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Abstract

We consider the optimal asset allocation problem in a continuous-time regime-switching
market. The problem is to maximize the expected utility of the terminal wealth of a port-
folio that contains an option, an underlying stock and a risk-free bond. The difficulty that
arises in our setting is finding a way to represent the return of the option by the returns of
the stock and the risk-free bond in an incomplete regime-switching market. To overcome
this difficulty, we introduce a functional operator to generate a sequence of value functions,
and then show that the optimal value function is the limit of this sequence. The explicit
form of each function in the sequence can be obtained by solving an auxiliary portfolio op-
timization problem in a single-regime market. And then the original optimal value function
can be approximated by taking the limit. Additionally, we can also show that the optimal
value function is a solution to a dynamic programming equation, which leads to the explicit
forms for the optimal value function and the optimal portfolio process. Furthermore, we
demonstrate that, as long as the current state of the Markov chain is given, it is still optimal
for an investor in a multiple-regime market to simply allocate his/her wealth in the same
way as in a single-regime market.
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ing, Dynamic programming principle
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1 Introduction

It is well known that the basic idea of option pricing in the Black-Scholes model (see Black
and Scholes (1973)) is the construction of a non-arbitrage portfolio, which hedges the option’s
position by taking a position of the opposite sign in the underlying asset with units equal to
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the option’s delta. This so-called delta hedge can render the value of a portfolio first order-
insensitive to the change in the underlying price, but does not optimize the portfolio’s asset
allocation. Mean-variance portfolio optimization in a discrete-time one-period model was pro-
posed by Markowitz (1952). The portfolio optimization problem was further investigated by
Merton (1969) and Merton (1971) in a continuous-time setting, which consider an agent who
aims to maximize the conditional expectation of the portfolio’s utility of the terminal wealth.
In these papers, the portfolio consists of only a stock and a risk-free bond, which is known as
the reduced portfolio optimization problem and can be solved using the stochastic dynamic pro-
gramming approach. The martingale and dual approaches to portfolio selection were introduced
by Karatzas et al. (1987) and Cox and Huang (1989, 1991). A review of the developments in
this area can be found in Korn (2008), which also considers portfolios with option.

In this paper, we optimize a portfolio that comprises an option, an underlying stock and a
risk-free bond, and show that the optimal solution is a mixture of Merton’s result and the delta
hedging strategy. To solve this optimization problem, we adopt the elasticity approach proposed
in Kraft (2003) . The elasticity of a derivative with respect to the underlying asset price is
defined as the ratio of the percentage change in derivative value to the percentage change in
the underlying asset price. By introducing elasticities of the option and portfolio with respect
to the stock price, Kraft (2003) demonstrated that the return of an option can be represented in
terms of the returns of the stock and the risk-free bond and that the elasticity of the portfolio
can be used as the control variable in this optimization problem. In other words, by updating
the elasticity of the portfolio rather than the percentage or the amount of wealth invested in the
available assets, the portfolio is optimized, and the optimal portfolio process can be obtained by
tracking the optimal elasticity.

Here, to model possible changes in the underlying economics, we employ a regime-switching
model for the prices of the underlying assets, i.e., the mean rate of return, volatility of the un-
derlying asset price, and return of the risk-free bond depend on a Markov chain. There is a vast
body of literature considering the regime-switching model, including Hamilton (1989), Bekaert
and Hodrick (1993) and Gray (1996), to name just a few. In addition, Bollen et al. (2000) con-
sidered the regimes in the volatilities of currency option prices. More evidence of the regimes in
the returns of stocks or bonds can be found in Garcia and Perron (1996), Ang and Chen (2002)
and Guidolin and Timmermann (2007). Considering a regime-switching model, the portfolio
optimization problem is studied by Çelikyurt and Özekici (2007) with mean-variance criterion,
and by Çanakoğlu and Özekici (2012) with HARA utility functions.

However, the market becomes incomplete under the regime-switching model, which results
in difficulties using the elasticity approach, because the option cannot be completely replicated
by the stock and risk-free asset in an incomplete market. To overcome these difficulties, we take
the following steps. First, we introduce a functional operator and then generate a sequence of
value functions by applying this operator repeatedly. Second, we prove that the optimal value
function is the limit of this sequence. Third, to obtain the explicit solution for each function
in the sequence, we propose an auxiliary optimization problem in a single-regime market in
which the elasticity approach is applicable. Finally, the original optimal value function can be
approximated by taking the limit. Additionally, the optimal value function can be shown to
satisfy a dynamic programming equation, which leads to a PDE. Hence, the exact solution for
the optimal value function and the optimal portfolio process are also available. In sum, the
original problem in a multiple-regime market can be reduced to an optimization problem with
only a single regime. And it shows that, as long as the current state of the Markov chain is
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given, an investor in a multiple-regime market simply needs to allocate his/her wealth in the
same way as in a single-regime market to achieve an optimal strategy.

The remainder of the paper is organized as follows. Section 2 formulates the portfolio op-
timization problem in a regime-switching market. Section 3 introduces the functional operator
and derives a number of properties. On the basis of these properties, Section 4 provides an
approximate solution by solving an auxiliary optimization problem. Section 5 then gives an
exact result by solving the dynamic programming equation, and obtains the optimal portfolio
process. Finally, Section 6 concludes the paper.

2 Optimization in a Regime-Switching Market

In the following, we denote the matrices and vectors by letters in boldface, and their transpose
by a superscript Tr. Considering a fixed time horizon [0,T ], we divide the market mode into d
different regimes. We model the market mode by a continuous-time stationary Markov chain
{ααα(t)} that is defined on the complete probability space (Ω,F ,P), where P denotes physical
probability.

