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Abstract

Two-stage stochastic linear programming is a classical model in operations research. The

usual approach to this model requires detailed information on distribution of the random

variables involved. In this paper, we only assume the availability of the first and second

order moments information of the random variables. By using duality of semi-infinite pro-

gramming and adopting a linear decision rule, we show that a deterministic equivalence

of the two-stage problem can be reformulated as a second-order cone optimization prob-

lem. Preliminary numerical experiments are presented to demonstrate the computational

advantage of this approach.

Keywords: Stochastic programming, Linear decision rule, Second order cone

optimization

1. Introduction

Many decision-making problems that involve uncertainty are modeled as stochastic

programs. Traditionally, stochastic optimization models require detailed information on

the probability distribution of the random variables. Under such assumptions, the deci-

sion makers seek to minimize the aggregated expected cost over the multi-stage planning

period. In order to solve the stochastic optimization problems, one often resorts to Monte

Carlo sampling approximation approaches, which can be very challenging in practice. See

Birge (1997), Shapiro (2001), and Lin and Fukushima (2010) for details in this regard.

1This research is partially supported by the Provost Chair Grant of School of Business and the Centre
for Maritime Studies at National University of Singapore.
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In fact, such assumption may not be applicable at all in practice because the required

probability information of the underlying uncertainties is almost never available in real

world environments.

Motivated by recent development in risk measure theory and robust optimization, the

aim of this paper is to demonstrate that, for the traditional two-stage stochastic pro-

gramming model with fixed recourse, one could consider a new risk measure other than

the expected cost to avoid requiring detailed distribution information and the “curse of

dimensionality”. We consider a worst case cost model which is formulated as a mini-

max stochastic optimization problem over a family of possible probability measures of the

stochastic parameters. In the terminology of risk measure theory, this family of distribu-

tions essentially defines a so-called “risk envelope” and the worst case cost defined by this

risk envelope is a coherent risk measure in the basic sense, see Föllmer and Schied (2002),

Lüthi and Doege (2005), and Rockafellar (2007). Recent works of Bertsimas et al (2010),

Bertsimas and Brown (2009), and Natarajan et al. (2009) disclosed connections between

risk measures and uncertainty sets in robust optimization. Hence the models in this pa-

per, in a sense, could be considered as a robust stochastic programming model. To be

self-contained, also for ease of understanding, our exposition does not require knowledge

on risk measure theory or robust optimization. We deal with the stochastic optimiza-

tion model from a practical point of view; namely, we seek to minimize the worst-case

aggregated expected cost that depends on first and second moment information of the

random variables. The idea bears certain similarity to the so-called “Distributionally Ro-

bust Stochastic Program (DRSP)”, which was introduced by Scarf (1958), and had been

studied by Landau (1987), Dupacova (1987), Kall and Wallace (1994), and Delage and

Ye (2010) for example.

Different from the traditional DRSP approach, we only make modest assumptions on

the distributional information. Such assumptions involve means, variations, and supports

of the random variable, which can be estimated from the historical data of the uncertain

parameters. We show that the resulting models are equivalent to second-order cone opti-

mization problems (SOCPs). Consequently, it is computationally tractable and allows us

to apply the state-of-the-art SOCP solvers in computation.

In order to derive meaningful results, we need a linear decision rule (explained in

Section 2.1). Although such assumption is subject to criticism, it is interesting to know

that how much we could gain from these assumptions.

The main technical tool used in our exploration is linear programming (LP) duality

both in finite and infinite (probabilistic) spaces together with quadratic programming du-

ality. For a good introduction to LP duality in infinite-dimensional spaces, we recommend
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the book of Anderson and Nash (1987). The book of Rockafellar (1970) contains duality

theory for quadratic and convex programming.

The rest of this paper is organized as follows. In Section 2, we establish the optimiza-

tion model of the two-stage stochastic programming problem with incomplete information

by using the linear decision rule and we investigate deterministic tractable approximation

to this model. Section 3 contains numerical results with certain important observations.

Section 4 concludes the paper.

Notations. We denote a random variable, x̃, with the tilde sign. Matrices and vectors

are represented as upper and lower case letters respectively. If x is a vector, we use the

notation xi to denote the ith component of the vector. For any two vectors x, y ∈ <l, the

notation x ≤ y means xi ≤ yi for all i = 1, . . . , l. A random vector is represented by its

support Ω and a probability measure P on a σ-algebra Θ of events. We use EP(x̃) and

EP(x̃
2), respectively, to denote the first and second order moments of x̃ under P.

