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a b s t r a c t

Companies that maintain capital goods (e.g., airplanes or power plants) often face high costs, both for
holding spare parts and due to downtime of their technical systems. These costs can be reduced by pool-
ing common spare parts between multiple companies in the same region, but managers may be unsure
about how to share the resulting costs or benefits in a fair way that avoids free riders. To tackle this prob-
lem, we study several players, each facing a Poisson demand process for an expensive, low-usage item.
They share a stock point that is controlled by a continuous-review base stock policy with full backorder-
ing under an optimal base stock level. Costs consist of penalty costs for backorders and holding costs for
on-hand stock. We propose to allocate the total costs proportional to players’ demand rates. Our key
result is that this cost allocation rule satisfies many appealing properties: it makes all separate partici-
pants and subgroups of participants better off, it stimulates growth of the pool, it can be easily imple-
mented in practice, and it induces players to reveal their private information truthfully. To obtain
these game theoretical results, we exploit novel structural properties of the cost function in our (S � 1,
S) inventory model.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Capital goods such as trams, manufacturing systems, power
plants, and airplanes form the backbone of much of our society.
Users of such capital goods are often confronted with the difficult
task of guaranteeing high availabilities of their expensive, techno-
logically advanced systems. A commonly used strategy to prevent
lengthy downtimes is to immediately replace any failed compo-
nent with a functioning spare part. Obviously, this strategy func-
tions only if a spare part is available when needed, but the
required stocks tend to tie up a lot of capital. For instance, the com-
mercial aviation industry has as much as $30 billion worth of spare
engines on stock (Flint, 2006). More generally, the sale of spare
parts and after-sales services has been pegged at $1 trillion every
year in the United States alone, which represents 8% of its gross
domestic product (Cohen, Agrawal, & Agrawal, 2006, pp. 129–
130, & references therein). At the same time, being out of stock
when a spare part is needed leads to downtime of capital goods,
which is very expensive due to loss of operational continuity. For
example, in the semiconductor industry, the opportunity costs
for lost production are estimated to run into tens of thousands of
euros per hour (Kranenburg, 2006, p. 17).

Because of the high costs involved, both spare parts holding
costs and downtime costs, many companies in the capital goods
industry are looking for ways to reduce these costs. Intuitively, it
makes sense for companies in the same geographic area to pool
common spare parts. Indeed, as stated by Cohen et al. (2006, p.
136): ‘‘The best way for companies to realize economies of scale
is to pool spare parts’’. Tram operators in the Netherlands are a
good example. In the Netherlands, the local public transport in
the three largest cities (Amsterdam, Rotterdam, and The Hague,
all of which are within an hour’s driving distance of each other)
is operated by a separate company per city. Although the operators
use trams of different models, there is still a lot of commonality on
the component level, enabling an excellent opportunity for inven-
tory pooling. Another example setting is that of independently
managed plants of a large energy company, as described in Guaj-
ardo, Ronnqvist, Halvorsenb, and Kallevik (2012): the plants cur-
rently hold their inventory separately, but annual savings of 44%
may be obtainable if pooling is taken into account. While promis-
ing, this does raise the question of how the plants should share
these benefits, which is mentioned by Guajardo et al. (2012) as
an important research direction. Kukreja, Schmidt, and Miller
(2001) describe a similar case of pooling possibilities between
independently operating power-generating plants, for which sub-
stantial savings of 68% are achievable by pooling of common parts.
Spare parts pools for multiple companies already exist in the
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airline industry (Flint, 2006) and in the military: a number of Euro-
pean air forces and navies are currently pooling their spare parts,
and other countries have shown interest in joining the pool (Hale,
2011).

The successful collaborations in aerospace and defense are
encouraging, and the potential for huge cost savings is attractive.
Nevertheless, cooperative pooling of common spare parts between
different companies, or between different business units, is not a
common practice yet. One major obstacle appears to be the identi-
fication of a fair cost sharing mechanism. In our contacts with the
capital goods industry, we find that practitioners are mainly hesi-
tant to pool spare parts because they are not sure it will lead to a
cost saving for themselves. Some of the commonly stated fears are
that some group of firms may end up paying to subsidize the oth-
ers, that the other companies may not disclose their private infor-
mation truthfully, and that new members might take more benefit
out of the pool than they bring in. In this paper, we will tackle
these issues by applying concepts from game theory to determine
an appealing cost sharing mechanism. This is practically relevant
for decision makers that consider starting up a new spare parts
pool and, additionally, it may aid participants in existing pools to
decide on whether or not to adapt the cost allocation rules that
are currently in use.

Before we can analyze cost sharing mechanisms, we first need a
suitable model for a (shared) stock point operated by any number
of players. The model should be realistic for parts for which pooling
is especially interesting due to their large economic impact: expen-
sive, low-demand spare parts with long lead times and no emer-
gency supply flexibility. For such parts, whose demands typically
occur in accordance with a Poisson process, a continuous-review
base stock policy with one-for-one replenishments is appropriate.
Therefore, we will analyze the resulting single-echelon (S � 1, S)
inventory model, taking into account holding costs incurred while
spare parts are in stock and penalty costs incurred while a capital
good is down due to the unavailability of a spare part.

The cost and behavior of an inventory system greatly depend on
what happens to demands when the system is out of stock. In prac-
tice, there are two common ways to deal with stock-outs: using
backlogging or emergency procedures. An emergency procedure
typically refers to the instantaneous delivery of a part from an
alternative supplier. There are some real-life settings where such
emergency deliveries are possible. In many other cases, backorder-
ing is the only option. This is often true for consumable parts that
are produced by one supplier only and for repairable parts that are
no longer in production (in which case one has to wait for a part to
return from the repair shop). Backordering is in line with what
happens in the real-life examples mentioned earlier; for instance,
the stock planners of the Dutch tram operators plan for backorders.
Backordering is also commonly assumed in the stream of literature
on spare parts models, as reviewed in Section 2.

In the literature, the only previous analytical investigation of
cost allocation mechanisms for spare parts pools with multiple
players (Karsten, Slikker, & van Houtum, 2012) has focused on a
model with emergency procedures. Yet, for the many real-life cases
that lack an alternative supplier with a negligible lead time, the
results of Karsten et al. (2012) do not apply. The present paper fills
this gap by tackling the setting with backordering. Our analysis is
drastically different from Karsten et al. (2012), as we discuss in
Section 2. Besides that, we contribute to the literature by discuss-
ing implementation issues (in Sections 7.2 and 8) that were not
considered by Karsten et al. (2012).

The (S � 1, S) inventory model with backordering that we con-
sider is more generally applicable for expensive, low-demand
items for which ordering costs are negligible compared with hold-
ing and shortage costs. Although this means that our analysis and
results may also be relevant for other applications, such as

inventory pooling of luxury cars, we use spare parts terminology
in this paper to enable a concrete exposition and a concrete justi-
fication of assumptions. The general (S � 1, S) model has been
studied extensively in the literature, due to its high practical rele-
vance. As a result, the steady-state distributions of the number of
items on hand and on backorder are well-known; the same holds
for the average long-term costs and the behavior of these costs
as a function of the base stock level. These results, however, do
not directly help in identifying a suitable cost sharing mechanism
for the problem at hand. For that, we need to understand how the
average long-term costs behave when the demand rate varies (as a
result of new players joining the pool). Therefore, we first derive
new convexity and elasticity properties of the costs as a function
of the demand rate in our (S � 1, S) inventory model, and we show
that pooling the demand streams and inventory of a number of gi-
ven stock points leads to reduced backorders, inventory, and costs.

