with the returns to scale 

measurement in the non-radial DEA models. These methods are based on using Strong 

Complementary Slackness Conditions in the optimization theory. However, our investigation 

and computational experiments show that such methods increase computational complexity 

significantly and may generate “strange” results. In this paper, we propose and substantiate a 

direct method for the returns to scale measurement in the non-radial DEA models. Our 

computational experiments documented that the proposed method works reliably and 

efficiently on the real-life data sets. 
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1. Introduction  

The measurement of scale properties of frontier functions estimated using DEA 

models may in some cases be problematic.  In particular the non-radial DEA models (Banker 

et al., 2004) can possess some specific features that give rise to estimation problems. First, 

multiple reference sets may exist for a production unit. Second, multiple supporting 

hyperplanes may occur on optimal units of the frontier. Third, multiple projections (a 

projection set) may occur in the space of input and output variables. All these features cause 

certain difficulties under measurement of returns to scale of production units.  

Banker et al. (2004) proposed a two-stage approach to determine returns to scale in the 

non-radial models. Sueyoshi and Sekitani (2007) showed that this approach may generate 

incorrect results in some cases. An interesting approach was proposed for measurement of 

returns to scale based on using strong complementary slackness conditions (SCSC) in the 

non-radial DEA models (Sueyoshi and Sekitani, 2007).  

However, our theoretical consideration and computational experiments show that the 

SCSC non-radial model may not be efficient from the computational point of view. The SCSC 

non-radial model generates ill-conditioned basic matrices during the solution process, which 

results in “strange results” that do not coincide with the optimal solution of the corresponding 

non-radial DEA model2. This naturally contradicts the optimization theory. 

In our work we propose a two-stage approach to measure returns to scale in the non-

radial DEA models. At first stage, an interior point, belonging to the optimal face, is found 

using a special elaborated method. In Krivonozhko et al. (2012b) it was proved that any 

interior point of a face has the same returns to scale as any other interior point of this face. At 

the second stage, we propose to determine the returns to scale at the interior point found in the 

first stage with the help of Banker and Thrall’s (1992) method or using the direct method of 

Førsund et al. (2007). 

Our computational experiments documented that the proposed approach is reliable and 

efficient for solving real-life DEA problems. 

The plan of the paper is to state the problem to be investigated in Section 2, and to 

develop a direct method for discovering all units belonging to the minimum face in Section 3.  

                                                 
2 In Krivonozhko et al. (2012a) this was demonstrated for the radial Banker et al. (1984) (BCC hereafter)  DEA 
model. Because the frontier function is identical for the radial and non-radial models the computational problems 
encountered with the radial model will also occur for the non-radial model. 
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Section 4 reports some of the numerical experiments with the non-radial model specification 

based on data for Russian banks. Section 5 concludes. 

 

2. Problem statement  

The non-radial DEA model can be written in the following form (Banker et al., 2004; 

Sueyoshi and Sekitani, 2007) 

)(max   SCSCh TT  
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where ),,( 1 mjjj xxX   and ),,( 1 rjjj yyY   represent the observed inputs and outputs of 

production units ),( jj YX , nj ,,1 , ),,( 1
  mssS   and ),,( 1

  rssS   are vectors of 

slack variables. The superscript «T» indicates a vector transpose. The components of the 

objective-function vectors C  and C  are specified as follows: 
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The model (1) is also called range-adjusted model (RAM) (Cooper et al., 2000). 

In the model (1), an efficiency score for unit ),( oo YX  is evaluated, where ),( oo YX  is 

any production unit from the set ),( jj YX , nj ,,1 . If the optimal value *h  of the model is 

equal to zero, then unit ),( oo YX  is considered efficient, if 0* h , then the unit is 

inefficient (Banker et al., 2004). 