Without loss of generality, we can identify the state space of {ααα(t)} as a finite set of unit
vectors E := (e1,e2, · · · ,ed), where ei ∈ Rd are column vectors with unity in the i-th position
and zero elsewhere. We call E the canonical space of the chain {ααα(t)}. Denote by Q=

(
qi j
)

d×d
the generator of the chain {ααα(t)} under P. We then have the following semi-martingale repre-
sentation for the chain,

ααα(t) = ααα(0)+
∫ t

0
Qααα(s)ds+M(t),

where M(t) is an Rd-valued martingale with respect to the filtration generated by {ααα(t)}.

In a regime-switching market, the risk-free bond process {M(t)} and a risky stock price
process {S(t)} are assumed to evolve as

dM(t)
M(t)

= ⟨r,ααα(t)⟩dt,

dS(t)
S(t)

= ⟨µµµ,ααα(t)⟩dt + ⟨σσσ ,ααα(t)⟩dB(t),

where r = (r1,r2, · · · ,rd)
Tr, µµµ = (µ1,µ2, · · · ,µd)

Tr, σσσ = (σ1,σ2, · · · ,σd)
Tr with σi > 0 for all

i ∈ D := {1, ...,d}, and {B(t)} is a standard Brownian motion independent of {ααα(t)}. Both of
these processes are {Ft}-adapted with {Ft} satisfying the usual conditions.

For a portfolio comprising an option, an underlying stock and a risk-free bond, let {O(t)}
be the price process of the option which is written on the stock. Let πS and πO denote the
percentages of wealth invested in the stock and option, respectively, and π(s) := (πS(s),πO(s))
for all s ∈ [t,T ]. Then, the wealth process {Wπ(t)} of the portfolio evolves as

dWπ(t)
Wπ(t)

= πS(t)
dS(t)
S(t)

+πO(t)
dO(t)
O(t)

+ [1−πS(t)−πO(t)]
dM(t)
M(t)

.
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Here, the subscript of π represents the dependence of wealth process on portfolio process
{π(s)}T

s=t .

At any time t ≤ T , our objective is to maximize the expected utility of the terminal wealth.
Denote by

Πt :=
{
{π(s)}T

s=t
}

the set of all admissible strategies over [t,T ]. Then define

Vπ(t,w, i) := Et,w,i [U (Wπ(T ))] , V (t,w, i) := sup
π∈Πt

Vπ(t,w, i),

where U(·) is a utility function with U ′ > 0 and U ′′ < 0, and

Et,w,i[·] = E [·|Wπ(t) = w, ααα(t) = ei] .

It is obvious that V satisfies the following boundary condition:

V (T,w, i) =Vπ(T,w, i) =U(w), ∀w ≥ 0, i ∈ D.

In summary, given a pair of (t, i) ∈ [0,T ]×D, our optimization problem is to find a strategy
π̂ ∈ Πt such that

Vπ̂(t,w, i) =V (t,w, i), ∀w ∈ [0,+∞[,

and to obtain function V (t,w, i) for each (t,w, i) ∈ [0,T ]× [0,+∞[×D.

3 Functional Operator

In this section, after introducing a functional operator, we show that the aforementioned optimal
value function can be obtained by applying this operator repeatedly.

In what follows, unless otherwise specified, a vector function in the form of

v(t,w) = (v(t,w,1),v(t,w,2), · · · ,v(t,w,d)) ,

means that v(t,w, i) := v(t,w,ei) for all i∈D, and, when we use ≤ or ≥ for two vectors, it means
that the relation holds for each element.

For a test function v, we introduce a functional operator denoted by M :

M v(t,w, i) := sup
π∈Πt

Et,w,i [v(ξt,1 ∧T,Wπ(ξt,1 ∧T ),ααα(ξt,1 ∧T ))]

= sup
π∈Πt

Et,w,i

[
1{ξt,1<T}v(ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
, (1)

where ξt,n denotes the n-th jump time of Markov chain {ααα(s)}∞
s=t for n∈N with ξt,0 = t, and the

use of ξt,1 indicates that the right-hand side of (1) is an optimization problem in a single-regime
world. We also write

M v(t,w) := (M v(t,w,1),M v(t,w,2), · · · ,M v(t,w,d)) .

This functional operator M has the following properties.
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Lemma 3.1 If v1(t,w)≥ v2(t,w), ∀(t,w) ∈ [0,T ]× [0,+∞[, then

M v1(t,w)≥ M v2(t,w), ∀(t,w) ∈ [0,T ]× [0,∞[.

Lemma 3.2 For any (t,w, i) ∈ [0,T ]× [0,∞[×D, define

H0(t,w, i) := Et,w,i

[
U
(

w · exp
(∫ T

t
⟨r,ααα(s)⟩ds

))]
, (2)

which is the expected utility of the terminal wealth if we allocate all of the wealth in the risk-free
bond over [t,T ], and

Hn+1(t,w, i) := M Hn(t,w, i), for n ∈ N. (3)

Then, for any (t, i) ∈ [0,T ]×D, {Hn(t, ·, i)}n∈N is an increasing sequence of functions on [0,∞[.