After having formally shown that pooling is indeed cost effec-
tive from a system’s point of view, we turn to our cost sharing
problem. We focus on several players (e.g., companies, business
units, or defense organizations) that are located geographically
close together. They have identical cost structures and replenish-
ment lead times. Players have the choice of either operating their
own stock point (which behaves as an (S � 1, S) inventory system)
or setting up a shared stock point from which the combined de-
mand streams of the participants are fulfilled (also behaving as
an (S � 1, S) inventory system, but with a higher demand rate
and likely a higher optimal base stock level than for a single
player).

If the players decide to operate a shared stock point, they
should also decide on a rule to assign the resulting holding and
backorder costs among the players, preferably in a way that is
appealing from a practical perspective. Four relevant properties
or requirements that an allocation rule might satisfy are that: (1)
it gives a fair allocation of the total expected costs to the various
players, (2) it stimulates growth by making it interesting for exist-
ing players to allow more players to join, (3) it is easy to under-
stand and implement, and (4) it gives players an incentive to
disclose all relevant information truthfully. One important notion
of fairness from cooperative game theory – the core – requires that
a cost allocation should not give any subgroup of players an incen-
tive to split off and form a separate pool. We take this concept of
the core as our guideline for the first requirement posited above,
i.e., we aim to find an allocation under which each subgroup of
players gets better off. This is not trivial: as is well-known in coop-
erative game theory, an overall lower cost is not necessarily a guar-
antee that a core allocation exists.

Taking this into consideration, identification of an allocation
rule satisfying the first requirement, let alone all four require-
ments, may seem to be a complex problem. Nevertheless, we show
that this problem does have a solution and a surprisingly simple
one at that: the straightforward allocation of total costs propor-
tional to player’s demand rates satisfies all required properties!
We see this as the main contribution of our paper. Interestingly,
the expected cost allocations prescribed by this proportional rule
coincide with the common practice of charging a fixed fee per
flight hour for participation in an aircraft component pool (assum-
ing that all costs are fully shared and that component failures rates
per flight hour are the same across players). Thus, our results pro-
vide support for these flight-hour charges from a game theoretical
perspective.

Implementation of this proportional cost allocation in practice
is a next challenge, especially since realized costs in any period of
time may differ greatly from expected costs. To deal with this,
we propose a process to fairly allocate cost realizations, and discuss
its implications for truthful information disclosure in the context of
a non-cooperative game. These issues have been previously
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considered in the context of collaborating newsvendors with no
inventory carryover: fair divisions of realized costs are studied by
Dror, Guardiola, Meca, and Puerto (2008), Chen and Zhang (2009,
Remark 3), and Kemahlıoğlu-Ziya and Bartholdi (2011, Section 6)
while schemes that induce truthful revelation of private demand
information are studied by Norde, Özen, and Slikker (2011). We,
in contrast, tackle these practically relevant issues in an infinite-
horizon continuous-review inventory model. Our approach differs
from existing approaches in the newsvendor context. Specifically,
we identify a process that fairly allocates costs as they materialize
and, subsequently, we establish a link between this process and
our proportional core allocation.

The remainder of this paper is organized as follows. We first dis-
cuss the related literature in Section 2 and subsequently describe
our inventory model in Section 3. Next, we give some preliminaries
on cooperative game theory in Section 4 and introduce our cooper-
ative spare parts pooling games in Section 5. The next three sec-
tions form the main part of our work. We analyze the associated
inventory model in Section 6. The results are used in Section 7 to
show that the proportional rule always results in a core allocation
and that adding extra players makes everyone better off. In
Section 8, we show how this allocation rule can be implemented
in practice and how it induces players to truthfully disclose their
private information. We conclude in Section 9.

2. Related literature

There are two streams of related literature: the literature on
spare parts inventory management and the literature on coopera-
tive game theory applied to inventory or queueing systems.

Due to the high economic impact of spare parts all around the
world, the amount of literature on spare parts inventory manage-
ment is enormous. The first relevant paper is that of Feeney and
Sherbrooke (1966), who derive the steady-state distribution of
the number of items in resupply in the spare parts model that
we consider. Several subsequent papers have studied pooling of
spare parts between several locations, under the assumption that
the system is owned by a single entity who decides whether or
not to pool. Examples include Kukreja et al. (2001) and Wong,
Cattrysse, and van Oudheusden (2005); they show that if there
are multiple stock points at one echelon level, it is generally worth-
while to use lateral transshipments between these stock points in
order to reduce costs or increase the service level. Our model is in
line with the models used in these two examples, although we do
not explicitly take transshipment costs into account in our present
paper. Wong, van Houtum, Cattrysse, and van Oudheusden (2006)
give an extensive overview of the literature on pooling in spare
parts inventory models, and we refer to the books by Sherbrooke
(2004) and Muckstadt (2005) for extensive overviews of the spare
parts literature in general. Opposed to this literature, we will
consider the setting with independent parties and address the
issue of fair cost allocation.

The literature on cooperative games in inventory systems has
recently been reviewed by Fiestras-Janeiro, García-Jurado, Meca,
and Mosquera (2011) and Dror and Hartman (2011). Four lines of
research can be distinguished. First, the literature on games in
which players face deterministic demand, use economic order
quantity policies, and cooperate by using joint replenishments;
see, e.g., Anily and Haviv (2007). In contrast to this line of research,
we consider a model with stochastic demand. Second, the vast lit-
erature on single-period newsvendor games, in which players face
stochastic demand and may cooperate by coordinating orders and
pooling inventory; see, e.g., Hartman, Dror, and Shaked (2000),
Slikker, Fransoo, and Wouters (2001), Müller, Scarsini, and Shaked
(2002), Dror et al. (2008), Özen, Fransoo, Norde, and Slikker (2008),

Chen and Zhang (2009), and Kemahlıoğlu-Ziya and Bartholdi
(2011). In this paper, we study an infinite-horizon model. Surpris-
ingly, the resulting class of spare parts pooling games turns out
to coincide with the class of (single-period) newsvendor games
where all players have Poisson distributed demand. Yet, as we dis-
cuss in Section 7.3, our focus on this specific subclass of newsven-
dor games – a subclass that has never been explicitly studied
before – enables us to find novel results that do extend to news-
vendor games in general. The third line of research is on inventory
centralization games in a continuous-review setting with stochas-
tic demand and penalty costs per backorder occurrence indepen-
dent of duration. Hartman and Dror (1996) and references
therein study such games via approximate evaluation. We, in con-
trast, perform exact evaluation of a setting in which backorder
costs are paid for each unit of time a part is lacking.

The fourth, relatively scarce line of research on cooperative
games in inventory systems is motivated by spare parts applica-
tions. Wong, van Oudheusden, and Cattrysse (2007) are the first
to study a multi-location, continuous-review, infinite-horizon set-
ting with several players who cooperate by pooling their parts.
They propose various cost allocation policies and numerically illus-
trate them, but their work lacks structural results. Karsten et al.
(2012) derive structural results for cooperative games in which re-
sources, such as spare parts, can be pooled. As mentioned in the
introduction (Section 1), their model differs from ours in one key
aspect: we assume full backordering if a demand cannot be ful-
filled immediately, whereas they assume that there is an emer-
gency option, which results in lost sales for the inventory system
under study. It is well-known in the inventory literature (see, e.g.
Feeney & Sherbrooke, 1966) that results obtained for a model with
lost sales need not carry over to a model with backordering, or vice
versa, and that the two models require different analysis. Indeed,
to show the existence of a core allocation for their games, Karsten
et al. (2012) use properties of (new extensions of) the Erlang loss
formula (i.e., the blocking probability of an M/G/s/s queueing sys-
tem), which has no direct relation with the model considered in
the present paper.

