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Abstract

Modeling the evolution of networks is central to our understanding of modern large
communication systems, such as the World-Wide-Web, as well as economic and social
networks. The research on social and economic networks is truly interdisciplinary
and the number of modeling strategies and concepts is enormous. In this survey
we present some modeling approaches, covering classical random graph models and
game-theoretic models, which may be used to provide a unified framework to model
and analyze the evolution of networks.

1. Introduction

The importance of network structure in social and economic systems is by now very
well understood. In sociology and applied statistics the study of social ties among actors
is a classical field, which has been established as the subject of social network analysis (a
classical reference is Wasserman and Faust, 1994). More recently the networks perspective
has been discovered by game theorists, economists, as well as computer scientists and
physicists attempting to model the evolution of networks. Of course all these subjects put
different emphasis on what is considered to be a “good” model of network formation.
Traditionally economists are used to interpret observed social structures (e.g. a collab-
oration network between firms in an industrial cluster) as equilibrium phenomena which
can be rationalized by the preferences of the agents. Game theoretic reasoning based on
optimizing behavior is the obvious tool used in this literature. Computer scientists, on the
other hand, prefer to think of network formation in terms of dynamic network formation
algorithms. Of course these algorithms can be often given behavioral foundations or
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interpretations. Physicists tend to think as networks as an outgrowth of complex system
analysis. In this field the main interest is to understand and characterize the statistical
regularities of large networks, using a reduced-form description of the dynamical system
(the so-called “mean-field” model). The paradigmatic example for a large network where
this approach has turned out to be quite successful in reproducing the measured stylized
facts is the world wide web (a nice overview on this literature is given in Dorogovtsev
and Mendes, 2003). By now the number of publications on the evolution of social and
economic networks has exploded, and it would be impossible to provide a survey cover-
ing all the models developed in the above mentioned disciplines. For this very reason, we
have decided to focus in this survey on two particular promising approaches to model the
evolution of social and economic networks. Before describing these models, however, let
us provide some motivation why we think that this survey provides a good contribution
to the literature. There are many excellent textbooks and surveys already available, so
any new survey needs some words of justification. Recent textbooks discussing models
of dynamic stochastic network formation are Chung and Lu (2006) and Durrett (2007).
From an economic perspective the textbooks by Vega-Redondo (2007), Goyal (2007) and
Jackson (2008) provide concise introductions to the fields. There are also various surveys
discussing this interdisciplinary topic from different perspectives.1 What distinguishes
this survey from existing ones is that it tries to give the reader a brief overview on recent
attempts to model network formation with a particular focus on the evolution of networks
either in the language of stochastic processes or game theory. Moreover, we try to high-
light the potential connections between these two seemingly separate modeling strategies
and we try to give some suggestions for further research in this field.

1.1 Overview

The first part of this review article (Chapter 2) discusses random graph models. These
models are the cornerstone for the statistical analysis of networks and have had a large
impact on theoretical models of network evolution. Moreover this approach has a long
tradition in social network analysis, and provides a natural bridge to the more recent
models of network evolution used in computer science, mathematics and physics. Fol-
lowing the terminology of Chung and Lu (2006), we focus on ”off-line” models. Hence,
we consider network formation models in which the number of nodes, or the population

1See among others, Jackson (2003), Jackson (2005), Van den Nouweland (2005), Goyal (2005), Snijders
et al. (2006), Robins et al. (2007), Goldenberg et al. (2009).
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size, is a given parameter.2 Our focus is on the formulation of network evolution as
edge-based stochastic processes. We provide concrete examples in which we relate this
model to classical models in mathematical sociology, as well as to more recent models
from mathematics and economics. It is shown that the model we present is equivalent
to various inhomogeneous random graph models (Bollobás et al., 2007). This model family
is rather rich. It contains well-known statistical block-models, as well as the classical
Bernoulli random graph model due to Erdös and Rényi (1959) as special cases.
Section 3 presents an alternative approach of network modeling which has been advanced
by economic theorists. It uses game theoretical concepts to interpret network structures
as equilibrium phenomena of strategically acting players who create and destroy links ac-
cording to their incentives. Two particular approaches have turned out to be useful
in this domain: The semi-cooperative solution concept of pairwise-stability (Jackson and
Wolinsky, 1996), and various modifications of Nash equilibrium. While this approach is
inherently static and evolution of networks is modeled implicitly, we present also a dy-
namic model of network formation that gives rise to these stability concepts. Beside this
game-theoretic approach, there have been also some dynamic ”learning” models, which
combine elements from the statistical literature on network evolution, surveyed in Chap-
ter 2 with the just mentioned game theoretic concepts. Such models have been further
developed in a model family which we call co-evolutionary processes of networks and play
(Staudigl, 2010). The final part of this survey (Chapter 4) presents a modest attempt to
synthesize the strategic approach of network formation with the random graph approach
of section 2. Finally, in section 5 we make some suggestions for future research.

1.2 Notation

We use both a traditional graph theoretic definition of networks, as well as its (equiv-
alent) algebraic definition. We treat networks and graphs as synonymous objects. A
graph is a pair G = ([N],E), where [N] := {1, 2, . . . ,N} is the set of vertices (or nodes), and
E ≡ E(G) ⊂ [N] × [N] is the set of edges (or links). The entries {i, j} ∈ E(G) represent the
bilateral connections (links) in network G. In this survey our main focus will be on the
evolution of undirected networks, meaning that the edge {i, j} is equivalent to the edge
{ j, i} for any pair i, j ∈ [N].3 For ease of notation, we denote by i j = ji ≡ {i, j} ∈ E(G) a

2”On-line” models are models in which the population is growing over time. This important class of
models contains the very popular preferential attachment models (Barabási and Albert, 1999), which we
are not touching in this survey. Excellent summaries of these fascinating models can be found in Newman
(2003) and, in more rigorous manner, in Chung and Lu (2006) and Durrett (2007).

3Our focus on undirected networks does not mean that we think directed networks are less important.
However many of the game-theoretic concepts, which we are going to introduce in Section 3, have a more
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link between player i and player j in network E(G). We denote by G[N] the set of simple
graphs on the vertex set [N].

Given a network G ∈ G[N], the neighbors of player i are represented by the set Ni(G) :=
{ j ∈ [N] | i j ∈ E(G)}. Similarly, Ei(G) := {i j ∈ E(G) | j ∈ [N]} denotes the set of player
i’s links in G and E−i(G) := E(G) \ Ei(G) denotes the set of links in G in which player i
is not involved. We denote by ηi(G) := |Ei(G)| the degree of player i. For two networks
G,G′ ∈ G[N] let G ⊕ G′ be the network obtained by adding the links of both networks,
i.e. G ⊕ G′ := ([N],E(G) ∪ E(G′)) and let G 	 G′ := ([N],E(G) \ E(G′)) denote the network
obtained by deleting the set of links E∩E′ from network G. Abusing notation, we will also
use G⊕ l to denote the addition of links l ⊆ E(Gc

	G) to G and G	 l′ to denote the deletion
of links l′ ⊆ E(G) from networks G. We say that there exists a walk in a network G between
two players i and j if there exists a sequence of players i1, ..., iK such that i1 = i and iK = j
and ikik+1 ∈ E(G) for all k = 1, ...,K − 1. A path is a walk using mutually distinct edges. The
distance between two nodes i and j in network G, denoted by di j(G) is then the length of
the shortest path between these nodes.
An equivalent algebraic definition of a graph is given by introducing a function Ai j :
G[N]→ {0, 1} defined by

(1) Ai j(G) =

 1 if (i, j) ∈ E(G),
0 otherwise.

The matrix-valued function A : G[N] → {0, 1}N×N defined by A(G) =
[
Ai j(G); 1 ≤ i, j ≤ N

]
is called the adjacency matrix of the graph G.

2. Stochastic models of network evolution

Social behavior is complex, and stochastic models allow us to capture both the reg-
ularities in the processes giving rise to network ties while at the same time recognizing
that there is variability that we are unlikely to be able to model in detail. To capture all
the variability in social network modeling there is not much hope for a canonical network
formation model which is able to capture all details which one might think are important
in a concrete study. Nevertheless, one may attempt to start thinking about families of
models which are parsimonious enough to get pointed predictions, and on the other hand

natural interpretation in terms of undirected graphs. Many of the models presented in this survey can be
adapted to allow for directed networks, and, in particular, the random graph models which are presented
in Section 2 can be used to model the evolution of directed as well as undirected networks.
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rich enough in order to be able to reproduce as many stylized facts the researcher is aiming
to model (cf. Section 2.1). Random graph models are powerful tools in this respect. In
this section we introduce a rather general model of a random graph process, which will
turn out to be useful our definition of a co-evolutionary process of networks and play, to
be defined in Section 4.

2.1 Random graphs

Technically speaking a random graph model is a probability space (G[N], 2G[N],P), where
P is a probability measure defined on the power set 2G[N]. The probability measure
P assigns to each graph a weight, which should reflect the likelihood that a certain
graph structure appears in our model. The question is now what a ”natural” random
graph model should be. Let us start with a classical example. An historically very
important random graph model is the Bernoulli graph, often simply called the Erdös-Rényi
graph.4 The Bernoulli random graph is built on the assumption that edges are formed
independently with constant probability p ∈ [0, 1]. This implies that the random graph
model (G[N], 2G[N],P) is determined by the probability measure

P({G}) =

N∏
i=1

∏
j>i

pAi j(G)(1 − p)1−Ai j(G).