Proof: Since

H1(t,w, i) = M H0(t,w, i), ∀(t,w, i) ∈ [0,T ]× [0,∞[×D,

we have

H1(t,w, i) = sup
π∈Πt

Et,w,i

{
1{ξt,1<T}H0 (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

}
= sup

π∈Πt

Et,w,i

{
1{ξt,1<T}Eξt,1,Wπ (ξt,1),ααα(ξt,1)

[
U
(

Wπ(ξt,1) · exp
(∫ T

ξt,1

⟨r,ααα(s)⟩ds
))]

+1{ξt,1≥T}U (Wπ(T ))
}

= sup
π∈Πt

Et,w,i

{
1{ξt,1<T}U

[
Wπ(ξt,1) · exp

(∫ T

ξt,1

⟨r,ααα(s)⟩ds
)]

+1{ξt,1≥T}U (Wπ(T ))
}

≥ Et,w,i

{
U
[

w · exp
(∫ T

t
⟨r,ααα(s)⟩ds

)]}
= H0(t,w, i),

where E·,·,ei = E·,·,i. The result then follows from Lemma 3.1.

Lemma 3.3 For any (t,w, i) ∈ [0,T ]× [0,∞[×D, let

Vn(t,w, i) := sup
π∈Πt,n

Vπ(t,w, i),

where
Πt,n :=

{
{π(s)}T

s=t : πS(s)≡ πO(s)≡ 0, ∀s ≥ ξt,n
}
, for n ∈ N,

which is the set of strategies over [t,T ] allocating all of the wealth in the risk-free bond after
the n-th jump of the Markov chain {ααα(s)}T

s=t . Then, for any (t,w) ∈ [0,T ]× [0,∞[, we have

Vn(t,w) = Hn(t,w), ∀n ∈ N.
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Proof: We can prove the result through mathematical induction. First, by the definition of
H0, it is obvious that

V0(t,w) = H0(t,w), ∀(t,w) ∈ [0,T ]× [0,∞[.

Second, based on the assumption that

Vn(t,w) = Hn(t,w), ∀(t,w) ∈ [0,T ]× [0,∞[,

we prove that the equality also holds for n+1 as follows.

To show that Vn+1(t,w, i)≤ Hn+1(t,w, i), it suffices to show that

Vn+1(t,w, i)− ε ≤ Hn+1(t,w, i), ∀ε > 0. (4)

Indeed, for an arbitrarily given ε > 0, we can find a strategy π ∈ Πt,n+1 over [t,T ], such that

Vπ(t,w, i)≥Vn+1(t,w, i)− ε, (5)

and, by defining a strategy over [ξt,1,T ] as

π∗(s) := π(s), for s ∈ [ξt,1,T ],

we can obtain π∗ ∈ Πξt,1,n and

Vπ(t,w, i) = Et,w,i [U(Wπ(T ))]

= Et,w,i

[
1{ξt,1<T}Vπ∗ (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
≤ Et,w,i

[
1{ξt,1<T}Vn (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
= Et,w,i

[
1{ξt,1<T}Hn (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
≤ Hn+1(t,w, i),

which, combined with (5), implies (4).

To show that Vn+1(t,w, i)≥ Hn+1(t,w, i), we need only show that

Vn+1(t,w, i)+2ε ≥ Hn+1(t,w, i), ∀ε > 0. (6)

Indeed, for an arbitrarily given ε > 0, we can find a strategy π ∈ Πt , such that

Hn+1(t,w, i)≤ Et,w,i

[
1{ξt,1<T}Hn (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
+ ε. (7)

In addition, for this ε we can also find another strategy π ′ ∈ Πξt,1,n over [ξt,1,T ], such that

Vn (ξt,1,Wπ(ξt,1),ααα(ξt,1))≤Vπ ′ (ξt,1,Wπ(ξt,1),ααα(ξt,1))+ ε. (8)

Then, by defining a strategy π̃ ∈ Πt,n+1 over [t,T ] as

π̃(s) =
{

π(s), t ≤ s < ξt,1
∧

T ;
π ′(s), ξt,1

∧
T ≤ s ≤ T,
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it follows from (7) and (8) that

Hn+1(t,w, i) ≤ Et,w,i

[
1{ξt,1<T}Vπ ′ (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
+2ε

= Vπ̃ (t,w, i)+2ε
≤ Vn+1(t,w, i)+2ε,

which is the same as (6).

Proposition 3.1 For any (t,w, i) ∈ [0,T ]× [0,∞[×D, we have

lim
n→∞

Hn(t,w, i) =V (t,w, i).

Proof: For any (t,w, i) ∈ [0,T ]× [0,∞[×D, owing to Lemma 3.2, limn→∞ Hn(t,w, i) is well
defined, and it follows from Lemma 3.3 that

H(t,w, i) := lim
n→∞

Hn(t,w, i) = lim
n→∞

Vn(t,w, i)≤V (t,w, i).

To prove the opposite inequality, it suffices to show that, for any π ∈ Πt ,

H(t,w, i)≥Vπ(t,w, i), ∀(t,w, i) ∈ [0,T ]× [0,∞[×D. (9)

Indeed, for an arbitrarily given strategy π ∈ Πt , we can define a strategy πn ∈ Πt,n over [t,T ] as

πn(s) =
{

π(s), t ≤ s < ξt,n
∧

T ;
0, ξt,n

∧
T ≤ s ≤ T,

and we then have

Vπ(t,w, i)−Vπn(t,w, i)

= Et,w,i

{
1{ξt,1<T} [Vπ (ξt,1,Wπ(ξt,1),ααα(ξt,1))−Vπn (ξt,1,Wπ(ξt,1),ααα(ξt,1))]

}
= Et,w,i

{
1{ξt,1<ξt,n<T} [Vπ (ξt,1,Wπ(ξt,1),ααα(ξt,1))−Vπn (ξt,1,Wπ(ξt,1),ααα(ξt,1))]

}
→ 0,

as n → ∞. Hence, for any ε > 0, there exists an n(ε) ∈ N such that

H(t,w, i)≥ Hn(ε)(t,w, i) =Vn(ε)(t,w, i)≥Vπn(ε)(t,w, i)≥Vπ(t,w, i)− ε,

which implies (9).