Finally, we briefly mention the literature that applies coopera-
tive game theory to analyze resource pooling in queueing facilities.
A recent overview is provided by Karsten, Slikker, and van Houtum
(2011b), who themselves study a model in which several M/M/s
queues join forces. Özen, Reiman, and Wang (2011) study the core
of similar queueing games. The stream of literature on queueing
games is relevant because there is a correspondence between the
pipeline stock in our spare parts inventory model and the number
of busy servers in an M/G/1 queueing model. Nevertheless, we
have an inventory buffer confounding our analysis and the
M/G/1 queue behaves fundamentally different from the M/M/1
and M/M/s queues that have been considered in existing queueing
games.

3. The (S � 1, S) inventory model with backlogging

We consider a single location that stocks one item. Initially,
there are S 2 N0ðN0 ¼ N [ f0gÞ parts on stock. The demand process
is a Poisson process with stationary rate k > 0. A demand is imme-
diately fulfilled from stock if a part is available. Otherwise, it is
backordered and fulfilled first come first serve. In either case, an
order for a new part is instigated immediately. This means that
the stock point operates under a continuous-review base stock
policy with base stock level S and one-for-one replenishments.

The stock point orders parts at an external, uncapacitated sup-
plier. The time that elapses between demand occurrence and
receival of the new part is called the lead time. Lead times are
assumed to be independent and identically distributed (i.i.d.)
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according to some general distribution function, and we assume
without loss of generality (by rescaling time) that its mean is 1
time period.

In the remainder, we will analyze the resulting inventory
system in steady-state. First, we consider the number of parts on
order, the so-called pipeline stock, denoted by X(k). By Palm
(1938), X(k) is Poisson distributed with mean k, i.e., for all x 2 N0

it holds that

P½XðkÞ ¼ x� ¼ kx

x!
e�k: ð1Þ

We are mainly interested in the number of backorders, B(S, k), and
the stock on hand, I(S, k), both as functions of the base stock level S
and the demand rate k. Backorders exist if the pipeline stock is lar-
ger than the base stock level, so B(S, k) = max{X(k) � S, 0}. Similarly,
I(S, k) = max{S � X(k), 0}. Thus, using Eq. (1), we can obtain the
distributions and expectations of the number of backorders and
the total stock on hand. For instance, the distribution of the number
of backorders, B(S, k), is given by

P½BðS; kÞ ¼ x� ¼
PS

y¼0P½XðkÞ ¼ y� if x ¼ 0;

P½XðkÞ ¼ xþ S� if x 2 N:

(
ð2Þ

Accordingly, the expected number of backorders is

EBðS; kÞ ¼
X1

x¼Sþ1

ðx� SÞP½XðkÞ ¼ x�

¼
X1
x¼0

x � P½XðkÞ ¼ x� �
X1
x¼0

S � P½XðkÞ ¼ x�

þ
XS

x¼0

ðS� xÞP½XðkÞ ¼ x� ¼ k� S

þ
XS

x¼0

ðS� xÞP½XðkÞ ¼ x�: ð3Þ

Similarly, the expected on-hand stock is

EIðS; kÞ ¼
XS

x¼0

ðS� xÞP½XðkÞ ¼ x� ¼ EBðS; kÞ � kþ S: ð4Þ

We consider holding costs h > 0 per unit time per spare part in the
on-hand stock. These costs encompass warehousing, insurance, and
interest costs on the capital tied up by the inventory. Furthermore,
we consider penalty costs b > 0 per unit time per backordered
demand. (We disregard the part procurement price or holding costs
for pipeline stock because these cost factors would represent
constant terms, unaffected by decisions on base stock level or col-
laboration.) The long-term average costs per unit time are given by

KðS; kÞ ¼ h � EIðS; kÞ þ b � EBðS; kÞ: ð5Þ

Although the above-described model is general and might also ap-
ply for, e.g., inventories of luxury cars, its formulation and underly-
ing assumptions are driven by inventory systems of expensive, low-
demand spare parts meant for technologically advanced capital
goods. Indeed, the critical assumptions (the stationary Poisson de-
mand process, the continuous-review one-for-one replenishment
strategy, and the independence of successive lead times) are justifi-
able for this spare parts setting (see, e.g., Wong et al., 2006, 2012).

The assumption regarding the demand process in particular is
standard in the spare parts literature. It is justified because a
stock point typically serves multiple high-tech machines, whose
merged stream of component failure processes corresponds very
well to a Poisson process. Although no failures occur in a
machine that is down due to a backordered part, the work for
a broken machine is often largely taken over by the functional

machines (albeit at penalty costs b per unit time) and, moreover,
the expected number of broken machines is typically small rela-
tive to the total number of machines. Together, this implies that
the total component failure rate remains close to constant.

In a typical spare parts setting, demands are triggered by fail-
ures of either consumable or repairable machine components.
Although we formulated our model for consumable parts, it is also
applicable for repairable parts if – instead of placing orders for new
parts – any failed component is immediately sent to an uncapaci-
tated repair facility that returns the component to the stock point
as a ready-for-use spare part after an i.i.d. repair lead time whose
mean is scaled to 1 time unit. (Again, direct repair costs and hold-
ing costs for parts in repair would represent constant terms and
can be disregarded without loss of generality.)

In this paper, we are mainly interested in the problem of fair
allocation of shared costs in a spare parts inventory system oper-
ated by multiple players. We will tackle this problem for the
above-described model by representing the situation as a coopera-
tive game, allowing us to take into account what the various sub-
groups of players could achieve.

4. Cooperative game theory

In this section, we treat concepts from cooperative game theory
that are relevant to our work. A cooperative cost game with trans-
ferable utility, which we will simply refer to as a game, is a pair
(N, c). Here, N is the non-empty finite set of players, also referred
to as the grand coalition. Any non-empty subset M # N, M – ; is
called a coalition, and the set of all coalitions is denoted by 2N

�.
Given the set of players N, a game (N, c) is defined by the
characteristic cost function c, which assigns to every coalition M
its costs c(M). In our spare parts pooling context, the value c(M)
will be interpreted as the total long-term average costs per unit
time of the joint inventory system if only the players in M are
involved in it.

In cooperative game theory, players are assumed to be able to
draw up binding agreements, and side payments are allowed. This
is also allowed in our spare parts pooling context, where further-
more cooperation by the grand coalition is socially optimal.
Accordingly, a central problem is allocating c(N) to the individual
players in a stable way. To formalize this, we call any vector
x ¼ ðxiÞi2N 2 RN with

P
i2Nxi ¼ cðNÞ an allocation for game (N, c).

The value xi is then interpreted as the costs assigned to player i.
The game theory literature provides various allocation rules; a
famous one is the Shapley value (Shapley, 1953). Loosely speaking,
it is calculated as the average of marginal contributions of players
to the coalitions.