The advantage of the Bernoulli graph model is its simplicity. In fact, the complete random
graph model is described by two parameters: the population size (N), and the edge-success
probability (p). Hence, this model is by now rather well understood, and we refer the
reader to Bollobás (2008) for an in-depth study of this model. It comes with little surprise
that such a simple model is rarely a good description of a real-world network. However
it can serve as a benchmark to compare real world characteristics with the predictions of
Bernoulli graphs which presume independence of link formation. Compared to random
graphs, real world networks are often observed to have smaller average path length (an
effect coined small worlds phenomenon),5 higher clustering (friends of friends are more
likely to be friends),6 exhibit homophily (connections between nodes of similar kind are
more likely),7 and often exhibit a power law degree distribution (more nodes with very

4Erdös and Rényi (1959, 1960) introduced the slightly different model in which the number of vertices
and edges are given parameters. The Bernoulli graph model is due to Gilbert (1959).

5See the famous letter experiment of Milgram (1967). Other studies include Garfield (1979), Watts (1999),
and Dodds et al. (2003).

6See e.g. Watts and Strogatz (1998), Watts (1999) and Newman (2003, 2004).
7See Lazarsfeld and Merton (1954), Blau (1977), Marsden (1988), McPherson et al. (2001), Golub and

Jackson (2012), among others.
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high and very low degree compared to Bernoulli graphs).8 In particular, the lack of
correlation across links is a well-known deficit of the Bernoulli graph. For a more detailed
discussion we refer the reader to Jackson (2008) and Vega-Redondo (2007). Moreover, the
notion of a random graph is inherent static. In the next section we are going to discuss
models which are able to generate more realistic network structures, and are dynamic,
hence ”evolutionary” models.

2.2 Network formation as a stochastic process

A classical approach in social network theory is to view the evolution of a network as
a stochastic process. This approach has been strongly influenced by the Markov graph
model of Frank and Strauss (1986), and laid the foundation for the important model class
of exponential random graphs.9 In the following we will describe a fairly general dynamic
network formation model in terms of a continuous-time Markov jump processes.

In a dynamic model of network formation we would like to capture two things:
First, the network should be viscous: Links are deleted and formed over time. Second,
the likelihood that a link is formed or destroyed should be made dependent on some
characteristics of the vertices in the graph. The following network formation algorithm
captures both these requirements.
We are given some probability space (Ω,F ,P). The sample space Ω might be larger
than the set of graphs.10 We call a Markov jump process {γ(t)}t∈R+ a random graph
process if each γ(t) is a G[N]-valued random variable, measurable with respect to the
σ-field σ

(
{γ(s); s ≤ t}

)
. The dynamic evolution of the random graph process consists of the

following steps:

Link creation: With a constant rate λ ≥ 0 the network is allowed to expand. Let W :
G[N] → RN×N

+ be a bounded matrix-valued function, whose components wi j(G)
define the intensities of link formation between vertex i and j. The function W will
be called the attachment mechanism of the process.

Link destruction: Let ξ ≥ 0 denote the constant rate of link destruction. Let V : G[N]→
RN×N

+ be a bounded matrix-valued function, whose components vi j(G) define the

8First stated by Price (1965). Other studies include Kochen et al. (1989), Seglen (1992), Albert et al. (1999),
Amaral et al. (2000)

9See Snijders et al. (2006) for a recent survey, and Chatterjee and Diaconis (2011) who clarify some
mathematical problems associated with this model.

10This will be necessary in order to model the co-evolution of networks and play in section 4.
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intensities of link destruction between vertex i and j. The function V is called the
volatility mechanism of the process.

The generator describing this Markov process will be described in more detail in Section
4.

Remark 2.1.

• In some models of network formation the rate of link destruction ξ has been inter-
preted as environmental volatility (See in particular the papers Marsili et al., 2004;
Ehrhardt et al., 2006, 2008a,b). This is also the motivation behind our definition of a
volatility mechanism.

• In principle the intensities of link creation and destruction can be asymmetric, i.e.
we do not require in the construction that wi j(G) = w ji(G), or vi j(G) ≡ v ji(G), respec-
tively. Hence, in principle the network formation process can be used to model the
formation of directed as well as undirected networks.

Let us now illustrate some simple examples which can be modeled using our network
formation algorithm.

2.2.1 A popularity model

Wasserman (1980) proposes the following model of the evolution of a directed network.
The only difference between a directed and an undirected network is that the adjacency
relationship between two vertices is not necessarily symmetric. Hence, a link between
vertices i and j can exist without the need that there is a link between j and i. Directed
networks are very frequently used in social network analysis (see e.g. Snijders, 2001, and
the references therein), and are also of big importance in models of growing networks
(the ”on-line” models), modeling the evolution technological networks such as the world-
wide-web. An ”off-line” version of the preferential attachment model can be obtained
by assuming that the intensities of link creation and destruction are positively correlated
with the ”popularity” of a node. There are several measures of popularity, or centrality
(cf. Freeman (1979) or Bonacich (1987), see also Section 3.2). In the context of a directed
graph, a natural and simple measure of popularity of a node is its indegree, denoted
by η+

i (G). Mathematically, the indegree of a node is given by η+
i (G) =

∑N
j=1 A ji(G). i.e.

the number of vertices j ∈ [N] which choose to be connected to i. A simple model of
popularity is obtained by assuming the link formation intensities are increasing functions
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of the in-degree of vertex j, i.e.

wi j(G) = α1 + β1η
+
j (G).

Similarly, it might be reasonable to assume that the rate of link destruction is an increasing
function of the in-degree of j, i.e.

vi j(G) = α2 + β2η
+
j (G).

The coefficients αi, βi, i = 1, 2, are given constants, which can be estimated from a given
data set of networks. This gives rise to a simple model of network formation based on
popularity. Wasserman (1980) provides a detailed study of this model.

2.2.2 Inhomogeneous random graphs

A straightforward extension of the classical Erdös-Rényi model is the inhomogeneous
random graph model. It is constructed as follows. Let G[N] the set of undirected graphs.
Recall that we can represent every such graph with its (symmetric) adjacency matrix
A(G) = [Ai j(G); 1 ≤ i, j , N]. Suppose that the intensities of link creation and link
destruction are respectively given by the functions

(2) wi j(G) = (1 − Ai j(G))κi j, and vi j(G) = Ai j(G)δi j.

The scalars κi j, δi j are, for simplicity, assumed to be positive and symmetric, meaning that
κi j ≡ κ ji and δi j ≡ δ ji for all i, j ∈ [N]. Additionally we assume that λ = ξ = 1. This
essentially says that the processes of link creation and link destruction run on the same
time scale. Then the following general picture emerges.

Theorem 2.2 (Staudigl (2012)). Consider the random graph process {γ(t)}t∈R+ with attachment
and volatility mechanism W and V given by the functions (2). Then the graph process is ergodic
with unique invariant measure

(3) P({G}) =

N∏
i=1

∏
j>i

(pi j)Ai j(G)(1 − pi j)1−Ai j(G),

where pi j =
κi j

κi j+δi j
is the edge-success probability of vertex i and j.

The random graph measure (3) describes the probability space of an inhomogeneous
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random graph. The wonderful work of Bollobás et al. (2007) studies this model in detail.11

It contains the Erdös-Rényi model as a special case by setting κi j ≡ κ and δi j ≡ δ. Moreover,
it generalizes certain networks based on clustering nodes according to some notion of
”similarity”, as explained in the next subsection.

2.2.3 Multi-Type random networks

In general networks are complex objects and therefore difficult to analyze. However,
it is often the case that vertices in a network can be classified to belong to certain groups.
In a social network a natural classification of the vertices can be made according to criteria
such as gender, income and age. In an industrial network it might be natural to group
the vertices (the firms in the industry) according to their field of specialization or size.
Indeed, a prevalent fact in social networks is the phenomenon of homophily, meaning that
vertices of similar characteristics are more likely to be connected. Fienberg et al. (1985)
introduced such blockmodels into the statistical literature of social networks. Recently, this
type of networks has also been used in economic theory (Golub and Jackson, 2012), where
it has been called a multi-type random network. The general network formation model
can be used in a very simple way to construct multi-type random networks, as we would
like to illustrate now. Suppose that the set of vertices can be partitioned into finitely
many types k ∈ {1, . . . ,m} of respective sizes Nk. The vector ~N = (N1, . . . ,Nm) defines
the partition of the population of nodes into its types. The number Nk ∈ {0, 1, . . . ,N}
is either deterministically given, or random. To exploit the group classification of the
society, assume that the intensities of link formation and link destruction can be modeled
by functions

wi j(G) = (1 − Ai j(G))κrl, and vi j(G) = Ai j(G)δrl

whenever vertex i is a member of group r, and vertex j is a member of group l for
1 ≤ r, l ≤ m. This is readily seen to be a special case of the inhomogeneous random graph
studied above. The edge-success probabilities between members of group r and group
l are given by prl = κrl

κrl+δrl
. The nice feature of the multi-type random network is that

it reduces the complexity of the random graph model tremendously. Compared to the
inhomogeneous random graph model the multi-type random graph has the advantage
that instead of computing (or estimating) an N×N matrix of edge-success probabilities, it
suffices to find an appropriate partitioning of the vertices and then compute (or estimate)
the edge-success probabilities across the various groups.