2. Problem Formulation

Consider the following classical two-stage stochastic programming problem with fixed

recourse:

min
x∈X

{
c′x + EP[Q(x, z̃)]

}
(2.1)

where the apostrophe (′) stands for the transpose and

Q(x, z) = min
y

d′y

s. t. A(z)x + Dy = b(z),

y ≥ 0,

where x ∈ <n is the vector of first-stage decision variables subject to a feasible region

X ⊆ <n while d ∈ <k, b(z) ∈ <l, A(z) ∈ <l×n are second-stage data, D ∈ <l×k represents

the fixed recourse matrix. Here z̃ is random vector with a support Ω ⊂ <m while A(z̃)

and b(z̃) are the associated uncertain data and P is the probability measure of z̃. In

addition, y ∈ <k represents the decision variables of the second-stage (recourse) problem

with respect to a realization z of z̃.

To deal with (2.1), we need assume P is known and then apply Monte Carlo simulation

or sample average approximation method to solve the corresponding problem. However,

this assumption is rather strong since it is often impossible to know the exact distribution.

Moreover, the number of scenarios can grow exponentially with respect to the dimension
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of z̃ (the so-called “curse of dimensionality”), which often makes Problem (2.1) compu-

tationally intractable. It is therefore reasonable to consider a stochastic programming

model in which z̃ is structured and only certain partial information on z̃, such as the first

and second moments, is known.

2.1. Assumption on Affine Dependence of Uncertain Data – The Linear Decision Rule

We assume the uncertain data b(z̃) and A(z̃), together with the (recourse) vector y,

in (2.1) are affinely dependent on the random vector z̃, namely

y(z̃) = y0 +
m∑

j=1

z̃jy
j, b(z̃) = b0 +

m∑
j=1

z̃jb
j, and A(z̃) = A0 +

m∑
j=1

z̃jAj, (2.2)

where, bj ∈ <l, and Aj ∈ <l×n, j = 0, 1, . . . ,m, are deterministic values given in advance.

Since each yj is a k-dimensional vector, we define the k × (m + 1) matrix Y as

Y = [y0, y1, ..., ym] = [y0, Y−0] ∈ <k ×<k×m,

and denote the qth row vector of Y−0 by yq, i.e.,

yq = [y1
q , ..., y

m
q ]′ ∈ <m.

There is no further assumption on z̃ at this moment except that we assume the support

of z̃ is a finite box, i.e.,

Ω = {z ∈ <m : −∞ < −` ≤ z ≤ h < +∞}.

The above affine-dependence assumption, also called the linear decision rule, is often

adopted in dealing with the uncertainties in robust optimization models. See, e.g., Ben-

Tal and Nemirovski (2002). Chen et al. (2008) used it in the context of robust stochastic

programming. Chen et al. (2010) used it in dealing with joint chance constraints. Note

also that the same name of linear decision rule has been adopted in production planning

with a totally different concept, see, e.g., Vollmann et al. (2005).

It is easy to see that if Ω is full-dimensional (that is, −` < h), then the following

equivalence is valid.

A(z)x + Dy(z) = b(z), ∀z ∈ Ω ⇐⇒ Ajx + Dyj = bj, j = 0, 1, ...,m.

Moreover, by strong duality of linear programming, we may obtain the following equiv-

alence.

y(z) ≥ 0, ∀z ∈ Ω ⇐⇒
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∃sq, tq ∈ <m
+ such that y0

q − `′sq − h′tq ≥ 0 and sq − tq ≤ yq, ∀q = 1, ..., k.

Therefore, under the linear decision rule, we have

E[Q(x, z̃)] = Ez̃

[
min
Y,s,t

d′y0 +
m∑

j=1

d′yj z̃j
]

(2.3)

s. t. Ajx + Dyj = bj, j = 0, 1, ...,m,

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq ≤ yq, q = 1, ..., k,

sq, tq ≥ 0, q = 1, . . . , k,

where s = (s1, . . . , sk)
′ and t = (t1, . . . , tk)

′.

Remark. It can be seen the boundedness assumption on Ω is not essential. If some of the

`js or hjs are infinite, the linear structure of the objective function and the constraints of

(2.3) will remain.

2.2. Assumptions on Distributions of z̃

It is often difficult to obtain or use exact distribution of the random vector z̃ due to

• absence of statistical data,

• unreliable measure of data, and

• the difficulty to describe multi-dimensional distribution (say, computing the proba-

bility of an event in high-dimension spaces);

which leads us to the following consideration. Since the information on first and second-

order moments of z̃ are relatively easy to estimate from historical data, we may assume

that z̃ satisfies some first and second order moment constraints. In particular, let F
denote the family of probability measures of z̃ whose moments are so constrained that

F :=
{
P : P(z̃ ∈ Ω) = 1, EP(z̃j) = µj, EP(z̃

2
j ) ≤ ηj, j = 1, . . . ,m

}
,

where µjs and ηjs are prespecified constants. In the two-stage stochastic optimization

model (2.1), we consider the worst case of the recourse value EP[Q(x, z̃)] among all P ∈ F
and select x in such a way that the aggregated worst case cost is minimized. In other

words, we are concerned with the following “robust version” of Problem (2.1).