An appealing property that an allocation might satisfy is stabil-
ity. An allocation x for a game (N, c) is called stable if

P
i2Mxi 6 cðMÞ

for all coalitions M. Under a stable allocation, each group of players
has to pay no more collectively than what they would face by act-
ing independently as a group. The set of all stable allocations is
called the core, introduced by Gillies (1959). A game may have an
empty core, even if the costs of the grand coalition are lower than
the sum of the costs over any partition of the players.

We next strengthen the notion of a stable cost allocation. In our
experience, practitioners are usually interested in allocations
under which each coalition becomes strictly better off as a result
of cooperation. Indeed, an allocation x under which some subgroup
of players is indifferent between cooperating or not (i.e., ifP

i2Mxi ¼ cðMÞ for some subcoalition M 2 2N
�;M – N) may be hard

to defend in practice because players may decide not to collaborate
if they do not strictly benefit from it, out of spite. This issue is
rarely addressed in the literature on cooperative game theory, with
the notable exception of Zhao (2001), who introduces and

F. Karsten, R.J.I. Basten / European Journal of Operational Research 233 (2014) 94–104 97



Author's personal copy

characterizes the relative interior of the core. We will instead con-
sider the strict core, which is defined as

CðN;cÞ¼ x2RN
X
i2N

xi ¼ cðNÞ and
X
i2M

xi < cðMÞ for all M22N
�;M – N

�����
( )

:

Given a game (N, c), we call any element of CðN; cÞ a strictly stable
allocation. Such allocations remain stable for small perturbations
of the characteristic cost function.

The last concept that we wish to introduce is a (strict) popula-
tion monotonic allocation scheme (cf. Sprumont, 1990). An alloca-
tion scheme for a game (N, c) is a vector y ¼ ðyi;MÞi2M;M22N

�
withP

i2Myi;M ¼ cðMÞ for all M 2 2N
�, which specifies how to allocate

the costs of every coalition to its members. This scheme is called
a population monotonic allocation scheme (PMAS) if the amount that
any player has to pay does not increase when the coalition to
which he belongs grows. That is, yi, M P yi, L for all M; L 2 2N

� with
M � L and i 2M. If this inequality is strict for the members of all
such nested pairs of coalitions, then we call this scheme a strictly
population monotonic allocation scheme (SPMAS). It is apparent
from this definition that if a game (N, c) admits a (strict) PMAS,
say y, then (yi, N)i2N is a (strictly) stable allocation, which implies
that (N, c) has a non-empty (strict) core.

5. Spare parts pooling games

Consider several players who may pool inventories of a com-
mon item. Each player witnesses a stationary Poisson demand pro-
cess, and the demand processes of the players are assumed to be
independent. The players have the same mean replenishment lead
time, possibly because they use the same supplier or repair facility,
and without loss of generality we rescale it to 1 time unit. The
replenishment lead times of the players are mutually independent.
The players’ holding costs and backorder costs are the same, possi-
bly because they operate in the same industry under similar oper-
ating conditions. For instance, the tram operators of Amsterdam,
Rotterdam, and The Hague (see Section 1) typically get rather
sophisticated parts from a common supplier and face approxi-
mately the same holding and tram downtime costs. To capture
all relevant parameters of such a setting, we define a spare parts sit-
uation with backordering as a tuple u = (N, (ki)i2N, h, b), where N is
the non-empty finite set of players, ki > 0 is the demand rate of
player i 2 N, h > 0 is the holding cost rate, and b > 0 is the backorder
cost rate.

We assume that any coalition M can set up a single stock point
from which the combined demand streams of the coalition mem-
bers are fulfilled First-Come-First-Served. For instance, the Dutch
tram operators might pool their spare parts in one central stock
point in Leiden, a city located close to the geographical barycenter
of Amsterdam, Rotterdam, and The Hague. Since the superposition
of independent Poisson processes is also a Poisson process, this sin-
gle stock point would face a Poisson arrival process with merged
rate kM ¼

P
i2Mki. We assume throughout that players are inter-

ested in reducing their long-term average holding and backorder
costs, and that other, smaller effects of setting up the pool are
insignificant in comparison. For instance, if the three tram opera-
tors set up the stock point in Leiden, there might be some addi-
tional transportation costs from this stock point to the trams
(which will be small compared with holding and backorder costs,
given that traveling distance from Leiden to each of the three cities
is only 30–40 min). On the other hand, operating a single central
warehouse will be less costly than operating three separate ware-
houses. We disregard these minor issues in order to focus in more
detail on the potentially huge savings in holding and backorder
costs.

Remark 5.1. In practice, penalty costs may sometimes be hard to
quantify, whereas service constraints are more readily adoptable.
However, as discussed by van Houtum and Zijm, 2000, cost models
and service models are equivalent, i.e., there exists a one-to-one
relationship between them. We chose to concentrate on a cost
model in the present paper because it permits adequate compar-
isons between coalitions. To illustrate, suppose that we would
instead have chosen to study a service model where each coalition
would minimize the integer base stock level subject to, say, a 95%
fill rate constraint. Then, improvements in service beyond that 95%
would unjustly appear worthless: In such a service model, a player
would prefer a coalition in which he would face 1000 $/month
in holding costs under a 95.0% fill rate over a coalition costing
1001 $/month for 99.9%. Such unnatural outcomes are avoided by
considering backlogging costs explicitly.

The first natural question to be asked is whether or not pooling
the inventory and demand streams of several players is always
beneficial. We start by giving a positive answer for a situation
where the base stock level of the joint stock point is set at the
sum of the initial stocking levels of all players. This could happen
if players already possess repairable spare parts which cannot be
sold or produced anymore due to their specificity (in which case
re-optimization of base stock levels would not be possible and all
inventories are taken over in full). For this situation, the following
proposition states that pooling leads to a strict reduction
in expected backorders (Eq. (3)), expected on-hand inventory
(Eq. (4)), and expected costs (as defined in Eq. (5)). The intuition
behind this is that pooling allows one player’s backorder to cancel
against another player’s on-hand part, and the proof we provide
may help understand this. (We remark that a cost decrease would
not be guaranteed in case the players would have vastly different
backorder cost rates, as then a player with low backlogging costs
may often take a part that would have better been saved to guard
against the higher backorder costs of another player. See the
appendix for an example illustrating this effect.)

Proposition 5.1. Consider a set of players N where any player i 2 N
faces demand rate ki and owns Si 2 N0 parts. Suppose that

P
i2NSi > 0

and that jNjP 2.

(i)
P

i2NEBðSi; kiÞ > EB
P

i2NSi;
P

i2Nki
� �

.
(ii)

P
i2NEIðSi; kiÞ > EI

P
i2NSi;

P
i2Nki

� �
.

(iii)
P

i2NKðSi; kiÞ > K
P

i2NSi;
P

i2Nki
� �

.

Proof. Consider, at an arbitrary point in time, the pipeline stocks
(Xi)i2N belonging to the various players. The pipeline stock of any
player i 2 N is drawn from a Poisson distribution with mean ki,
i.e., unaffected by any pooling arrangement. Consider any realiza-
tion of pipeline stocks x = (xi)i2N. Given x, the total number of back-
orders under no pooling,

P
i2N maxfxi � Si;0g, can never be less

than the total number of backorders under pooling,
maxf

P
i2Nxi �

P
i2NSi;0g. The former is even strictly larger than

the latter if xi � Si < 0 while xj � Sj > 0 for two distinct players i,
j 2 N. Such a realization x exists with positive probability because,
by assumption, there is a player i 2 N with Si > 0. Hence, we con-
clude that

P
i2NEBðSi; kiÞ > EB

P
i2NSi;

P
i2Nki

� �
, i.e., Part (i) holds.

