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ABSTRACT  

It is widely accepted in forecasting that a combination model can improve forecasting 

accuracy. One important challenge is how to select the optimal subset of individual models 

from all available models without having to try all possible combinations of these models. 

This paper proposes an optimal subset selection algorithm from all individual models using 

information theory. The experimental results in tourism demand forecasting demonstrate 

that the combination of the individual models from the selected optimal subset significantly 

outperforms the combination of all available individual models. The proposed optimal 

subset selection algorithm provides a theoretical approach rather than experimental 

assessments which dominate literature.  

Keywords: Neural Networks; Seasonal Autoregressive Integrated Moving Average; 

Combination Forecast; Information Theory. 

 

1. Introduction 

    Forecasting has received the considerable research during the past three decades. 

Three main types of forecasting models (Li, Song & Witt, 2005; Song & Li, 2008) are Time 

series model (Cao, Ewing & Thompson, 2012; Cho, 200; Goshall & Charlesworth, 2011), 

Causal econometric model (Li, Song & Witt, 2006; Naude & Saayman, 2005; Page, Song 

& Wu, 2012; Roget & Gonzalez, 2006) and new emerging Artificial Intelligence based 

model, such as neural network, fuzzy time-series theory, grey theory, genetic algorithms, 

and expert systems (Cao, Ewing & Thompson, 2012; Carbonneau, Laframboise & 

Vahidov, 2008; Bodyanskiy & Popov 2006; Chen & Wang, 2007; Cho, 2003; Hadavandi, 

Ghanbari , Shahanaghi  & Abbasian-Naghneh, 2011; Law & Au, 1999; Pai & Hong, 2005; 

Wong, Xia & Chu, 2010; Wu & Akbarov, 2011). From these studies, researchers often 

seek to identify the best individual model to generate a forecast. However, combination 

forecasting has proven to be a highly successful forecasting strategy in many fields, which 

has been demonstrated by empirical studies.  

    Forecast combination was pioneered in the sixties by Bates and Granger (1969). Since 

then it has been demonstrated that forecast combinations are often superior to their 

constituent forecasts in many fields (Greer, 2005; Hall & Mitchell, 2007; Holden & Peel, 

1986; Lessmann et al. (2012); Li, Shi & Zhou, 2011; Newbold & Granger, 1974; Sánchez, 
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2008; Timmermann, Elliott & Granger, 2006; Winkler & Makridakis, 1983; Zheng, Lee & 

Shi, 2006). The most widely used and studied combination forecast methods are 

ensemble methods, such as bagging (Breiman, 1996) and boosting methods. The typical 

boosting methods are AdaBoost (Freund & Schapire, 1997), LogitBoost (Tibshirani, 

Friedman & Hastie, 2000) and MultiBoost (Webb, 2000). These methods which have the 

learning capability have two steps: step 1: construct a set of predication models; step 2: 

predicate a new pattern by taking a weighted vote of their predications. The average or 

median is used for the continuous outputs, and the majority voting is used for the 

categorical outputs of the set of predication models from step 1. The most applications are 

the categorical outputs from the set of predication models. For examples, Wezel & 

Potharst (2007) applied ensembles methods (bagging and boosting) to the customer 

choice modelling problem to improve customer choice predictions. Abellán and Masegosa 

(2010) proposed the ensemble method using credal decision trees, and showed the good 

percentage of correct classifications and an improvement in time of processing, especially 

for large data sets. Finlay (2011) applied bagging and boosting methods to the credit risk 

assessment to classify consumers as good or bad credit risks, and proposed a new 

boosting algorithm, ‘error trimmed boosting’. Experiments showed that the bagging and 

boosting methods outperform other multi-classifier systems, and ‘error trimmed boosting’ 

outperforms bagging and AdaBoost by a significant margin.  

    For the continuous outputs from the set of predication models, Li, Wong and Troutt 

(2001) proposed an approximate Bayesian algorithm for combining forecasts using several 

examples. Zou and Yang (2004) developed an algorithm called ‘AFTER’ to calculate the 

weights in the combination forecasting with one-step-ahead forecasting, where the weights 

are updated for each additional observation. The results demonstrated the advantage of 

the ‘AFTER’ algorithm. He and Xu (2005) applied the self-organizing algorithm to combine 

the forecasting models, and demonstrated the superiority by an example of the total retail 

sales of consumer goods in Chengdu. All individual candidate models are used in the 

combination for these researches (Li, Wong and Trout, 2001; Zou and Yang, 2004; He and  

Xu, 2005).  

     For tourism demand forecasting, the outputs of the individual models are continuous 

variables. The most common combination forecasting models are linear combination of all 

available individual forecast models in tourism literature. The researchers (Andrawisa et 

al., 2011, Chan et al., 2010; Coshall & Charlesworth, 2011; Freitas & Rodrigues, 2006; 

Lessmann et al., 2012; Menezes, Bunn & Taylor, 2000; Shen, Li & Song, 2011) have 

demonstrated the efficiency of combination forecasts and the superiority of combination 
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forecasts in contrast to individual forecasts. However all available individual models are 

used as inputs for the combinations. The question is whether we can optimally select a 

subset of all individual models instead of all individual models in constructing the 

combination model. If a subset of individual models as inputs for a combination model can 

improve performance over using all available individual models as inputs in terms of 

accuracy and robustness, then this subset of individual models is called as an ‘optimal 

subset’.  

    One of the important issues is how to select the optimal subset of individual models 

from all those available individual models without having to try all possible combinations of 

the individual models. This poses an important challenge as examining all possible 

combinations of individual models only provides an experimental assessment which does 

not have a rigorous proof from a theoretical perspective. Furthermore, trying all possible 

combinations would involve intensive computation and is extremely time-consuming if the 

total number of individual forecasting models is large. The total number of all possible 

combinations is  
M
m

m
M mC2 )1(/  excluding the individual models for one combination 

method if there are M individual candidate models available, where  )1(MMCm
M  

)1()2(  mMM   and )1()1(  mmm  12 . For example,
 
there are 502 

possible combinations for one combination method if M equals nine (nine individual 

models in total). 

    Combination selection forecasting is rarely studied in the literature. Costantini and 

Pappalardo (2010) and Kisinbay (2010) employed the encompassing test for combination 

forecasts algorithms. Costantini and Pappalardo (2010) proposed a hierarchical procedure 

for the combination, where the procedure was investigated using short-term forecasting 

models for monthly industrial production in Italy. Kisinbay (2010) demonstrated that the 

combination forecasts algorithm outperform the benchmark model forecasts using the US 

macroeconomic dataset, the algorithm developed by Kisinbay (2010) was adopted to 

analyse US data in the IMF working paper by Baba and Kisinbay (2010).              

    An optimal subset selection from all individual forecasting models is studied in this 

paper. The optimal subset may contain one individual model, up to a maximum of all 

individual models. If the selected subset contains only one single model, this means that 

the individual model gives the best performance out of all possible combinations of 

individual models.  

    An optimal subset selection algorithm using information theory (Mackay, 2003) is 

proposed in this paper. The linear combination models proposed by Shen, Li and Song 
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(2008, 2011) and Wong et al. (2007) are used to examine the optimal subset selection 

algorithm for this study. The information concepts have never been applied to the selection 

of individual models as combination models, and all available individual models are used 

as inputs for the linear combination methods in tourism demand forecasting literature. For 

this reason, it is useful to explain the developments in information theory that contribute to 

forecasting.  

 

2. Methodological issues  

2.1. Information theory 

    Traditionally, the best single forecasting model is selected from several individual 

models in terms of accuracy. In most cases, the best single model may not have extracted 

all the information that is relevant for the actual output values. The combination models 

may be able to offer more information to provide a better prediction compared with an 

individual model. Shannon’s information theory (Mackay, 2003) argues that we can select 

an optimal subset of all individual models, and this subset contains enough information to 

forecast the actual outputs. Optimal subset selection using information theory is widely 

used in other fields such as the pattern recognition and neural networks fields.  

    Sridhar, Bartlett and Seagrave (1999) proposed an algorithm using information theory 

for combining neural network models. This algorithm identifies and combines useful 

models regardless of the nature of their relationship to the actual output. The algorithm 

was demonstrated through three examples including the application to a dynamic process 

modelling problem. The obtained results demonstrated that the algorithm could achieve 

highly improved performance as compared with a single optimal network or the stacked 

neural networks based on a linear combination of neural networks.    

    Many algorithms on feature selection based on mutual information (MI) were developed. 

The algorithm ‘mutual information based feature selection’ (MIFS) based on MI between 

the individual and the class variables was developed by Battiti (1994) for selecting the 

features in the supervised neural net learning. However this algorithm can only calculate 

the MI between one single variable with another single variable. Kwak and Choi (2002) 

analysed the limitations of the MIFS algorithm (Battiti, 1994) and proposed an ‘MI feature 

selection uniform information distribution’ (MIFS-U) algorithm to overcome its limitations. 

Both MIFS and MIFS-U algorithms can provide better performance compared with the 

feature selection algorithms such as principal component analysis and neural networks, 

and have been successfully applied in many experimental design problems. However, 

both algorithms involve a parameter and it is difficult to determine the range of its value. 
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The fixed parameter is used in the MI based feature selection ‘minimal redundancy 

maximal relevance’ (mRMR) algorithm (Peng, Long and Ding, 2005). The ‘normalized 

mutual information feature selection’ (NMIFS) algorithm was proposed in the paper 

(Estévez, Tesmer, Perez and Zurada, 2009) based on the normalized MI by the minimum 

entropy of both features. The average normalized MI is used as a measure of redundancy 

of the individual feature and the subset of selected features. The experiments 

demonstrated that the NMIFS algorithm enhances the MIFS, MIFS-U and mRMR 

algorithms. The parameter is also fixed in the NMIFS algorithm, which is an advantage 

comparing with the algorithms MIFS and MIFS-U.  