From this proposition, the optimal value function can also be shown to be the fixed point of
the functional operator of M .

Proposition 3.2 The optimal value function V is the smallest non-negative solution of the dy-
namic programming equation V = M V, i.e., for any (t,w, i) ∈ [0,T ]× [0,∞[×D, V satisfies

V (t,w, i) = sup
π∈Πt

Et,w,i

[
1{ξt,1<T}V (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
. (10)
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Proof: From Proposition 3.1, it is obvious that V = M V. Suppose that there is another
fixed point of M denoted by Ṽ. Then, by the definition of Hn for any n ∈ N, for any (t,w, i) ∈
[0,T ]× [0,∞[×D, we have Ṽ (t,w, i)≥ H0(t,w, i), and

Ṽ (t,w, i) = M Ṽ (t,w, i)≥ M H0(t,w, i) = H1(t,w, i),

which further implies that Ṽ (t,w, i)≥ Hn(t,w, i) for any n ∈ N, and

Ṽ (t,w, i)≥V (t,w, i), ∀(t,w, i) ∈ [0,T ]× [0,∞[×D.

The proof is completed.

In Proposition 3.1, we conclude that the optimal value function V can be obtained by the
limit of a sequence of functions, which leads to an auxiliary optimization problem. An approx-
imate solution for V is given in the next section. Proposition 3.2, however, shows that V is also
the solution to a dynamic programming equation, which is considered in Section 5.

4 Approximate Solution via an Auxiliary Problem

4.1 Auxiliary Problem

By Proposition 3.1, optimal value function V can be obtained by iteration (3). Then, we need
only consider, for an given function v, how to obtain the explicit form of M v. Note that we can
simplify the right-hand side of (1) as follows.

M v(t,w, i) = sup
π∈Πt

Et,w,i

[
1{ξt,1<T}v(ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
= sup

π∈Πt

Et,w,i

[∫ T

t
e−qi(s−t) ∑

j ̸=i
qi jv

(
s,W (i)

π (s), j
)

ds+ e−qi(T−t)U
(

W (i)
π (T )

)]

= eqit · sup
π∈Πt

Et,w,i

[∫ T

t
e−qis ∑

j ̸=i
qi jv

(
s,W (i)

π (s), j
)

ds+ e−qiTU
(

W (i)
π (T )

)]
,(11)

where
qi := ∑

j ̸=i
qi j,

and W (i)
π denotes the wealth process driven by π in the single-regime world i, which is given by

(18). We have thus obtained an auxiliary dynamic programming problem, which, for each fixed
i ∈ D, is an optimization problem in a single-regime world.

4.2 Elasticity Approach in a Single-Regime World

To solve this auxiliary problem, we derive the dynamics of {W (i)
π (t)} using the elasticity ap-

proach. In single-regime world i, let S(i)(t) and M(i)(t) denote the prices of the stock and
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risk-free bond, respectively. Then,

dS(i)(t)
S(i)(t)

= µidt +σidB(t), (12)

dM(i)(t)
M(i)(t)

= ridt, (13)

and we can obtain risk-neutral probability Qi, under which

dS(i)(t)
S(i)(t)

= ridt +σidBQi(t), (14)

where BQi is a standard Brownian motion under Qi. Let O(i)(t,S(i)(t)) denote the value of
a given contingent claim traded on the stock at time t. Application of Itô’s formula to its
discounted value, which is a martingale under Qi, yields

∂O(i)(t,S(i)(t))
∂ t

+ riS(i)(t)
∂O(i)(t,S(i)(t))

∂S
+

1
2

σ2
i (S

(i)(t))2 ∂ 2O(i)(t,S(i)(t))
∂S2 = riO(i)(t,S(i)(t)).

(15)

Next, for a delta-neutral portfolio that takes the form

X (i)(t) = −O(i)(t,S(i)(t))+
∂O(i)(t,S(i)(t))

∂S
·S(i)(t), (16)

from the self-financing property, we have

dX (i)(t) = −dO(i)(t,S(i)(t))+
∂O(i)(t,S(i)(t))

∂S
dS(i)(t)

= −∂O(i)(t,S(i)(t))
∂ t

dt − 1
2

σ2
i (S

(i)(t))2 ∂ 2O(i)(t,S(i)(t))
∂S2 dt

= ri

[
S(i)(t)

∂O(i)(t,S(i)(t))
∂S

−O(i)(t,S(i)(t))

]
dt.