Parts (ii) and (iii) follow trivially from Part (i) by Eqs. (4) and
(5). h

So, it is beneficial to share players’ inventories while maintain-
ing the aggregate of their base stock levels, but we may reduce
costs even further by allowing any coalition to re-optimize their
joint base stock level. After all, due to the risk pooling effect, lower
base stock levels may suffice to jointly serve all demand streams in
a cost-effective way. (Although such a lower aggregate base stock
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level might result in an increase in the expected backorders com-
pared to the no-pooling situation, this would be counterweighted
by the reduction in the expected on-hand inventory.) Since stock-
ing levels in most real collaborations are adjustable rather than
fixed, the base stock level of any coalition’s stock point will be a
decision variable in the remainder of this paper.

For any particular choice of the base stock level S 2 N0, the
behavior of the stock point would correspond to the model
described in Section 3, and thus the expected relevant costs per
time unit faced by coalition M would be equal to K(S, kM). Assuming
that any coalition picks an optimal base stock level, the game
(N, cu) corresponding to our spare parts situation with backorder-
ing u is defined by

cuðMÞ ¼min
S2N0

KðS; kMÞ ð6Þ

for all coalitions M. We call this game the associated spare parts
pooling game.

As mentioned, we are interested in methods to fairly distribute
the collective expected costs of the grand coalition over the coop-
erating players in any spare parts situation with backordering
u = (N, (ki)i2N, h, b). A simple rule is to divide these costs propor-
tional to the demand rate of each player. Formally, we define this
rule P by PiðuÞ ¼ cuðNÞ � ki=kN for each i 2 N in situation u. Extend-
ing this idea to every coalition, we define the proportional alloca-
tion scheme rule P by

Pi;MðuÞ ¼ cuðMÞ � ki=kM ð7Þ

for each coalition M and i 2M in situation u. The following example
illustrates this proportional rule numerically and simultaneously
shows that the Shapley value is not necessarily in the core. In the
appendix we give another example showing that another seemingly
natural allocation, in which the difference between the costs of the
grand coalition and the sum of the costs for the single-player coali-
tions is allocated proportional to the demand rates, is also not nec-
essarily in the core.

Example 5.1. Consider three companies in the capital goods
industry that wish to pool common parts. One company expects
to face 0.1 demands per month on average. The monthly demand
rates are 0.8005 and ln2 for the other two companies. The part in
question is very expensive; a single part on hand costs 10,000
dollars per month, and a machine that is down will cost 10,000
dollars per month as well.1 This can be modeled as a spare parts
situation with backordering u = (N, (ki)i2N, h, b) with player set
N = {1, 2, 3}, k1 = 0.1, k2 = 0.8005, k3 = ln2(�0.6931), and h = b = 1. To
illustrate the determination of an optimal base stock level and
associated costs, consider the singleton coalition {3}. By Eq. (1),
P½Xðk3Þ ¼ 0� ¼ 0:5. Combining this with Eqs. (3)–(5), we obtain for
the case were player 3 would decide to stock zero parts that
EBð0; k3Þ ¼ ln 2;EIð0; k3Þ ¼ 0, and K(0, k3) = ln2. If player 3 would
decide to use a base stock level of one instead, then
EBð1; k3Þ ¼ ln 2� 1þ 0:5; EIð1; k3Þ ¼ 0:5, and K(1, k3) = ln2. As K(0,
k3) = K(1, k3) and this cost function is strictly convex in the base
stock level (which we shall prove later in Lemma 6.3), minimal costs
are achieved with a base stock level of either 0 or 1, and
cu({3}) = ln2. In the remainder of this example, we will round
values to four decimals for notational convenience.

If player 1 would join to form coalition {1, 3}, then it can be
verified that a base stock level of one for their combined stock
point is optimal; thus, cu({1, 3}) = K(1, k1 + k3) � 0.6980. Under the

proportional allocation scheme rule P, player 3 would have to pay
P3;f1;3gðuÞ � 0:6100 in coalition {1, 3}, which is lower than
P3;f3gðuÞ � 0:6931 (see Table 1). This strict population monoto-
nicity can be verified for the members of all other nested pairs of
coalitions as well, implying that PðuÞ is strictly population
monotonic. Accordingly, the spare parts pooling game (N, cu) has
a non-empty strict core containing PðuÞ.

However, the game’s Shapley value U(N, cu), which assigns
U1(N, cu) � 0.0556, U2(N, cu) � 0.4774, and U3(N, cu) � 0.4670, is
not in the core of this game because U2(N, cu) + U3(N, cu) > cu({2,
3}). Accordingly, the characteristic cost function is not submodu-
lar; indeed, cu({1, 3}) � cw({3}) < c/({1, 2, 3}) � c/({2, 3}). In other
words, player 1’s marginal cost contribution may increase if he
joins a larger coalition.

In this example, cost allocation could be carried out in a stable
and population monotonic way via the proportional rules. To show
that this is not a coincidence, we will exploit various new analyti-
cal properties of our inventory model’s cost function, which are
derived in the next section.

6. Analysis of the underlying inventory model

In this section, we first provide a characterization of the optimal
base stock levels and subsequently derive partial derivatives of the
cost function K with respect to the demand rate. These intermedi-
ate results ultimately enable us to analyze how the cost perfor-
mance under optimal base stock levels behaves as the demand
rate varies on Rþþ ¼ ð0;1Þ, which will enable us to prove stability
and population monotonicity of the proportional allocations in
Section 7. The holding and backorder cost rates, h and b, will re-
main fixed in the ensuing analysis.

We show in Lemma 6.3 that the optimal base stock levels are
intricately related to the steady-state probability of having no
backorders, P½BðS; kÞ ¼ 0�. We therefore start by stating several
properties of P½BðS; kÞ ¼ 0� in Lemmas 6.1 and 6.2. Although these
properties are rather straightforward, we were unable to find a
proof in the literature, and therefore we provide a proof in the
appendix.

Lemma 6.1. Let the demand rate k > 0 be fixed.

(i) P½BðS; kÞ ¼ 0� is strictly increasing as a function of S (for S on
N0).

(ii) limS!1P½BðS; kÞ ¼ 0� ¼ 1.

Lemma 6.2. Let the base stock level S 2 N0 be fixed.

(i) P½BðS; kÞ ¼ 0� is differentiable as a function of k (for k on Rþþ).
(ii) P½BðS; kÞ ¼ 0� is strictly decreasing as a function of k (for k on

Rþþ).
(iii) limk#0P½BðS; kÞ ¼ 0� ¼ 1 and limk!1P½BðS; kÞ ¼ 0� ¼ 0.

The following lemma states that the cost function in our model
is strictly convex in the base stock level and provides a standard
characterization of the cost-minimizing base stock level (s) in
terms of a newsvendor fractile. This characterization is illustrated
in Fig. 1. Although convexity is relatively well-known for the
inventory model under consideration (see, e.g., Zipkin, 2000, p.
215) we show strict convexity and address the uniqueness and
multiplicity of optimal base stock levels more formally, which will
facilitate our analysis. The proof of this and subsequent lemmas are
given in the appendix.