min
x∈X

{
c′x + max

P∈F
EP[Q(x, z̃)]

}
. (2.4)
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In view of (2.3), the internal problem of (2.4) maxP∈F EP[Q(x, z̃)] can be explicitly

written as

max
P

EP

[
min
Y,s,t

(
d′y0 +

m∑
j=1

d′yj z̃j

)]
(2.5)

s. t. Ajx + Dyj = bj, j = 0, 1, ...,m,

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq ≤ yq q = 1, ..., k,

EP(z̃j) = µj, j = 1, . . . ,m,

EP(z̃
2
j ) ≤ ηj, j = 1, . . . ,m,

P{z̃ ∈ Ω} = 1,

sq, tq ≥ 0, q = 1, . . . , k.

This is a semi-infinite program in dual form as defined in Anderson and Nash (1987).

2.3. SOCP Reformulation

Using the duality theory of linear optimization in probability spaces (see Anderson

and Nash (1987), see also Vandenberghe et al. (2007) for some examples), the dual of

Problem (2.5) is

min
v0,v,V,Y,s,t

v0 + µ′v + η′V (2.6)

s. t. v0 +
m∑

j=1

vjzj +
m∑

j=1

Vjz
2
j ≥ min

Y,s,t

(
d′y0 +

m∑
j=1

d′yjzj

)
, ∀ z ∈ Ω,

Ajx + Dyj = bj, j = 0, 1, ...,m,

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq ≤ yq, q = 1, ..., k,

V, sq, tq ≥ 0,

where v0 ∈ <, v = (v1, ..., vm)′, V = (V1, ..., Vm)′ ∈ <m, µ = (µ1, ..., µm)′, and η =

(η1, ..., ηm)′. Under suitable conditions, strong duality holds. One of such conditions is

the generalized Slater condition, which says that there exists a strictly feasible solution

for all z ∈ Ω and the optimal value of the dual problem is finite. For ease of exposition, we

simply assume strong duality holds between (2.5) and (2.6). On the other hand, according

to (2.6), model (2.4) is actually a “min-min” problem. Therefore, the two-stage problem

with incomplete information on uncertainty (2.4) can be written as

min
x,Y,s,t,v0,v,V

c′x + v0 + µ′v + η′V (2.7)
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s. t. v0 +
m∑

j=1

vjzj +
m∑

j=1

Vjz
2
j ≥ min

Y,s,t

(
d′y0 +

m∑
j=1

d′yjzj

)
, ∀ z ∈ Ω, (2.8)

Ajx + Dyj = bj, j = 0, 1, ...,m, (2.9)

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k, (2.10)

sq − tq ≤ yq, q = 1, ..., k, (2.11)

V, sq, tq ≥ 0, q = 1, ..., k, x ∈ X. (2.12)

Lemma 2.1. Let

Π := {(Y, s, t) : ∃x ∈ X such that constraints (2.9)–(2.12) are satisfied}

Assume that one of the sets Ω and Π is compact. Then Problem (2.7)–(2.12) is equivalent
to

minx,Y,s,t,v0,v,V c′x + v0 + µ′v + η′V

s. t. v0 +
∑m

j=1 vjzj +
∑m

j=1 Vjz
2
j ≥ d′y0 +

∑m
j=1 d′yjzj, ∀ z ∈ Ω,

Ajx + Dyj = bj, j = 0, 1, ...,m,
y0

q − `′sq − h′tq ≥ 0, q = 1, ..., k,
sq − tq ≤ yq, q = 1, ..., k,
V, sq, tq ≥ 0, q = 1, ..., k, x ∈ X.


(2.13)

Proof. Constraint (2.8) can be written as follows.

∀z ∈ Ω, ∃(Y, s, t) ∈ Π : v0 +
m∑

j=1

vjzj +
m∑

j=1

Vjz
2
j −

(
d′y0 +

m∑
j=1

d′yjzj

)
≥ 0,

or equivalently

min
z∈Ω

max
(Y,s,t)∈Π

{
v0 +

m∑
j=1

vjzj +
m∑

j=1

Vjz
2
j −

(
d′y0 +

m∑
j=1

d′yjzj

)}
≥ 0.