Rearrangement of this equation then implies that

dO(i)(t,S(i)(t)) = −ri

[
S(i)(t)

∂O(i)(t,S(i)(t))
∂S

−O(i)(t,S(i)(t))

]
dt +

∂O(i)(t,S(i)(t))
∂S

dS(i)(t)

=

[
riO(i)(t,S(i)(t))+

∂O(i)(t,S(i)(t))
∂S

(µi − ri)S(i)(t)

]
dt +σiS(i)(t)

∂O(i)(t,S(i)(t))
∂S

dB(t),

which further leads to

dO(i)(t,S(i)(t))
O(i)(t,S(i)(t))

=
[
ri + ε(i)O (µi − ri)

]
dt + ε(i)O σidB(t), (17)

where we introduce the elasticity of the option price with respect to the stock price defined as

ε(i)O :=
∂O(i)(t,S(i)(t))

∂S
· S(i)(t)

O(i)(t,S(i)(t))
.
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Recall that the wealth process {W (i)
π (t)} of a portfolio comprising an option, an underlying

stock and a risk-free bond evolves as

dW (i)
π (t)

W (i)
π (t)

= πS
dS(i)(t)
S(i)(t)

+πO
dO(i)(t,S(i)(t))
O(i)(t,S(i)(t))

+(1−πS −πO)
dM(i)(t)
M(i)(t)

. (18)

Substituting (12), (13) and (17) leads to

dW (i)
ε(i)(t)

W (i)
ε(i)(t)

=
[
πO

(
ri + ε(i)O (µi − ri)

)
+πSµi +(1−πS −πO)ri

]
dt +

[
πOε(i)O +πS

]
σidB(t)

=
[
πOε(i)O (µi − ri)+πS(µi − ri)+ ri

]
dt +

[
πOε(i)O +πS

]
σidB(t)

=
[
ε(i)(µi − ri)+ ri

]
dt + ε(i)σidB(t), (19)

where ε(i) denotes the elasticity of the entire portfolio with respect to the stock price, i.e.,

ε(i) := πOε(i)O +πS.

Since the ε(i) is the single control variable for the dynamics of the wealth process in the single-
regime world i, we replaced the subscript of π of the wealth process by the new control variable
ε(i). For this single-regime optimization problem, we first determine the optimal elasticity,
which in a complete market is independent of a specific asset. Then a strategy is computed
which tracks this optimal elasticity (see Subsection 5.3).

4.3 Solution to the Auxiliary Problem

For auxiliary optimization problem (11), because ε(i) is a single control variable, as derived in
the foregoing section, we rewrite (11) and denote

M(t,w, i) : = M v(t,w, i)

= eqit · sup
ε(i)

Et,w,i

[∫ T

t
e−qis ∑

j ̸=i
qi jv

(
s,W (i)

ε(i)(s), j
)

ds+ e−qiTU
(

W (i)
ε(i)(T )

)]
.

(20)

We then obtain a PDE for M(·, ·, i) on [0,T [×]0,+∞[.

Proposition 4.1 For each i ∈ D, the function of M(·, ·, i) satisfies

σ2
i

[
Mt(t,w, i)+ riwMW (t,w, i)−qiM(t,w, i)+∑

j ̸=i
qi jv(t,w, j)

]
MWW (t,w, i)

=
1
2
(µi − ri)

2M2
W (t,w, i) (21)

on [0,T [×]0,+∞[ and has boundary condition

M(T,w, i) =U(w), w ∈ [0,+∞[.

10



Proof: For each fixed i ∈ D, considering (20) and the dynamics of {W (i)
ε(i)(t)} given by (19), we

have the following Hamilton-Jacobi-Bellman equation.

0 = sup
ε(i)

{
Mt(t,w, i)−qiM(t,w, i)+

[
ε(i)(µi − ri)+ ri

]
wMW (t,w, i)

+
1
2

σ2
i (ε(i))2w2MWW (t,w, i)+∑

j ̸=i
qi jv(t,w, j)

}

on [0,T [×]0,+∞[, with its first-order condition leading to the optimal elasticity

ε̂(i) = π̂Oε(i)O + π̂S =−(µi − ri)MW (t,w, i)
σ2

i wMWW (t,w, i)
. (22)

By substitution, we can then obtain PDE (21). The boundary condition follows immediately
from (20). Furthermore, it follows from the standard verification theorem (see, e.g. Fleming
and Soner (2006)) that the solution to the PDE (21) is indeed the function M(t,w, i).

Although solving this PDE for M appears difficult, we know that M is the result of one-step
iteration (3), and the first step of this iteration involves finding M H0, with H0 given by (2).
Accordingly, we first attempt to solve the PDE with v replaced by H0, and then obtain a general
explicit form of Hn. In addition, we restrict ourselves to the constant relative risk aversion
(CRRA) utility, i.e.,

U(x) =

{
xγ

γ , γ < 1,γ ̸= 0;
lnx, γ = 0,

for x > 0. We then obtain the following result.

Proposition 4.2 If the agent has a CRRA utility of

U(x) =
xγ

γ
, for x ≥ 0,

where γ < 1 and γ ̸= 0, then the value functions defined by the iteration (3) admit

Hn(t,w, i) =
wγ

γ
·an(t, i), ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D and ∀n ∈ N, (23)

where the sequence of the functions of {an(t, i)}∞
n=0 is defined as follows.

a0(t, i) :=
⟨
exp
[
(QT + γR)(T − t)

]
· ei,1

⟩
,

R := diag(r1,r2 . . . ,rd) ∈ Rd×d,

1 := (1,1, · · · ,1)Tr ∈ Rd,

and
an+1(t, i) = N an(t, i), ∀n ∈ N. (24)

Here, N is a functional operator, and, for function a(t, i) on [0,T ]×D, it is defined as

N a(t, i) := e−(λi+qi)(T−t)+
∫ T

t
e−(λi+qi)(s−t) ∑

j ̸=i
qi ja(s, j)ds,

11



where

λi :=
1
2

(
µi − ri

σi

)2 γ
γ −1

− riγ. (25)