1 We are aware that these downtime costs are rather low relative to the holding
costs. We chose these parameter values because they simultaneously yield a
computationally convenient illustration of the costs and allocations involved, in
addition to a game whose Shapley value lies outside the core.
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Lemma 6.3. Let the demand rate k > 0 be fixed.

(i) K(S, k) is strictly convex as a function of S (for S on N0).
(ii) There is at least one S 2 N0 for which

P½BðS; kÞ ¼ 0�P b=ðbþ hÞ; let S⁄ denote the smallest such S.
Then, S⁄ is the unique optimal base stock level unless
P½BðS�; kÞ ¼ 0� ¼ b=ðbþ hÞ; in that case, both S⁄ and S⁄ + 1
(and no other) are optimal.

We now introduce some additional notation: for any n 2 N

(note that 0 R N), we define ‘n to be the unique positive real num-
ber that satisfies

P½Bðn� 1; ‘nÞ ¼ 0� ¼ b=ðbþ hÞ;

which is well-defined due to Lemma 6.2. Notice that, by Part (ii) of
Lemma 6.3, for any n 2 N it holds that ‘n is the demand rate for
which both base stock levels n � 1 and n are optimal. The following
lemma formally establishes several additional properties, which are
illustrated in Fig. 1.

Lemma 6.4. Let n 2 N. Then, the following statements hold.

(i) ‘n < ‘n+1.
(ii) For any k in the interval (‘n, ‘n+1), the unique optimal base stock

level for the inventory system with demand rate k is n.
(iii) limn?1‘n =1.

The following lemma considers, for a fixed base stock level
greater than zero, the expected steady-state costs per unit time
as a function of the demand rate: the lemma states a simple
expression for its derivative and shows that this cost function is
strictly convex. This convexity is illustrated in Fig. 2.

Lemma 6.5. Let the base stock level S 2 N be fixed.

(i) @
@k KðS; kÞ ¼ b� ðbþ hÞ � P½BðS� 1; kÞ ¼ 0�.

(ii) K(S, k) is twice differentiable and strictly convex as a function of
k (for k on Rþþ).

The following lemma provides insightful expressions for the
partial derivatives of the cost function with respect to the demand
rate, evaluated at any ‘n (the demand rate at which both base stock
levels n and n � 1 are optimal). In particular, when this cost func-
tion is considered as a function of k, the tangent line to K(n, k) at
k = ‘n is flat and the tangent line to K(n � 1, k) at k = ‘n goes through
the origin, as illustrated in Fig. 2.

Lemma 6.6. Let n 2 N be an arbitrary positive integer.

(i) @
@k Kðn; kÞ

��
k¼‘n
¼ 0.

(ii) @
@k Kðn� 1; kÞ

��
k¼‘n
¼ Kðn�1;‘nÞ

‘n
.

We finally consider how the cost of an inventory system with
optimal base stock levels behaves as the demand rate varies. To
this end, we define the optimal cost function eK : Rþþ ! Rþþ byeK ðkÞ ¼min

S2N0

KðS; kÞ: ð8Þ

This function is well-defined due to Part (ii) of Lemma 6.3.
Now, we say that a function f : Rþþ ! Rþþ is elastic if f(x1)/

x1 P f(x2)/x2 for all x1; x2 2 Rþþ with x1 6 x2. Intuitively, if f(x)
expresses the cost of, say, serving demand level x, then elasticity
of f says that the per-demand cost is non-increasing in the total
demand served, i.e., f exhibits economies of scale. The use of the
term ‘‘elasticity’’ is based on the economics literature, as motivated
by Özen et al. (2011, p. 386). It is easy to prove that concavity of f
implies elasticity (but not vice versa, as can be seen in Fig. 2). The
following theorem states that the optimal cost function in our
spare parts inventory model, eK , is elastic, as illustrated in Fig. 3.

Table 1
The spare parts pooling game and proportional allocation scheme of Example 5.1.

Coalition M Optimal base stock levels cu(M) P1;MðuÞ P2;MðuÞ P3;MðuÞ

{1} 0 0.1000 0.1000 ⁄ ⁄
{2} 1 0.6987 ⁄ 0.6987 ⁄
{3} 0 and 1 0.6931 ⁄ ⁄ 0.6931
{1, 2} 1 0.7132 0.0792 0.6340 ⁄
{1, 3} 1 0.6980 0.0880 ⁄ 0.6100
{2, 3} 1 0.9428 ⁄ 0.5053 0.4375
N 1 1.0000 0.0628 0.5023 0.4349

Fig. 1. The probability of having no backorders, P½BðS; kÞ ¼ 0�, as a function of the
demand rate k for various base stock levels S. (h = b = 1.)

Fig. 2. The costs, K(S, k), as a function of the demand rate k for various base stock
levels S. Also shown (dashed) are the tangent lines to K(1, k) and K(2, k) at k = ‘2.
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Theorem 6.7. The function eK is elastic. In particular, eK ðkÞ=k is
constant for k on (0, ‘1] and strictly decreasing for k on [‘1, 1).

Proof. First, for any k 2 (0, ‘1], a base stock level of zero is optimal,
by the combination of Part (ii) of Lemma 6.2, Part (ii) of Lemma 6.3,
and the definition of ‘1. Hence, for k on ð0; ‘1�; eK ðkÞ ¼ Kð0; kÞ ¼ bk,
and thus eK ðkÞ=k is constant.

Next, let n 2 N. By Part (ii) of Lemma 6.4, for any k 2 [‘n, ‘n+1), it
holds that eK ðkÞ ¼ Kðn; kÞ. We now fix ~k 2 ½‘n; ‘nþ1Þ arbitrarily. Note
that, by Part (i) of Lemma 6.4, ~k < ‘nþ1. Using this, we find that

Kðn; ~kÞ > Kðn; ‘nþ1Þ þ ð~k� ‘nþ1Þ �
@

@k
Kðn; kÞ

����
k¼‘nþ1

¼ Kðn; ‘nþ1Þ þ ð~k� ‘nþ1Þ �
Kðn; ‘nþ1Þ
‘nþ1

¼ Kðn; ‘nþ1Þ �
~k
‘nþ1

: ð9Þ

The inequality holds because any strictly convex, twice differentia-
ble function – properties satisfied by K(n, k) as a function of k for k
on Rþþ, cf. Part (ii) of Lemma 6.5 – lies strictly above any of its tan-
gent lines (except, of course, at the point where the tangent line
touches the function’s curve, but that does not pose a problem since
~k < ‘nþ1). The first equality holds by Part (ii) of Lemma 6.6.

Using this, we obtain

@

@k
Kðn; kÞ

k

� �����
k¼~k

¼ ~k � @
@k

Kðn; kÞ
����
k¼~k

� Kðn; ~kÞ
� ��

~k2

< ~k � @
@k

Kðn; kÞ
����
k¼‘nþ1

� Kðn; ~kÞ
 !,

~k2

¼ ~k � Kðn; ‘nþ1Þ
‘nþ1

� Kðn; ~kÞ
� ��

~k2

< ~k � Kðn;
~kÞ

~k
� Kðn; ~kÞ

 !,
~k2 ¼ 0:

The first inequality holds by Part (ii) of Lemma 6.5. The subsequent
equality holds by Part (ii) of Lemma 6.6. The second inequality holds
by Inequality (9). We conclude that eK ðkÞ=k is strictly decreasing for
k on [‘n, ‘n+1).