The above objective function is convex in z and concave in (Y, s, t) and both sets, Ω and

Π, are closed and convex. By Sion’s minimax theorem [21], as long as Ω or Π is compact,

we have

min
z∈Ω

max
(Y,s,t)∈Π

{
v0 +

m∑
j=1

vjzj +
m∑

j=1

Vjz
2
j −

(
d′y0 +

m∑
j=1

d′yjzj

)}

= max
(Y,s,t)∈Π

min
z∈Ω

{
v0 +

m∑
j=1

vjzj +
m∑

j=1

Vjz
2
j −

(
d′y0 +

m∑
j=1

d′yjzj

)}
.
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The constraint (2.8) is therefore equivalent to

∃(Y, s, t) ∈ Π, ∀z ∈ Ω : v0 +
m∑

j=1

vjzj +
m∑

j=1

Vjz
2
j −

(
d′y0 +

m∑
j=1

d′yjzj

)
≥ 0,

which proves the lemma.

We next show that the problem (2.13) can be formulated as a second-order cone

program.

Proposition 2.1. The feasible set of Problem (2.13) is second-order cone (SOC) repre-
sentable. Consequently, Problem (2.4) can be reformulated as an SOCP.

Proof. The feasible set of (2.13) can be equivalently written as

v0 − d′y0 +
∑m

j=1(vj − d′yj)zj +
∑m

j=1 Vjz
2
j ≥ 0, ∀z ∈ Ω,

Ajx + Dyj = bj, j = 0, 1, ...,m,

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq ≤ yq, q = 1, ..., k,

V, sq, tq ≥ 0, q = 1, ..., k, x ∈ X.


(2.14)

The first constraint in (2.14) is equivalent to the following

min
z

(
v0 − d′y0 +

m∑
j=1

(vj − d′yj)zj +
m∑

j=1

Vjz
2
j : −` ≤ z ≤ h

)
≥ 0. (2.15)

Fix Vj, vj, yj, the left hand side of (2.15) is a separable convex quadratic program in z

over a box. By strong duality of convex quadratic programming and the separability of

variables, we have that (2.15) is equivalent to

max
m∑

j=1

[
−hjλj − `jνj + Vjz

2
j + (vj − d′yj + λj − νj)zj

]
+ v0 − d′y0 ≥ 0 (2.16)

s. t. λj, νj ≥ 0, j = 1, ...,m,

2Vjzj + (vj − d′yj + λj − νj) = 0, j = 1, ...,m, (2.17)

where λj, νj, j = 1, . . . ,m, are dual variables.

If all Vj > 0, we solve zj from (2.17) and substitute the solution into (2.16) to obtain

max
m∑

j=1

[
−hjλj − `jνj − (vj − d′yj + λj − νj)

2/(4Vj)
]
+ v0 − d′y0 ≥ 0

s. t. λj, νj ≥ 0, j = 1, ...,m,
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which is equivalent to

m∑
j=1

[−hjλj − `jνj − uj] + v0 − d′y0 ≥ 0, (2.18)

uj, λj, νj ≥ 0, j = 1, ...,m, (2.19)

(vj − d′yj + λj − νj)
2 ≤ 4Vjuj, j = 1, ...,m, (2.20)

where uj, j = 1, . . . ,m, are auxiliary variables.

If some Vj = 0, it can be directly verified that conditions (2.18)-(2.20) are also suffi-

cient and necessary for the optimality of Problem (2.16)-(2.17). Thus, Problem (2.13) is

equivalent to

min
u,v0,v,V,x,Y,s,t,λ,ν

c′x + v0 + µ′v + η′V

s. t.
m∑

j=1

[−hjλj − `jνj − uj] + v0 − d′y0 ≥ 0,

(vj − d′yj + λj − νj)
2 ≤ 4Vjuj, j = 1, ...,m,

Ajx + Dyj = bj, j = 0, 1, ...,m, (2.21)

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq ≤ yq, q = 1, ..., k,

V, λ, ν, u ≥ 0, sq, tq ≥ 0, q = 1, . . . , k, x ∈ X.

The problem (2.21) is an SOCP since we can reformulate (2.21) as follows.

min
u,v0,v,V,x,Y,s,t,λ,ν

c′x + v0 + µ′v + η′V

s. t. 1′u + d′y0 + h′λ + `′ν − v0 ≤ 0,∥∥∥∥∥
(

vj − d′yj + λj − νj

Vj − uj

)∥∥∥∥∥ ≤ Vj + uj, j = 1, ...,m,

Ajx + Dyj = bj, j = 0, 1, ...,m, (2.22)

`′sq + h′tq − e′qy
0 ≤ 0, q = 1, ..., k,

sq − tq − Y ′
−0eq ≤ 0, q = 1, ..., k,

V, u, λ, ν ≥ 0, sq, tq ≥ 0, q = 1, . . . , k,

x ∈ X,

where 1 = (1, 1, . . . , 1)′ ∈ <m, eq = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ <k, q = 1, . . . , k.
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Remark. In the above analysis, the support Ω of z̃ is assumed to be a finite box. In fact,

Ω could be in a more general form like a bounded full-dimensional polytope which could

be defined by a finitely many affine inequalities, i.e.,

Ω = {z ∈ <m : Mz ≤ g}.