    In term of speeding, ‘fast correlation based filter’ (FCBF) is fast due to that a few 

evaluations of bivariate mutual information are computed. The FCBF is a ranking method 

combined with the redundancy analysis (Yu & Liu, 2004). Fleuret (2004) proposed the 

forward selection and ‘conditional mutual information maximization criterion’ (CMIM) in 

term of binary feature selection and showed that CMIM is competitive with the FCBF in 

selecting binary features. Meyer, Schretter and Bontempi (2008) proposed a ‘matrix of 

average sub-subset information for variable elimination’ (MASSIVE) using variable 

complementarity for microarray data sets. Their experimental results demonstrated that 

MASSIVE is competitive with the FCBF and CMIM, and outperforms mRMR for some data 

sets. All these MI feature selection algorithms are based on nominal or binary feature 

selection. The continuous feature can be transformed to the nominal feature by dividing 

the variable domain into the finite number of regions with an equal size, where the variable 

is assumed to be a constant within the region. It is noted that a reasonable size of data 

should be used in order to transform the continuous feature to the nominal feature. The 

Kernel-based method (Christopher, 1995) which is based on the Parzen’s window (Parzen 

1962) is employed in this study. The reasons are that 1) the data set used in this study has 

a small sample size; 2) features (outputs of individual models) are continuous variables; 3) 

the data set has a low dimension of input features comparing with the microarray data.                 

    The mutual information (MI) (Mackay, 2003) which is symmetric is a measure of the 

dependence between random variables. The MI is a positive value and if and only if the 

variables are independent with the zero MI value. The MI between two discrete random 

vector variables U and V is defined as follows                    

        
 
 Uu Vv vpup

vup
vupVUMI

)()(

),(
log),(),(                                          (1)       

where ),( vup is a joint density function and )(up and )(up are the marginal density functions. 

The MI between two continuous random vector variables X and Y is defined as 
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where ),( YXp is a joint density function, and )(Xp and )(Yp are the marginal density 

functions. Using the entropy concept, (1) and (2) can be written as (3) and (4) below 
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where ),( VUH and )(UH are defined in (5) for discrete random vector variables and (6) for 

continuous random vector variables, respectively.  

                       


vu

vuvu ppVUH
,

,, log),( , 
u

uu ppUH log)(                              (5) 

where vup ,  
is the probability when uU   and vV  , up is the probability when uU  .     

       
,),(log),(),(  








dXdYYXpYXpYXH

 





dXXpXpXH )(log)()(      (6)   

where ),( YXp is a joint density function and )(Xp is the marginal density function. )(XH is 

an entropy and a measure of the amount of uncertainty associated with the value of X.

),( YXH is a joint entropy which measures how much entropy is contained in a joint system 

of two random vector variables (X and Y). We need to work out the terms 





dXXpXp )(log)( and ),(log),( YXpYXp 








 in (6) in order to calculate ),( YXMI  in (4). 

There are no analytical solutions for these terms. Thus we use approximations of these 

terms presented in (7) according to the definition of ‘Expectation’ for continuous variable.   
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where N is the size of the data X={
)()()2()1( ...,,...,, Ni XXXX }, ),...,1()( NiX i  is a d 

dimensional vector and Y={
)(

,
)()1( ,...,,..., Ni yyy }.    

    The Parzen’s window (Parzen, 1962) with the multivariate Gaussian Kernel-based 

function (Bishop, 2002) is the most popular construction method for computing the density 

function )(Xp and ),( YXp . ),( )()( ii yXp  in (7) is one more dimension of density function

)( )(iXp . )( )(iXp
 
and ),( )()( ii yXp

 
can be written as (8)   
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where || || is the Euclidean norm or Euclidean distance,   is the kernel width smoothing 

parameter and can be determined by the training data. For this study, the range of the 

kernel width is from 0.1 to 1, step by 0.05, and the best   is selected using the training 

data which is used to construct the model. X and Y in (8) are the inputs and actual output, 

respectively. It is noticed that for large dimension d, the density functions )( )(iXp and

),( )()( ii yXp  in (8) tend to zero for  2/1 , infinity for  2/1  and constant for

.2/1    However, in this study d is not large comparing with the other data sets such 

as microarray data sets. 

2.2. Forecasting Error measurement   

    It is essential to introduce the ‘forecasting error measurement’ (FEM) when measuring 

the performance of a forecasting model. The Mean Absolute Percentage Error (MAPE) is 

recommended as the most appropriate error measurement (Hanke & Reitsch, 1995; 

Makridakis et al., 1982) and the MAPE formula is  






N

t t
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y

yy
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where ty
 
is the true value and tŷ  is the predicted value at time t, N is the size of time 

series. The Mean Absolute Scaled Error (MASE) is suggested as the best available 

measure of forecast accuracy (Hyndman & Koehler, 2006) and the MASE formula is   
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 These two popular forecast accuracy measures are used in this paper. The MAPE as an 

example is used as FEM in the MI algorithm of optimal subset selection in section 2.3. 

2.3. Mutual information (MI) algorithm of optimal subset selection  

   To apply the MI algorithm, we first divide the whole data set D into two data sets: the 

training data DTrain and the test data DTest. Each column of the whole data set D is the 

outputs of each individual forecasting model, the dimension of D is the total number of 

individual forecasting models. The training data DTrain is used to identify an optimal subset 

from all individual models using the MI theory, the test data DTest is used to validate the 

optimal subset selection results. There are two common selection methods: forward 

selection and backward selection (Theodoridis & Koutroumbas, 1999). Both methods 

http://en.wikipedia.org/wiki/Euclidean_norm
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accept or reject features, one at a time, in order to construct an optimal subset. Here, the 

forward selection is applied and the MI algorithm is described as below.   

MI Algorithm for optimal subset selection: 

Step 1: Set the initial selected individual model set M = {  } which is an empty set, the 

initial selected data set S = {  } which is an empty data set, the training data DTrain = 

MNMj FFFF ]..,,...,[ 21 , which is an N rows and M columns matrix, where ,,,( 321 jjjj fffF 

')..., jNf , )1( Mj   is the outputs (forecasting values) of the individual model jf )1( Mj 

on the training data set DTrain, N is the size of the training data DTrain and M is the total 

number of the individual models. 

Step 2: For each column ( jF ) of the training data set DTrain using equations (4), (6), (7) 

and (8) calculate the MI between jFS   and the actual outputs y , which is ),( yFSMI j , 

and find the maximum MI value among all j which is ),( yFSMIMax j
j

 , where indicates 

the combine set. 

Step 3: Put the individual model jf  corresponding to the maximum MI value 

),( yFSMIMax j
j

  into M, M = { jf }, put jF into S, S= }{ jF  and delete jF  which is column j 

from the training data DTrain.  

Step 4: Calculate the forecasting error measurement (FEM) described in section 2.2 for 

the data set S.   

Step 5: Repeat Step 2, Step 3 and Step 4 until there is non-significant improvement of the 

FEM value on S (it implies that the current FEM value is bigger or very close to the 

previous FEM value). Thus, M is the optimal subset which contains some individual 

models excluding the current individual model.  

   The order of the individual models for the optimal subset is determined by the MI 

algorithm and the size of optimal subsets is determined by the FEM. Slightly different 

results may be obtained if a different FEM is used as the criteria in Step 4.  

    The individual models are the foundation of applying the MI Algorithm for optimal subset 

selection. Several different time series approaches as the individual forecasting models 

are adopted in this paper. The world ‘GDP’ and ‘CPI’ and other economic factors as 

proxies of the influencing factors can be used as inputs if we apply causal econometric 

models or new emerging artificial intelligence models. However this paper concentrates on 

forecasting UK inbounds tourism arrivals, not on the impact study of the factors on the UK 
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inbounds tourism arrivals. Thus, the time series are employed and the adopted individual 

models are described in section 2.4.     

2.4. Individual forecasting model 

    In this study, nine individual or single time series forecasting models are used, some of 

these individual time series are most popular forecasting models, and some of these 

individual time series are newly emerging techniques. The most frequently used time 

series in the tourism demand forecast literature (Song & Li, 2008) are adopted in this 

study. The nine individual models are described in the following sections. 

2.4.1. Support Vector Regression (SVR) Neural Network 

    The foundations of SVR neural networks were first developed by Vapnik (1995, 1996). 

SVR are gaining popularity due to many attractive features and their promising empirical 

performance in the fields such as image processing and finance etc. The research has 

produced promising results that have been reported by Tay and Cao (2001) and Ni and 

Nguyen (2007). There are also applications using SVR for tourism demand (Chen & 

Wang, 2007; Pai et al., 2006). The experimental results revealed that the proposed models 

outperform the Autoregressive Integrated Moving Average (ARIMA) approaches.   