11See also Söderberg (2002) and Park and Newman (2004).
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2.3 An outlook

Our proposed strategy to model dynamic network formation is rather parsimonious.
The stochastic process is entirely specified by the attachment and the volatility mechanism.
Particularly appealing variations are the inhomogeneous random graph model, and as
a special case the multi-type random network. All these models rely on a particular
choice of the intensities of link creation and link destruction, which leads us directly to
the question how these intensities should be chosen. If we want a model-driven approach
to dynamic network formation processes, then these intensities should be derived from an
underlying model of network formation. This requires that we set-up a specific model
specifying the incentives of the vertices in the graph to connect to each other. Economic
and Game theoretic reasoning is natural for this task, which leads us directly to the next
section, where some recent approaches to strategic network formation are discussed.

3. Game theoretic models of network evolution

The approach taken by the statistical models presented in the previous chapter describe
how networks form and evolve from an observer’s point of view. Thus, on the macro level
these models give a good approximation of the likelihood with which a given network
is observed. While answering the question of how network formation takes place, they
do not explain why networks form and evolve. To access the why we have to go to
the micro level and understand the forces that drive the nodes to connect to each other.
In the context of economics we think of networks representing connections between
economic agents. Economic agents are driven by incentives, hence they connect to each
other because of payoff or utility resulting from these connections. Some examples of
economic models where the payoff results from or is affected by the network itself are
presented in Section 3.2. If payoff then depends on connections which result from all
agents decisions, i.e. the whole network, then game theory seems to be an appropriate
tool to model network formation. This chapter introduces central concepts of the game
theoretic approach to model network formation.

3.1 Networks and Utilities

Suppose that agents have preferences solely over the set of possible networks. For each
player, this preference ordering can be presented by a utility function ui : G[N]→ R, with
the standard assumptions on preference orderings.12 By u = (u1, ...,uN), we denote the

12In particular, completeness and transitivity.
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profile of utility functions. Decisions to form or to sever links typically depend on marginal
utility of adding/deleting links. Player i’s marginal utility of deleting a set of links l ⊆ E(G)
currently in network G is thus given by mui(G, l) := ui(G) − ui(G 	 l). Analogously, we
denote by mui(G ⊕ l, l) := ui(G ⊕ l) − ui(G) the marginal utility of adding the set of new links
l ⊆ E(Gc

	G) to network G. A rather natural behavioral assumption is that if the marginal
utility to player i of a given link is positive, then a player would like to form respectively
keep the link and if negative, she would delete respectively not form the link. When
studying network formation, externalities of own and other players’ links on marginal
utility play a central role. If externalities from own links are always positive (negative),
a utility function is called convex (concave) in own links, i.e. ∀G ∈ G[N], ∀li ⊆ Ei(Gc

	 G),
and ∀i j ∈ Ei(Gc

	 (G ⊕ li)) : mui(G ⊕ i j, i j) ≤ (≥)mui(G ⊕ li ⊕ i j, i j).13 A weaker version is
given by ordinal convexity (concavity) in own links which is satisfied by a utility function
ui if ∀G ∈ G[N], ∀li ⊆ Ei(Gc

	 G), and ∀i j ∈ Ei(Gc
	 (G ⊕ li)) : mui(G ⊕ i j, i j) ≥ 0 ⇒ (⇐

)mui(G⊕li⊕i j, i j) ≥ 0.14 Similarly a utility function satisfies strategic complements (substitutes)
if∀G ∈ G[N],∀l−i ⊆ E−i(Gc

	G), and∀i j ∈ Ei(Gc
	G) : mui(G⊕i j, i j) ≤ (≥)mui(G⊕l−i⊕i j, i j). In a

similar way as above this notion can be weakened to hold only in ordinal terms, i.e. a utility
function satisfies ordinal strategic complements (substitutes) if ∀G ∈ G[N], ∀l−i ⊆ E−i(Gc

	G),
and ∀i j ∈ Ei(Gc

	 G) : mui(G ⊕ i j, i j) ≥ 0 ⇒ (⇐) mui(G ⊕ l−i ⊕ i j, i j) ≥ 0.

3.2 Examples

We present here three basic examples of utility functions that depend only on the
network itself. These may arise naturally (e.g. because players want to be as central as
possible) or as a result from a multistage game which gives rise to such a utility function
by backward induction.

3.2.1 The Connections Model

When agents derive utility solely from the network, one might think that agents want
to be as central as possible. There are several prominent centrality measures, mainly
introduced in the sociology literature.15 Among those is closeness centrality which is a
rather intuitive definition of centrality considering the distances from a given node in

13The definition is taken from Hellmann (2012). Other notions are introduced in Bloch and Jackson (2007)
and Calvó-Armengol and Ilkiliç (2009). However, it is shown in Hellmann (2012) that all definitions are
equivalent.

14The definition is again taken from Hellmann (2012). Calvó-Armengol and Ilkiliç (2009) introduce the
concept of α−submodularity which is equivalent to ordinal convexity if it holds for all α ≥ 0.

15See, e.g. Freeman (1979) or Bonacich (1987) for an overview and introduction of some centrality measures
in sociology.
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the network to all the other nodes. Here, the distance between two nodes is simply the
length of the shortest path connecting both nodes which is set to infinity if there exists
no path. Centrality should then be decreasing in the distances. Jackson and Wolinsky
(1996) introduce a model were players strive for closeness centrality but have to pay costs
for each link they maintain. The notion of closeness that they use is often referred to as
decay centrality, Cli(G) =

∑
j,i δ

di j(G) such that the distance between two nodes, di j(G), is
discounted by a δ ∈ (0, 1). The utility function for a player i ∈ [N] when she strives for
closeness but incurs cost of link formation c for each link is then given by

(4) uCo
i (G) = Cli(G) − |Ni(G)|c =

∑
j,i

δdi j(G)
− cηi(G)

In Jackson and Wolinsky (1996) this is called the homogeneous connections model.16 It
can be shown that the homogeneous connections model satisfies concavity, but neither
strategic complements nor strategic substitutes are satisfied (see e.g.Calvó-Armengol and
Ilkiliç, 2009; Buechel and Hellmann, 2012).

3.2.2 Local Complementarities and Bonacich centrality

In a similar sense as the connections model of Jackson and Wolinsky (1996), one could
also think about players striving for centrality with respect to other notions. Another
prominent centrality notion is due to Bonacich (1987). It is similar to the closeness (decay)
centrality, but instead of counting only paths between nodes all possible walks are con-
sidered while also discounted for length. Recalling that the i j-th entry of k-th power of
the adjacency matrix, Ak

i j, represents the number of walks between i and j of length k, this

so called Bonacich centrality is hence given by bi(G, δ) =
(∑

k∈N δ
kAk

)
~1. The sum

∑
k∈N δ

kAk

converges to (I − δA)−1 if 0 < δ < λ1(A)−1, where λ1(A) is the Perron-Frobenius eigenvalue
of A.17 Thus, we can define a utility function were players strive for Bonacich centrality
similarly to Jackson and Wolinsky (1996) by

(5) uBC
i (G) = bi(G, δ) − |Ni(G)|c =

[
(I − δA)−1~1

]
i
− cηi(G)

Another motivation for considering network formation according to Bonacich cen-
trality is given in Ballester et al. (2006). Extending their approach to include network

16A more general functional form is presented in Jackson and Wolinsky (1996) such that the discount
factor δ and the cost of linking c can be made player specific.

17Note that for infinitesimally δ > 0 both the Bonacich centrality and the closeness centrality give infinitely
more weight to nodes of smaller distance and is hence proportional to the (in-)degree centrality used in
Section 2.2.1.
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formation, König et al. (2012) consider a two stage game. In the first stage the network
forms and in the second stage effort xi ∈ R+ is chosen in a game of local complementarities
where payoff is given by πi(x,G) := xi + δ

∑n
j=1 Ai jxix j −

1
2x2

i . Here the second stage payoff

can be interpreted as benefits from own production and from cooperation with neighbors
minus cost of exerting the effort. Ballester et al. (2006) show that the unique equilibrium
in the second stage is given by x∗i = bi(G, δ). Thus, solving the first stage under assump-
tion of play of the unique Nash equilibrium in the second stage and considering cost of
link formation c obtains the utility function (5). One can easily derive that uBC satisfies
convexity and strategic complements.18

3.2.3 R&D Collaborations between Firms

Another example where payoff is not solely dependent on the network structure but
can be reduced to that is presented in Goyal and Joshi (2003). In their setup, the economic
agents are firms which produce a homogeneous product and compete in quantities on
a single market. However, firms are also able to form bilateral R&D collaborations to
lower their marginal cost of producing the output mci(G) = γ0 − γηi(G) with parameters
γ, γ0 ∈ R+ such thatγ < γ0

N−1 . The model is a two stage game where in the first stage network
formation takes place and in the second stage firms compete in the market. Assuming
linear demand P(q) = max[0, α −

∑
j∈[N] q j] with q ≥ 0 being total quantity and market size

α > 0, the payoff in the second stage is given by π̃i(q,G) = (α −
∑

j∈[N] q j)qi − qimci(G). Play
of Cournot equilibrium in the second stage implies that the problem in the first stage can
be reduced to the following payoff function.