With a similar manner, we can derive an SOCP equivalence of the corresponding opti-

mization model as well.

3. Numerical Experiments

To illustrate the proposed worst-case optimization approach, we have carried out nu-

merical tests on the corresponding SOCP reformulation using a two-stage stochastic pro-

gramming example and its variations. In this section, we report some preliminary nu-

merical results. The tests are carried out by implementing codes in Matlab 7.8.0 and

CPLEX 12.4 installed in a PC with Windows XP Operating System. We first use the

Matlab built-in solver linprog to solve the stochastic example under the usual sampling

reformulation, which we call “the classical formulation”. For the SOC problems, we run

the CPLEX solver cplexqcp in the Matlab environment. It is known that cplexqcp is a

well-developed solver for solving linear/quadratic programming problems.

3.1. A Classical Example

Example 1.2 A company manager is considering the amount of steel to purchase (at

$58/1,000lb) for producing wrenches and pliers in next month. The manufacturing process

involves molding the tools on a molding machine and then assembling the tools on an

assembly machine. Here is the technical data.

Wrench Plier

Steel (lbs. per unit) 1.5 1

Molding Machine (hours per unit) 1 1

Assembly Machine (hours per unit) 0.3 0.5

Contribution to Earnings ($ per 1000 units) 130 100

There are uncertainties that will influence his decision. 1. The total available assembly

hours of next month could be 8,000 or 10,000, with 50/50 chance. 2. The total available

2This is a slightly different version of Example 7.3 in the book of Bertsimas and Freund (2000).
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molding hours of next month could be either 21,000 or 25,000 at 50% possibility for each

case. The manager would like to plan, in addition to the amount of steel to purchase, for

the production of wrenches and pliers of next month so as to maximize the expected net

revenue of this company.

3.1.1. A Sampling Method Reformulation for Two-stage Stochastic Programming

This example is a typical two-stage stochastic programming problem where the first-

stage decision variable is the quantity, x, of the steel to purchase now (unit: 1,000(lbs))

while the second-stage decision variables are the production plan w, p, or wi, pi under sce-

nario i = 1, 2, 3, 4 (unit: 1,000(units)), i.e., quantities of wrench and plier to be produced

next month. The objective is to minimize (maximize) the total expected cost (profit). In

this situation, the four scenarios concerning random variables, molding hour and assembly

hour, are as follows.

Scenario Molding Hours Assembly Hours Probability

1 25,000 8,000 0.25

2 21,000 8,000 0.25

3 25,000 10,000 0.25

4 21,000 10,000 0.25

Then, we solve the problem in format (2.1) as below, where without loss of generality and

for brevity, we omit the common scalar 10−3 of all items in the objective function.

min 58x−
∑4

i=1 0.25(130wi + 100pi)

s.t. w1 + p1 ≤ 25, (Mold constraint for scenario 1)

0.3w1 + 0.5p1 ≤ 8, (Assembly constraint for scenario 1)

−x + 1.5w1 + p1 ≤ 0, (Steel constraint for scenario 1)

w2 + p2 ≤ 21, (Mold constraint for scenario 2)

0.3w2 + 0.5p2 ≤ 8, (Assembly constraint for scenario 2)

−x + 1.5w2 + p2 ≤ 0, (Steel constraint for scenario 2)

w3 + p3 ≤ 25, (Mold constraint for scenario 3)

0.3w3 + 0.5p3 ≤ 10, (Assembly constraint for scenario 3)

−x + 1.5w3 + p3 ≤ 0, (Steel constraint for scenario 3)

w1 + p1 ≤ 21, (Mold constraint for scenario 4)

0.3w4 + 0.5p4 ≤ 10, (Assembly constraint for scenario 4)

−x + 1.5w4 + p4 ≤ 0, (Steel constraint for scenario 4)
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x, wi, pi ≥ 0, i = 1, ..., 4.

Solving the above linear programming problem, we derive the optimal solution of the

fist-stage decision variable x = 31, 500 (lbs) with the corresponding expected profit of

$961.89, and the production plans for wrench and plier under various scenarios are as

follows.

Scenario wi (unit) pi (unit)

1 17,222 5,667

2 21,000 0

3 13,000 12,000

4 21,000 0

3.1.2. The SOCP Reformulation

In this subsection, we compare the solution obtained previously with our SOCP refor-

mulation with linear decision rule. Here we choose X = {x : x ≥ 0} and have

c = 58, d =


−130

−100

0

0

 , y =


w

p

τ1

τ2

 , A =

 0

0

−1

 ,

D =

 1 1 1 0

.3 .5 0 1

1.5 1 0 0

 , b(z̃) =

 z̃1

z̃2

z̃3

 , ` =

 −21

−8

1

 , h =

 25

10

1

 ,

where τ1, τ2 are slack variables, z̃3 ≡ 0, and z̃1, z̃2 are random variables with

P(z̃1 = 21) = P(z̃1 = 25) = P(z̃2 = 8) = P(z̃2 = 10) = 0.5,

E(z̃1) = 23, E(z̃2) = 9, E(z̃3) = 0, E(z̃2
3) = 0.