    In SVR, the training data (used to construct a forecasting model) is a subset of the 

whole available data and is considered as a set of pairs ),...,,( )1()1( yX ),...,,( )()( ii yX  

),( )()( NN yX  where mi RX )(  denote the input space (m is the width or dimension of the 

inputs) and Ry i )(
 denote the corresponding actual target value for Ni ,...,2,1 , where N 

is the size of the training data set.  For this study, 21
)(  {  tt

i yyX m
mty }... 

mR are the 

vectors of the historical tourism demand observations at time t where t = m+1, m+2,…, N 

and i = t-m, and Ryy t

i )( are the actual target values at time t. For example,

}   { 1234
)1( yyyyX  , }   { 2345

)2( yyyyX   and corresponding target values 5
)1( yy  , 6

)2( yy   

for m = 4.
 
The purpose of the regression problem is to determine a function that can 

predict future values accurately. The generic SVR forecasting model with forecasting value

tŷ
 
has the following general form               

 

                                        
bXWXfyt  ))(()(ˆ                                              (9) 

where X has the form )(iX , mRW  , Rb   are the best weights and base to be determined 

using the training data set,   denotes a nonlinear transformation from mR  to a high 

dimensional space and tŷ  is the forecasting value of ty . The goal of SVR is to find the best 

values of W  and b  in (9) such that the nonlinear model (9) can be best fitted with the input 
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data X and the output data ty . The best values of  W  and b  in (9) can be determined by 

the training data.     

    The data used in this paper is the quarterly data, thus the previous one year (inputs 

width m = 4), a year and a quarter (m = 5) up to the previous two years (m = 8) are used 

as inputs to construct the five different time series, respectively. The SVR model is 

generated using MATLAB (Version 2011b) software. 

2.4.2. ARIMA Model 

    The Box-Jenkins forecasting time series model - ARIMA proposed by Box and Jenkins 

(1970) has become widely used in many fields for time series analysis including tourism 

demand forecasting (Chu, 2008). The quarterly inbound UK tourism arrivals data which 

has a seasonal time series feature is used in this study, thus the Seasonal ARIMA  

ARIMA(p,d,q)(P,D,Q)s with period s (s=4) is applied here due to the quarterly data. The 

ARIMA(p,d,q)(P,D,Q)s model is as follows       

        t
s

Qqt
Dsds

Pp aBByBBBB )()(]ˆ)1()1)[(()(                      (10) 

where B is a backward shift operator with 1 tt yBy and 1 tt aBa . tŷ  is the value to be 

forecasted and ta  is the residual at time period t,   is the overall mean of series which is 

a constant. p
pp BBBB   ...1)( 2

21  
is a non-seasonal auto-regression of order p, 

q

qq BBBB   ...1)( 2

21  is a non-seasonal moving average of order q, 

 2

211)( sss

P BBB sP

PB...  is a seasonal auto-regression of order P,  

sQ

Q

sss

Q BBBB  ...1)( 2

21  is a seasonal moving average polynomial of order Q. 

The value tŷ  in equation (10) is a forecasting value. The best fitted seasonal ARIMA 

model can be automatically generated using SPSS (Version 19) software.  

2.4.3. Winters’ Multiplicative Exponential Smoothing Model 

    The Winters’ multiplicative exponential smoothing (Douglas, Lynwood & John, 1990) 

model is a popular time series forecasting method. Multiplicative decomposition considers 

the effects of seasonality to be multiplicative, which is, growing (or decreasing) over time. 

The model is presented in (11) below            

                                
(11)                                                                     ˆ ttttt LSTy 

                                 
 

where tŷ  is the forecasting at time t, Tt represents the trend component, St represents the 

seasonality and Lt is the long term cycles and t  is the error. This method requires at least 

two years of back data for forecasting. The Winter's additive exponential smoothing model 
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is not considered as an individual model in this study, because it is a special case of the 

Seasonal ARIMA. The best fitted Winters’ multiplicative exponential smoothing can be 

automatically generated using SPSS (Version 19) software. 

2.4.4. Naïve 1 and Naïve 2 models 

    The Naïve 1 and Naïve 2 models (Chu, 2004; Oh & Morzuch, 2005) which are very 

popular models in tourism demand forecasting are adopted in this paper. A Naïve method 

simply states that future forecasts are equal to the most recently available value. The 

Naïve 1 model operates on the assumption that the number of tourists at time t, tŷ  is the 

same as the value at time t-4 denoted by yt-4 and is described as 4
ˆ

 tt yy . 

    The Naïve 2 model operates on the assumption that the number of tourists at time t, tŷ  

is equal to the value at time t-4 multiplied by a modification factor which includes the 

influence of the 8ty (long range value) and can be written as }./)(1{ˆ 8844   ttttt yyyyy                                                                                                                                                                                                                                                                      

2.5. Combination forecasting model  

   In general, there are three linear combination methods available in the literature for 

tourism demand. These three linear combination methods studied by Shen, Li and Song 

(2008) and Wong et al. (2007) are evaluated in this study. They are Simple Average (SA), 

Variance Covariance (VACO), and Discounted Mean Square Forecast Error (DMSFE) 

methods. Four individual models as inputs with one-step-ahead forecasting on these three 

linear combinations were evaluated by Wong et al. (2007), and seven individual models as 

inputs with multiple-step-ahead forecasting horizons were examined for these three linear 

combinations by Shen, Li and Song (2008).  

    The SA combination method can be expressed as  


M

j

j

tj

C

t ywY
1

)(ˆˆ  where ,/1 Mw j 
)(ˆ j

ty

is the forecast value (output) from the jth single forecasting model and 
C

tŶ  is the combined 

forecast model at time t, M is the total number of individual forecasting models. In this 

simple average combination, each individual forecasting model makes an equal 

contribution (same weight) to the combined value 
C

tŶ  with 1
1

 

M

j jw . The VACO 

combination form is the same as the SA form, but the weight jw is defined as

     



M
j

N
i

j
ii

N
i

j
iij yyyyw 1 1

12)(1
1

2)( ))ˆ(())ˆ(( , where iy is the ith true target value of the training 

data set, and 
)(ˆ j

iy is the ith forecasting value of the training data set from the jth individual 

forecasting model. N is the total number of the training data set. The DMSFE combination 

form is the same as the form of SA, but the weight jw  is defined as 
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 M

j
N
i

j
ii

iNN
i

j
ii

iN
j yyyyw 1 1

12)(11
1

2)(1 ))ˆ((/))ˆ((  . The VACO method is a special case of the 

DMSFE when   = 1.   is chosen as 0.95, 0.9, 0.85 and 0.8, respectively which is the 

same as in the papers (Li, Song & Witt, 2005; Song & Li, 2008) in this study. It is noted 

that jw computed in VACO and DMSFE also satisfies the constraint 1
1

 

M

j jw . 

    All the above combination methods, SA, VACO and DMSFE, are linear combinations as 

discussed by Shen, Li and Song (2008) and Wong et al (2007). The advantage of these 

combinations is that they are simple and easy to apply. The parameters (weights) are fixed 

and are easy to calculate from the data set.  

 

3. Experiment  

3.1. Data set 

    The International Passenger Survey is available from the Office for National Statistics, 

UK and provides information on UK tourism arrivals and expenditure according to country 

of origin and purpose of visit. Tourists passing through passport control are randomly 

selected for interview. The results are based on face-to-face interviews with samples of 

passengers as they enter or leave the UK. Quarterly (Q) UK inbound visit numbers for Q1 

1993 to Q4 2007 extracted from the IPS are used for this study, since the financial and 

economic crises began in 2008. The tourism industry is affected predominantly by the 

factors which are weather effect, festival effect, calendar effect in both the origin and 

destination countries (Lim, 2001). Figure 1 shows that arrivals for holiday and study 

purposes have a high degree of seasonality, arrivals for business purpose has least 

degree of seasonality, and the degree of seasonality for arrivals of visit friend/relatively 

(VFR) purpose is in the middle of holiday/study and business purposes.  
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                         Figure 1: Characteristics of the data at different purposes 

 

     It is imperative to test for the presence of unit roots and seasonal unit roots in univariate 

series. The commonly used unit-root tests are the Augmented Dickey–Fuller (ADF) test 

(Dickey & Fuller, 1979), the Phillips-Perron (PP) test (Phillips & Perron, 1988), and the 

Hylleberg-Engle-Granger-Yoo (HEGY) test (Hylleberg et al., 1990) for a hypothesis of a 

seasonal unit-root which determines the nature of seasonal variation in the series. For 

examples, the ADF test is applied by Goh & Law (2002) and the PP test is applied by 

Gounopoulos, Petmezas and Santamaria (2012). The hypothesis ADF, PP and HEGY 

tests are presented in formula (12), and the results of the ADF, PP (using Eview) and 

HEGY (using R) are illustrated in Table 1.   
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 Table 1: ADF, PP and HEGY tests for unit-root/seasonal unit-root  
 ADF PP ADF PP 

Visit purpose Level First difference 

Holiday 

Study 

VFR 

Business 

p=0.4447
 

p=0.1932
 

p=0.9999 

p=0.8967
 

p=0.0000*** 

    p=0.0000*** 

    p=0.2302 

    p=0.3995 

p=0.0216*** 

p=0.0003*** 

p=0.0001*** 

p=0.0000*** 

p=0.0001*** 

p=0.0001*** 

p=0.0001*** 

p=0.0001*** 

 HEGY 

Visit purpose Intercept & Seasonal dummies Intercept & Trend & Seasonal dummies 

Holiday 

 

Study 

 

VFR 

 

Business 

t test: 2  
             p=0.01***   

F test: 43       p=0.01***  

t test: 2              p=0.1*  

F test: 43      p=0.1*  

t test: 2   
           p=0.1*  

F test: 43      p=0.05* 

t test: 2              p=0.032**  

F test: 43      p=0.046**  

t test: 2                p=0.01***  

F test: 43  
     

p=0.01***  

t test: 2                p=0.1*  

F test: 43        p=0.07*  

t test: 2                p=0.1*  

F test: 43  
     

p=0.064* 

t test: 2                 p=0.028**  

F test: 43  
      

p=0.01***  

  ***, **, *: Statistical significant difference at 1%, 5% and 10% level, respectively;  
   

     The time series is nonstationary if H0 is accepted, which has a unit root or seasonal unit 

root. Otherwise, it is stationary. The ADF and PP test results in Table 1 show that some 

series have unit roots at level. However there is no unit root (H1 is accepted at 1% 

significant level) with the first difference in all cases as expected. The rejection of H0 for 

the HEGY test means that the series does not have a seasonal unit root. The test results 

support the application of Box–Jenkin model—Seasonal ARIMA in this study. 