If the agent has a CRRA utility (γ = 0) of

U(x) = lnx, for x > 0,

then, for value functions {Hn(t,w, i)}∞
n=0, we have

Hn(t,w, i) = lnw+bn(t, i), ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D and ∀n ∈ N,

where the sequence of the functions of {bn(t, i)}∞
n=0 is defined as follows

b0(t, i) :=
∂a0(t, i)

∂γ

∣∣∣∣
γ=0

=
⟨
exp
[
QT (T − t)

]
·R(T − t) · ei,1

⟩
,

and
bn+1(t, i) = Ñ bn(t, i), ∀n ∈ N. (26)

Here, Ñ is also a functional operator, and, for function b(t, i) on [0,T ]×D, it is defined as

Ñ b(t, i) :=
∫ T

t
e−qi(s−t)

(
λ̃i +∑

j ̸=i
qi jb(s, j)

)
ds,

where

λ̃i := ri +
1
2

(
µi − ri

σi

)2

.

Proof: First, for the utility function of

U(x) =
xγ

γ
, for x ≥ 0,

where γ < 1 and γ ̸= 0, according to (2), we have

H0(t,w, i) =
wγ

γ
E

[
exp
(

γ
∫ T

t
⟨r,ααα(s)⟩ds

)∣∣∣∣ααα(t) = ei

]
=

wγ

γ
a0(t, i),

where the second equality follows from the characteristic function of the occupation times in
the regime-switching model, which has been derived in Buffington and Elliott (2002). We
conjecture that

H1(t,w, i) = M H0(t,w, i) =
wγ

γ
g(t, i), ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D,

where g is a function on [0,T ]×D. Because H1 = M H0 must satisfy the PDE of (21), with
v replaced by H0, by substitution we can derive the following ordinary differential equation
(ODE), that is satisfied by g(·, i) on [0,T ] for each fixed i ∈ D.

gt(t, i) = (λi +qi)g(t, i)−∑
j ̸=i

qi ja0(t, j),

g(T, i) = 1,

12



which yields
g(t, i) = N a0(t, i),

and

H1(t,w, i) = M H0(t,w, i) =
wγ

γ
N a0(t, i) =

wγ

γ
a1(t, i).

Then, by the same idea, we can conclude that if

Hn−1(t,w, i) =
wγ

γ
an−1(t, i),

for an n ≥ 2, then

Hn(t,w, i) = M Hn−1(t,w, i) =
wγ

γ
N an−1(t, i) =

wγ

γ
an(t, i).

Second, for the utility function (γ = 0) of

U(x) = lnx, for x ≥ 0,

according to (2), we have

H0(t,w, i) = lnw+E

[∫ T

t
⟨r,ααα(s)⟩ds

∣∣∣∣ααα(t) = ei

]
= lnw+

∂a0(t, i)
∂γ

∣∣∣∣
γ=0

= lnw+b0(t, i).

We conjecture that

H1(t,w, i) = M H0(t,w, i) = lnw+ g̃(t, i), ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D,

where g̃ represents a function on [0,T ]×D. Considering (21) with v replaced by H0 in a similar
way, we can derive the following ODE for g̃(·, i) on [0,T ] for each fixed i ∈ D.

g̃t(t, i) = qig̃(t, i)− λ̃i −∑
j ̸=i

qi jb0(t, j),

g̃(T, i) = 0,

which yields
g̃(t, i) = Ñ b0(t, i),

and

H1(t,w, i) = M H0(t,w, i) = lnw+ Ñ b0(t, i) = lnw+b1(t, i).

Then, by the same idea, we can conclude that

Hn(t,w, i) = lnw+bn(t, i), ∀n ∈ N.

The proof is completed.
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4.4 Approximate Solution to the Original Problem

From the explicit form of (23), we can use the sequence of the value functions {Hn} to approx-
imate the optimal value function V in the original problem. For a desirable level of accuracy,
ε > 0, iteration (3) can be carried out in the following way.

• Step 1: Set n = 0 and H0(t,w, i) = wγ

γ ·a0(t, i), where

a0(t, i) :=
⟨
exp
[
(QT + γR)(T − t)

]
· ei,1

⟩
.

• Step 2: Let n = n+1, obtain an(t, i) through (24) and set

Hn(t,w, i) =
wγ

γ
·an(t, i).

• Step 3: Stop when
sup
t,w,i

|Hn(t,w, i)−Hn−1(t,w, i)| ≤ ε;

otherwise, return to Step 2.

Here, we consider only the case of γ < 1 and γ ̸= 0, although the case of γ = 0 can be
considered in a similar way.

5 Exact Solution

5.1 Optimal Value Function

Recall that optimal value function V satisfies the dynamic programming problem

V = M V.

Then, using (21), we can obtain a PDE for V and solve this PDE for the CRRA utility.

Proposition 5.1 For each fixed i ∈ D, the optimal value function of V (·, ·, i) satisfies

1
2
(µi − ri)

2V 2
W (t,w, i) = σ2

i

[
Vt(t,w, i)+ riwVW (t,w, i)+

d

∑
j=1

qi jV (t,w, j)

]
VWW (t,w, i) (27)

on [0,T [×]0,+∞[ and has boundary condition

V (T,w, i) =

{
wγ

γ , γ < 1,γ ̸= 0;
lnw, γ = 0.
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When γ < 1 and γ ̸= 0, this PDE has a solution given by

V (t,w, i) = a(t, i)
wγ

γ
, ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D,

where a(t, i) is the i-th component of an Rd-valued column of

a(t) : = (a(t,1),a(t,2), · · · ,a(t,d))Tr .