We have E(z̃2
1) = 533, E(z̃2

2) = 82, and

A0 = A =

 0

0

−1

 , A1 = A2 = A3 =

 0

0

0

 , b0 =

 0

0

0

 , b1 =

 1

0

0

 , b2 =

 0

1

0

 , b3 =

 0

0

1

 .

Note that here we introduce an additional random variable z̃3(≡ 0) defined on a symmetric

support set [-1, 1], which is due to our theoretical assumption on the full dimensionality

of Ω, i.e., −` < h.
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Based on the previous discussion, we solve the corresponding SOCP:

min
x,v0,v,V,u,Y,s,t,λ,ν

58x + v0 + 23v1 + 9v2 + 533V1 + 82V2

s. t.
3∑

i=1

ui − 130y0
1 − 100y0

2 + 25λ1 + 10λ2 + λ3 − 21ν1 − 8ν2 + ν3 − v0 ≤ 0,∥∥∥∥∥
(

v1 + 130y1
1 + 100y1

2 + λ1 − ν1

V1 − u1

)∥∥∥∥∥ ≤ V1 + u1,∥∥∥∥∥
(

v2 + 130y2
1 + 100y2

2 + λ2 − ν2

V2 − u2

)∥∥∥∥∥ ≤ V2 + u2,∥∥∥∥∥
(

v3 + 130y3
1 + 100y3

2 + λ3 − ν3

V3 − u3

)∥∥∥∥∥ ≤ V3 + u3,

y0
1 + y0

2 + y0
3 = 0, .3y0

1 + .5y0
2 + y0

4 = 0, −x + 1.5y0
1 + y0

2 = 0,

y1
1 + y1

2 + y1
3 = 1, .3y1

1 + .5y1
2 + y1

4 = 0, 1.5y1
1 + y1

2 = 0,

y2
1 + y2

2 + y2
3 = 0, .3y2

1 + .5y2
2 + y2

4 = 1, 1.5y2
1 + y2

2 = 0,

y3
1 + y3

2 + y3
3 = 0, .3y3

1 + .5y3
2 + y3

4 = 0, 1.5y3
1 + y3

2 = 1,

−21s1
1 − 8s1

2 + s1
3 + 25t11 + 10t12 + t13 − y0

1 ≤ 0,

−21s2
1 − 8s2

2 + s2
3 + 25t21 + 10t22 + t23 − y0

2 ≤ 0,

−21s3
1 − 8s3

2 + s3
3 + 25t31 + 10t32 + t33 − y0

3 ≤ 0,

−21s4
1 − 8s4

2 + s4
3 + 25t41 + 10t42 + t43 − y0

4 ≤ 0,

s1
1 − t11 − y1

1 ≤ 0, s1
2 − t12 − y2

1 ≤ 0, s1
3 − t13 − y3

1 ≤ 0,

s2
1 − t21 − y1

2 ≤ 0, s2
2 − t22 − y2

2 ≤ 0, s2
3 − t23 − y3

2 ≤ 0,

s3
1 − t31 − y1

3 ≤ 0, s3
2 − t32 − y2

3 ≤ 0, s3
3 − t33 − y3

3 ≤ 0,

s4
1 − t41 − y1

4 ≤ 0, s4
2 − t42 − y2

4 ≤ 0, s4
3 − t43 − y3

4 ≤ 0,

x ≥ 0, V, u, λ, ν ≥ 0, sk, tk ≥ 0, k = 1, 2, 3, 4.

We derive the numerical results as follows. x = 30, 500 (lbs) with the corresponding

worst-case expected profit of $929.88, and

y0 =


34.1667

−20.7500

−13.4167

0.1250

 , y1 =


−0.7222

1.0833

0.6389

−0.3250

 , y2 =


0

0

0

1

 , y3 =


2

−2

0

0.4

 .

Using the LDR and the solutions of y0, y1, y2, y3 above, we derive the production plan,

13



w and p, of the second-stage problem as below.

w = y0
1 +

3∑
i=1

yi
1zi; p = y0

2 +
3∑

i=1

yi
2zi,

where zi represents the realization of z̃i.

Remark. Comparing numerical results obtained from the above two formulations, we

can see that the solution (x∗ = 31, 500) of the classical two-stage model with complete

information is less conservative than that of (x∗ = 30, 500) the model with incomplete

information under LDR. It shows that, although the robust formulation of the problem is

conceptually “more conservative” (in terms of minimizing the worst case cost rather than

the expected cost), its solution may not be drastically different from the case where the

full information on distribution of the random variable is available.