3.2. Framework 

   One to four quarters ahead forecasting from individual models that are described in the 

previous section are used for the optimal subset selection using the MI algorithm in this 

paper. The same process with the paper (Shen, Li & Song, 2008) is used for individual 

models generated here.  

     The individual forecasting models are constructed based on the data from Q1 1993 to 

Q4 1997 inclusive (training data). The out-of-sample forecasts (test data) are generated for 

Q1 1998 to Q4 2007 inclusive with one to four quarters ahead forecasting using the 

following recursive forecasting techniques. 

Recursive forecasting: 

1) Forecast one to four quarter ahead (Q1 1998 to Q4 1999) using the initial training 

data (Q1 1993 to Q4 1997) 
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2) Forecast one to four quarter ahead (Q2 1998 to Q1 2000) using the enhanced 

training data (Q1 1993 to Q1 1998) by adding one data point (Q1 1998) to the 

training data set 

3) Continue step 2) until forecast the last point of test data set (Q4 2007) using the 

enhanced training data (Q1 1993 to Q3 2007) 

    The results from this process are 40 one quarter ahead forecasting values for each 

individual forecasting model, 39 two quarters ahead forecasting values, 38 three quarters 

ahead forecasting values and 37 four quarters ahead forecasting values that are 

generated from each individual model. 

   There are nine individual models in total for this study, five SVR with different 

dimensions of inputs from 4 to 8, Naïve 1, Naïve 2, Seasonal ARIMA and Winters’ 

Multiplicative Exponential Smoothing models. There are 40 (Q1 1998- Q4 2007), 39 (Q2 

1998- Q4 2007), 38 (Q3 1998- Q4 2007) and 37 (Q4 1998- Q4 2007) one to four quarters 

ahead forecasting values that are generated from each individual forecasting model. The 

first 24 (Q1 1998- Q4 2003), 23 (Q2 1998- Q4 2003), 22 (Q3 1998- Q4 2003) and 21(Q4 

1998- Q4 2003) forecasting values (training data) from all individual forecasting models 

are used to select an optimal subset using the MI algorithm. The period from Q1 2004 to 

Q4 2007 (test data) is used to test this selected optimal subset. The framework of this 

case study is illustrated in the following (Figure 2). 

 

                                Figure 2: Framework  

3.3. Experimental results 

    Next, the optimal subsets from these nine individual models are selected by applying 

the MI algorithm using the training data. The MAPE values of the optimal subsets for the 

period from Q1 2004 to Q4 2007 inclusive at the different purpose of visits are presented 

in Table 2. The MASE values of the same optimal subsets as in Table 2 for the period from 

Q1 2004 to Q4 2007 inclusive at the different purpose of visits are presented in Table 3. 

For the simplicity, the mean of MAPE values for all six linear combination methods is used 

as the criteria in this case study. 

 

Out-of-sample: 9 individual forecast values of this period 
(Data: D) are generated using recursive forecasting 
techniques  
  
 
1998 1Q           ----          2003 4Q    2004 1Q  --  2007 4Q 

Construct 9 individual 
forecast models using 
this period of data   
 
1993 1Q   ----  1997 4Q 
              Training Data: DTrain                      Test Data DTest 

 

              Apply MI Algorithm                  Validate MI Algorithm 
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Table 2: MAPE values of optimal subsets for different linear combination methods  

Test (Ex-post) period: Q1 2004 to Q4 2007 inclusive 
Individual Model 

ID: 
1: SVR (input dimension=4); 2: SVR (input dimension=5);  
3: SVR (input dimension=6); 4: SVR (input dimension=7);  
5: SVR (input dimension=8); 6: Naïve 1; 7: Naïve 2; 8: SARIMA; 9: WMES        

 Holiday Study 
1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

Optimal Subset [9,3,7,8] [3,9] [9,3,7] [2,3,7,9] [1,7,3,9] [3,7,8,9] [1,7,3] [1,7,8,3] 
 MAPE Value of Optimal Subset MAPE Value of Optimal Subset 

SA 5.75 6.87 8.20 8.38 10.35 11.25 10.21 10.14 
VACO 4.73 6.86 8.10 8.35 9.34 10.50 9.29 9.38 
MSFE(  =0.95) 4.73 6.87 8.10 8.35 9.32 10.42 9.25 9.27 

 MSFE(  =0.9) 4.76 6.87 8.09 8.35 9.35 10.37 9.23 9.20 

MSFE(  =0.85) 4.82 6.88 8.07 8.34 9.36 10.33 9.22 9.18 

MSFE(  =0.8) 4.88 6.88 8.09 8.33 9.37 10.30 9.21 9.16 

 VFR Business 
1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

Optimal Subset [9,7,5,8] [9,7,5] [9,7,5,1] [2,9,7,1] [7,9,8,1] [7,9,8] [7,9,8] [4,7,8] 
 MAPE Value of Optimal Subset MAPE Value of Optimal Subset 

SA 4.89 5.14 5.51 5.84 4.57 4.78 5.14 6.61 
VACO 4.69 4.95 5.33 5.85 3.99 4.51 4.82 6.58 
MSFE(  =0.95) 4.68 4.95 5.33 5.84 3.97 4.51 4.87 6.61 

MSFE(  =0.9) 4.68 4.96 5.33 5.83 3.96 4.58 4.92 6.77 

MSFE(  =0.85) 4.69 4.97 5.34 5.81 3.95 4.64 4.98 6.93 

MSFE(  =0.8) 4.71 4.99 5.35 5.78 3.94 4.68 5.04 7.04 

Note: optimal subset [9, 3, 7, 8] means that the ID numbers 9, 3, 7 and 8 of individual models are selected as 
optimal subset and used in the combination model. Q=quarter; SARIMA: Seasonal ARIMA; WMES: Winters’ 
multiplicative exponential smoothing 

  

Table 3: MASE values of optimal subsets for different linear combination methods  
Test (Ex-post) period: Q1 2004 to Q4 2007 inclusive 

 Holiday Study 
1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

Optimal Subset [9,3,7,8] [3,9] [9,3,7] [2,3,7,9] [1,7,3,9] [3,7,8,9] [1,7,3] [1,7,8,3] 
 MASE Value of Optimal Subset MASE Value of Optimal Subset 

SA 0.1554 0.1827 0.2143 0.2154 0.1617 0.1676 0.1602 0.1560 
VACO 0.1296 0.1825 0.2124 0.2158 0.1479 0.1556 0.1469 0.1490 
MSFE(  =0.95) 0.1292 0.1826 0.2125 0.2164 0.1480 0.1551 0.1476 0.1485 

MSFE(  =0.9) 0.1300 0.1827 0.2121 0.2171 0.1485 0.1548 0.1482 0.1484 

MSFE(  =0.85) 0.1313 0.1828 0.2115 0.2180 0.1487 0.1547 0.1486 0.1486 

MSFE(  =0.8) 0.1328 0.1829 0.2118 0.2190 0.1489 0.1546 0.1490 0.1487 

 VFR Business 
1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

Optimal Subset [9,7,5,8] [9,7,5] [9,7,5,1] [2,9,7,1] [7,9,8,1] [7,9,8] [7,9,8] [4,7,8] 
 MASE Value of Optimal Subset MASE Value of Optimal Subset 

SA 0.3657 0.3755 0.3988 0.4325 0.5806 0.6058 0.6460 0.8237 
VACO 0.3516 0.3611 0.3834 0.4316 0.5089 0.5722 0.6066 0.8265 
MSFE(  =0.95) 0.3511 0.3612 0.3832 0.4311 0.5056 0.5731 0.6123 0.8331 

MSFE(  =0.9) 0.3511 0.3615 0.3833 0.4303 0.5050 0.5808 0.6188 0.8550 

MSFE(  =0.85) 0.3516 0.3618 0.3837 0.4289 0.5041 0.5877 0.6261 0.8768 

MSFE(  =0.8) 0.3526 0.3631 0.3848 0.4271 0.5030 0.5931 0.6338 0.8919 
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Note: optimal subset [9,3,7,8] means that the ID numbers 9, 3, 7 and 8 of individual models are selected as 
optimal subset and used in the combination model. Q=quarter 
 

    In order to validate the optimal subset selection approach, we compare the optimal 

subset selection results (MAPE and MASE values) with the results of the different linear 

combination methods using the test data for all possible combinations of m individual 

models ( )92  m . The MAPE and MASE values of all possible combinations with the 

best MAPE of the individual models are presented in Tables 4 and 5, respectively. The 