(6) uR&D
i (G) :=

(
(α − γ0) + Nγηi(G) − γ

∑
j,i η j(G)

)2

(N + 1)2 − ηi(G)c.

Thus, for the first stage optimization problem of the firms, the payoff can be reduced to
only depend on the network itself. It can be shown that this payoff function satisfies
convexity and strategic complements (see e.g. Dawid and Hellmann (2012), where the
network evolution of this R&D model is studied, presented in Section 3.6). Goyal and
Moraga-Gonzalez (2001) extend this setup to a three stage game which includes choice of
efforts devoted to R&D.

18Defining ∆(i j) to be the n × n matrix with ∆(i j)kl = 1 if k, l ∈ {i, j}, k , l and ∆(i j)kl = 0 else, it is
straightforward to see that uBC satisfies convexity and strategic complements, since

[
A + ∆(i j)

]k
− Ak

≤[
A + ∆(lm) + ∆(i j)

]k
− [A + ∆(lm)]k for all mutually distinct i, j, l,m ∈ [N] and for all k ∈ [N].
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3.3 Network Formation Modeled as Non-cooperative Games

The first attempt to model network formation as a non-cooperative game is due to
Aumann and Myerson (1988). The objective is to model network formation where payoff

is given by the Myerson value. Aumann and Myerson (1988) propose an extensive form
game of perfect information where pairs of players are given link formation opportunities
according to an exogenously given order, called the rule of order. In order to form a link
both players have to agree and once formed, a link can never be destroyed. The procedure
is repeated until all remaining pairs reject the link formation opportunity. Each outcome
is associated with a graph G which is evaluated according to the network utility function
(see Section 3.1). It is straightforward to see that subgame perfect equilibria exist in
this game. This game has found only few applications in the literature since the game
lacks a behavioral motivation and subgame perfect equilibria are often hard to obtain
analytically.19

A more natural approach is the Consent Game or Myerson game, introduced in My-
erson (1991). In this model, network formation is formalized in terms of a simultaneous
move game where players announce their desired links in a network. A link between
two players is formed if and only if both players announce each other in their sets of
desired links. Hence, a link requires the consent of both involved players to be formed.
Formally, the game in normal form is given by ΓC = (N,S, ũ) such that S = S1× . . . Sn where
Si = {0, 1}N\{i}.20 A link is formed if both involved players announce that they want to
form that link, i.e. si j = s ji = 1. This defines an outcome rule G̃ which maps strategies
into networks, G̃ : S → G, such that i j ∈ E(G̃(s)) if and only if si j = s ji = 1. The game form
(N,S, G̃) then gives rise to the Consent Game ΓC = (N,S, ũ) since players have a preference
ordering over the set of networks represented by a utility function (see Section 3.1) which
makes it straightforward to define payoffs of the Consent Game by ũi(s) := ui(G̃(s)).

Since this game is a game in normal form, the most natural equilibrium concept is that
of Nash equilibrium. A network G∗ is defined to be Nash stable, denoted by NS(u), if it is
supported by a Nash equilibrium in the Consent game, i.e. if there exists a strategy profile
s∗ ∈ S such that G̃(s∗) = G∗ and ũi(si, s∗−i) ≤ ũi(s∗) for all i ∈ [N] and si ∈ Si.

However, the concept of Nash stability has some drawbacks. It is straightforward to
show that a network G is Nash stable if and only if

(7) ui(G) ≥ ui(G 	 li) for all i ∈ N and li ⊂ Ei(G).
19See also Van den Nouweland (2005).
20A strategy si ∈ Si can be interpreted in the following way: if si j = 1, then player i announces that she

wants to have a link with player j, otherwise if si j = 0, then player j announces that she does not want to
have a connection with j.
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That is, each network where no player has an incentive to delete any subset of her links
is Nash stable. In particular, the empty network is always Nash stable independently of
the profile of utility functions.21 Thus simple non–cooperative solution concepts cannot
account for the bilateral nature of network formation. Therefore, in some works (see e.g.
Dutta and Mutuswami, 1997, Dutta et al., 1998), equilibrium concepts are used that involve
coalitional deviations such as strong Nash equilibrium (Aumann, 1959), coalition-proof Nash
equilibrium (Bernheim et al., 1987), and also undominated Nash equilibrium. These concepts,
however, involve high computational and analytical efforts since all possible deviations
of sub–coalitions have to be computed.

3.4 Pairwise Stability and Refinements

The Consent Game resembles that players are in control of their links, i.e. each player
can delete any set of links without consent of others, but to form a link any two involved
players must agree. However, the nature of the non-cooperative solution concepts leads
to unsatisfying stability concepts. To account for this cooperative feature of network
formation Jackson and Wolinsky (1996) adapt a solution concept from the well established
theory of matching.22 Instead of modeling the game explicitly they rather define desired
properties directly on the set of networks.

Definition 3.1. [Jackson and Wolinsky (1996)] A network G ∈ G[N] is pairwise stable (PS) if

i) for all i j ∈ E(G) : mui(G, i j) ≥ 0 and

ii) for all i j ∈ E(Gc) \ E(G) : mui(G ⊕ i j, i j) > 0 ⇒ mu j(G ⊕ i j, i j) < 0.

A network is thus pairwise stable, if i) no player has an incentive to delete one of her
links, and ii) there does not exists a pair of players who want to form a mutually beneficial
link. The definition of pairwise stability implicitly makes assumptions on the underlying
rules of network formation. Let us define the sets of links which can be added, respectively
deleted, according to this link formation rules. For G ∈ G[N] define

ADD(G) :=
{
i j ∈ E(Gc

	 G) | mui(G ⊕ i j, i j) > 0,mu j(G ⊕ i j, i j) ≥ 0
}

21The reason is that the strategy profile s∅ ∈ S, defined by s∅i j = 0 for all i, j ∈ N and i , j, always leads to

the empty network even with one player deviating, i.e. G̃(si, s∅−i) = G∅ for all si ∈ Si and s∅
−i = (s∅j ) j,i. Same

considerations hold for any network that satisfies (7).
22In matching theory known as stable matching, see e.g. Roth and Sotomayor (1990)
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as the set of links that can be added to G, and define

DEL(G) :=
{
i j ∈ E(G) | ∃k ∈ {i, j} : muk(G, i j) < 0

}
as the set of links that can be deleted from G.

Although no actual game is modeled, the solution concept does reflect the intuition
from the Consent Game: players are in control of their links (one at a time) and form a
link only if both players benefit. The solution concept is static but can be motivated by
evolutionary models of network formation (see Section 3.6). Pairwise stability is the most
commonly used notion in the literature of network formation since it reflects naturally
the bilateral nature of network formation and is easy to use, i.e. it does not require a
high computational effort to calculate pairwise stable networks. However, it also has
some limitations since it only considers one link at a time. In the definition of Nash
stability, however, it is ruled out that players have an incentive to cut a set of own links. A
natural refinement of both stability concepts is thus to consider the formation of mutually
beneficial links as well as the deletion of more than one link at a time. This is expressed
in the following notion of stability.

Definition 3.2. [Jackson and Wolinsky (1996)] A network G ∈ G[N] is pairwise Nash stable
(PNS) if

i) G is Nash stable and

ii) for all i j ∈ E(Gc) \ E(G) : mui(G ⊕ i j, i j) > 0 ⇒ mu j(G ⊕ i j, i j) < 0.

By (7), condition i) is simply equivalent to ui(G) ≥ ui(G 	 li) for all li ⊂ E(G). Thus, a
network that is pairwise Nash stable is also robust against a deletion of a set of links by
any player, while pairwise stability only considers one link at a time.

Let us denote by NS(u) PS(u), PNS(u) the set of stable networks depending on the
profile of utility functions u. From the definition of PNS it is clear that

(8) PNS(u) = NS(u) ∩ PS(u),

which particularly implies that any PNS network is also NS and PS. While equivalence of
NS and PNS can only happen in very special cases,23 Calvó-Armengol and Ilkiliç (2009)
present conditions such that the concepts PS and PNS coincide.

Proposition 3.3. [Calvó-Armengol and Ilkiliç (2009)] PS(u) = PNE(u) if u is ordinally concave.

23For NS(u) = PNS(u) we need to have that every network where no links can be deleted does not contain
a link which is beneficial to both involved players. This is satisfied if e.g. only the empty network is PNS.
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Intuitively, this can be obtained since each single link in PS(u) is beneficial and by
concavity stays beneficial when links are deleted. Thus, no set of links can be deleted
implying that (7) holds and hence PS(u) ⊂ NS(u) from which the statement follows by (8).

These introduced stability notions are very basic and most commonly notions of sta-
bility. Other refinements of the concepts include

• strong and weak stability (Dutta and Mutuswami, 1997),

• bilateral stability (Goyal and Vega-Redondo, 2007),

• pairwise stability with transfers (Bloch and Jackson, 2007),

• strict pairwise stability (Chakrabarti and Gilles, 2007),

• unilateral stability (Buskens and van de Rijt, 2008), and

• strict Nash stability (supported by strict Nash equilibrium).