3.2. Further Analysis on Computational Advantage of the SOCP Formulation

It appears that the SOC problem would have more constraints than the two-stage

stochastic programming formulation using the sampling approach. We should admit that

for the case of the sample size or number of random variables being very small, the scale

of the classical formulation would be smaller than the proposed SOCP reformulation. The

classical sampling program turns to be a small-size linear programming problem while the

latter becomes to problem with linear objective and quadratic constraints. However, such

small-size problems are not our motivation to introduce robust optimization approach in

this study.

To see the effect of scenario number and the dimension of random vector z̃ to compu-

tational efficiency, we consider a general case of Example 1. Let m̂ denote the number of

random variables of the example and S number of possible values of each random vari-

able (for simplicity, assume every random variable is discrete with the same S). Let n̂ be

the number of decision variables for the second-stage problem. Following the format of

two-stage stochastic programming stated in Section 2, it follows that n = 1, m = m̂ + 1,

k = m̂+n̂, and l = m̂+1. The scales of the resulting problem associated with the classical

formulation and SOCP reformulation are listed in Table 1. Here, we do not include the

nonnegativity constraints in the table.

Methods The Classical Formulation SOCP Reformulation

# of Variables n̂Sm̂ + 1 3m̂n̂ + 3m̂2 + 9m̂ + 4n̂ + 7

# of Constraints m̂Sm̂ + Sm̂ m̂n̂ + 2m̂2 + 6m̂ + 2n̂ + 4

Table 1: Comparing Sizes of Two Formulations
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Evidently, the scale of classical formulation increases exponentially while the size of

SOC problems increases relatively much slowly (at most quadratically). In fact, the scale

of the latter only depends on the structure of primary second-stage stochastic program-

ming problem under consideration, such as the number of second-stage decision variables

and the dimension of the random vector z̃.

3.2.1. Example 2: The Case of Larger S

In this subsection, for the two random variables of molding hour z̃1 and assembling

hour z̃2 in Example 1 (unit: 1000(hours)), we assume each random variable is of 1, 000

possible values. In computation, such 1,000 possible values are chosen in the following

way. For molding hour, we randomly choose 500 values from the interval [20.5, 21.5]

and 500 values from [24.5, 25.5] such that the sample mean equals to 23. Similarly, we

generate 1000 possible values for assembling hour from the intervals [7.5, 8.5] and [9.5,

10.5] such that E[z̃2] = 9.

Note that, in this case, n̂ = 2, m̂ = 2, and S = 1, 000. According to Table 1, the

classical approach results in a problem of about 2 million decision variables and 3 million

constraints. In general, this large-size problem is impossible to solve on current computers.

However, the SOCP reformulation is of 57 decision variables with 32 constraints only,

which can be solved efficiently using available software packages such as CPLEX, MOSEK,

and Sedume.

For SOCP reformulation, using the randomly selected samples and with similar argu-

ments as above, we derive the second moments of random variables as follows. E[z̃2
1 ] = 531,

E[z̃2
2 ] = 81. As before, we set E[z̃3] = 0 and E[z̃2

3 ] = 0. The lower and upper bounds of

z̃ are given by ` = (−20.5, −7.5, 1)′ and h = (25.5, 10.5, 1)′, respectively. The values

of other parameters are same as stated in Section 3.1.2. We then derive the solutions as

follows. x = 29, 750 (lbs) with the corresponding expected worst-case profit of $900.618,

and

y0 =


27.1556

−10.9833

−16.1722

−2.6550

 , y1 =


−0.4222

0.6333

0.7889

−0.1900

 , y2 =


0

0

0

1

 , y3 =


2

−2

0

0.4

 .

3.2.2. Example 3: The Case of Higher Dimension of Random Vector

In this subsection, we assume there are 10 procedures in producing wrenches and

pliers of Example 1. For each procedure, the corresponding processing hour is assumed

to be a random variable denoted by z̃i, each having 4 possible values, i = 1, . . . , 10. In
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this setting, we have n̂ = 2, S = 4, m̂ = 10. According to the previous discussion,

the classical formulation is of over 2 million decision variables with more than 11 million

constraints. However, for the SOCP reformulation, it has only 465 decision variables with

288 constraints, which has been solved at a laptop computer in seconds.

In this example, the price of steel, the contributions to earnings of wrench and plier,

and the steel constraint remain the same as Example 1. In what follows, we set the four

possible values (unit: 1,000(hours)) of processing hour of each procedure under consider-

ation, each realization having the equal probability 25%.