MAPE and MASE values of individual models are illustrated in Table A1 of Appendix. 
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Table 4: Best MAPE values for all possible combinations of m individual models on different combination methods 

Test (Ex-post) period (Q1 2004 to Q4 2007 inclusive) 

m models m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 

Total number of all possible 
combinations 

 
(36) 

 
(84) 

 
(126) 

 
(126) 

 
(84) 

 
(36) 

 
(9) 

 
(1) 

 
(36) 

 
(84) 

 
(126) 

 
(126) 

 
(84) 

 
(36) 

 
(9) 

 
(1) 

Combine Model Holiday  1Q (best MAPE of individual model is 6.39) Holiday  2Q (best MAPE of individual model is 8.34) 

SA 5.17 4.79 4.84 5.13 5.48 5.64 5.83 6.20 6.87 7.13 6.83 6.96 7.07 7.35 7.58 7.76 
VACO 5.22 4.98 4.73 4.91 5.09 5.21 5.41 5.81 6.86 7.07 6.94 6.88 6.96 7.26 7.50 7.77 

MSFE(  =0.95) 5.22 4.97 4.73 4.91 5.10 5.22 5.42 5.85 6.87 7.11 6.90 6.90 6.99 7.32 7.57 7.88 

MSFE(  =0.9) 5.20 4.96 4.76 4.95 5.14 5.27 5.49 5.95 6.87 7.14 6.85 6.89 7.03 7.39 7.66 8.01 

MSFE(  =0.85) 5.17 4.94 4.82 5.01 5.20 5.34 5.61 6.12 6.88 7.02 6.80 6.88 7.06 7.47 7.80 8.15 

MSFE(  =0.8) 5.19 4.91 4.88 5.07 5.27 5.41 5.79 6.32 6.88 6.86 6.75 6.90 7.10 7.57 7.97 8.30 

 Holiday  3Q (best MAPE of individual model is 8.52 ) Holiday  4Q (best MAPE of individual model is 8.81) 

SA 8.16 7.99 7.84 7.90 8.00 8.08 8.26 8.42 8.18 8.15 8.21 8.29 8.25 8.29 8.35 8.51 
VACO 8.11 7.89 7.80 7.88 8.01 8.10 8.32 8.53 8.06 8.19 8.28 8.22 8.25 8.30 8.37 8.60 

MSFE(  =0.95) 8.11 7.88 7.81 7.89 8.02 8.11 8.35 8.56 8.10 8.17 8.28 8.25 8.24 8.31 8.40 8.62 

MSFE(  =0.9) 8.12 7.86 7.84 7.91 8.04 8.13 8.37 8.59 8.13 8.16 8.26 8.25 8.27 8.33 8.43 8.64 

MSFE(  =0.85) 8.12 7.83 7.87 7.94 8.06 8.15 8.41 8.62 8.15 8.14 8.23 8.23 8.28 8.34 8.47 8.68 

MSFE(  =0.8) 8.14 7.84 7.90 7.97 8.08 8.16 8.45 8.65 8.18 8.13 8.22 8.22 8.30 8.38 8.51 8.71 

 Study  1Q (best MAPE of individual model is 10.67) Study  2Q (best MAPE of individual model is 10.42) 

SA 9.36 9.26 9.33 9.47 9.62 9.66 9.52 9.71 10.29 10.02 10.22 10.33 10.63 10.87 11.03 11.27 
VACO 9.44 9.29 9.34 9.45 9.39 9.51 9.63 9.81 10.32 10.00 10.33 10.34 10.51 10.74 11.03 11.27 

MSFE(  =0.95) 9.43 9.28 9.32 9.42 9.44 9.54 9.66 9.84 10.29 10.01 10.28 10.34 10.45 10.72 11.04 11.29 

MSFE(  =0.9) 9.43 9.28 9.29 9.38 9.47 9.55 9.69 9.88 10.29 10.00 10.22 10.36 10.42 10.73 11.06 11.32 

MSFE(  =0.85) 9.44 9.28 9.24 9.33 9.49 9.56 9.70 9.90 10.30 10.00 10.17 10.39 10.44 10.74 11.07 11.36 

MSFE(  =0.8) 9.43 9.27 9.21 9.31 9.49 9.58 9.71 9.92 10.31 10.00 10.14 10.40 10.45 10.74 11.09 11.39 

 Study  3Q (best MAPE of individual model is 9.87) Study  4Q (best MAPE of individual model is 9.68) 

SA 8.87 9.03 8.93 9.12 9.21 9.26 9.54 9.59 8.96 8.84 8.94 8.97 9.07 9.19 9.46 9.58 
VACO 8.90 8.98 8.89 9.08 9.18 9.24 9.49 9.59 8.90 8.84 8.85 8.96 9.05 9.16 9.38 9.59 

MSFE(  =0.95) 8.93 8.94 8.87 9.00 9.16 9.23 9.43 9.60 8.81 8.78 8.90 8.94 9.03 9.14 9.33 9.60 

MSFE(  =0.9) 8.92 8.91 8.86 8.95 9.15 9.21 9.38 9.61 8.73 8.74 8.87 8.92 9.01 9.13 9.29 9.61 

MSFE(  =0.85) 8.91 8.89 8.85 8.91 9.14 9.21 9.35 9.62 8.67 8.83 8.83 8.93 9.00 9.12 9.26 9.62 

MSFE(  =0.8) 8.91 8.88 8.84 8.89 9.13 9.20 9.33 9.63 8.63 8.84 8.80 8.93 8.99 9.11 9.24 9.63 

 VFR  1Q (best MAPE of individual model is 5.47) VFR  2Q (best MAPE of individual model is 5.69) 

SA 4.84 4.84 4.89 4.95 5.03 5.10 5.16 5.39 4.79 4.87 4.92 5.05 5.12 5.23 5.37 5.42 
VACO 4.84 4.53 4.66 4.75 4.86 4.95 5.02 5.19 4.99 4.82 4.72 4.83 4.92 4.98 5.07 5.24 



19 

 

MSFE(  =0.95) 4.84 4.53 4.66 4.75 4.85 4.94 5.02 5.18 5.00 4.80 4.75 4.85 4.94 4.99 5.09 5.24 

MSFE(  =0.9) 4.84 4.54 4.67 4.76 4.87 4.95 5.02 5.18 5.00 4.75 4.81 4.88 4.96 5.02 5.14 5.26 

MSFE(  =0.85) 4.84 4.56 4.69 4.80 4.89 4.97 5.05 5.19 4.95 4.78 4.82 4.92 4.99 5.08 5.21 5.27 

MSFE(  =0.8) 4.84 4.59 4.70 4.83 4.92 5.00 5.08 5.23 4.87 4.81 4.85 4.97 5.03 5.14 5.25 5.31 

 VFR  3Q (best MAPE of individual model is 5.94) VFR  4Q (best MAPE of individual model is 5.86) 

SA 5.80 5.46 5.43 5.48 5.57 5.63 5.72 5.73 6.02 5.86 5.78 5.82 5.86 5.92 6.11 6.21 
VACO 5.84 5.46 5.32 5.36 5.41 5.47 5.53 5.70 5.96 5.95 5.85 5.83 5.87 5.92 6.04 6.22 

MSFE(  =0.95) 5.83 5.45 5.32 5.36 5.41 5.48 5.54 5.68 5.95 5.94 5.84 5.82 5.86 5.92 6.04 6.20 

MSFE(  =0.9) 5.83 5.42 5.32 5.37 5.43 5.49 5.55 5.67 5.94 5.92 5.83 5.81 5.85 5.91 6.03 6.17 

MSFE(  =0.85) 5.81 5.40 5.32 5.38 5.46 5.51 5.58 5.65 5.91 5.90 5.79 5.79 5.84 5.92 6.04 6.13 

MSFE(  =0.8) 5.82 5.39 5.34 5.39 5.47 5.55 5.61 5.64 5.88 5.81 5.76 5.77 5.86 5.95 6.03 6.09 

 Business  1Q (best MAPE of individual model is 3.94) Business  2Q (best MAPE of individual model is 4.39) 

SA 4.13 4.10 4.18 4.28 4.20 4.19 4.33 4.43 4.68 4.78 4.76 5.03 5.24 5.41 5.60 5.76 
VACO 4.22 4.06 3.99 4.06 4.21 4.38 4.51 4.71 4.65 4.51 4.98 5.34 5.56 5.70 5.86 6.03 

MSFE(  =0.95) 4.22 4.06 3.97 4.07 4.23 4.40 4.53 4.72 4.63 4.51 5.07 5.42 5.62 5.77 5.93 6.09 

MSFE(  =0.9) 4.20 4.05 3.96 4.08 4.24 4.41 4.54 4.74 4.59 4.58 5.16 5.48 5.67 5.81 5.97 6.13 

MSFE(  =0.85) 4.16 4.04 3.95 4.08 4.24 4.41 4.55 4.75 4.54 4.64 5.22 5.53 5.71 5.84 6.01 6.16 

MSFE(  =0.8) 4.13 4.02 3.94 4.07 4.24 4.41 4.55 4.75 4.48 4.68 5.25 5.56 5.73 5.86 6.02 6.18 

 Business  3Q (best MAPE of individual model is 4.58) Business  4Q (best MAPE of individual model is 5.01) 

SA 4.52 4.98 5.33 5.68 6.03 6.28 6.52 6.75 5.69 5.96 6.17 6.26 6.39 6.68 6.93 7.18 
VACO 4.56 4.82 5.40 6.02 6.46 6.79 7.06 7.27 6.07 6.25 6.27 6.44 6.86 7.19 7.44 7.64 