3.5 Existence and Uniqueness of Stable Networks

Since the stability notions presented in Section 3.4 are widely used notions, general
properties of stable networks like existence and uniqueness are of interest. These rather
static properties are shown by means of network evolution in the form of improving paths
(cf. Definition 3.5) which are possible paths of a best-response process (see Section 3.6).

One approach to prove existence of stable networks (in this case PS networks) is
taken by Jackson and Watts (2001) by imposing a potential function and in a similar way
Chakrabarti and Gilles (2007) show existence of a stronger stability notion. Potentials in
games are introduced by Monderer and Shapley (1996).

Definition 3.4. [Monderer and Shapley (1996)] Let Γ = (N,S, π) be a game in strategic form. A
function ρ : S→ R is an ordinal [exact] potential for Γ if for every i ∈ N, for every s−i ∈ S−i and
for all si, s̃i ∈ Si it holds that:

πi(si, s−i)−πi(s̃i, s−i) > 0 ⇔ ρ(si, s−i)−ρ(s̃i, s−i) > 0 [πi(si, s−i)−πi(s̃i, s−i) = ρ(si, s−i)−ρ(s̃i, s−i)]

Existence of a potential function in non-cooperative games rule out best response
cycles. In a similar way cycling behavior in network formation can be ruled out. To define
what we mean by cycling behavior consider the following definition due to Jackson and
Watts (2001).
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Definition 3.5. An improving path from network G to network G′ is a finite sequence of networks
(G1, ...,GK) such that Gk ∈ G[N] for all k = 1, ...,K, G1 = G, GK = G′, and for all k = 1, ...,K − 1
it holds that either

• Gk+1 = Gk 	 i j and i j ∈ DEL(Gk), or

• Gk+1 = Gk ⊕ i j and i j ∈ ADD(Gk).

Note that the definition of improving paths rests on the underlying rules of network
formation that are assumed for pairwise stability. A link is destructed if there exists a
player who wants to delete that link and a link is constructed if there exists a pair of
players who want to form that link. Therefore it is clear that the set of improving paths
emanating from a PS network is empty. An improving path can thus be viewed as network
evolution since these are the possible paths of a best-response dynamics (see Section 3.6).
Given the notion of improving paths, Jackson and Watts (2001) define an (improving) cycle
C as an improving path (G1, ...,GK) such that G1 = GK. Furthermore, a cycle C is called a
closed cycle, if for all networks G ∈ C there does not exists an improving path leading to a
network G′ < C. Concerning the existence of pairwise stable networks and closed cycles,
Jackson and Watts (2001) get the following result.

Lemma 3.6. [Jackson and Watts, 2001] For any profile of utility functions u, there exists at least
one pairwise stable network or a closed cycle of networks.

The idea to prove existence of a PS network is now to exclude the existence of cycles.
For the result the following definition of no indifference is needed.

Definition 3.7. [Jackson and Wolinsky (1996)] The utility function ui of player i exhibits no
indifference if for all G ∈ G[N] and for any link i j ∈ Ei(Gc

	 G) the following holds: ui(G) ,
ui(G ⊕ i j).

As in non-cooperative games the existence of a potential for networks is sufficient
to rule out exactly cycles, thereby giving a sufficient condition for the existence of PS
networks. Jackson and Wolinsky (1996) impose the existence of a function w which is
similar to that of a potential.

Proposition 3.8. [Jackson and Watts (2001)] If there exists a function w : G[N] 7→ R such that
G′ ∈ ADD(G) ∪ DEL(G) ⇔ w(G′) > w(G) ∀G,G′ that are separated by one link, then there
exist no cycles. If u exhibits no indifference then there exist no cycles only if such a function exists.

The function w in Proposition 3.8 is similar to a potential function since Chakrabarti and
Gilles (2007) show that existence of a function is implied by existence of what Chakrabarti
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and Gilles (2007) define as ordinal network potential which in turn is implied by existence
of an ordinal potential of the Consent Game (cf. Definition 3.4). As an example, the
connections model introduced in Section 3.2.1 admits such a function w only for certain
values of c and δ. If e.g. N(δ − δN−1) < c < δ (which only holds for high values of δ when
N is large) then it is easy to check that the function wCo(G) =

∑
i∈[N] uCo

i (G) satisfies the
condition of Proposition 3.8.24

Existence of an ordinal potential for the Consent Game particularly implies the exis-
tence of a network G ∈ G[N] which satisfies even stronger conditions, namely which is
both PNS and such that there exists no link i j ∈ Gc

	G with mui(G ⊕ i j, i j) + mu j(G ⊕ i j, i j).
Chakrabarti and Gilles (2007) define these networks as strictly pairwise stable.

Proposition 3.9. [Chakrabarti and Gilles (2007)] If the profile of utility functions u is such that the
Consent Game admits an ordinal potential, then there exists a strictly pairwise stable network.

The condition of existence of a function w (resp. of an ordinal potential) to show
existence of PS networks is stronger than necessary since cycling behavior is ruled out
completely. Moreover, it is not easy to check whether a utility function delivers such a
function. Externality conditions on marginal utilities are, however, easy to check and seem
to be very natural assumptions (cf. Section 3.2 for examples). The implications of these
are studied in Hellmann (2012). Existence is guarenteed if the externalities are always
positive and a kind of uniqueness is implied if externalities are negative.

Proposition 3.10. [Hellmann (2012)] If a profile of utility functions u = (u1, ...,un) satisfies
ordinal convexity in own links and the ordinal strategic complements property, then:

(1) There does not exist a closed improving cycle.

(2) There exists a PNS (and hence also a PS) network.

The intuition for this result is that any link that is beneficial stays beneficial when other
links are added. Thus, starting from the empty network, a link once improvingly added
will never be deleted improvingly. Moreover, if every player has the same utility function,
one can easily conclude that if the empty network is not P(N)S then the complete network is
uniquely P(N)S (since then every link is beneficial and stays beneficial) and if the complete
network is not P(N)S then the empty network is uniquely P(N)S. An example, where the
conditions of Proposition 3.10 are satisfied, is given by uBC, presented in Section 3.2.2,
where players strive for Bonacich centrality. In that example, every player has the same

24For very low values of c such that any link is always desirable and for very high values of c, the function
wCo(G) also satisfied the condition of Proposition 3.8.

–19–



utility function, and hence, either the empty network or the complete network is uniquely
P(N)S or both are P(N)S.

When imposing instead negative externalities from links a more general kind of
uniqueness result can be established.

Proposition 3.11. [Hellmann (2012)] Let the profile of utility functions u satisfy ordinal concavity
in own links, the ordinal strategic substitutes property, and no indifference. Then:

(1) If G is PS, then for all G′ ∈ G[N] such that E(G′) ( E(G) or E(G′) ) E(G) it holds that G′

is not PS (and hence not PNS).

(2) If Gc or G∅ is PS, then there exists no other PS network.

The intuition here is that a link, if not liked by one player, will not be added when
adding other links. Moreover, it is shown in Hellmann (2012) that if one can construct
particular improving paths starting from the empty network then there exists a unique PS
network.

Definition 3.12. [Hellmann (2012)] An iterated elimination of dominated links addition path
is an improving path (G+

1 ...G
+
K) with G+

1 = G∅ (starting from the empty network) such that for
all k = 1, ...,K − 1 : G+

k+1 := G+
k ⊕ i j if i j ∈ ADD(G+

k ) and mui(ADD(G+
k ) ⊕ G+

k , i j) ≥ 0 and
mu j(ADD(G+

k ) ⊕ G+
k , i j) ≥ 0.

An iterated elimination of dominated links deletion path is an improving path (G−1 ...G
−

L ) with
G−1 = Gc (starting from the complete network) such that for all l = 1, ...,L − 1 : G−l+1 := G−l 	 i j if
i j ∈ DEL(G−l ) and there exists ξ ∈ {i, j} such that muξ((G−l 	DEL(g−l )) ⊕ i j, i j) ≤ 0.

An iterated elimination of dominated links addition path is hence a sequence of net-
works starting from the empty network, where links are added such that they stay bene-
ficial to both involved players, even after all other possible candidates (the set ADD(G))
are added. These links must be contained in any PS network, thus implying the following
result.

Proposition 3.13. [Hellmann (2012)] If the profile of utility functions u satisfies ordinal concavity
in own links, the ordinal strategic substitutes property and no indifference and if there exists an
iterated elimination of dominated links addition path and an iterated elimination of dominated
links deletion path terminating at the same network G∗ ∈ G[N], then G∗ is uniquely PS.

The result also holds for PNS by Proposition 3.3. Examples of utility functions satisfy-
ing ordinal concavity and ordinal strategic substitutes are the models of Patent Races and
Friendship by Goyal and Joshi (2006b), and the Free-Trade-Agreements-Model by Goyal
and Joshi (2006a).
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3.6 Evolution

The static approach in the definitions of stability implicitly assumes some underlying
rules of network formation as argued above. Moreover by the construction of improving
paths some evolution of networks is already modeled. These could be seen as a pure
best response dynamic with discrete time t ∈ N, where at each time step one link is
selected randomly (according to some probability distribution with full support on E(Gc))
to be altered and that decision is made by the two adjacent players. If decisions are made
myopically and optimally then the trajectories of such a dynamic process are exactly given
by the improving paths in Definition 3.5. In that sense, the construction of the pairwise
stable networks by improving paths in the existence results already implicitly model
evolution of networks. In particular, the pairwise stable networks are then absorbing
states of such a Markov process. Together with the closed improvement cycles they form
the set of recurrent classes. Lemma 3.6 then follows easily since any finite Markov process
must have at least one recurrent class.