The dual problem to the model (1) is written in the form: 

 0min uYuXv o
T

o
T   
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subject to 
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where ),( 1 mvvv   and ),,( 1 ruuu   are vectors of dual variables associated with the first 

and the second group of constraints of problem (1), 0u  is a free variable associated with the 

convex constraint.  

In the papers (Sueyoshi and Sekitani, 2007, 2009), it was proposed to use strong 

complementary slackness conditions from the optimization theory in order to find the set of 

optimal solutions in the primal and dual space. The SCSC non-radial model (Sueyoshi and 

Sekitani, 2007) is written in the following form 
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The first six conditions are from the primal model (1), the next three conditions are from 

the dual problem (2), and the tenth condition provides the equality of the objective functions 

of the primal and dual problems. The last three conditions express the SCSC constraints. In 

order to secure that strong complementarity is obtained the variable   is entered as the 

objective function in (3). 

In paper (Sueyoshi and Sekitani, 2007), the problem (3) is used in order to find the 

minimum face that contains the set of optimal solutions (a projection set) on the efficient 

hypersurface of set T  in the space of input and output variables. Next, two additional 

fractional-linear optimization problems are determined for measurement of returns to scale. 

The SCSC non-radial model is very interesting as a theoretical idea. However, our 

computational experiments show that the model (3) may generate strange results even for 

medium-size problems using well-reputed optimization software. The size of the model (3) 

increases significantly in comparison with the model (1). Indeed, the size of the model (3) is 

equal to )222()2233(  nrmnrm , where m  is the number of inputs, r  is the 
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number of outputs, and n  is the number of production units. Remember that the size of the 

model (1) is equal to )()1( nrmrm  , and n  is usually much greater than )( rm   in 

real-life models. Moreover, economic interpretation of some constraints of the model (3) does 

not make sense because in model (3) one has to add variables measured in quite different 

units. The reasons mentioned above may result in ill-conditioned basic matrices (Wilkinson, 

1965) during the solution process. This may generate “strange results” in the optimal solution. 

In order to investigate our suspicions about what will happen when using larger real 

datasets, we conducted computational experiments using two middle-sized models3. For the 

first model, call it Model 1, we took the data for electricity utilities in Sweden 1987; see 

Førsund et al. (2007). We used the total amount of low- and high-voltage electricity in MWh 

delivered to the customers and the number of low- and high-voltage customers served as the 

four outputs. On the input side we use kilometers of low- and high-voltage power lines and 

total transformer capacity in kVA as the capital variables. Labour is measured in full time 

equivalent employees. The number of production units in this model is 163. 

For Model 2 we took the data from 920 Russia bank’s financial accounts for January 

2009, where we used the following variables as inputs: working assets, time liabilities, and 

demand liabilities. As output variables we took: equity capital, liquid assets, fixed assets.  

In the computational experiments we used the well-reputed optimization software 

CPLEX, the software Mathematica that is very popular among mathematicians, and the 

software FrontierVision, a specially elaborated program for DEA models that enables one to 

visualize the multidimensional frontier with the help of constructing two- and three-

dimensional sections of the frontier. 

It is interesting to note that the three software programs generated identical results when 

solving model (1) on data sets of Model 1 and Model 2. However, the software CPLEX 

produced significant discrepancies between the solution of model (1) and model (3), which 

are described in detail in (Krivonozhko et al., 2012a). 

Observe that the software Mathematica is not intended for solution of large-scale LP 

problems, for this reason this program was not used for the solution of model (3). The 

software FrontierVision was not elaborated for the solution of the model type (3). 

The main discrepancies in solving model (1) and model (3) with the help of the program 

CPLEX (though theoretically optimal solutions of these problems have to coincide) are as 

follows: a) efficiency scores of model (1) and model (3) may differ significantly; b) reference 

sets obtained in the solution of model (3) may contain inefficient units. 