It can also be shown that
a(t) = exp [−(ΛΛΛ−Q)(T − t)] ·1, (28)

with

ΛΛΛ := diag(λ (1),λ (2), · · ·λ (d)) ∈ Rd×d,

λ (i) :=
1
2

(
µi − ri

σi

)2 γ
γ −1

− riγ .

When γ = 0, this PDE has a solution given by

V (t,w, i) = ã(t, i) lnw+g(t, i), ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D,

where ã(t, i) is the i-th component of an Rd-valued column of

ã(t) = exp(Q(T − t)) ·1, (29)

and g(t, i) is the i-th component of an Rd-valued column of

g(t) = exp(−Qt) ·
∫ T

t
exp(Qs)b(s)ds (30)

with

b(t) := (b(t,1),b(t,2), · · · ,b(t,d))Tr ,

b(t, i) :=
1
2

(
µi − ri

σi

)2

ã(t, i)+ riã(t, i).

Proof: By replacing v by V in (21), we can obtain a PDE for MV (·, ·, i). Then, (27) follows
from MV (·, ·, i) = V (·, ·, i), and the boundary condition holds trivially. To solve this PDE, we
also consider the two following cases for the value of γ .

First, for the utility function of

U(x) =
xγ

γ
, for x ≥ 0,

where γ < 1 or γ ̸= 0, we conjecture that

V (t,w, i) = a(t, i)
wγ

γ
,
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where a(·, i) is a continuous function on [0,T ], with a(T, i) = 1 for each i ∈ D. It then follows
that

Vt(t,w, i) = at(t, i)
wγ

γ
,

VW (t,w, i) = a(t, i)wγ−1,

VWW (t,w, i) = a(t, i)(γ −1)wγ−2.

Substituting the foregoing into (27), for each i ∈ D, we have

at(t, i) =

[
1
2

(
µi − ri

σi

)2 γ
γ −1

− riγ

]
a(t, i)−

d

∑
j=1

qi ja(t, j),

where the subscript of t represents the derivative of a(·, i) with respect to t. We can also rewrite
it in compact form as

at(t) = (ΛΛΛ−Q)a(t), (31)

where
at(t) = (at(t,1),at(t,2), · · ·at(t,d)))

Tr .

Then, (28) follows.

Second, for the utility function of

U(x) = lnx, for x ≥ 0,

we conjecture that
V (t,w, i) = ã(t, i) lnw+g(t, i),

where ã(·, i) and g(·, i) are both continuous functions on [0,T ], with ã(T, i) = 1 and g(T, i) = 0
for each i ∈ D. It then follows that

Vt(t,w, i) = ãt(t, i) lnw+gt(t, i),

VW (t,w, i) = ã(t, i)
1
w
,

VWW (t,w, i) = −ã(t, i)
1

w2 .

Substituting the foregoing into (27), for each i ∈ D, we have

ãt(t, i) = −
d

∑
j=1

qi jã(t, j),

gt(t, i) = −
d

∑
j=1

qi jg(t, j)− 1
2

(
µi − ri

σi

)2

ã(t, i)− riã(t, i),

and, in compact form,

ãt(t) = −Qã(t),
gt(t) = −Qg(t)−b(t),

from which (29) and (30) follow.
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Remark 5.1 It is easy to see that we can not get a closed form solution to the optimal value
function for a general utility function. However, since the characteristic function of the occupa-
tion times of the Markov chain is known (see Buffington and Elliott (2002)), H0 defined by (2)
can always be calculated (numerically). Then the iteration (3) provides a numerical method to
solve the PDE (27) together with the initial point H0.

5.2 Optimal Portfolio Strategy

In addition to the optimal value function, our original problem also requires us to specify an
optimal portfolio process. Here we show that, even in a multiple-regime market, given any
current state i ∈ D, it remains optimal to invest our wealth in the same way as that given by the
auxiliary problem in single regime i.

Proposition 5.2 For the dynamic programming problem in a single-regime market of i ∈ D

MV (t,w, i) = sup
π∈Πt

Et,w,i

[
1{ξt,1<T}V (ξt,1,Wπ(ξt,1),ααα(ξt,1))+1{ξt,1≥T}U (Wπ(T ))

]
,

let π̂(i) denote an optimal strategy, which can maximize the expectation on the right-hand side.
Then, the optimal strategy for our original problem can be given by

⟨ααα(t), π̂ππ(t)⟩ , ∀t ∈ [0,T ],

where π̂ππ(t) =
(

π̂(1)(t), π̂(2)(t), · · · , π̂(d)(t)
)Tr

.

Proof: Let π̂ denote an optimal strategy for our original problem. Then for a fixed i ∈ D
and t ∈ [0,T ], we can define strategy π̃ ∈ Πt over [t,T ] as

π̃(s) =
{

π̂(i)(s), t ≤ s ≤ ξt,1
∧

T ;
π̂(s), ξt,1

∧
T < s ≤ T,

and then we have

MV (t,w, i) = Et,w,i

[
1{ξt,1<T}V

(
ξt,1,Wπ̂(i)(ξt,1),ααα(ξt,1)

)
+1{ξt,1≥T}U

(
Wπ̂(i)(T )

)]
= Et,w,i

[
1{ξt,1<T}Eξt,1,Wπ̂(i)

(ξt,1),ααα(ξt,1) [U (Wπ̂(T ))]+1{ξt,1≥T}U
(
Wπ̂(i)(T )

)]
= Et,w,i [U (Wπ̃(T ))] ,

where, considering the meaning of π̂ , for the second equality we can use

V (t,w, i) = Et,w,i [U (Wπ̂(T ))] , ∀(t,w, i) ∈ [0,T ]× [0,+∞[×D.