MSFE(  =0.95) 4.55 4.87 5.48 6.17 6.61 6.94 7.20 7.39 6.09 6.32 6.34 6.57 7.02 7.33 7.59 7.78 

MSFE(  =0.9) 4.54 4.92 5.56 6.27 6.73 7.06 7.31 7.49 6.10 6.37 6.39 6.70 7.15 7.45 7.70 7.89 

MSFE(  =0.85) 4.52 4.98 5.63 6.34 6.82 7.15 7.38 7.55 6.09 6.40 6.40 6.76 7.24 7.53 7.78 7.97 

MSFE(  =0.8) 4.50 5.04 5.69 6.38 6.87 7.21 7.43 7.59 6.06 6.42 6.40 6.81 7.30 7.58 7.84 8.01 

 

 
Table 5: Best MASE values for all possible combinations of m individual models on different combination methods 

Test (Ex-post) period (Q1 2004 to Q4 2007 inclusive) 

m models m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 

Total number of all 
possible 

combinations 

 
(36) 

 
(84) 

 
(126) 

 
(126) 

 
(84) 

 
(36) 

 
(9) 

 
(1) 

 
(36) 

 
(84) 

 
(126) 

 
(126) 

 
(84) 

 
(36) 

 
(9) 

 
(1) 

Combine Model Holiday  1Q (best MASE of individual model is 0.1595) Holiday  2Q (best MASE of individual model is 0.2206) 

SA 0.1356 0.1249 0.1262 0.1340 0.1434 0.1494 0.1530 0.1619 0.1827 0.1844 0.1803 0.1844 0.1867 0.1923 0.1975 0.2024 
VACO 0.1355 0.1301 0.1263 0.1285 0.1335 0.1384 0.1425 0.1518 0.1825 0.1892 0.1816 0.1827 0.1838 0.1900 0.1965 0.2024 

MSFE(  =0.95) 0.1355 0.1300 0.1264 0.1291 0.1341 0.1386 0.1427 0.1527 0.1826 0.1882 0.1810 0.1830 0.1846 0.1913 0.1982 0.2054 
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MSFE(  =0.9) 0.1355 0.1292 0.1265 0.1304 0.1360 0.1395 0.1440 0.1551 0.1827 0.1854 0.1806 0.1826 0.1856 0.1929 0.2003 0.2090 

MSFE(  =0.85) 0.1355 0.1287 0.1269 0.1322 0.1386 0.1409 0.1469 0.1598 0.1828 0.1824 0.1799 0.1820 0.1866 0.1948 0.2041 0.2130 

MSFE(  =0.8) 0.1368 0.1280 0.1287 0.1342 0.1400 0.1424 0.1514 0.1650 0.1829 0.1795 0.1792 0.1827 0.1876 0.1968 0.2083 0.2171 

 Holiday  3Q (best MASE of individual model is 0.2351) Holiday  4Q (best MASE of individual model is 0.2437) 

SA 0.2169 0.2095 0.2067 0.2064 0.2098 0.2104 0.2158 0.2138 0.2142 0.2154 0.2136 0.2145 0.2169 0.2197 0.2235 0.2138 
VACO 0.2142 0.2078 0.2079 0.2080 0.2084 0.2118 0.2184 0.2113 0.2149 0.2156 0.2128 0.2156 0.2182 0.2210 0.2263 0.2113 

MSFE(  =0.95) 0.2142 0.2077 0.2079 0.2085 0.2088 0.2121 0.2190 0.2121 0.2147 0.2152 0.2128 0.2157 0.2186 0.2217 0.2269 0.2121 

MSFE(  =0.9) 0.2142 0.2071 0.2079 0.2086 0.2095 0.2127 0.2200 0.2127 0.2143 0.2146 0.2127 0.2163 0.2192 0.2227 0.2278 0.2127 

MSFE(  =0.85) 0.2142 0.2064 0.2086 0.2089 0.2104 0.2134 0.2210 0.2133 0.2140 0.2138 0.2126 0.2163 0.2198 0.2239 0.2288 0.2133 

MSFE(  =0.8) 0.2143 0.2062 0.2090 0.2092 0.2114 0.2143 0.2219 0.2139 0.2137 0.2145 0.2126 0.2164 0.2211 0.2253 0.2299 0.2139 

 Study  1Q (best MASE of individual model is 0.1578) Study  2Q (best MASE of individual model is 0.1596) 

SA 0.1466 0.1468 0.1484 0.1507 0.1526 0.1520 0.1508 0.1534 0.1546 0.1532 0.1552 0.1572 0.1602 0.1614 0.1631 0.1659 
VACO 0.1480 0.1471 0.1475 0.1488 0.1492 0.1514 0.1531 0.1554 0.1541 0.1527 0.1545 0.1573 0.1576 0.1601 0.1635 0.1674 

MSFE(  =0.95) 0.1479 0.1466 0.1463 0.1486 0.1499 0.1518 0.1535 0.1559 0.1532 0.1523 0.1523 0.1567 0.1571 0.1600 0.1636 0.1678 

MSFE(  =0.9) 0.1480 0.1468 0.1458 0.1483 0.1503 0.1521 0.1538 0.1564 0.1528 0.1520 0.1519 0.1561 0.1569 0.1602 0.1639 0.1683 

MSFE(  =0.85) 0.1479 0.1466 0.1458 0.1480 0.1506 0.1523 0.1541 0.1567 0.1527 0.1518 0.1516 0.1558 0.1572 0.1603 0.1642 0.1689 

MSFE(  =0.8) 0.1476 0.1465 0.1457 0.1479 0.1506 0.1524 0.1543 0.1570 0.1527 0.1518 0.1514 0.1557 0.1573 0.1604 0.1644 0.1693 

 Study  3Q (best MASE of individual model is 0.1568) Study  4Q (best MASE of individual model is 0.1525) 

SA 0.1442 0.1470 0.1469 0.1458 0.1465 0.1479 0.1495 0.1515 0.1452 0.1464 0.1447 0.1429 0.1442 0.1452 0.1484 0.1503 
VACO 0.1441 0.1431 0.1431 0.1447 0.1475 0.1487 0.1505 0.1534 0.1458 0.1440 0.1447 0.1456 0.1467 0.1477 0.1494 0.1520 

MSFE(  =0.95) 0.1438 0.1422 0.1433 0.1445 0.1472 0.1489 0.1503 0.1538 0.1459 0.1440 0.1446 0.1459 0.1470 0.1478 0.1493 0.1524 

MSFE(  =0.9) 0.1440 0.1430 0.1435 0.1443 0.1471 0.1490 0.1502 0.1542 0.1459 0.1440 0.1449 0.1462 0.1472 0.1479 0.1491 0.1527 

MSFE(  =0.85) 0.1440 0.1436 0.1436 0.1442 0.1470 0.1490 0.1501 0.1546 0.1435 0.1440 0.1451 0.1464 0.1473 0.1480 0.1491 0.1530 

MSFE(  =0.8) 0.1439 0.1436 0.1437 0.1442 0.1469 0.1492 0.1500 0.1549 0.1423 0.1443 0.1453 0.1465 0.1475 0.1481 0.1490 0.1533 

 VFR  1Q (best MASE of individual model is 0.4135) VFR  2Q (best MASE of individual model is 0.4123) 

SA 0.3661 0.3597 0.3626 0.3695 0.3743 0.3783 0.3829 0.3990 0.3512 0.3504 0.3585 0.3691 0.3734 0.3827 0.3926 0.3964 
VACO 0.3663 0.3444 0.3476 0.3529 0.3601 0.3671 0.3732 0.3843 0.3659 0.3497 0.3417 0.3505 0.3563 0.3620 0.3693 0.3817 

MSFE(  =0.95) 0.3662 0.3447 0.3479 0.3528 0.3598 0.3671 0.3729 0.3836 0.3661 0.3486 0.3442 0.3522 0.3580 0.3630 0.3713 0.3823 

MSFE(  =0.9) 0.3661 0.3456 0.3486 0.3539 0.3609 0.3683 0.3734 0.3834 0.3653 0.3478 0.3469 0.3542 0.3602 0.3652 0.3751 0.3833 

MSFE(  =0.85) 0.3661 0.3473 0.3494 0.3564 0.3633 0.3698 0.3748 0.3843 0.3630 0.3466 0.3509 0.3571 0.3624 0.3700 0.3802 0.3847 

MSFE(  =0.8) 0.3662 0.3493 0.3502 0.3595 0.3660 0.3718 0.3768 0.3872 0.3569 0.3453 0.3540 0.3633 0.3653 0.3752 0.3836 0.3879 

 VFR  3Q (best MASE of individual model is 0.4343) VFR  4Q (best MASE of individual model is 0.4330) 

SA 0.4157 0.3912 0.3886 0.3958 0.4035 0.4101 0.4125 0.4157 0.4467 0.4301 0.4227 0.4276 0.4314 0.4361 0.4477 0.4546 
VACO 0.4192 0.3919 0.3834 0.3871 0.3903 0.3942 0.3994 0.4116 0.4420 0.4381 0.4284 0.4276 0.4316 0.4344 0.4416 0.4546 

MSFE(  =0.95) 0.4191 0.3911 0.3832 0.3870 0.3909 0.3945 0.4000 0.4106 0.4414 0.4382 0.4280 0.4272 0.4312 0.4342 0.4412 0.4532 