As, by Part (ii) of Lemma 6.3, both n and n + 1 are optimal base
stock levels for demand rate ‘n+1, it holds thateK ð‘nþ1Þ ¼ Kðn; ‘nþ1Þ ¼ Kðnþ 1; ‘nþ1Þ. Furthermore, it follows from
Part (ii) of Lemma 6.5 that both K(n, k) and K(n + 1, k) as functions
of k are continuous at k = ‘n+1. We conclude that eK is continuous at
‘n+1.

To summarize, we have established that eK ðkÞ=k is non-increasing
for k on (0, ‘1] and that, for arbitrary positive integer n, this
function is strictly decreasing on [‘n, ‘n+1) and continuous at
‘n+1. Now, since by Part (iii) of Lemma 6.4 it holds thatS

n2N½‘n; ‘nþ1Þ ¼ ½‘1;1Þ, this implies that eK ðkÞ=k is strictly decreas-
ing for k on [‘1, 1). Elasticity of eK follows, and the proof is
complete. h

7. Fair allocations of expected costs

We first give our main results for spare parts pooling games in
Section 7.1. Subsequently, we study who reaps the benefits of
cooperation in Section 7.2. Finally, we discuss connections with
so-called single-attribute games and newsvendor games in
Section 7.3.

7.1. Stability and population monotonicity

Using Theorem 6.7, we can now show that spare parts pooling
games have a non-empty core and that the proportional allocation
scheme rule P (see Eq. (7)) accomplishes a PMAS. As stated in the
following theorem, the population monotonicity is strict if demand
rates are sufficiently high for each coalition with two or more
players to have an optimal base stock level greater than zero. To
formally state this and later results, we let

S�ðkÞ ¼minfS 2 N0 : KðS; kÞ ¼ eK ðkÞg
denote the (smallest) optimal base stock level for any demand rate
k > 0.

Theorem 7.1. Let u = (N, (ki)i2N, h, b) be a spare parts situation with
backordering.

(i) The associated spare parts pooling game (N, cu) has a non-
empty core containing PðuÞ, and PðuÞ is a PMAS.

(ii) If S⁄(kL) > 0 for each L 2 2N
� with jLjP 2, then PðuÞ is an SPMAS

and (N, cu) has a non-empty strict core containing PðuÞ.

Proof. Part (i). We use a straightforward implication of eK ’s elastic-
ity, thereby specializing a known implication (see, e.g., Hamlen,
Hamlen, & Tschirhart, 1977, p. 621, or Özen et al., 2011, Theorem 1)
for general cost sharing problems to our spare parts pooling games.
Let M; L 2 2N

� with M � L, and let i 2M. Then PðuÞ is a PMAS
because, by Theorem 6.7,

Pi;LðuÞ ¼ cuðLÞ ki

kL
¼ eK ðkLÞ

ki

kL
6 eK ðkMÞ

ki

kM
¼ cuðMÞ ki

kM

¼ Pi;MðuÞ: ð10Þ

Core inclusion of PðuÞ follows from the closing sentence of
Section 4.

Part (ii). For arbitrary M; L 2 2N
� with M � L, assume that

S⁄(kL) > 0. This implies that kL, the collective demand rate of
coalition L, is strictly larger than ‘1, the demand rate for which both
base stock levels 0 and 1 are optimal. Therefore, the inequality in
(10) is strict by Theorem 6.7. Accordingly, PðuÞ is an SPMAS, and
PðuÞ is strictly stable. h

Theorem 7.1 states an important result, because a proportional
allocation rule is easy to understand and computationally attrac-
tive. Moreover, it satisfies the appealing property of immunity to
manipulations of the players via artificial splitting and merging.
This means that, if collective costs are divided proportionally
according to the rule P, no group of players will have an incentive
to artificially represent themselves together as a single player, orFig. 3. The optimal per-demand costs, eK ðkÞ=k. (h = b = 1).
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vice versa. Indeed, their total cost allocation will remain the same
because splitting or merging does not affect their sum of demand
rates. So in a collaboration between, e.g., company A with a single
business unit and company B with two business units, the costs as-
signed to company A by rule P are unaffected by whether the busi-
ness units comprising company B claim they should be treated as
one player together or two players separately. Finally, in line with
a result in Karsten, Slikker, and van Houtum (2011a) for games in
Erlang loss queues, P can be axiomatically characterized as the un-
ique continuous rule satisfying this non-manipulability property,
which strengthens its fairness as a allocation rule.

7.2. Who reaps the benefits?

One might wonder who actually reaps most of the benefits of
the collaboration. With benefits we mean the absolute difference
between the costs incurred by a player when acting alone and
the cost assigned to this player under rule P. Thus, the benefits
(i.e., gains) for a player with demand rate k > 0 when participating
in a spare parts pool with aggregate demand rate K P k are given
by

Gðk;KÞ ¼ eK ðkÞ � k � eK ðKÞ=K:
Now, will the smallest player (i.e., the player with the lowest
demand rate) always gain the most, or will the largest player always
take the lion’s share? The following example shows that it could
actually be neither of them. Thus, the proportional rule appealingly
does not categorically favor smaller or larger players.

Example 7.1. Reconsider the spare parts situation with backor-
dering u as described in Example 5.1. For this situation, the
players’ benefits (rounded to four decimals) are G1 = G(k1,
kN) = 0.0372, G2 = G(k2, kN) = 0.1964, G3 = G(k3, kN) = 0.2582. Since
k3 < k2 and G3 > G2, a small player might reap more benefits than a
large player. Yet, since k3 > k1 and G3 > G1, a large player might reap
more benefits than a small player as well. This is represented
graphically in Fig. 4. We remark that if we would consider benefits
in relative rather than absolute terms, then there are two players
tied for highest per-demand benefit, but player 3 is still one of
them: G1/k1 = 0.3725, G2/k2 = 0.2453, and G3/k3 = 0.3725.

This example suggests that the largest benefits are typically
reaped by a player with demand rate equal to ‘n for some n 2 N,
i.e., a demand rate for which two base stock levels are optimal.
In the following theorem, we show that this holds in general, pro-
vided that it is not optimal for the grand coalition to stock zero
parts (in which case there would clearly be no pooling benefits
at all). The proof is deferred to the appendix.

Theorem 7.2. Consider a spare parts pool with total demand rate
K > ‘1. Then, there exists an n 2 {1, . . ., S⁄(K)} such that G(‘n, K) > G(k,
K) for all k 2 (0, K] with k – ‘n0 for some n0 2 N.

From this theorem, we immediately obtain the following corol-
lary, which concerns situations where the grand coalition opti-
mally stocks a single part. This is quite common for low-demand,
expensive spare parts.

Corollary 7.3. Let u = (N, (ki)i2N, h, b) be a spare parts situation such
that S⁄(kN) = 1 and ki = ‘1 for some i 2 N. Then, G(ki, kN) > G(kj, kN) for
all j 2 N with kj – ki.

7.3. An alternative proof approach

The fact that spare parts pooling games have a non-empty core
with a proportional PMAS (Part (i) of Theorem 7.1) can be proven in
a different way, via a connection with so-called single-attribute

games and newsvendor games, together with the contraposition
of a recent result in Özen et al. (2011). This alternative proof
approach, which is detailed in the appendix, employs a result that
applies more generally: a certain class of newsvendor games ad-
mits a PMAS in which costs are assigned proportional to player’s
mean demands. However, this alternative proof approach does
not provide insights into the structure of the problem as our anal-
ysis in Section 6 did. Moreover, our structural analysis in Section 6
allowed us to identify a strictly stable allocation (Part (ii) of
Theorem 7.1) and the player who benefits most (Section 7.2); these
additional results do not follow from the alternative proof
approach.