                                                 
3 The same data as utilised in Krivonozhko (2012a). 
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3. Direct method for discovering all units belonging to the minimum 

face 

In the linear programming problem (1), the set of optimal points *  (the set of projections of 

unit ),( oo YX  on the frontier) are situated on the boundary (frontier) of the production 

possibility set T. The boundary consists of a number of faces. 

 Remember that in the DEA models the dimension of face may vary from 0 up 

to )1(  rm , the maximal dimension. Faces of maximal dimension are called facets. Faces of 

0-dimension are known as vertices, 1-dimension as edges. In our exposition, ri stands for the 

relative interior of face . 

 

The solution set *  cannot belong to different faces that do not have common points, 

otherwise interior points of T  would belong to the solution set. Thus, optimal solutions of 

set *  can belong only to the intersection of some faces of the setT . 

Lemma 1. Let two different faces 1 and 2 of the setT intersect. Then faces 1  and 2  

do not have common interior points, i.e.  21 riri . 

The proof of Lemma 1 is given in Appendix. 

Corollary 1. Let two different faces 1  and 2  of the set T intersect. Then only one 

from the following cases occurs: 

(i) One face belongs to the other face entirely, to be precise let 21  , and set 21   

is a part of the boundary of 2 ; 

(ii) Set 21   is a part of the boundary of the face 1  and face 2 , moreover the set 

21   is also a face and its dimension is less than the dimensions of the face 1  or the 

face 2 .  

It was proven in Lemma 1 that an interior point oZ  of face 1  cannot belong to 

intersections of 1ri  and 2ri . However, an interior point oZ  of 1  may belong to 2 . In this 

case face 1  belongs to face 2  entirely and set 21   is a part of the boundary of 2 . This 

can be shown by the same way as in Lemma 1. 

However, if point oZ  belongs to 21   and 21 riri oZ , then set 21   is a part 

of the boundary of the face 1  and the face 2 . 
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From the assertions written above, it follows that faces can intersect only along the 

boundaries of these faces. Taking into account also that the number of faces of the set T  is 

finite, we obtain that there exists a face of minimum dimension min  containing set * . By 

virtue of the non-negativity constraints on slack variables and the specific objective function 

associated with all slack variables in problem (1), set  *  may constitute only some part of 

face min . 

Corollary 2. Face min  is a bounded polyhedral set (polyhedron). 

This assertion follows from the constraints structure of problem (1). 

Now, we proceed to the construction of the procedure that finds all production units 

belonging to the minimum face min  and to the set * . 

Let problem (1), respectively problem (2), be solved by the simplex-method (Dantzig 

and Thapa, 2003) and optimal primal variables },,1,;,,1,;,,1,{ *** rismksnj ikj     

and dual variables };,,1,;,,1,{ *
0

** uriumkv ik    be obtained. 

Determine the following index sets for primal variables 
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Introduce the index sets associated with the dual variables 
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Since the optimal solution is obtained with the help of the simplex-method every non-

basic variable is equal to zero. However, some basic variables may be equal to zero also, then 

the optimal solution is considered degenerate. 

For the dual problem (2) all indices belonging to the set )( *
uv JJJ   contain a basic 

set of indices. However, the set )( *
uv JJJ   may also contain non-basic indices; in this 

case the dual problem (2) is considered degenerate. Thus, the following relations hold 

)()( **
uvByx JJJJIII   , 

where BJ  is a set of optimal basic variables of the problem (1). 
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Variables *
j , *Ij  determine only one point on the minimum face. To find all points 

belonging to the face min  it is necessary to solve additional problems. 

Problem olQ ( *Jl ): 

llf max  

subject to 
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where m
k Ee   and r

i Ee   are identity vectors associated with variables 
ks  and 

is , 

respectively. 

Notice that problem (6) includes only those variables for which the corresponding dual 

constraints hold strictly equations for optimal dual variables (5). According to the dual 

theorems of linear programming, this means that optimal variables of problem (6) will also be 

optimal variables of problem (1). 