MSFE(  =0.9) 0.4188 0.3893 0.3833 0.3877 0.3912 0.3958 0.4015 0.4095 0.4405 0.4375 0.4266 0.4267 0.4304 0.4341 0.4410 0.4512 

MSFE(  =0.85) 0.4185 0.3875 0.3837 0.3877 0.3919 0.3983 0.4040 0.4086 0.4390 0.4337 0.4240 0.4265 0.4300 0.4346 0.4422 0.4488 

MSFE(  =0.8) 0.4191 0.3864 0.3848 0.3896 0.3942 0.4012 0.4067 0.4084 0.4370 0.4262 0.4223 0.4258 0.4304 0.4372 0.4430 0.4462 
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 Business  1Q (best MASE of individual model is 0.5113) Business  2Q (best MASE of individual model is 0.5635) 

SA 0.5354 0.5223 0.5349 0.5447 0.5370 0.5373 0.5559 0.5672 0.5978 0.6058 0.6056 0.6421 0.6698 0.6917 0.7164 0.7357 
VACO 0.5372 0.5203 0.5089 0.5218 0.5396 0.5620 0.5790 0.6050 0.5949 0.5722 0.6376 0.6854 0.7132 0.7318 0.7504 0.7728 

MSFE(  =0.95) 0.5352 0.5200 0.5056 0.5231 0.5419 0.5645 0.5816 0.6075 0.5916 0.5731 0.6501 0.6955 0.7214 0.7396 0.7585 0.7803 

MSFE(  =0.9) 0.5329 0.5193 0.5050 0.5242 0.5432 0.5660 0.5834 0.6093 0.5865 0.5808 0.6612 0.7037 0.7279 0.7455 0.7645 0.7860 

MSFE(  =0.85) 0.5296 0.5181 0.5041 0.5245 0.5442 0.5665 0.5842 0.6105 0.5800 0.5877 0.6676 0.7100 0.7327 0.7497 0.7686 0.7900 

MSFE(  =0.8) 0.5270 0.5166 0.5030 0.5239 0.5441 0.5661 0.5842 0.6109 0.5727 0.5931 0.6715 0.7142 0.7357 0.7521 0.7709 0.7924 

 Business  3Q (best MASE of individual model is 0.5828) Business  4Q (best MASE of individual model is 0.6463) 

SA 0.5664 0.6291 0.6702 0.7142 0.7615 0.7961 0.8294 0.8593 0.7148 0.7478 0.7753 0.7859 0.8062 0.8450 0.8786 0.9117 
VACO 0.5691 0.6066 0.6772 0.7613 0.8200 0.8635 0.9001 0.9287 0.7592 0.7824 0.7893 0.8110 0.8679 0.9122 0.9461 0.9734 

MSFE(  =0.95) 0.5686 0.6123 0.6876 0.7806 0.8395 0.8835 0.9180 0.9447 0.7617 0.7912 0.7945 0.8295 0.8887 0.9319 0.9661 0.9919 

 MSFE(  =0.9) 0.5677 0.6188 0.6973 0.7926 0.8554 0.8996 0.9320 0.9573 0.7625 0.7978 0.7966 0.8444 0.9060 0.9475 0.9817 1.0064 

MSFE(  =0.85) 0.5663 0.6261 0.7065 0.8018 0.8670 0.9114 0.9419 0.9662 0.7612 0.8022 0.7978 0.8530 0.9190 0.9585 0.9925 1.0167 

MSFE(  =0.8) 0.5644 0.6338 0.7136 0.8079 0.8741 0.9188 0.9476 0.9714 0.7575 0.8047 0.7983 0.8586 0.9263 0.9652 0.9989 1.0229 

Note: SA: Simple Average; VACO: Variance-Covariance; DMSFE(  ): Discounted Mean Square Forecast Error method with different  , respectively. 

m: The number of individual models for the combination, Bold denotes the best performance of combinations with m ( 92  m ) individual models among all possible combinations 

models. Bold values corresponding to the best m. Q=quarter. 
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    We can observe that the MAPE values presented in Tables 2 and 4 and the MASE 

values presented in Tables 3 and 5 for the combination of optimal subsets are significantly 

smaller than the best individual models for most cases apart from the business purpose of 

visit. If we use MAPE as an error measurement, only the cases which are the SA method 

for Q2-Q4 and the VACO method for Q2 at the study purpose of visit underperform the 

best individual models. If we use MASE as an error measurement, only the cases which 

are the SA method for Q1-Q4 of the study purpose of visit underperform the best individual 

models. The worst linear combination method is SA for this study. There are 72 cases 

(3X4X6=72) which are constructed by 3 purposes (holiday, study and VFR), 4 quarters 

(Q1-Q4), and 6 linear combination methods. There are only 4 out of 72 cases that the 

proposed combination model underperforms the best individual models. Therefore, the 

percentage of optimal subsets outperforming the best individual models is 94.4% (68 out 

of 72 cases) for all linear combinations and all purposes of visits except the business 

purpose of visit for both MAPE and MASE error measurements. For the business purpose 

of visit, the best individual model gives better performance than any subset of individual 

models that contains more than one individual model.  

    Tables 4 and 5 show that the combinations of two-four individual models give the best 

performance for all purposes of visits, which is similar to the results of applying the MI 

algorithm for optimal subset selection. These validate the results in the paper (Shen, Li & 

Song, 2011). Shen, Li and Song suggested that the highest frequencies of the best 

combination forecasts appear when the minimum number of individual models for the 

combination is two. This is unlikely to be effective if a combination of more than five 

individual forecasts.        

    The subset of individual models that gives the best performance among all possible 

combinations of individual models is called the best subset. In order to validate the optimal 

subset which is obtained using the MI algorithm, the Mann-Whitney test is employed, 

because the MAPE and MASE values do not satisfy normal distribution by using the 

Kolmogorov-Smirnov normality test. The results of Mann-Whitney tests and the mean 

values of MAPE and MASE for all linear combination methods except the SA method are 

presented in Tables 6 and 7 for the different sets of individual models. These different sets 

of individual models are the ‘set of all individual models’ (All), the ‘best subset’ (Best) 

presented in Tables 4 and 5 and the ‘optimal subset’ (Opt) presented in Table 2 and 3 at 

different purpose of visits. ‘=’, ‘>’ and ‘>>’ in Tables 6 and 7 indicate non statistically 

significant (equally performance), statistically significant at 5% (performance better than), 

and very statistically significant at 1% (performance much better than), respectively.  

http://www.google.co.uk/search?hl=en&biw=1229&bih=591&q=statistically+significantly+performance+better&spell=1&sa=X&ei=Opc4UcalI4W-PKTTgKgC&ved=0CCwQBSgA
http://www.google.co.uk/search?hl=en&biw=1229&bih=591&q=statistically+significantly+performance+better&spell=1&sa=X&ei=Opc4UcalI4W-PKTTgKgC&ved=0CCwQBSgA
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 Table 6: Mann-Whitney test to MAPE values for all linear combination methods (except SA) 

 Q1-Q4 Q1 Q2 Q3 Q4 Q1-Q4 Q1 Q2 Q3 Q4 

 Holiday (Mean value) Study (Mean value) 

Best 6.91 4.78 6.87 7.86 8.12 9.22 9.28 10.00 8.86 8.75 

Opt 7.02 4.78 6.87 8.09 8.34 9.55 9.35 10.38 9.24 9.24 

All 7.82 6.01 8.02 8.59 8.65 10.10 9.87 11.33 9.61 9.61 

Test Best=OptNS  Best>>All***  Opt>All** Best>Opt**  Best>>All***  Opt>>All*** 

Order Opt=Best>All Best>Opt>>All 

 VFR (Mean value) Business (Mean value) 

Best 5.12 4.55 4.79 5.32 5.81 4.79 3.96 4.58 4.53 6.08 

Opt 5.20 4.69 4.96 5.34 5.82 5.06 3.96 4.58 4.93 6.79 

All 5.57 5.19 5.26 5.67 6.16 6.54 4.73 6.12 7.46 7.86 

Test Best=OptNS    Best>All**    Opt>All** Best=OptNS    Best>>All***  Opt>>All*** 

Order Best=Opt>All Best=Opt>>All 
***: Statistical significant difference at 1% level; **: Statistical significant difference at 5% level;  
NS: No statistical significant difference; Q=quarter. 
 