8. A truth-inducing allocation process for cost realizations

The previous section showed that the proportional allocation
rule satisfies the first two requirements posed in the introduction
(Section 1). In this section, we treat the remaining two require-
ments. First, we show that the proportional allocation rule can be
easily implemented in practice via a simple cost division per real-
ization. Although our games have been formulated in expected
terms to investigate a priori attractiveness of pooling, fair assign-
ments of realized costs in any finite time period will be required
to sustain cooperation in practice. To propose a method for assign-
ing realized costs, we make the natural assumption of a First-
In-First-Out (FIFO) stock discipline: whenever more than one part
is available in the on-hand stock when a demand is placed, the
demand is fulfilled by the oldest part in the on-hand stock. We
now propose the following method to allocate costs as they mate-
rialize in an inventory system with any base stock level S 2 N0

operated by the grand coalition in any spare parts situation with
backordering (N, (ki)i2N, h, b).

Process 8.1. Realized costs for the grand coalition are assigned as
follows:

� Each player, upon placing a demand when the on-hand stock is
positive, pays all holding costs incurred for the part taken
(according to FIFO). That is, if the taken part was delivered at
the stock point at a time s and the player’s demand occurs at
time t, then this player pays h(t � s) upon placing his demand.
� Each player, upon placing a demand that is backordered, pays

all backorder costs incurred for this backorder. That is, if the
demand occurs at time t and the associated backorder is later
fulfilled via delivery of a new part at time s, then this player will
have to pay b(s � t) over the duration of his backorder.

Fig. 4. The optimal costs eK ðkÞ as a solid line, a dotted line through the origin with
slope eK ðkNÞ=kN , and the benefits or gains G1, G2, and G3 for the players in Example
7.1.
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This process assigns the holding costs incurred for some part in
an intuitively fair way to the player who directly benefits from the
part. No holding costs are assigned to a player who does not benefit
from on-hand inventory (as a result of not facing any demands
over a certain time period or due to unfortunate stock-outs at his
demand epochs). Additionally, since players fully incur all costs
for their own backorders, the process eliminates the need for trans-
fer payments of backorder costs, thereby avoiding disputes about
their exact magnitude – this is an important property for the cap-
ital goods context wherein backorder costs typically comprise the
downtime costs of a player’s machine due to unavailability of a
spare part. Moreover, as stated in the following lemma, the process
can indeed be used to implement2 the proportional allocation.

Lemma 8.1. Under Process 8.1, the share of long-term average costs
(of an inventory system operated by the grand coalition with base
stock level S 2 N0) borne by player i 2 N is ki/kN. In particular, if the
grand coalition optimally stocks S⁄(kN) parts, the long-term average
costs assigned to each player under Process 8.1 coincide with the
assignment of expected costs under the proportional allocation rule P.

Proof. Follows directly from the well-known property that Pois-
son arrivals see time averages (Wolff, 1982). h

A final appealing property of Process 8.1 is that it removes any
incentive for players to lie about their demand rates a priori.
Although thus far we have adhered to the assumption of full and
open information (a standard assumption in cooperative game the-
ory), in reality a player’s demand rate may be private information.
During initial negotiations, when all cooperating players have to
state their demand rate for the purpose of joint base stock level
optimization, a player might lie if the collaboration would be
implemented via an inappropriate cost realization assignment
method. For example, under a method that charges each player a
yearly fee based on his stated demand rates independent of that
player’s realized demand volume in that year, a player might have
a reason to understate his actual demand rate a priori. However,
under Process 8.1, truth telling is a Nash equilibrium (formally de-
fined in Nash, 1951) in the non-cooperative information disclosure
game in which each player in N has to state any demand rate in
Rþþ. In this game, the payoff to each player for any strategy profile
ðk̂iÞi2N , containing each player’s stated demand rates, is equal to the
long-term average costs assigned under Process 8.1 in the inven-
tory system with base stock level S�

P
i2N k̂i

� 	
.

Theorem 8.2. The strategy profile (ki)i2N, in which each player i 2 N
states his true demand rate ki, is a Nash equilibrium in this non-
cooperative game.

Proof. Consider a player i 2 N and suppose that all other players
j 2 Nn{i} announce their true demand rate kj. By lying, i.e., stating
any demand rate L 2 Rþþ other than ki, player i can only effect a
possibly suboptimal base stock level since
KðS�ðkNÞ; kNÞ 6 KðS�

P
j2Nnfigkj þ L

� 	
; kNÞ by definition of S⁄. Yet,

the fraction of long-term average costs assigned to player i under
Process 8.1 is equal to ki/kN by Lemma 8.1, i.e., is independent of
the demand rate that he states. Thus, player i minimizes his costs
by stating ki. This completes the proof. h

In similar fashion, we can derive that Process 8.1 gives each
player an incentive to immediately disclose any change in his ex-

pected demand rate, which is relevant for collaborations in a dy-
namic world where a player’s number of installed machines may
change over time or if forecasts improve.

9. Conclusion

We have studied the cost allocation problem in a spare parts
inventory model with backordering. We have derived new
structural properties of the resulting cost function, in particular
concerning its behavior for varying demand rates, which may be
relevant beyond the context of our games. Using these properties,
we were able to show that the associated cooperative games have
non-empty cores. We have further shown that the allocation of
total expected costs proportional to each player’s demand rate is
stable, and that this cost allocation has appealing properties that
enable easy implementation in practice. Indeed, it satisfies the four
requirements posed in Section 1.

Our results have important managerial implications for compa-
nies facing high spare parts holding and/or downtime costs: For
the model we considered, pooling is not only beneficial from the
whole system’s point of view, but can also be supported by a stable
cost allocation. This means that inventory pooling, which is already
commonly exploited in the case of a single player who owns all the
parts and all the demand streams, can also be achieved if there are
multiple, self-interested players. By using our easy-to-implement
proportional allocation rule, these players can be assured that
everyone will get strictly better off. This should pave the way for
sustainable collaborations in practice.

One limitation to the practical implications of our findings is
our assumption of symmetric backlogging costs. In practice, due
to differences in downtime costs or service level agreements with
customers, backlogging costs may be asymmetric. In those cases,
discussed Appendix A.1, full pooling may actually be detrimental.
For further research, it would be interesting to investigate when
the assumption of symmetric backlogging costs is justified and
how the FIFO stock discipline might be adjusted for asymmetric
backlogging costs.

Another avenue for future research is to extend the model to
two echelon levels: a one warehouse, multiple retailers setting.
The spare parts at the central warehouse may be owned by a coa-
lition of retailers, or by a third party. If this third party is the origi-
nal equipment manufacturer, then it may also be interesting to
allow this party to exert additional design effort to improve com-
ponent reliability. This may be beneficial from the whole system’s
point of view, but it also raises the question of what share of the
benefits the manufacturer is entitled to. Cooperative game theory
may provide the tools to determine (existence of) fair allocations
of collective costs.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2013.08.029.

2 Here, we assume that any player takes a part from the pool if and only if he faces a
component failure. Opportunistic behavior (not demanding a part upon a failure, or
demanding a part before a failure occurs) may be prohibited by requiring a failed part
in exchange for any part taken from the inventory and/or by hiding the pool’s actual
on-hand inventory level from the players.
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