The Procedure that finds all production units belonging to the minimum face min and to 

the set *  is described as follows: 

1. Initialize sets *
1, ,oJ JH J J     . If the set JH   is not empty, then go to 

the next step. If set JH  is empty then go to step 3. 

2. Choose index JHl  , if the set JH  is empty, then go to step 3. Solve the 

problem (6). 

If 0* lf , then determine lJJ oo  . If 1* lf , then lJJ  11 . Delete index 

l  from the set lJHJH \ . Go to the beginning of the step.  

If 0* lf , then delete index l  from the set lJHJH \ . Go to the beginning of 

step 2. 

3. Set oJ  determines the set of units belonging to the face min . Set 1J  determines 

the set of units belonging to the set * . 

The Procedure is completed. 
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The standard present-day optimization software generates only one point in the 

multidimensional space as an optimal solution. However, this may be not sufficient in order to 

determine returns to scale on the whole minimum face, since different vertices of the face 

may display different returns to scale. Any unit from set *J  may belong to the minimum face. 

The standard software generates set *J  as a by-product. So, the Procedure enables one to 

check whether some unit from set *J  belongs to the minimum face or not. The validity of this 

assertion is based on the theorems given below. 

After running the Procedure, the minimum face min , containing the optimal set * , can 

be written in the form: 
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However, some points of the set min  may not belong to the set *  on the frontier. The 

set * is written as: 
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The Procedure enables one to find all units belonging to the face min and to the set * . 

The validity of this assertion is based on the following theorems. 

Theorem 1. Let unit rm
t EZ   be an interior point of polyhedron rmE  , let also 

unit rm
p EZ   be any point of this polyhedron, which is distinct from point tZ . Then unit tZ  

can be represented as a convex combination of )1(  rm  units of set   and unit pZ  enters 

this combination with a nonzero coefficient. 

Theorem 2. The optimal value of problem (6) is strictly positive 0* lf  if and only if 

unit ),( ll YX  belongs to the minimum face min  that contains the set * .  

The Proof of Theorems 1 and 2 is given in the Appendix.  

In essence, Theorem 1 says that, if some unit pZ  is a vertex of face min  or belongs to 

the face, then it is necessary that there exists such solution that variable *
p  enters this 

solution with a nonzero coefficient. 

Corollary 3. If the optimal value of problem (6) 1* lf , then unit ),( ll YX  belongs to 

the set * . 
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If 1* lf , then 1* l , this means that *
l  is the only non-negative  -variable in the 

optimal basis, hence unit ),( ll YX  belongs to the set * . 

It was proved in (Krivonozhko et al., 2012b) that interior points of a face have the same 

returns to scale, so it is sufficient to determine returns to scale at any interior point of this 

face. An interior point ),( YX  of the face min  can be chosen as a strong convex combination 

of units from the set oJ , that is 

oj
Jj

j
Jj

jj
Jj

jj JjYYXX
ooo

 


,0,1,,  . 

Returns to scale of unit ),( YX  can be measured by two methods at least. In the first 

(indirect) method (Banker et al., 2004) the BCC model is solved at the first step, the 

dimension of this problem is equal to )()1( nrmrm  , then at the second step two 

additional problems are solved, the dimension of these two problems coincides with the 

dimension of the BCC problem. Returns to scale is determined with the help of dual variables. 

In the second (direct) method (Førsund et al., 2009), an intersection of the set T  and 

two-dimensional plane is constructed with the help of some algorithms at the first step. At the 

second step returns to scale of any point on the graph is measured by using derivatives of this 

graph. 