Table 7: Mann-Whitney test to MASE values for all linear combination methods (except SA)  

 Q1-Q4 Q1 Q2 Q3 Q4 Q1-Q4 Q1 Q2 Q3 Q4 

 Holiday (Mean value) Study (Mean value) 

Best 0.1824 0.1270 0.1827 0.2070 0.2127 0.1464 0.1462 0.1521 0.1431 0.1441 
Opt 0.1857 0.1306 0.1827 0.2121 0.2173 0.1500 0.1484 0.1550 0.1481 0.1486 
All 0.1979 0.1569 0.2094 0.2127 0.2127 0.1579 0.1563 0.1683 0.1542 0.1527 

Test Best=OptNS    Best>All**         Opt=AllNS 
Best>Opt**     Best>>All***       Opt>>All*** 

Order Best=Opt>=All Best>Opt>>All 

 VFR (Mean value) Business (Mean value) 

Best 0.3759 0.3463 0.3476 0.3837 0.4259 0.6045 0.5053 0.5851 0.5672 0.7604 
Opt 0.3817 0.3516 0.3617 0.3837 0.4298 0.6407 0.5053 0.5814 0.6195 0.8567 
All 0.4073 0.3846 0.3840 0.4097 0.4508 0.8372 0.6086 0.7843 0.9537 1.0023 

Test Best:OptNS      Best:All***        Opt:All*** Best:OptNS      Best:All***      Opt:All*** 
Order Best=Opt>>All Best=Opt>>All 

Note: ***: Statistical significant difference at 1% level; **: Statistical significant difference at 5% level;  
NS: No statistical significant difference; Q=quarter 
 

    From Tables 6 and 7, we can see that the performance of the optimal sets is 

significantly better than that of the set that contains all individual models except holiday 

purpose with the MASE measurement, and no statistical significant difference with the best 

subset except one case (study). The optimal subset of individual models gives good 

enough performance, but not necessarily the best performance among all possible 

combinations of individual models. This suggests that we can use an optimal subset of 

individual models instead of all individual models in forecasting. The results of Tables 2, 3, 

6 and 7 are suggesting following: 

    The optimal subset selection from individual models using the MI algorithm shows 

robust and good performance in general. However, optimal subset selection using the MI 

algorithm does not guarantee that the optimal subset is the same as the best subset. 
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    For the seasonal pattern data (holiday, study, VFR purposes), the performance of 

optimal subsets is much better than that of the sets of all individual models, and the 

performance of optimal subsets is closer to that of the best subsets in general.  

    For the near linear mapping pattern data (business purpose of visits), the best individual 

models give better performance than that of all combinations of m )2( m individual models 

in general. This is one of the future research issues to be investigated. The optimal 

subsets using the MI algorithm give good performance in general if we only consider two 

or more individual models as combination cases.   

    The number of individual forecasting models that are contained in the optimal subsets is 

similar for both MASE and MAPE forecasting error measurements for this study.  

4. Conclusions and future work 

4.1. Conclusions   

    This paper has proposed a novel optimal subset selection approach from all available 

individual models using information theory. This optimal subset from individual models 

shows good performance and robustness in general. The optimal subsets significantly 

outperform the non-optimal combination of all individual models as inputs and also give 

similar performance to the best subsets of individual model in most cases. 

    The assessment of finding an optimal subset using the MI theory reveals that we can 

avoid both using a combination of all individual models, and finding the optimal set by 

trying all possible combinations which involves huge calculations and is time consuming. 

The most important thing is that it is only an experiment by finding the optimal set using 

trying all possible combinations method. However, the proposed MI algorithm provides a 

theoretical approach for finding the optimal set. This paper reveals that the combination 

from the small size of individual models can achieve higher performance than the best 

individual model or the combination of all individual models. This significantly enhances 

the forecasts literature.     

   The optimal subset selection using the MI algorithm is by nature a ‘heuristic’ approach. It 

provides us with a good solution, i.e. it may not give a unique solution and it may not 

guarantee that the optimal subset is the same as the best subset. However, the optimal 

subset of individual models using the MI algorithm shows robust and good performance. 

    Two main results are observed: 1) The optimal subset forecast model performs 

statistically better than the combination model using all available individual models as 

inputs, and 2) the dimension of the optimal subset forecast model is in the range of two 

and five individual models. This research can help both government organizations and the 

tourism related industries, since accurate forecasting on tourism demand is critical for their 
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policy and decision making. This can benefit the transportation, accommodation, catering, 

entertainment and retailing sectors. For examples, this research can help 1) make the 

appropriate government policies which can promote development of hospitality and 

tourism industries such as hotels, restaurants and attraction sites; 2) provide the guidance 

for both central governments and tourism related industries on capacity management, 

such as for the department of transportation on reducing congestion during the tourism 

seasons in order to achieve government ‘public service agreement targets’ (PSA targets). 

The tourism related industries can benefit to healthy run business by employing right 

number of staff and control business scale; 3) provide the guidance for both central 

governments and tourism related industries on investment such as airport, transport 

networks and tourism attraction sites etc.   

4.2. Limitations and future researches 

    Time series individual forecasting models are used in this research. The causal 

econometric model using ‘GDP’ and ‘CPI’ influencing factors will be considered in the 

future research to see if the forecasting accuracy can be improved, and the combination 

selection algorithm can be enhanced.   

    This paper only used the data up to 2007 inclusive. The up to date data will be used in 

the future to test the robustness of the combination selection algorithm proposed in this 

study, in particular the impact of the financial crisis on the forecasting performance.  

    The linear combination methods are adopted in this research. The nonlinear 

combination methods can be applied to evaluate the combination selection algorithm. 

    The future work can also consider to exam the combination selection algorithm for the 

other tourism data sets. Another issue is to see whether the dimension of the optimal 

subset is still in the range of two and five for using a large number of available individual 

models.  
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Appendix: 
 

Table A1: MAPE and MASE values from individual models at different purpose of visits 
Test data or Ex-post (Q1 2004 to Q4 2007 inclusive) 

 MAPE MASE 

Holiday 

ID Model 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

1 SVRNN (d=4) 8.76 10.26 9.54 9.47 0.2338 0.2717 0.2544 0.2573 
2 SVRNN (d=5) 7.48 9.81 8.61 9.00 0.2018 0.2644 0.2351 0.2571 
3 SVRNN (d=6) 7.78 8.91 8.52 8.81 0.2103 0.2444 0.2355 0.3023 
4 SVRNN (d=7) 8.02 8.78 8.76 9.56 0.2147 0.2410 0.2408 0.3030 
5 SVRNN (d=8) 8.10 9.20 9.29 9.52 0.2188 0.2553 0.2568 0.3166 
6 Naïve 1 9.75 9.75 9.75 9.75 0.2540 0.2540 0.2540 0.2437 
7 Naïve 2 14.26 14.26 14.26 14.26 0.3662 0.3662 0.3662 0.3380 
8 SARIMA 6.39 11.41 12.21 9.99 0.1595 0.2788 0.2958 0.3418 
9 WMES 6.49 8.34 9.47 9.44 0.1762 0.2206 0.2442 0.3371 

Study 

ID Model 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

1 SVRNN (d=4) 10.84 12.14 10.05 9.99 0.1656 0.1676 0.1568 0.1562 
2 SVRNN (d=5) 10.67 12.34 12.26 12.01 0.1668 0.1658 0.1934 0.1787 
3 SVRNN (d=6) 12.11 13.88 9.87 9.73 0.1872 0.1735 0.1636 0.1629 
4 SVRNN (d=7) 12.67 14.22 10.26 9.68 0.1932 0.1796 0.1678 0.1525 
5 SVRNN (d=8) 12.19 13.95 11.41 10.37 0.1882 0.1916 0.1819 0.1665 
6 Naïve 1 11.58 11.58 11.58 11.58 0.1732 0.1732 0.1732 0.1732 
7 Naïve 2 20.77 20.77 20.77 20.77 0.3140 0.3140 0.3140 0.3140 
8 SARIMA 12.40 10.42 11.26 11.49 0.1852 0.1637 0.1695 0.1750 
9 WMES 10.67 10.92 10.99 11.76 0.1578 0.1596 0.1613 0.1792 

VFR 

ID Model 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

1 SVRNN (d=4) 5.94 6.31 6.24 6.17 0.4406 0.4666 0.4620 0.4604 
2 SVRNN (d=5) 5.68 5.93 5.94 5.86 0.4176 0.4333 0.4343 0.4330 
3 SVRNN (d=6) 5.94 5.92 6.07 6.46 0.4433 0.4417 0.4517 0.4770 
4 SVRNN (d=7) 6.17 6.09 6.26 6.39 0.4586 0.4531 0.4613 0.4722 
5 SVRNN (d=8) 5.99 7.29 7.92 8.37 0.4317 0.5234 0.5696 0.5952 
6 Naïve 1 9.58 9.58 9.58 9.58 0.6953 0.6953 0.6953 0.6953 
7 Naïve 2 6.88 6.88 6.88 6.88 0.5070 0.5070 0.5070 0.5070 
8 SARIMA 5.63 5.69 6.27 6.51 0.4222 0.4123 0.4489 0.4717 
9 WMES 5.47 6.05 7.09 7.66 0.4135 0.4404 0.5105 0.5553 

Business 

ID Model 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 

1 SVRNN (d=4) 4.99 6.42 8.00 8.55 0.6440 0.8237 1.0242 1.0922 
2 SVRNN (d=5) 4.89 6.41 8.56 8.66 0.6338 0.8259 1.0981 1.1137 
3 SVRNN (d=6) 5.81 7.12 8.51 8.86 0.7506 0.9202 1.0967 1.1383 
4 SVRNN (d=7) 5.26 6.13 8.21 8.51 0.6795 0.7908 1.0531 1.0918 
5 SVRNN (d=8) 5.22 6.64 8.55 9.46 0.6736 0.8524 1.0998 1.2143 
6 Naïve 1 7.30 7.30 7.30 7.30 0.9218 0.9218 0.9218 0.9218 
7 Naïve 2 9.08 9.08 9.08 9.08 1.1372 1.1372 1.1372 1.1372 
8 SARIMA 5.15 5.33 5.13 6.97 0.6343 0.6806 0.6277 0.8635 
9 WMES 3.94 4.39 4.58 5.01 0.5113 0.5635 0.5828 0.6463 

Note: Bold denotes the best performance among all individual models for test data  
         ID indicates the id number of the individual model  

 

 
 
 
 
 
 
 