Such a pure best–response process is explicitly studied in Watts (2001) for the con-
nections model (cf. Section 3.2.1). While any improving path starting from the empty
network terminates at trivial stable networks (empty network for high costs, complete
for low costs), it is shown for intermediate costs that the likelihood of emergence the star
network, which is among the PS networks for that cost range and efficient, decreases with
the number of players N and goes to 0 as N → ∞. The reason is that such a dynamics is
path dependent and once two distinct pairs form a link (which is beneficial) the improving
path will never lead to the star network.

To avoid path dependency Jackson and Watts (2002a) introduce perturbation in the
decisions of players in the sense of Foster and Young (1990); Kandori et al. (1993); Young
(1993). This is interpreted as making mistakes. Formally the timing of the process can be
described as follows (where the first two are exactly the same as in Watts (2001) and in the
definition of improving paths)25:

1. at each point in time t ∈ N a network Gt ∈ G[N] is given and one link is selected
according to a probability distribution with full support on E(Gc)

2. the link is added (not deleted) if i j ∈ ADD(Gt)⊕ (Gc
	DEL(Gt)) while it is not added

(respectively deleted) if i j ∈ (Gc
	 ADD(Gt)) ⊕DEL(Gt)

3. with low probability ε > 0 the decision is reversed

25A continuous-time version of this process is presented in section 4.
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For every 0 < ε < 1 the such defined process defines an irreducible Markov chain
on the set of networks G[N]. It therefore has a unique invariant distribution µε, which
describes the probability with which a given network can be observed. Path dependency
(in particular the starting network) does not influence this probability. The networks
G ∈ G[N] such that limε→0 µε(G) > 0 are called stochastically stable. These are the networks
which will be observed most of the time when the noise limit goes to 0. Naturally only
networks contained in recurrent classes of the Markov process are candidates for stochastic
stability. The concept of stochastic stability hence also presents an evolutionary selection
mechanism among the stable networks (and closed cycles). Jackson and Watts (2002a)
show that stochastically stable networks can be derived by counting mistakes involved in
the transition from one recurrent class to another in a similar way as established already
in game theory (see Young (1998); Sandholm (2010)). However, the construction of these
trees for every recurrence class and calculation of minimal number of mistakes can be quite
complex. Therefore Tercieux and Vannetelbosch (2006) present conditions for pairwise
stable networks (or sets of networks) to be stochastically stable that are easy to check,
called p-pairwise stability.

Dawid and Hellmann (2012) study the evolution of R&D collaborations in the model
setting of Goyal and Joshi (2003)( see Section 3.2.3), using the dynamics of Jackson and
Watts (2002a) to provide a selection of pairwise stable networks. It can be shown that any
PS and PNS network is of dominant group architecture such that there is one completely
connected group and all other players isolated. The sizes of the dominant group are
sensitive to the cost of link formation, but there is no unique prediction with respect
to the networks which will be observed. Moreover, the minimal size of the component
in a non-empty network is increasing in the cost of link formation for a certain cost
range, which is somehow counter–intuitive (cf. Goyal and Joshi (2003) and Dawid and
Hellmann (2012)). When introducing the evolutionary process above it can be shown that
the size of the dominant group in stochastically stable networks is generically unique and
monotonically decreasing in cost of link formation. Further, there exists a lower bound
on the group size of connected firms such that a non-empty network can be stochastically
stable. Thus, introducing stochastic perturbations into the best–response dynamics leads
to a selection of pairwise stable networks.

4. Co-evolutionary processes

We have now seen two distinct approaches to model network formation. Section
2 discussed the statistical/mathematical approach to network formation using random
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graph models. As emphasized in that section, the main focus in this literature is in
defining dynamic processes of network formation in order to generate networks which
display some desired stylized features observed in real-world graphs. Section 3 provided
a different approach to network formation using game theoretic concepts and equilibrium
reasoning to understand and describe observed networks. In the last section of this
review article we describe a class of models which is able to combine these two elements.
Following Staudigl (2010), we call this model class co-evolutionary processes of networks and
play. To construct such a model we first have to define the class of strategic interactions
we are interested in.

4.1 Games with local interaction structure

Recall that a normal form game is a tuple 〈[N], (ui)i∈[N], (Si)i∈[N]〉, where

• [N] = {1, 2, . . . ,N} is the set of players,

• ui : ×i∈[N]Si → R is the (von Neumann-Morgenstern) utility function of the players,
assigning a utility index ui(s1, . . . , sN) to each action profile s := (s1, . . . , sN) ∈ S =

×i∈[N]Si.

In this definition only implicitly the interaction structure of the players is captured. Actu-
ally it is hidden in the definition of the utility function ui, by specifying the effect the action
of player j has on player i. In order to make this dependency structure more explicit it
is useful to separate these effects and define a preference relation directly on the product
set of action profiles and interaction structures (i.e. networks). To do so, let us redefine
the strategic interaction as a game with local interaction structure, following Morris (1997).
We call a game with local interaction structure a tuple 〈[N], (ui)i∈[N], (Si)i∈[N],G[N]〉. The
difference between this definition and the classical definition given above is that we define
the utility functions of players as mappings ui : S×G[N]→ R. This is a natural extension
of the preference structure used in strategic network formation models, where the first
factor of the product set (hence, the action profile) is essentially a dummy variable. In
game theory, models with local interaction structure have a quite long tradition (early con-
tributions are Blume, 1993, 1995; Ellison, 1993). In a co-evolutionary process of networks
and play we think of a game with local interaction structure as a ”stage game”, and the
dynamic interaction is repeated over time, allowing the players to change their actions,
as well as to influence the local interaction structure. With this motivation in mind, let us
now make the construction of a co-evolutionary process precise.
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4.2 Co-evolution of networks and play

Starting from a given local interaction game 〈[N], (ui)i∈[N], (Si)i∈[N],G[N]〉 we now con-
struct an explicit dynamic model which includes a dynamic model of network formation
as well as a dynamic model of action revision of the player. The model class we are
presenting in this survey build on the following hypothesis:

(i) Agents are myopic in their linking and action decision (cf. Section 3.6);

(ii) The dynamic process is stationary.

Hypothesis (i) is a huge simplification and essentially boils down to the hypothesis that
players base their decision’s today only on the current information they have. They do
not attempt to forecast the impact of their behavior on the future evolution of the state
and its consequence on their own payoff. Such an assumption is standard practice in
evolutionary game theory (Weibull, 1995; Hofbauer and Sigmund, 1998). Together with
hypothesis (ii), it allows us to model a co-evolutionary process as a time-homogeneous
Markov processes living on the product set S×G[N]. More formally, a co-evolutionary model
with noise a family of continuous-time Markov jump processes

{
{Xε(t)}t∈R+

}
ε∈(0,ε̄], defined

on the finite state space X = S × G[N], the set of pairs of action profiles and networks.
A realization {Xε(t) = x} defines an action profile σ(x) = (σi(x))i∈[N] ∈ S, and a network
γ(x) ∈ G[N].26 In concrete examples it is often more convenient to encode the network via
its adjacency matrix. With a slight abuse of notation we denote the adjacency matrix of
the network γ(x) by A(x).

Remark 4.1. The stochastic process Xε is indexed by the parameter ε > 0. In the evolution-
ary literature this parameter often has the interpretation of behavioral noise parameter,
which models some elements of deviations from behavior based on pure optimization (cf.
section 3.6). For more details on stochastic models in evolutionary game theory see Young
(1998) and Sandholm (2010).

We now turn the specification of the random process. Concrete examples are presented
below. The Markov jump process is constructed from the following components:

Action adjustments: With constant rate 1 the action profile σ(x) is allowed to change.
Conditional on this event, player i ∈ [N] is chosen uniformly at random to update
his current action. If i gets a revision opportunity, he draws an action from the
distribution bεi (·|x) ∈ ∆(Si). The mapping bεi : X → ∆(Si) is called the choice function
Hofbauer and Sandholm (2002) of player i. Choice functions are basic objects in game

26Hence, we think of the mappings σ and γ as the projection mappings onto their relevant factors.

–24–



theory, and we refer the reader to the book Sandholm (2010) for many examples of
choice functions studied in the literature.

Link creation: With constant rate λ ≥ 0 the process allows the network to expand. As in
Section 2 we model this process by a matrix-valued function Wε : X → RN×N, whose
elements are bounded non-negative functions wε

i j(x), which specify the intensity of
link creation given the current state x ∈ X. For each x ∈ X and ε > 0 the matrix Wε(x)
is symmetric, and called the attachment mechanism of the process.

Link destruction: With constant rate ξ ≥ 0 a link becomes destroyed. The intensity with
which the link between player i and j is destroyed is modeled by matrix-valued
function Vε : X → RN×N, whose elements are bounded non-negative functions vεi j(x).
For each x ∈ X and ε > 0 the matrix Vε(x) is symmetric, and called the volatility
mechanism of the process.