 

 

Fig. 1. Production function for Unit 618 
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In Figure 1, the production function for unit 618 is depicted, which is constructed as an 

intersection of the two-dimensional plane and six-dimensional  production possibility set T  in 

Model 2 for banks. In Figure 1 point oZ  is the bank that has number 618 in the data set of 

banks. Small circles denote the projections of the actual observations of banks onto the two-

dimensional plane.  In the figure, scale elasticity values (from the left and from the right) are 

shown for three points of the graph 1Z , 2Z , 3Z , respectively. The software FrontierVision 

constructs intersections for any unit, spending less than one second per section, and enables 

one to calculate scale elasticity instantly, hence to measure returns to scale of any points on 

the graph. 

 

4. Computational experiments 

Consider computational experiments with the data set of Model 1 in detail. The problem 

(1) was solved for every unit ),( jj YX , nj ,,1  in Model 1, where every ),( jj YX  was 

inserted in problem (1) instead of ),( oo YX . Next, problem of the form (6) was determined 

on the basis of optimal solution of problem (1) and solved for every *Jj  using the software 

CPLEX. Thus, all production units belonging to min  or to *  were found for every solution 

of problem (1). 

 

Fig. 2. Distribution of  -variables on optimal solutions of problems (1)  

 

Figure 2 represents the dependence of the number of problems of the form (1) on the 

number of  -variables in the optimal basis of problem (1). Remember that the number of 

 -variables in the optimal basis determines the dimension of the face associated with this 
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solution for the bounded face. The dimension of space in Model 1 is equal to 8, so the 

maximal dimension of face is equal to 7; the optimal basis associated with a face of maximal 

dimension has to have eight  -variables in the basis. 

Figure 2 shows that faces of maximal dimension did not appear in optimal solutions of 

problems (1). This fact can be easily explained. The number of faces of the production 

possibility set is a finite number. However, the number of possible directions of vector 

),(  CC  in problem (1) is a non-countable infinite number. So, the possibility of cases, 

where vector ),(  CC  is perpendicular to the face of maximal dimension, is very low. 

As one can see from the figure, the maximal number of faces (62) turned out to have 

dimension 2. 

Computational experiments showed that there are only two cases (for units 75 and 254) 

when a vertex belongs to set min  and *  simultaneously. Consider the first case in detail. 

Solving problem (1) by CPLEX program for unit 75, we obtain the following reference 

set: 

403.0139  , 023.0241  , 574.0246  , 

all other  -variables in the optimal solution are equal to zero. 

Units 139 and 246 display constant returns to scale, unit 241 has increasing returns to 

scale. 

After getting the solution of problem (6) for unit 75, we obtain that only for unit 139 the 

objective function 1*
139 f . This means that unit 139 belongs to min  and *  simultaneously. 

Define the convex combination of units 139, 241 and 246 as artificial unit 1075 

)( 2462411393
1

1075 ZZZZ  . 

 

Fig. 3. Production function for unit 1075 
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Figure 3 represents an intersection of the eight-dimensional production possibility set 

with a two-dimensional plane for unit 1075, where the directions of the plane are determined 

by the input and output vectors of unit 1075. The light and dark points in the figure denote 

projections of units from the reference set onto the two-dimensional plane. 

Figure 3 shows also scale elasticities ),(    for corner points 1Z , 2Z  and artificial 

unit 1075. Projection of unit 241 onto the plane almost coincides with corner point 1Z . It 

follows from the figure that unit 1075 has increasing returns to scale. Since unit 1075 is an 

interior unit of the face formed by units 139, 241 and 246, so points lying on this face display 

increasing returns to scale, see (Krivonozhko et al., 2012b). However, the software could 

generate units 139 plus slacks as optimal solution. If one determined returns to scale only on 

the basis of this information, then all units of the face would display constant returns to scale. 

 

 

Fig. 4. Production function for unit 241 

 

Production function for unit 241 is depicted in Figure 4, where the vectors of the two-

dimensional plane are determined by input and output vectors of unit 241. Again, the dark and 

light points in the figure denote projections of units from the reference set onto the two-

dimensional plane. Left and right scale elasticities (   and  ) are shown also in the figure 

for unit 241, according to their values unit 241 displays increasing returns to scale. 
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Fig. 5. Production function for unit 139 

 

Figure 5 represents production function for unit 139. Left and right scale elasticities 

shown in the figure indicate that this unit displays constant returns to scale. 