P(z1 = 21) = P(z1 = 21.5) = P(z1 = 22) = P(z1 = 22.5) = 0.25,

P(z2 = 20) = P(z2 = 20.5) = P(z2 = 20.8) = P(z2 = 21.7) = 0.25,

P(z3 = 18) = P(z3 = 18.5) = P(z3 = 19) = P(z3 = 20.2) = 0.25,

P(z4 = 17) = P(z4 = 17.4) = P(z4 = 18.2) = P(z4 = 18.9) = 0.25,

P(z5 = 15) = P(z5 = 15.5) = P(z5 = 16) = P(z5 = 16.5) = 0.25,

P(z6 = 12) = P(z6 = 12.5) = P(z6 = 13.5) = P(z6 = 14.5) = 0.25,

P(z7 = 11) = P(z7 = 11.5) = P(z7 = 11.7) = P(z7 = 12.3) = 0.25,

P(z8 = 9.5) = P(z8 = 10) = P(z8 = 10.5) = P(z8 = 11.4) = 0.25,

P(z9 = 8) = P(z9 = 8.5) = P(z9 = 8.9) = P(z9 = 9.2) = 0.25,

P(z10 = 7.5) = P(z10 = 7.8) = P(z10 = 8.6) = P(z10 = 8.95) = 0.25.

For procedure i, denote by βi the coefficient vector of the constraint for producing wrenches

and pliers, i = 1, . . . , 10. Then, we have [w, p]βi ≤ zi for each realization zi of random

variable z̃i. Here, βis are chosen as follows.

β1 =

[
1

1

]
, β2 =

[
0.9

0.7

]
, β3 =

[
0.8

0.7

]
, β4 =

[
0.6

0.8

]
, β5 =

[
0.4

0.9

]
,

β6 =

[
0.8

0.5

]
, β7 =

[
0.5

0.3

]
, β8 =

[
0.4

0.6

]
, β9 =

[
0.2

0.9

]
, β10 =

[
0.3

0.5

]
.

According to the above samples of random variables, we derive the lower and upper

bounds of the underlying random vector z̃ = (z̃1, . . . , z̃10, z̃11)
′ where z̃11 ≡ 0. That is, ` =

(−21, −20, −18, −17, −15, −12, −11, −9.5, −8, −7.5, 1)′ and h = (25.5, 21.7, 20.2,

18.9, 16.5, 14.5, 12.3, 11.4, 9.2, 8.95, 1)′.

In the SOCP reformulation, the vectors of the first and second order moments, i.e., µ

and η, are estimated based on the above samples. We then have µ = (21.75, 20.75, 18.925,
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17.875, 15.75, 13.125, 11.625, 10.35, 8.65, 8.213, 0)′ and η = (473.375, 430.945, 358.823,

320.053, 248.375, 173.188, 135.358, 107.615, 75.025, 67.788, 0)′.

By calling CPLEX solver cplexqcp in Matlab, we derive the solutions as follows. x =

21, 903.2 (lbs) with the worst-case expected profit of $727.537, and

y0 =



17.1417

−3.8093

−13.3324

−12.7610

−11.0468

−7.2376

−3.4283

−11.8087

−7.4281

−4.5711

0

−3.2379



, y1 =



0

0

1

0

0

0

0

0

0

0

0

0



, y2 =



0

0

0

1

0

0

0

0

0

0

0

0



, y3 =



0

0

0

0

1

0

0

0

0

0

0

0



, y4 =



0

0

0

0

0

1

0

0

0

0

0

0



, y5 =



0

0

0

0

0

0

1

0

0

0

0

0



,

y6 =



0

0

0

0

0

0

0

1

0

0

0

0



, y7 =



0

0

0

0

0

0

0

0

1

0

0

0



, y8 =



0

0

0

0

0

0

0

0

0

1

0

0



, y9 =



−0.8696

1.3043

−0.4348

−0.1304

−0.2174

−0.5217

−0.8261

0.0435

0.0435

−0.4348

0

−0.3913



, y10 =



0

0

0

0

0

0

0

0

0

0

0

1



, y11 =



0.7826

−0.1739

−0.6087

−0.5826

−0.5043

−0.3304

−0.1565

−0.5391

−0.3391

−0.2087

0

−0.1478



.

As we mentioned before, the production plan, w and p, of the second-stage problem can

be generated based on the solutions of y0, y1, . . . , y11 and the realization z of z̃ as follows.

w = y0
1 +

11∑
i=1

yi
1zi, p = y0

2 +
11∑
i=1

yi
2zi.
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4. Conclusion

By considering the worst case over a restrictive set of probability distributions, one

may release the information requirement for solving a two-stage stochastic optimization

problem. It is demonstrated, both in theory and through a classical example and its

variations, that this idea may lead to advantage in computation, and therefore may widen

the applicability of such model. From a theoretical perspective, this idea is linked to using

different risk measures in the second stage problem, which would be interesting to further

investigate.
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