This description can be summarized in terms of the generator of the process Xε, which is
a linear operator Qε, acting on bounded functions f ∈ RX, specified as

Qε(x, x′) =


bεi (si|x) if x′ = ((si, σ−i(x)),G(x)), si , σi(x),
λwε

i j(x) if x′ = (σ(x),G(x) ⊕ i j), j , i,
ξvεi j(x) if x′ = (σ(x),G(x) 	 i j), j , i.

Here we have used the classical game theoretic notation for an action profile as s = (si, s−i).
Let us end the description of the process with some remarks.

Remark 4.2.

• A co-evolutionary process is general enough to cover most evolutionary models
which have been studied in the literature. In particular, evolutionary learning
models on fixed interaction structures are obtained by specializing the setting to
λ = ξ = 0. In this case, we envision a finite set of players who interact with a
subset of the player population and have to stick to one action in each individual
interaction. Such models are very prominent in the local interaction literature (see
e.g. Alós-Ferrer and Weidenholzer, 2007, and the literature mentioned in Section
4.1).

• From its very construction it is obvious that the process Xε is indeed an extension
of the random graph process of Section 2. The added feature is that the attachment
and the volatility mechanism are now functions defined on the domain X.

–25–



4.3 A micro-founded model for inhomogeneous random graphs.

As mentioned in the introductory section of this survey, the theory of random graphs
provides in essence 2 classes of model: the ”On-line” models frequently motivated by
the preferential attachment model of Barabási and Albert (1999), and generalized random
graphs (Newman, 2003, and Section 2.2 of this survey). An interesting and important
question is now which random graph models are expected to appear in a co-evolutionary
process. To give a characterization of the class of networks generated by co-evolutionary
processes we would like to rely on our knowledge about general random graph models.
In particular we would like to use the general characterization Theorem 2.2. To apply this
theorem to the co-evolutionary process Xε, we will need to make some assumptions, and
introduce some more notation. First we have to develop notation to define a random graph
process conditional on a fixed profile of actions s ∈ S. For a given profile s ∈ S, let us define
the s-section of the state spaceX as the setXs := {s}×G[N]. An s-conditional random graph
process is a continuous-time Markov process {γε(t)}t≥0 in Xs with attachment mechanism
Wε
|Xs and Vε

|Xs . Observe that the intensities can only vary with the network on the s-
section. Our goal is to derive a conditional random graph measure P(·|s), which is a random
graph measure in the sense of random graph theory, but where we condition on the action
profile used by the players.

We impose the following set of assumptions on the network formation mechanism:

Assumption 4.3. The co-evolutionary process Xε satisfies the following assumptions:

(i) λ, ξ > 0;

(ii) If Ai j(x) = 0 and ε > 0, then wε
i j(x) > 0. If Ai j(x) = 1 or i = j, then wε

i j(x) = 0 for all ε;

(iii) For all pairs of players i, j ∈ [N] and states x ∈ X we have wε
i j(x) = κεi j(σ(x))(1−Ai j(x)), and

vεi j(x) = δεi j(σ(x))Ai j(x), where κεi j and δεi j are positive functions.

Remark 4.4.

• The items listed under Assumption 4.3 are not minimal in order to be able to apply
Theorem 2.2 to characterize the conditional random graph measure. Item (ii) is more
restrictive than actually needed. The only requirement we need is that the gener-
ator of the conditional random graph process satisfies the necessary irreducibility
assumptions in order to guarantee the existence of a unique invariant measure.
However, item (iii) is necessary as will be seen in below.

• Our definition of a conditional random graph process is closely related to a random
process with latent space variables (Hoff et al., 2002).
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Item (iii) of Assumption 4.3 is arguably the most restrictive one. It requires that the
intensities of link creation and destruction are functions only of the given action profile.
One can imagine examples where this assumption makes sense, but it is clear that many
examples will not fit this description. Nevertheless we have the following characterization
result, which is a straightforward application of Theorem 2.2.

Proposition 4.5. Consider a co-evolutionary process Xε as defined above whose attachment and
volatility mechanism satisfies assumption 4.3. Conditional on an action profile a ∈ A, the
conditioned random graph process {γε(t)}t≥0 has a unique invariant graph measure agreeing with
the probability measure of an inhomogeneous random graph

Pε({G}|s) =

N∏
i=1

∏
j>i

(pεi j(s))Ai j(G)(1 − pεi j(s))1−Ai j(G),

where pεi j(s) :=
κεi j(s)

κεi j(s)+δεi j(s) is the edge-success probability of vertex i and j.

4.4 Examples of co-evolutionary processes

In this section we are about to present some simple examples of co-evolutionary
processes of networks and play. In these examples network formation is naturally coupled
to an underlying interaction game. In particular, link creation and destruction are defined
in such a way so that they reflect the incentives of the agents in a simple way. The examples
we present differ in some important facts. The first model, which is a variation of the
model presented in Jackson and Watts (2002b), uses the idea of pairwise stability (see 3.4)
to construct a network formation model. The second example, which is based on Staudigl
(2011, 2012), presents an evolutionary model of network formation which is more in the
spirit of matching.

4.4.1 A co-evolutionary model based on Pairwise stability

Jackson and Watts (2002b) combines the network formation model of Jackson and
Wolinsky (1996) (see Chapter 3.4) with the dynamic network formation model due to
Watts (2001), presented in section 3.6. This paper takes the best-response with mutations
model of Kandori et al. (1993) and Young (1993) as choice function. Let us introduce the
model by Jackson and Watts (2002b) briefly. The local interaction game is a symmetric
2× 2 coordination game. Hence S1 = S2 = {1, 2}. Assume that for each link a player has to
pay a constant marginal cost φ > 0 for each link. The utility function of player i is given
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by
ui(s,G) =

∑
j,i

π(si, s j)Ai j(G) − φηi(G),

where

π(1, s) =

 a if s = 1,
b if s = 2

and π(2, s) =

 c if s = 1,
d if s = 2.

Note that, for a fixed profile of action a, the marginal utility of the link (i, j) for player i is
given exactly by mui(G(x) ⊕ i j, i j) = π(σi(x), σ j(x)).
The co-evolutionary process is set up as follows:

Action adjustment: Assume that each player receives with uniform probability 1/N the
opportunity to change his action. Conditional on this event he selects action a ∈ A
with probability

bεi (a|x) =


1 − ε

2 if σi(x) , a and {a} = arg maxs′∈{1,2} ui((s′, σ−i(x)),G(x)),
1 − ε

2 if σi(x) = a and {σi(x)} = arg maxs′∈{1,2} ui((s′, σ−i(x)),G(x)),
ε
2 otherwise.

This choice function says that a player abandons his currently used action with
relatively high probability, if there exists a strictly better action. Otherwise he sticks
to his action and switches only with the relatively small probability ε.

Link creation: With rate λ > 0 a link becomes created. Jackson and Watts (2002b) model
network formation in the flavor of pairwise stability as discussed in 3. Using the
notation of Section 3.4 let

ADD(x) = {i j ∈ E(Gc
	 G(x))|π(σi(x), σ j(x)) > φ and π(σ j(x), σi(x)) ≥ φ}

the set of links that are mutually profitable. Similarly we define

DEL(x) = {i j ∈ E(G(x))|π(σi(x), σ j(x)) < φ or π(σ j(x), σi(x)) < φ}.

Let m(x) := |ADD(x)| the number of mutually profitable links and d(x) := |E(Gc)| −
|E(G(x))| the number of links that can be formed at x ∈ X. Jackson and Watts (2002b)
assume that a previously non-existing link becomes active with probability 1 − ε if
both players mutually agree. With the small probability ε all links have a chance to
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be formed. The rate that a currently non-existing link i j will be added is

wε
i j(x) :=

 1−ε
m(x) + ε

d(x) if i j ∈ ADD(x),
ε

d(x) otherwise.

Link destruction: With rate ξ > 0 links become destroyed. Conditional on this event,
pick one edge i j ∈ E(G(x)) uniformly at random and allow the incident players to
re-evaluate the benefits arising from this connection. Denote by m̄(ω) = |DEL(x)|
the number of active links where at least one player benefits from the deletion of
the link. If (i, j) is a link where at least one player is better off after its deletion it
is assumed that with large probability 1 − ε it will be destroyed. With the small
probability ε every link can be destroyed once it has been selected. This leads to the
following version of the volatility mechanism:

∀(i, j) ∈ E(G(x)) : vεi, j(x) =

 1−ε
m̄(x) + ε

|E(G((x))| if i j ∈ DEL(x),
ε

|E(G((x))| otherwise.

Clearly this model is a version of a co-evolutionary process. The attachment and
volatility mechanism depends however in a non-trivial way on the current network and
the action chosen by the players, so that we cannot apply Proposition 4.5 to this model.
However, this model can still be quite well understood in the extreme case where ε→ 0.
Jackson and Watts (2002b) show that in this particular limit the random graph measure
peaks out at the complete network, and a single strongly symmetric action profile, which
depends on the parameters of the function π.