Hence, this example show that only an interior point of a face can determine return to 

scale of points lying on this face. 

However, the question arises: What is the ‘payment’ for discovering all vertices of the 

face min ? 

We calculated the number of iterations accomplished by CPLEX software in order to 

solve problem (1) for all units ),( jj YX , nj ,,1 . This number is equal to 2876  

iterations. Next, we calculated the number of iterations accomplished by CPLEX in order to 

solve problems (6) for all units ),( jj YX , nj ,,1 . This number makes up 

 62.01782   iterations in the problems of the type (6). That is really not a heavy burden, 

even for an ordinary notebook. 

It is worth noting that interior unit 1075 of face min  is depicted as a corner point in 

Figure 3. Moreover, the intersection of the two-dimensional face min  and the two-

dimensional plane spanned by input and output vectors of unit 1075 generates just one point 

(unit 1075). This situation is impossible in three-dimensional space. However, such cases do 

exist in the multidimensional case. Let us dwell on this more detail. 

Designate (m+r) by p. Every face of the production possibility set in Euclidean space 

pE belongs uniquely to some minimum affine set.  
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Remember that the affine set Aff  (Rockafellar, 1970) generated by units 

p
lll EYXZ  ),( , AIl , where AI  is a subset of index set nj ,,1 , can be written in the 

following form 













 


numbersrealanyarewhereZZZAff l
Il

l
Il

ll

AA

 ,1, .  (9) 

The affine set Aff  is parallel to the subspace L  (Rockafellar, 1970), passing through 

the origin, which can be written in the form: 













 


numbersrealanyareIsetthefromunitanyisZwhereZZZZL lAp
Il

lpl

A

 ,,)( .  

The dimension of the affine set  Aff  is equal to the dimension of the subspace L. 

Now, we are ready to state the following result. 

Theorem 3. The intersection of the 2-dimensional plane and the k-dimensional affine 

set, 2k , result in a point in the multidimensional space pE only if 2 kp . 

The proof of the theorem is given in the Appendix. 

It follows from Theorem 3 that in the 3-dimensional space the intersection of two 2-

dimensional planes cannot result in a point. In fact, Figure 3 shows that interior artificial unit 

1075 represents in the 8-dimensional space the intersection of the 2-dimensional face  min  

and the 2-dimensional plane spanned by input and output vectors of the unit 1075. 

Finding. The non-radial DEA models possess some specific features. However this is a 

not a problem in order for find returns to scale of the set of optimal points. For this purpose it 

is sufficient to find an interior point of the minimum face that contains the set of optimal 

solutions of problem (1) and to determine returns to scale of this interior point. Such solution 

requires much less computations than to solve problem (1) for the specific unit. 

 

5. Conclusion 

In Sueyoshi and Sekitani (2007; 2009), a method was proposed in order to measure returns to 

scale in the non-radial DEA models using strong complementary slackness conditions. 

However, the size of the SCSC non-radial model (3) increases significantly in comparison 

with the model (1). In particular, for the banks data set the size of basic matrices during the 

solution process becomes ( 18401840 ) instead of ( 77 ) in the model (1). In addition, some 

constraints in model (3) do not make sense from an economic point of view. Unreliable 

solutions may follow due to these reasons. 
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In our method, it is sufficient to solve several problems of the form of model (1), 

however such problems have much less variables than problem (1). Thus, the proposed 

approach is reliable and efficient for solutions of real-life problems. Moreover, it was stressed 

in Sueyoshi and Sekitani (2007) that the method of Banker et al. (2004) cannot always 

generate reliable results because of difficulties described above in the non-radial DEA 

models. However, the method of Banker et al. (2004) can also be used to measure returns to 

scale from our point of view. For this purpose, it is sufficient to take an interior point of the 

minimum face, which can be found by the method proposed in this paper, after this one can 

use the method proposed in Banker et al. (2004). 
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Appendix  