Furthermore, it follows from V (t,w, i) = MV (t,w, i) that

V (t,w, i) = Et,w,i [U (Wπ̃(T ))] ,

which is equivalent to saying that the strategy of π̃ is also an optimal strategy for our original
problem. Therefore, at any point in time t ∈ [0,T ], given that ααα(t) = ei, to maximize the
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expected utility of the terminal wealth, it is optimal to follow the strategy π̂(i) =
(

π̂(i)
S , π̂(i)

O

)
,

which is the optimal solution to the problem in a single-regime market of i ∈ D.

From this proposition, by replacing the M by V in (22), we can show that the optimal
strategy for our original problem in case of γ < 1 and γ ̸= 0, provided that the current state is i,
satisfies

π̂(i)
O ε(i)O + π̂(i)

S = −(µi − ri)VW (t,w, i)
σ2

i wVWW (t,w, i)
=

µi − ri

(1− γ)σ2
i
.

5.3 Further Analysis of the Optimal Portfolio

At any point in time, the optimal portfolio in case of γ < 1 and γ ̸= 0 satisfies

π̂OεO + π̂S =
µ − r

(1− γ)σ2 ,

π̂O + π̂S + π̂M = 1,

where we suppress the superscript of i.

If we do not allow the risk-free bond in the optimal portfolio, i.e.,

π̂O + π̂S = 1,

then this implies that

π̂S =
µ − r

(1− γ)σ2 ·
1

1− εO
− εO

1− εO
,

π̂O = − µ − r
(1− γ)σ2 ·

1
1− εO

+
1

1− εO
.

In Merton’s well-known reduced optimization problem (see Merton (1969, 1971)), which con-
siders a portfolio of a stock and a risk-free bond, µ−r

(1−γ)σ2 is exactly the optimal percentage of
wealth invested in the stock for CRRA utility. Therefore, we call the first term in our solution,

µ − r
(1− γ)σ2 ·

1
1− εO

,

the modified term of speculation. We call the second element,

− εO

1− εO
,

the term of delta hedging, because it is the solution of the delta hedging strategy. In fact, to
render a delta-neutral portfolio containing a stock and an option, we need only set the portfolio’s
elasticity with respect to the stock to be equal to zero, i.e.,

ε = πS + εOπO = 0, (32)

which, combined with πS +πO = 1, results in

πS =− εO

1− εO
.
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If investment in a risk-free bond is permitted, then the optimal portfolio process cannot be
determined uniquely, and we have only

π̂S =
µ − r

(1− γ)σ2 − π̂OεO.

In contrast to the situation without a risk-free bond, the first term is a pure rather than modified
term of speculation, and, according to (32), the second element is still called the term of delta
hedging.

Therefore, for a portfolio comprising an option, an underlying stock and a risk-free bond, the
allocation of wealth in the stock has the dual purpose of speculating for profits and hedging the
risks involved in the option. More specifically, the smaller the γ , the less wealth will be invested
in the stock for speculation. This is consistent with the Arrow-Pratt index of risk aversion for
the CRRA utility

−xU ′′(x)/U ′(x) = 1− γ ,

which implies that the smaller the γ , the more risk averse the investor will be. And as γ de-
creases, the investor becomes more risk averse, and the optimal investment strategy changes
gradually from a speculative strategy to a delta hedging strategy.

6 Conclusion

An optimal asset allocation is studied in a regime-switching market consisting of an option, an
underlying stock and a risk-free bond. It is true that if the market is complete, the derivative can
be replicated by the stock and bond, but since derivatives are available in the market, investors
can choose to invest in derivative market (in some cases, investor may hold some derivatives,
he/she can optimize his/her portfolio using the strategy in the paper.) In our paper, the market
is incomplete, so the problem is more meaningful. We provided both an approximate and an
exact solution to the original portfolio optimization problem for power and logarithmic utility
functions.

Since the market is incomplete, there is difficulty to represent the return of an option using
the returns of a stock and a risk-free bond, and there is no simple closed form formula for the
elasticity of the option price with respect to the stock price. To overcome this, we introduced a
functional operator by which we can obtain a sequence of value functions. We shown that the
optimal value function can be given by the limit of this sequence, and the original problem can
be reduced to an auxiliary optimization problem in a single-regime market where the elasticities
can be calculated. Hence, we solve this auxiliary problem by the elasticity approach and provide
an approximation to the optimal value function. Our results show that, even in our multiple-
regime market, it remains optimal to invest our wealth in the same way as in a single-regime
market.

The optimal strategy obtained in this study is a mixture of Merton’s reduced portfolio op-
timization result and the delta-hedging strategy. Without a risk-free bond in the portfolio, the
optimal percentage of the total wealth invested in the underlying stock is the sum of a modi-
fied Merton (see Merton (1969, 1971)) speculative strategy and the delta hedging strategy. In
the presence of a risk-free bond, in contrast, the modified term becomes a purely speculative
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term. Hence, the optimal allocation of the wealth in the stock constitutes an appropriate balance
between speculating for profits and hedging the risks involved in the option. As the investor be-
comes more risk averse, the optimal investment strategy changes gradually from a speculative
strategy to a delta hedging strategy.
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