4.4.2 An analytically tractable model

In this section we present a co-evolutionary process of networks and play which is
analytically tractable. This approach is due to Staudigl (2011) and Staudigl (2012). We
sketch the model presented in Staudigl (2012), as it is closely related to the multi-type
random network presented in Section 2.2.3.
Consider a society of N players, playing a game with local interaction structure specified
as in section 4.1 as a tuple 〈[N], (Si)i∈[N], (ui)i∈[N],G[N]〉. We specialize this model to a
family of games in which the utility function of the players consists of two parts. The first
component is a common payoff term, which one may think of as the externalities the players
exert on each other. The second component is an idiosyncratic payoff term which depends
on the player’s own choice, but varies from player to player in a random way. Suppose
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that all players have the same action set, which we denote (with an abuse of notation)
by S. The set of action profiles is in this section denoted by SN and a typical element of
this set is a N-tuple ~s := (si)i∈[N]. The common payoff term from bilateral interaction is
modeled by a reward function π : S × S → R. In many applications it is conceivable that
the common payoff terms displays a strong symmetry property of the form

π(s, s′) = π(s′, s) ∀s, s′ ∈ S.

The idiosyncratic payoff component is captured by a function τi : S → R, where τi is an
element of the set of functions Θ = {θ1, . . . , θm|θl : S → R}. We think of the idiosyncratic
component in the player’s utility function as the type of the player. It is a fixed attribute
and therefore will be thought of as being a parameter of the co-evolutionary process.
Given an action profile ~s ∈ SN and a profile of types τ ∈ ΘN, the (ex-post) payoff of player
i is assumed to be

ui(s,G, τi) =
∑
j,i

Ai j(G)π(si, s j) + τi(si).

Interaction games with such a partnership structure capture situations where all agents
have the same reward function, and the payoff function of every player is the sum of all
per-interaction rewards. However, having the partnership structure does not imply that
all agents earn the same payoff in the interaction game since the interaction model will in
general prescribe different interactions to different players.

The co-evolutionary process is specified by the following data.

Action adjustment: Agents use the logit-choice function (Blume, 1993) to choose actions.
This choice function is defined as

(∀s ∈ S) : bεi (s|x, τi) =
exp [ui((s, σ−i(x)),G(x), τi)/ε]∑

s′∈S exp [ui((s′, σ−i(x)),G(x), τi)/ε]
.

The rate of the transition x = (~s,G)→ x′ = ((s, σ−i(x)),G(x)) is

Qε,τ(x, x′) = bεi (s|x, τi).

Link creation: The attachment mechanism will be specified as function of the types of
the agents. Hence, as in section 2.2.3, we specify the attachment mechanism by a
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collection of functions {κε(s, s′)}(s,s′)∈S×S as

κε(s, s′) =
2
N

exp(π(s, s′)/ε) ∀s, s′ ∈ S.

The rate of a transition x = (~s,G)→ x′ = (~s,G ⊕ i j) is then given by

Qε,τ(x, x′) = λ(1 − Ai j(x))κε(σi(x), σ j(x)).

Link destruction: The volatility mechanism is specified as

vεi j(x) = δετi,τ j

where δεk,l ≡ δ
ε
l,k is the volatility rate of a link between a player of type k and a player

of type l.The rate of the transition x = (~s,G)→ x′ = (~s,G(x) 	 i j) is then given by

Qε,τ(x, x′) = ξAi j(x)δετi,τ j
.

As shown in Staudigl (2012) this model can be completely analyzed using elementary
arguments. The (strong) assumptions making the model tractable are the strong symmetry
of the reward function π and the particular specification of the volatility and attachment
mechanism. Working with these assumptions allows us to write down a simple and nice
formula for the (unique) invariant distribution of the co-evolutionary process.

Theorem 4.6 (Staudigl (2011),Staudigl (2012)). The unique invariant distribution of the co-
evolutionary process {Xε,τ

N (t)}t≥0 is the Gibbs measure

(9) µε,τN (x) =
exp(ε−1Hε

N(x, τ))∑
x′∈X exp(ε−1Hε

N(x′, τ))
=

µε,τ0,N(x) exp
(
ε−1ρ(x, τ)

)∑
x′∈X µ

ε,τ
0,N(x′) exp

(
ε−1ρ(x′, τ)

) ,
where, for all x = (s,G) ∈ X,

Hε
N(x, τ) := ρ(x, τ) + ε logµε,τ0,N(x),

µε,τ0,N(x) :=
N∏

i=1

∏
j>i

(
2

Nδετi,τ j

)Ai j(G)

,

ρ(x, τ) :=
1
2

∑
j,i

Ai j(G)π(σi(x), σ j(x)) +
∑

i

τi(si).

The Gibbs measure (9) is defined by a function µε,τ0,N capturing the effect of the network
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formation process, and a function depending on the potential function ρ, which can be
interpreted as a welfare function.27

The invariant measure µε,τN assigns to each state x ∈ X some probability. We can use this
measure to derive a random graph measure over the ~s-section X~s. We have a complete
characterization for this measure, which can be described as follows. The random graph
process {γε,τ(t)}t≥0 defined onG[N] for a fixed profile of actions~s ∈ SN can be formally iden-
tified with a birth-death process with “birth rates” of the link i j given by 2 exp(π(si, s j)/ε),
and “death-rates” δετi,τ j

. Let us introduce the rate ratio

ϕεk,l(s, s
′) =

2ε exp(π(s, s′)/ε)
δεk,l

,

for s, s′ ∈ S and 1 ≤ k, l ≤ m. Staudigl (2012) goes on in proving the following result, which
is now a simple application of Proposition 4.5.

Proposition 4.7. Consider the random graph process described above. This process is ergodic with
unique invariant graph measure

Pε,τ
N (G|~s) =

N∏
i=1

∏
j>i

pεi j(~s, τ)Ai j(G)
(
1 − pεi j(~s, τ)

)(1−Ai j(G))
,

where the edge-success probabilities are defined as

pεi j(~s, τ) =
ϕεk,l(s, s

′)

ϕεk,l(s, s
′) + Nε

if si = s, s j = s′, τi = θk, τ j = θl

for all i, j ∈ [N].

Staudigl (2012) goes on in characterizing the supports of the invariant measure µε,τN as
ε→ 0 (the so-called stochastically stable states mentioned in section 3.6), and also derives
the large deviation rate function of this measure in the limit of large player sets, i.e. where
N→∞.

5. Summary and suggestions for future research

As seen in this survey, the literature on the evolution of networks has a long tradition
in various disciplines, and there are many models available which are able to catch many

27Definition 3.4 introduced potential games formally. The function ρ can be shown to be even an exact
potential function. See Staudigl (2012) for the details.
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stylized facts observed in real social networks. Due to its interdisciplinary character the
literature on social and economic networks is enormous. For this reason we have focused
in this survey on two particular useful approaches to model network formation. Models
based on random graph theory are very useful in order to describe the dynamic evolution
of networks. In these models the network structure is encoded in the random graph
measure, which describes the likelihood that a certain network structure will be observed
in the long run of the dynamic process.

Models using tools from game theory are good in describing networks as outcomes of a
strategic interaction. The equilibrium concepts are inherently static, but can be motivated
using evolutionary approaches such as myopic best-response processes which give rise
to improving paths. Moreover, economic reasoning is useful in the modeling stage of
an evolutionary model by setting bounds to what a ”natural” network formation process
should look like. For this very reason we have devoted section 3 to describe the most
popular game theoretic concepts to study network formation. From the view of “pure”
network evolution there are several areas that we think are important for future research.
We presented first steps to show the relation between assumptions on the utility functions
and the structure of stable networks, but there is room for improvement. General char-
acterizations of stable networks are so far missing (e.g. necessary conditions for existence
and uniqueness or general conditions for emergence of particular networks). In particu-
lar, due to analytical tractability, game theoretic models (whether static or evolutionary)
usually predict very stylized network structures. An attempt to overcome this is pre-
sented in Section 4 where game theoretic modeling and the statistical network approach
are combined. We still think that also pure game theoretic models can be used to recover
empirically observed facts of networks which is an interesting object for future research.

Section 4 exploited game theoretic reasoning in defining a class of dynamic network
formation models which admit a firm economic foundation. As these models become
quickly very difficult to analyze, we have restricted the discussion in this survey to
models based on very strong assumptions permitting a simple analytic treatment of the
model. Relaxing these assumptions, without destroying tractability, is an important topic
for future research. It seems to be likely that once the assumptions imposed on the co-
evolutionary process are relaxed we cannot obtain as detailed results as, for instance,
those found in section 4.4.2. For this reason different mathematical techniques will be
necessary to extract information from the random process. Stochastic approximation
theory (Kushner and Yin, 1997; Benaı̈m, 1999) seems to be a useful tool to obtain accurate
information on the statistical properties of co-evolutionary models, at least in the limit of
large networks. Indeed, a common practice in statistical physics is to analyze the stochastic
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network formation dynamics by relying on so-called ”mean-field” approximation, whose
accuracy is compared to numerical experiments. Only rarely a theoretical justification for
this common practice is given. Hence, it is important to work out the exact conditions
under which ”mean-field” models are ”correct” approximations.
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Erdös, P. and Rényi, A. (1959). On random graphs i. Publicationes Mathematicae, 6:290–297.
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