Proof of Lemma 1. Assume that point 21 riri oZ . Since faces 1  and 2  are different, 

then there exists a direction that belongs to face 1  and does not belong to 2  or, on the 

contrary, belongs to 2  and does not belong to 1 . Hence there exist such points 1Z  and 2Z  

that 2211 ZZZo   , 121   , 0, 21  , 1Z  and 2Z  belong to 1ri  and 1Z  and 2Z  do not 

belong to 2ri  or, on the contrary, 1Z  and 2Z  belong to 2ri  and 1Z  and 2Z  do not belong 

to 1ri . Without loss of generality, let 121 ri, ZZ  and 221 ri, ZZ . Therefore point oZ  of 

face 2  can be represented as a convex combination of points 1Z  and 2Z  that do not belong 

to face 2 . This contradiction completes the proof. 

 

Proof of Theorem 1. According to convex analysis (Nikaido, 1968), there exists a unique 

point qZ , that belongs to some face of the polyhedron , and point tZ  can be represented in 

the form 

pqt ZZZ   )1( , 10   .   (A.1) 

Polyhedron   is a bounded set; hence the face is also bounded. 
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Since qZ  belongs to some bounded face of polyhedron , then according to the 

Carathéodory's Theorem (Rockafellar, 1970), point qZ  can be written in the form 





1

'

Jj
jjq ZZ  , 

1
1

' 
Jj

j , 0' j , 1Jj ,    (A.2) 

where set 1J  is a subset of all vertices of the face, and the number of elements in 1J  is less or 

equal to )( rm  .  

It follows from (A.1) and (A.2) that 

p
Jj

jjt ZZZ   
 1

')1( ,    (A.3) 

where 10   . 

From (A.3), we can obtain 

p
Jj

jjt ZZZ   
 1

'' , ''' )1( jj   , 1Jj    (A.4) 

11
1

'' 



Jj

j . 

Hence unit tZ  can be represented as a convex combination (A.4) of units that belong to 

the polyhedron   and unit pZ  enters this combination with a positive coefficient. 

This completes the proof. 

 

Proof of Theorem 2. Let be 0**  llf  . This means that unit ),( ll YX  enters a convex 

combination with a nonzero coefficient that determines some optimal point belonging to set 

* . Hence minll YX ),( . 

Conversely. Take any unit minll YX ),( , where *Jl . Set *J includes indices of 

vertices that form face min . Consider some point *),(  riYX kk . Point ),( kk YX  can be 

represented as a convex combination of units from set min . This convex combination is 

associated with a feasible solution of problem (6), we call it Combination 1. By virtue of 

Theorem 1 there exists such convex combination of points from set min , which includes point 

),( ll YX  with a nonzero coefficient 0l , we call it Combination 2. Substitute this 

Combination 2 into the problem (6) instead of Combination 1, we obtain a feasible solution of 

(6) containing 0l . By optimizing problem (6), we obtain 0*  ll  . 
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This completes the proof. 

 

Proof of Theorem 3. The 2-dimensional plane in the p-dimensional space pE is 

determined by )2( p  linear independent equations. The k-dimensional affine set in the p-

dimensional space pE is determined by )( kp  linear independent equations. So, the 

intersection of 2-dimensional plane and k-dimensional affine space is determined by the 

system of )2(  pkp linear equations. 

This system determines a point in the multidimensional space pE only if the following 

conditions hold: 

a) The number of equations of the system ppkp  )2(  or 2 kp ; 

b) The rank of this system of linear equations is equal to p. 

Hence the intersection of the 2-dimensional plane and the k-dimensional affine set may 

result in a point in the multidimensional space. 

This completes the proof. 
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